
Teaching a Robot Tasks of Arbitrary Complexity
via Human Feedback

Guan Wang

Department of Computer Science

Brown University

Providence, Rhode Island

guan_wang@brown.edu

Carl Trimbach

Department of Computer Science

Brown University

Providence, Rhode Island

carl_trimbach@brown.edu

Jun Ki Lee

Department of Computer Science

Brown University

Providence, Rhode Island

jun_ki_lee@brown.edu

Mark K. Ho

Department of Computer Science

Princeton University

Princeton, New Jersey

mho@princeton.edu

Michael L. Littman

Department of Computer Science

Brown University

Providence, Rhode Island

mlittman@cs.brown.edu

ABSTRACT
This paper addresses the problem of training a robot to carry out

temporal tasks of arbitrary complexity via evaluative human feed-

back that can be inaccurate. A key idea explored in our work is a

kind of curriculum learning—training the robot to master simple

tasks and then building up to more complex tasks. We show how a

training procedure, using knowledge of the formal task representa-

tion, can decompose and train any task efficiently in the size of its

representation.We further provide a set of experiments that support

the claim that non-expert human trainers can decompose tasks in a

way that is consistent with our theoretical results, with more than

half of participants successfully training all of our experimental

missions. We compared our algorithm with existing approaches

and our experimental results suggest that our method outperforms

alternatives, especially when feedback contains mistakes.

CCS CONCEPTS
• Theory of computation → Reinforcement learning; Modal

and temporal logics; • Computing methodologies → Learning
from critiques; • Human-centered computing → Interaction
paradigms.

KEYWORDS
reinforcement learning; human-robot interaction; learning from

human feedback; linear temporal logic

ACM Reference Format:
GuanWang, Carl Trimbach, Jun Ki Lee, Mark K. Ho, and Michael L. Littman.

2020. Teaching a Robot Tasks of Arbitrary Complexity via Human Feedback.

In Proceedings of the 2020 ACM/IEEE International Conference on Human-
Robot Interaction (HRI’20), March 23–26, 2020, Cambridge, United Kingdom.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3319502.3374824

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

HRI ’20, March 23–26, 2020, Cambridge, United Kingdom
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-6746-2/20/03. . . $15.00

https://doi.org/10.1145/3319502.3374824

1 INTRODUCTION
Reinforcement learning is a powerful mechanism for creating robots

with desired behaviors. However, autonomous learning systems

can require prohibitive amounts and experience and require the

target user to specify the agent’s mission in the form of a reward

function. In creating learning systems that can carry out a variety

of behaviors for people, we can take inspiration from dog training.

A trainer can convey a seemingly unbounded collection of tasks to

a dog using essentially only evaluative feedback. One significant

tool in the trainer’s collection is expanding on learned tasks later

in training. The site “Doggy Buddy”
1
, provides instructions for

training 52 tricks using this kind of curricular training. Learning to

fetch a drink from the fridge, for example, builds upon first training

the dog to complete a set of 8 other tricks.

Interactive reinforcement learning employs human trainers as a

source of feedback [2, 9, 13, 16, 17, 24, 32, 33]. In one view, training

can be viewed as a form of communication [11, 12] in which the

trainer wishes to convey a target task to the learning agent and

the agent wishes to infer this task and behave accordingly [10].

The work on SABL [23] makes this perspective explicit and we

adopt it in the current work. Past work has also looked at training

algorithms that can learn from evaluative feedback. For the most

part, these algorithms concentrate on learning reward functions

that map state and action to either a reward function or an ac-

tion. Here, we focus on an internal representation of tasks that

supports a boundless collection of meaningfully different tasks.

Our approach also handles trainer error, which is prone to make

traditional methods unstable [8].

Deriving agent behavior from scalar evaluative feedback is the

primary concern of reinforcement learning [21, 31]. Feedback usu-

ally comes from a hand-designed or automatically-constructed [30]

reward function. Reward functions are the most common represen-

tations for tasks, mapping state features to scalar values. They can

be learned from expert demonstration via inverse reinforcement

learning or IRL [1, 5, 26, 34]. Classical reward functions are history-

independent, but representations for temporal tasks have been pro-

posed, often using variants of temporal logic [6, 14]. Temporal-logic

1
www.doggiebuddy.com/topics/Trainingtopics/traintopic3.html

Day 3 Session 5: Learning and Inference HRI ’20, March 23–26, 2020, Cambridge, United Kingdom

649

https://doi.org/10.1145/3319502.3374824
https://doi.org/10.1145/3319502.3374824

representations of tasks are powerful because they can composi-

tionally express tasks of unlimited complexity. Whereas Markov

reward functions are limited to being able to expressmn
distinct be-

haviors in an n-state,m-action environment, the number of distinct

temporal tasks is countably infinite.
2

Existing work for learning compositional, or logical, representa-

tions requires either an optimization procedure that can posit and

recombine substructures [19] or a training procedure that applies

feedback to separate subtasks [28]. It is the latter path we follow

here. We build on recent work showing that human trainers can

decompose complex training tasks into more tractable curriculum

structures [27] and examine the problem of learning a complex task

specification through a series of self-contained lessons.

2 PROBLEM DEFINITION
We represent an agent’s environment as a Markov decision pro-

cess (MDP) M = ⟨S,A,T ⟩. In place of standard reward functions,

objectives or tasks are represented by linear temporal logic (LTL)

formulas. That is, a task Φ has a corresponding optimal policy πΦ,
possibly non-Markovian, that results in the agent moving through

the state space in a way that maximizes the probability of satisfying

Φ. Amission is a special task Φ∗ whose execution is the overall goal

of the training process. The problem we study is that of construct-

ing an agent that is able to learn the desired behavior πΦ∗ efficiently

via evaluative feedback from the trainer. We write fΦ,t = 1 if

at ∈ πΦ(st), 0 otherwise to capture the feedback expected from a

trainer of task Φ if action at is taken by the agent in the state st
visited at time t .

To separate the problem of learning theMDPM from the problem

of learning the desired behavior, we assume M is known to both

the agent and the trainer. We measure inefficiency in learning by

counting the number of times the agent takes an action that is

inconsistent with πΦ∗ .
To help the agent learn the correct task, a trainer gives either

positive or negative feedback for each agent action. (We disallow

neutral feedback or non-feedback in this work.) The trainer should

respond with positive feedback if the agent’s actions are consistent

with the desired behavior and with negative feedback otherwise.

Interactions take place in rounds, signaled by the trainer to the

agent, in which the task being taught changes from round to round.

We make two key assumptions of trainers: (1) The majority of

the evaluative feedback from the human trainers are accurate; and,

(2) They can select tasks to teach at each round such that tasks

are either one of a relatively small set of basic tasks or a relatively

simple transformation of previously learned tasks where the final

round’s task is the mission Φ∗. We show that these assumptions

are sufficient to learn arbitrarily complex missions in theory and

also that users can carry out this curriculum-style training pro-

cess successfully with an implemented agent and minimal prior

instruction.

2
One could argue that every possible reward function from the uncountably infinite

set of reward functions does indeed represent a distinct task in that, for any pair of

distinct reward functions, there exists an environment in which they induce different

behaviors [3]. We do not undertake a formal analysis of the relative expressibility of

rewards and temporal logic in the current work.

3 REPRESENTING TASKS
MDP reward functions can specify goal-seeking behavior, for ex-

ample, by providing a large reward for visiting a goal state or by

providing zero reward at the goal state and penalties at all other

states. These task representations are well studied [18], but they do

not provide a systematic compositional way of specifying complex

tasks like the following: (1) Visit locations x and y. (2) Visit location
x while avoiding location y. (3) Visit location x then y. (4) Do not

visit location x unless location y has been visited exactly once.

One well-studied compositional representation for specifying

temporal sequences is linear temporal logic (LTL). Although rep-

resentations are possible, LTL has an extensive literature and has

been shown to cover a significant set of tasks of interest [20].
3

The value of using LTL in machine learning well studied. Shah

et al. [29] introduced a probabilistic model for inferring task spec-

ifications as LTL formula. Kasenberg and Scheutz [15] inferred

state-based and action-based objective functions from demonstrated

behavior trajectories in MDPs. Neider and Gavran [25] reduced the

learning task to a series of satisfiability problems and produced a

smallest LTL formula. Camacho and McIlraith [7] applied LTL to

constructing human-interpretable behavior models. Our work dif-

fers in that it learns LTL representations via interactive evaluative

human feedback and curriculum design.

An LTL formula is a logical expression over propositional func-

tions that is intended to hold starting from a given moment in

time. In addition to the standard logical operations like ∧ (and), ∨

(or), =⇒ (implication), and ¬ (negation), LTL provides a set of

operations for constraining future values of propositions as well.

The operators we consider are ♢ (eventually), □ (always), and U

(until). Briefly, ♢Φmeans that formula Φmust be true at some point

in the future, □Φ means that formula Φ must be true at all points

in the future, and Φ U Φ′ means that Φ must be true at every time

point until Φ′ becomes true and that Φ′ must eventually become

true.

A particularly powerful aspect of LTL is that the subformulas Φ
themselves can include temporal operators. Here are representa-

tions of the example tasks:

(1) (♢x) ∧ (♢y): At some point in the future, the agent should

visit a state where x is true. In addition, the agent should at

some point visit a state where y is true.

(2) (¬y) U x : The agent should visit a state where x is true, but

must not visit a state where y is true until that happens.

(3) ♢(x ∧ ♢y): The agent needs to reach a state in which x is

true and, at that same point, y is true in the future.

(4) ((□¬x) ∨ ((¬x) U y)) ∧ □(y =⇒ (y U (□¬y))): Two
conditions must hold. First, either the agent never visits a

state where x is true or it avoids states where x is true until

a state where y is true is reached. But, at the same time, it

should always be the case that visiting a state where y is

true results in always avoiding such states after leaving.

One challenge to using LTL in MDPs is that conditions such as

□x cannot be verified except in the context of an infinitely long

state sequence. In addition, say we are trying to encourage an agent

3
LTL is not sufficiently expressive to capture all possible tasks, however. For example,

LTL cannot express standard reward maximization tasks or temporal tasks involving

context-free structures [4].

Day 3 Session 5: Learning and Inference HRI ’20, March 23–26, 2020, Cambridge, United Kingdom

650

to reach a goal state by putting a reward of +1 there. Looking at a

pure sum of rewards, any sequence that reaches the goal, regardless

of length, is equally good. A common approach to discouraging

unbounded delays is to introduce temporal discounting, which

can be viewed as introducing a per-step expiration probability.

Specifically, the agent’s reward accumulation continues after each

step with probability γ and terminates otherwise. The result of

introducing discount factor 0 < γ < 1 is that rewards t steps in the

future are only worth γ t as much. Setting γ closer to zero has the

effect of making an agent “impatient”, gathering rewards as quickly

as possible before task termination. Values close to one allow for

more “patient” behavior. (We used γ = 0.99999 in our experiments.)

A similar idea has recently been introduced into LTL, which

we use in our work—each temporal operator in the formula has

a per-step probability of expiring [22]. If an □ operator has been

satisfied up until the time it expires, it is considered to have been

evaluated to be true. If an ♢ operator has not been satisfied up until

the time it expires, it is considered to have been evaluated to be false.

LTL formulas can be automatically compiled into an extended state

space that allows standard MDP planning algorithms to compute

policies that maximize the formula-satisfaction probability.

4 TRAINING ALGORITHM
We propose an iterative algorithm (Algorithm 1) that learns mis-

sions effectively and efficiently over a series of rounds, i = 0, 1, . . . ,k .
Before the start of the first round, the agent is given K0, a set of log-

ical propositions in the domain. The set of initial hypotheses H0 is

generated by applying the transformations τ to K0. After the train-

ing for round i , the agent identifies a set Li ⊆ Hi of learned tasks

and sets Ki+1 = Ki ∪ Li . In each subsequent round i + 1, the agent
takes the set Ki+1 and templates τ and generates Hi+1 = τ (Ki+1)
from them to form new hypotheses for learning. This process con-

tinues until the trainer successfully conveys the mission Φ∗.
At round i , the trainer guides the agent to learn Φi by giving

positive feedback when the agent’s actions align with Φi and nega-

tive feedback otherwise. During training (LearnTask), the agent

takes actions that elicit the most discriminative feedback possible

from the trainer. Specifically, the agent takes an action such that

it can rule out as close as possible to 50% of the policies currently

under consideration. Given perfect feedback, whenever the agent

sees feedback inconsistent with a given hypothesis, it can eliminate

that hypothesis from consideration for the rest of the round. To

be robust to occasional trainer errors, however, we instead have

the agent allocate “strikes” to hypotheses that disagree with the

feedback. When a round is ended, the agent is left with L, the set of
hypotheses that had the fewest strikes against them. In our experi-

ments, we direct the trainer to continue training if more than one

hypothesis is in L. However, after 10 restarts, the algorithm simply

returns two hypotheses selected at random from L.

Theorem 1. Consider a set of tasks X , where every x ∈ X has a
formula of length at most d and can be distinguished from the rest
of the tasks in X using a trajectory of length m. Given that |X | is
polynomial in d and provided with evaluative feedback with at most
n errors, a learning agent can successfully identify the target task
with a number of interactions that is polynomial inm, n, and d .

Algorithm 1 Agent learning algorithm

Input: basic propositions K0, templates τ
Initialize H0 ← τ (K0), i ← 0

while trainer has not finished mission do
Li ← LearnTask(Ht)

Ki+1 ← Ki ∪ Li
Hi+1 ← τ (Ki+1)
i ← i + 1

end while
return Li−1 as learned mission

function LearnTask(X)

t ← 0

restarts← 0

L← X
for ϕ ∈ X do

rϕ ← 0, initialize formula strike counter

end for
choose starting state st
while task has not ended do

observe current state st
for all a ∈ A do

ca = # formula in L with a optimal in st
end for
execute at = argmina |ca − |L|/2|
if trainer gives feedback ft then

for all ϕ ∈ X do
if ft , fϕ ,t then

rϕ ← rϕ + 1
end if
L = {ϕ ∈ X |rϕ = minϕ ∈X r j }

end for
else if trainer attempts to end task then

if |L| = 1 or restarts ≥ 10 then
break

else
restarts← restarts + 1

choose starting state st+1
end if

end if
t ← t + 1

end while
return L (at most 2, selected at random)

end function

Theorem 1 shows us that, if we know a trainer will make only

at most n mistakes, we can ensure that we find the single correct

hypothesis. It would be difficult, if even possible, to know the max-

imum number of mistakes a particular human trainer might make,

so this assumption is a strong one. We can calculate a bound on

the error rate of the trainer that the naïve algorithm in the proof

will tolerate. Since we can err up to n times safely on each of the

tests with (n + 1)m possible feedback signals, our acceptable error

Day 3 Session 5: Learning and Inference HRI ’20, March 23–26, 2020, Cambridge, United Kingdom

651

Known Formula Derived Formula

Atemporal transformations

(X and Y are not necessarily temporal formulas)

1. X ♢X
2. X □X
3. X , Y X U Y

Temporal transformations

(X , Y , are temporal formulas,

x and y are not necessarily temporal formulas)

4. X = ♢x ♢¬x
5a. X = ♢x, Y = ♢y ♢(x ∨ y)
5b . ♢(x ∧ y)
6. X = □x □¬x
7a. X = □x, Y = □y □(x ∨ y)
7b . □(x ∧ y)
8. X = □x, Y = ♢y x U y
9. X ¬X
10. X , Y X ∧ Y
11. X , Y X ∨ Y
12. X □¬X
13. X = ♢x, Y ♢(x ∧ Y)

Specialized transformations

(X , Y , Z , x , y need not be temporal)

14. Z , X U Y X U (Y ∧ Z)
15. X = ♢x ♢□x
16. X = □x □♢x
17. ♢(X ∧ ♢y) ♢(X ∧ ♢□y)

Figure 1: Templates used in constructing temporal formulas.

rate ρ is bounded by ρ = n
(2n+1)m <

1

2m . Further, Algorithm 1

follows the same logic as the algorithm used to prove Theorem 1,

except it more efficiently tests hypotheses by using feedback to gain

information about multiple hypotheses at once. Requiring fewer

feedback signals allows for the algorithm to be tolerant of higher

rates of trainer error, in practice.

Similar to standard Boolean logic, LTL formulas can be repre-

sented as syntax trees with nodes for the additional LTL operators.

We partition the space of all LTL formulas into two classes, tempo-
ral and atemporal. We define a temporal LTL formula to be one in

which, on every root-to-leaf path in the tree representation, there

exists at least one temporal operator (♢, □, U). Conversely, an

atemporal LTL formula is one in which there exists at least one root-

to-node path in the syntax tree that does not contain a temporal

operator. Any task that is defined by a temporal formula is referred

to as a temporal task and any task defined by an atemporal formula

is referred to as an atemporal task. Figure 1 lists the templates we

use in our algorithm. The templates were chosen by inferring what

kinds of transformations participants seemed to be expecting in the

context of a pilot study, but they were then significantly modified

to both ensure all temporal tasks could be constructed and strike a

balance between coverage and complexity.

The significance of temporal tasks is that they cannot be shown

to be unsatisfied without at least a single temporal step, meaning

♦
1)

♦table

table

♦
2)

♦ fridge

fridge

♦
3)

∧

table ♦

fridge

♦(table∧♦fridge)

�

4)

♦

∧

table ♦

fridge

�♦(table∧♦fridge)

Figure 2: The training procedure for task 2E. Steps 1) and 2)

use template 1 from Figure 1. Step 3) uses template 13. The
final step, 4) uses template 2.

that a trainer will have an opportunity to provide feedback. There-

fore, to show that a mission can be trained by our multi-round

curricular algorithm, it must be a temporal task and it must be able

to be constructed via the templates we define where every task en

route to the mission is formulated as a temporal task.

Lemma 2. Any temporal formula can be built up via application
of these transformations starting from basic tasks that include simple
temporal formulas of the domain’s propositions. All of the intermedi-
ate formulas in the construction are themselves temporal.

An intuitive description of the proof sketch for Lemma 2 is the

following. Whenever we’re training at a node that is an atemporal

operator, we know, by definition, that both children must be tem-

poral. So, we could have trained (bottom up) to this point without

any issues via induction. When the current node is temporal, it is

possible that one or both of its subtrees is atemporal. In that case,

we can show that we can propagate the temporal operator down to

the subtrees. If we train according to this new tree structure, the

atemporal subtrees become temporal and therefore trainable. This

training strategy is illustrated in Figure 2.

Theorem 3. If a trainer can decompose a mission into tasks satis-
fying the lemma and can provide evaluative feedback with low error
rate, they can train the algorithm to learn the temporal LTL task in
time polynomial in the size of the formula with high probability.

Theorem 3 follows from a combined application of Theorem 1

and Lemma 2. We show that the training procedure remains feasible

with respect to the size of the formula for the overall mission.

In short, Theorem 1 shows that any temporal task we consider

can be correctly learned via imperfect feedback. Lemma 2 explains

that any temporal mission can be successfully decomposed and

trained as a series of these smaller tasks discussed in Lemma 2.

Finally, Theorem 3 proves that if a trainer is able to decompose tasks

according to Lemma 2 and can provide feedback with low error as

in Theorem 1, then Algorithm 1 can efficiently learn LTL missions.

Having shown theoretically that our learning algorithm can be

efficiently taught any temporal mission formula by an idealized,

low-error trainer, we follow up by showing that real world users

can approximate the idealized trainer sufficiently closely to convey

complex tasks to the agent.

Day 3 Session 5: Learning and Inference HRI ’20, March 23–26, 2020, Cambridge, United Kingdom

652

5 EXPERIMENTS AND RESULTS
We assessed the performance of our algorithm compared to existing

approaches—TAMER and COACH.

5.1 Simulation study
In Study 1, we evaluated how well each algorithm performed in a

simulated 5 × 5 grid world (Figure 4). In the grid world, there were

four objects, each associated with its own atomic proposition: a

table, a chair, a charger, and a fridge. Four tasks were tested: (1A)
Move all around, but don’t bump into the chair: □¬chair. (1B) Go
directly to the table: ♢table. (1C) Don’t touch the table on your way to
reaching the charger: ¬table U charger. (1D) Start at the fridge and
stay there:□fridge. The tasks were all in the initial set of hypotheses
and thus could be learned directly without a curriculum strategy.

There were two types of trainers we simulated in this experiment:

1) an ideal trainer who only gives correct feedback; 2) a simulated

non-expert trainer who gives feedback with an error rate of θ .
For each type of trainer, we ran 10 rounds of training for each

algorithm. During each round, the agent started from a random

grid and learned from feedback given by the trainer until the task

was complete, then chose another random position to start the next

episode.

We measured how well the learner performed by the percentage

of positive feedback its trajectory received from an ideal trainer. A

perfect episode is one with a value of 100%. Once the agent gets

three perfect episodes in a row, the round is finished. We counted

the median number of episodes the agent had taken before the first

perfect episode, the median number of feedback per episode, and

the median number of the total feedback per round. For task 1D,

the agent always started from the fridge because the task cannot

be completed successfully otherwise.

Since the experimental tasks was temporal rather than state-

based in nature, we augmented the state space available to TAMER

and COACH so that they could learn the target behavior. The state

consisted of the current position of the robot along with the order

that the landmark object were visited up to that point. So, if the

robot had visited the charger and the table, in that order, the state

would be augmented with “1: charger, 2: table”.

Our algorithm took a very small number of episodes to learn

the tasks. Figure 3 presents the training time results for all three

algorithms in two scenarios—error-free feedback and feedback with

θ = 0.327 errors. This value was chosen to align the simulation with

our observation that 32.7% of feedback signals were observed to be

in error in our user study. For each algorithm, we show the range

of training times over the four tasks. The results show that our

algorithm needs significantly fewer episodes to learn the tasks—the

simulated trainer gave much more feedback per round to TAMER

and COACH than to our algorithm. The performance difference

between our algorithm and the other two became larger when the

trainer made mistakes. (Note the log scale on the plot.)

We further tested the algorithms with a group of complicated

missions: (2A) Go to the table and then go to the charger and stay
there:♢(table∧♢□charger). (2B) Go to your charger without colliding
with either the chair or the table: ¬(chair ∨ table) U charger. (2C)
Go to the table and then go to the fridge: ♢(table ∧ ♢fridge). (2D)
Go to the charger and then go to the chair without running into the

Figure 3: Training feedback needed for our algorithm,
TAMER, and COACH across tasks 1A through 1D.

table along the way: (¬table) U (charger ∧ ♢chair). (2E) Go back
and forth patrolling between the table and the fridge: □♢(table ∧
♢fridge). Neither TAMER nor COACH could learn any of them.

Our algorithm, in contrast, successfully learned from the missions

being decomposing into simpler tasks, and tackling them one at a

time.

5.2 User study 1: Learning a single task
We then carried out two user studies to determine whether non-

expert human trainers could 1) train a learning agent running our

algorithm to execute basic tasks; 2) train a learning agent end to

end on a complex mission by decomposing it into smaller tasks and

providing evaluative feedback to convey each task. Participants for

each study were recruited via Amazon Mechanical Turk (AMT).

In Study 1, participants were instructed to train agents on basic

tasks. They were presented with a simulated robot (the learning

agent) in a 5×5 grid world (Figure 4). A brief introduction of the user

study environment can be found here: https://youtu.be/40uLW10UFzk

During each round, participants were given a basic task that they

needed to train the robot to execute via positive and negative feed-

back. Each participant was asked to complete four rounds, each

with a different and independent task. The tasks were same as the

four basic tasks in the simulated environment, and were given one

by one in a random order to the participants.

At the beginning of each round, the participant was asked to

place the robot by clicking on one grid cell in the map. The robot

would then choose an action (moving up, right, down, left, or stay)

based on our scheme. After taking an action, the agent would wait

for the participant to give feedback. The participant could choose to

give positive feedback by clicking on “NICE MOVE :)”, or negative

feedback by clicking on “BADMOVE :(”. Our algorithm would then

learn from the feedback, ruling out formulas that did not match the

feedback and choosing from the remaining formulas to make its

next action selection. During training, the participant could change

the agent’s location by clicking “PICK UP AND REPLACE ROBOT”

Day 3 Session 5: Learning and Inference HRI ’20, March 23–26, 2020, Cambridge, United Kingdom

653

Figure 4: Experimental domain for training temporal tasks.

and choose another grid cell to continue. Once the participant was

satisfied with the performance of the agent, he or she could click

“GOOD JOB! YOU’VE LEARNEDTHEMISSION” to end the training.

At the end of training, the remaining set of formulas, as derived by

the algorithm, was considered to be the learned formula set.
We instructed participants 1) to give positive feedback if he or

she believed that the most recent action was consistent with the

target task and negative feedback otherwise; and 2) to end the

training when he or she believed that the agent had learned the

task.

5.3 User study 1 results
To measure task success, we evaluated whether the learned formula

matched the target formula using a similarity score defined over

the range [0, 1]. Consider a ground truth formula A of which the

induced policy is πA, and a learned formula B with policy πB . For
πB , we create a set of trajectories JB by starting the agent from

each of the twenty-five positions on the grid and executing twenty

random trajectories of πB . Thus, JB contains five hundred trajec-

tories in total. The similarity of B to A is calculated by counting

the percentage of positive feedback of all trajectories in JB from

an ideal trainer trying to teach A. It can be thought of as telling us

how happy someone would be when they were wanting to train

formula A and the robot exhibits behavior from formula B. If the
agent learns more than one formula, then we conservatively re-

port the minimum similarity for all learned formulas to the target

formula.

In the 5 × 5 grid world, the similarity between two randomly

generated formulas is 0.16 on average. To get a sense of the meaning

of the scores, here are some examples: The similarity of formula

A: □fridge to formula B: ♢charger is 0—they send the agent in

very different directions. The similarity of formula B to formula C:
♢fridge is 0.35, because both draw the agent to the right side of the

grid. The similarity of formula D: (¬table) U charger to B is 0.98

because they produce nearly the same action in all states.

A training round was considered to be successful if learned for-

mulas were above a specific similarity threshold to the mission.

The success rate is the percentage of rounds that were successful.

In this study, there were 80 training rounds (20 participants and 4

rounds each). Figure 5 shows the success rate for different similar-

ity thresholds for each target task. The horizontal axis shows the

40%

50%

60%

70%

80%

90%

100%

70% 75% 80% 85% 90% 95% 100%

Pe
rc
en

ta
ge

of
Pa
rt
ic
ip
an
ts

Similarity between
Learned Formula and Goal

Task 1A Task 1B Task 1C Task 1D

Figure 5: Mission success rate in user study 1.

similarity between the learned and target tasks. The vertical axis

shows how many of the participants reached the similarity score

in each task. The results support our hypothesis that the majority

of people can teach simple temporal tasks, with the exception of

Task 1D. An examination of the logs suggested that participants

were unsure what feedback to give for this task when the robot did

not start at the fridge. Some gave positive feedback to the robot for

approaching the fridge, causing the learning algorithm to fail.

We found that the success rate for a participant was strongly

correlated with the number of replacements used in training. At

a similarity threshold of 0.9, trainers who successfully trained 3

or more rounds (among all 4 rounds) clicked “PICK UP AND RE-

PLACE ROBOT” 21 times on average; in comparison, trainers who

successfully trained only 2 or fewer rounds used replacement 9

times on average. This finding was likely a result of the fact that

replacements expanded the size of the effective training set for the

learning agent. Moreover, a good replacement (one that can effi-

ciently help the agent distinguish between the remaining formulas)

sped up the training and improved performance.

Based on this finding, we added functionality to our interface so

that, whenever multiple formulas remained when the participant

requested to end training, the agent would automatically move

itself to a new start position to help disambiguate the remaining

formulas. Note that the learning agent was not aware of the actual

target of training, just that there was residual ambiguity in what

it had learned. This form of active learning greatly simplified the

training process for participants.

5.4 User study 2: Learning via decomposition
In Study 2, we had participants train an agent to carry out complex

missions by decomposing each mission into a curriculum of simpler

tasks and training the tasks one by one.

As in Study 1, we recruited 20 participants. The participants were

presented with the same 5 × 5 grid world and the simulated robot.

Participants received the same instruction as in Study 1 regarding

how to give feedback and when to end a training round. The robot

chose actions and waited for feedback. At the end of each round, if

there were more than two formulas in the learned formula set, the

robot would automatically move to a new start position. A training

Day 3 Session 5: Learning and Inference HRI ’20, March 23–26, 2020, Cambridge, United Kingdom

654

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

70% 75% 80% 85% 90% 95% 100%

Pe
rc
en

ta
ge

of
Pa
rt
ic
ip
an
ts

Similarity between
Learned Formula and Goal

Mission 2A Mission 2B Mission 2C Mission 2D Mission 2E

Figure 6: Mission success rate in user study 2.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

70% 75% 80% 85% 90% 95% 100%

Pe
rc
en

ta
ge

of
Pa
rt
ic
ip
an
ts

Similarity between
Learned Formula and Goal

Tasks of 2A Tasks of 2B Tasks of 2C Tasks of 2D Tasks of 2E

Figure 7: Task success rate in user study 2.

round could only be finished if the number of remaining potential

formulas in H was one or two.

Unlike Study 1, we presented each participant with three inde-

pendent complex missions chosen randomly from the group of five

complicated missions in the simulated environment. After showing

them a decomposition example, we asked them to first decompose

each mission into a sequence of simple tasks, the last task being

the mission itself. The tasks were trained consecutively in rounds.

Within each round, the training process is executed as in Study 1.

The participants can revise the sequence of tasks after each round.

The English description of each decomposed task was recorded and

later translated by the authors into LTL. The learned formula was

derived in the same way as in Study 1. For the last task in each

mission, the target task is the mission itself and the learned formula

represents the learned formula for the entire mission.

5.5 User study 2 results
Figure 6 shows the success rate for different similarity thresholds

for each mission. Figure 7 shows the success rate for different

similarity thresholds for the decomposed tasks of each mission.

The two figures were generated in the same way as Figure 5. The

study result supports our hypothesis that the majority of human

trainers can teach complex temporal missions via our algorithm.

For all five missions, more than 60% of participants successfully

taught the agent the formulas (similarity threshold 0.9).

Figure 2 shows the most common sequence of formulas trained

by participants for Formula 2E. All missions required a multi-step

decomposition, and participants produced a formula with similarity

over 0.8 with the target formula in more than half of all attempts.

We define a decomposition as sufficient if the temporal formula for

the mission can be built up via application of temporal transforma-

tions starting from the set of basic tasks. An unnecessary task in a

sufficient decomposition is one that can be removed and the decom-

position remains sufficient. A sufficient decomposition is minimal
if none of its tasks are unnecessary. Among all the decompositions,

63.4% were sufficient and 50.1% were minimal. When the decompo-

sition was insufficient or included unnecessary tasks, the mission

could still be learned successfully with reasonably high probability

as shown in Figure 6 and Figure 7. In 25 of the 59 runs, the similarity

of the learned mission to the target mission was higher than the

similarity of at least one of the learned intermediate tasks to the

user’s attempted intermediate task. For Missions 2D and 2E, the

agent was able to learn the mission even when at least one of the

decomposed tasks failed.

We examined how often trainer feedback is in error given our

LTL translations of the tasks. Across all training sessions, 4739 of

14505 (32.7%) feedback signals were in error. While this error rate

was higher than expected, it yields a promising success rate (at a

similarity threshold of 0.9), which was at least 60% across all the five

missions. The multi-round training procedure allows participants

to successfully train tasks even in the face of high error rates for

the individual feedback signals.

6 CONCLUSION AND FUTUREWORK
In this paper, we addressed the problem of learning complex tasks

via evaluative feedback through a sequence of self-contained lessons.

We provided theoretical results showing the effectiveness of our

approach, then followed up with experiments in simulation. The re-

sults showed that our algorithm outperformed existing approaches—

TAMER andCOACH—by taking significantly fewer training episodes

and feedback signals to finish training. In a user study, we invited

non-expert participants to train simple tasks, and asked them to

train complex missions through decomposition. The results show

that, in spite of people making mistakes in feedback and decompo-

sition, they were very often able to convey a formula very similar

to the target mission. Future work will apply the algorithm in ro-

botics and home automation environments and identify methods

for better preparing users by improving their teaching skills.

7 ACKNOWLEDGMENTS
The authors are grateful to support from DARPA I2O (XAI, L2M,

and LwLL programs). We thank Jordan Hartzell and Lan Wei for

their contributions to the project.

A APPENDIX
Proofs of the main formal results follow.

Day 3 Session 5: Learning and Inference HRI ’20, March 23–26, 2020, Cambridge, United Kingdom

655

A.1 Proof of Theorem 1
Proof. Consider the following naïve, but sufficient, algorithm.

For each hypothesis, the agent will conduct a set of tests on that

hypothesis by making decisions based on the policy induced by

the hypothesis and observing feedback. During this test, whenever

the trainer gives the agent a negative feedback, the agent counts

a strike against that hypothesis. Strikes are the result of either

the hypothesis under testing being an incorrect hypothesis (and

making a bad decision) or the result of a trainer error in feedback.

For a hypothesis to be incorrect, the policy induced by that hy-

pothesis must take at least 1 action that receives negative feedback.

For the agent to be certain that the test hypothesis is not the target

hypothesis, it must observe at least n + 1 strikes. After accumulat-

ing n + 1 strikes, only n strikes can be attributed to errors in the

feedback signal, and at least 1 strike is a legitimate strike. So, the

test hypothesis must be incorrect.

To be sure the agent has the opportunity to observe the n + 1
requisite strikes to disqualify the test hypothesis, the agent must

run at most 2n + 1 tests. The first n tests might not reveal the

incorrect behavior because each of the negative feedback signals

could be in error and reported as positive. With 2n + 1 tests, the
agent is sure to see at least n + 1 strikes for an incorrect hypothesis.

By testing each of the |X | hypotheses, the agent can be guaran-

teed to find the single correct hypothesis since it will be the only

test with at most n strikes. Since each set of tests requires 2n + 1
runs of the lengthm trajectory, each hypothesis’ tests can take at

most poly(m,n) interactions. We know that |X | = poly(d), so the

overall time to complete the algorithm and test all hypotheses is

poly(d,m,n). □

A.2 Proof of Lemma 2
Remark 1. The set of {∧,¬, U ,□,♢} is functionally complete

over the set we define as temporal formulas and are included in our
basic templates via Templates 1–3, 9–11. So, to prove Lemma 2, we
need to show that we can construct any given temporal tree via these
transformations.

Proof. We can prove the claim using induction on the depth of

the temporal formula tree. Since the basic templates cover all pos-

sible operators on propositions {♢,□, U }, the claim holds when

the depth is 1. (We do not need to even consider ∧, ∨, and ¬ since

these operators used on propositions would create an atemporal

function with a tree of depth 1.)

For induction, we assume that the claim holds for all depths [1,k]
for some arbitrary k . We need to show that the claim still holds for

k + 1. We investigate two cases for a temporal formula tree of depth

k + 1.

Case 1. The root of the tree is a temporal operator.
Since the root is temporal and, by definition, on the path to every

leaf, the resulting tree will always be temporal. The subtrees below

the root are either temporal or atemporal and are of depth ≤ k .
Temporal subtrees can be constructed via the induction hypothesis

on subtrees of depth k . Atemporal subtrees must be handled more

carefully. We first build the subsubtrees by attaching a temporal

operator to them. We use □ or ♢ to match the root of the overall

tree. If the root of the tree has the form a U b, we append □

if we are constructing subtrees of a or ♢ if we are constructing

subtrees of b. These altered subsubtrees are of depth k − 1 + 1 = k
after adding on the extra temporal operator as described. Therefore,

they are temporal trees of depth k , and can now be constructed

by the induction hypothesis. Once these altered subsubtrees are

constructed, we can combine them to make our subtree by using

them in Templates 4–8 or 13. After we have constructed the subtrees

as stated above, we can construct the overall tree via templates 1–3.

Case 2. The root of the tree is an atemporal operator.

In this case, we know that both subtrees must be temporal. If

even one subtree were atemporal, it would include a path to a leaf

that includes no temporal operator and our original claim that the

function is temporal is contradicted. Since both of the subtrees are

temporal, all leaves in the overall tree have a path from the root

that traverses a temporal operator. Further, since the subtrees are

of depth k + 1 − 1 = k , they can be constructed via the induction

hypothesis. The overall tree can then be constructed via Templates

9–12. □

A.3 Proof of Theorem 3
Proof. Successful training can be accomplished by using the

Algorithm 1 with rounds as described by Lemma 2. Since the trans-

formations given by the procedure in the proof of Lemma 2 do not

increase the size of the formula tree by more than a factor of 2, the

bounds on the description of the formula remains the same. Within

each iteration of the algorithm, we increase the hypothesis set by

|τ | |L|. Since we bound |L| by a constant (we use 2) and |τ | is also
constant, the overall size of the hypothesis space increases only

polynomially over the course of the algorithm. As a result, training

each round (even later ones) remains feasible and bounded, both in

sample and computational complexity. Applying Theorem 1 to this

approach to training proves our claim. □

REFERENCES
[1] Pieter Abbeel and Andrew Y Ng. 2004. Apprenticeship learning via inverse

reinforcement learning. In Proceedings of the Twenty-First International Conference
on Machine Learning.

[2] Riad Akrour, Marc Schoenauer, and Michèle Sebag. 2011. Preference-based policy

learning. In Proceedings of the European Conference on Machine Learning and
Knowledge Discovery in Databases (ECML-PKDD). 12–27.

[3] Kareem Amin, Nan Jiang, and Satinder Singh. 2017. Repeated Inverse Reinforce-

ment Learning. (2017). arXiv preprint arXiv:1705.05427.

[4] Davide Ancona, Angelo Ferrando, and Viviana Mascardi. 2016. Comparing trace

expressions and linear temporal logic for runtime verification. In Theory and
Practice of Formal Methods. Springer, 47–64.

[5] Monica Babes, Vukosi N. Marivate, Michael L. Littman, and Kaushik Subramanian.

2011. Apprenticeship Learning About Multiple Intentions. In Proceedings of the
International Conference on Machine Learning. 897–904.

[6] Fahiem Bacchus, Craig Boutilier, and Adam Grove. 1996. Rewarding Behaviors. In

Proceedings of the Thirteenth National Conference on Artificial Intelligence. AAAI
Press/The MIT Press, 1160–1167.

[7] Alberto Camacho and Sheila A McIlraith. 2019. Learning Interpretable Models

Expressed in Linear Temporal Logic. ICAPS.

[8] Javier Ruiz-del-Solar Celemin, Carlos and Jens Kober. 2019. A fast hybrid rein-

forcement learning framework with human corrective feedback. In Autonomous
Robots. Springer, 1173–1186.

[9] Paul Christiano, Jan Leike, Tom B Brown, Miljan Martic, Shane Legg, and Dario

Amodei. 2017. Deep reinforcement learning from human preferences. InAdvances
in Neural Information Processing Systems. 4302–4310.

[10] Dylan Hadfield-Menell, Stuart J Russell, Pieter Abbeel, and Anca Dragan. 2016.

Cooperative inverse reinforcement learning. In Advances in Neural Information
Processing Systems. 3909–3917.

Day 3 Session 5: Learning and Inference HRI ’20, March 23–26, 2020, Cambridge, United Kingdom

656

[11] Mark K Ho, Michael L. Littman, Fiery Cushman, and Joseph L. Austerweil. 2015.

Teaching with rewards and punishments: Reinforcement or communication?. In

Proceedings of the 37th Annual Meeting of the Cognitive Science Society.
[12] Mark K. Ho, James MacGlashan, Michael L. Littman, and Fiery Cushman. 2017.

Social is special: A normative framework for teaching with and learning from

evaluative feedback. Cognition 167 (2017), 91–106.

[13] Charles Lee Isbell, Michael Kearns, Satinder Singh, Christian R Shelton, Peter

Stone, and Dave Kormann. 2006. Cobot in LambdaMOO: An adaptive social

statistics agent. Autonomous Agents and Multi-Agent Systems 13, 3 (2006), 327–
354.

[14] Daniel Kasenberg and Matthias Scheutz. 2017. Interpretable Apprenticeship

Learning with Temporal Logic Specifications. In Proceedings of the 56th IEEE
Conference on Decision and Control.

[15] Daniel Kasenberg and Matthias Scheutz. 2017. Interpretable apprenticeship

learning with temporal logic specifications. In 2017 IEEE 56th Annual Conference
on Decision and Control (CDC). IEEE, 4914–4921.

[16] W Bradley Knox and Peter Stone. 2009. Interactively shaping agents via human

reinforcement: The TAMER framework. In Proceedings of the Fifth International
Conference on Knowledge Capture. 9–16.

[17] W Bradley Knox and Peter Stone. 2013. Learning non-myopically from human-

generated reward. In Proceedings of the 2013 International Conference on Intelligent
User Interfaces. 191–202.

[18] Sven Koenig and Reid G. Simmons. 1993. Complexity Analysis of Real-time

Reinforcement Learning. In Proceedings of the Eleventh National Conference on
Artificial Intelligence. AAAI Press/MIT Press, Menlo Park, CA, 99–105.

[19] John R. Koza. 1992. Genetic Programming: On the Programming of Computers by
Means of Natural Selection. The MIT Press.

[20] H. Kress-Gazit, G.E. Fainekos, and G.J. Pappas. 2009. Temporal-Logic-Based

Reactive Mission and Motion Planning. IEEE Tans. on Robotics 25 (2009), 1370–
1381.

[21] Michael L. Littman. 2015. Reinforcement learning improves behaviour from

evaluative feedback. Nature 521, 7553 (2015), 394–556.
[22] Michael L. Littman, Ufuk Topcu, Jie Fu, Charles Isbell, Min Wen, and James

MacGlashan. 2017. Environment-Independent Task Specifications via GLTL.

(2017). arXiv preprint arXiv:1704.04341.

[23] Robert Loftin, JamesMacGlashan, Michael L. Littman, Matthew E. Taylor, David L.

Roberts, and Jeff Huang. 2014. A Strategy-Aware Technique for Learning Be-

haviors from Discrete Human Feedback. In Proceedings of the Twenty-Eighth
Association for the Advancement of Artificial Intelligence Conference.

[24] James MacGlashan, Mark K Ho, Robert Loftin, Bei Peng, Guan Wang, David L.

Roberts, Matthew E. Taylor, and Michael L. Littman. 2017. Interactive Learning

from Policy-Dependent Human Feedback. In Proceedings of the Thirty-Fourth
International Conference on Machine Learning.

[25] Daniel Neider and Ivan Gavran. 2018. Learning linear temporal properties. In

2018 Formal Methods in Computer Aided Design (FMCAD). IEEE, 1–10.
[26] Andrew Y. Ng and Stuart Russell. 2000. Algorithms for inverse reinforcement

learning. In International Conference on Machine Learning. 663–670.
[27] Bei Peng, James MacGlashan, Robert Loftin, Michael L. Littman, David L. Roberts,

and Matthew E. Taylor. 2017. Curriculum Design for Machine Learners in

Sequential Decision Tasks. In Proceedings of the 16th International Conference on
Autonomous Agents and Multiagent Systems.

[28] Ronald L Rivest and Robert Sloan. 1994. A formal model of hierarchical concept-

learning. Information and Computation 114, 1 (1994), 88–114.

[29] Ankit Shah, Pritish Kamath, Julie A Shah, and Shen Li. 2018. Bayesian inference

of temporal task specifications from demonstrations. In Advances in Neural
Information Processing Systems. 3804–3813.

[30] S Singh, R L Lewis, and A G Barto. 2009. Where do rewards come from?. In

Proceedings of the Annual Conference of the Cognitive Science Society.
[31] Richard S. Sutton and Andrew G. Barto. 1998. Reinforcement Learning: An Intro-

duction. The MIT Press.

[32] Andrea L Thomaz and Cynthia Breazeal. 2008. Teachable robots: Understand-

ing human teaching behavior to build more effective robot learners. Artificial
Intelligence 172 (2008), 716–737.

[33] Christian Wirth and Johannes Fürnkranz. 2013. Preference-based reinforcement

learning: A preliminary survey. In Proceedings of the ECML/PKDD-13 Workshop
on Reinforcement Learning from Generalized Feedback: Beyond Numeric Rewards.

[34] Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, and Anind K Dey. 2008.

Maximum Entropy Inverse Reinforcement Learning. In AAAI, Vol. 8. 1433–1438.

Day 3 Session 5: Learning and Inference HRI ’20, March 23–26, 2020, Cambridge, United Kingdom

657

	Abstract
	1 Introduction
	2 Problem definition
	3 Representing tasks
	4 Training algorithm
	5 Experiments and results
	5.1 Simulation study
	5.2 User study 1: Learning a single task
	5.3 User study 1 results
	5.4 User study 2: Learning via decomposition
	5.5 User study 2 results

	6 Conclusion and Future Work
	7 Acknowledgments
	A Appendix
	A.1 Proof of Theorem 1
	A.2 Proof of Lemma 2
	A.3 Proof of Theorem 3

	References

