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Abstract
Modeling blood rheology remains challenging in part because of its multiphase, aggregating colloidal
nature that gives rise to complex viscoplastic and time-dependent (thixotropic) behavior. Here, we
demonstrate that a multiscale approach incorporating a direct coupling of coarse-graining particle-level
modeling to the macroscopic phenomenological modeling can provide new insights and a promising
methodology. Specifically, a general population balance-based, multiscale, thixotropic modeling approach,
first proposed by Mwasame et al., AIChE J. 63 (2017) 517-531, is applied to account for the rouleaux-induced
thixotropy in human blood in shear flow. Population balances offer a compelling alternative to previously
proposed structure-based heuristic kinetics models of aggregating colloidal suspensions as they use a
statistical approach to describe the aggregate size distribution with well-defined processes for either shear-
induced or Brownian aggregation and breakup under shear flow. When applied to human blood, the
population balance approach offers a first attempt to model the size evolution of predominantly coin-stack
like rouleaux structures of the red blood cells that are the primary source behind the observed yield stress
and thixotropy of blood at low shear rates. This microscopic information, suitably coarse-grained, is then
introduced into a semi-phenomenological macroscopic model that expresses the total stress in terms of an
elastic and viscous contribution. Shear-thinning introduced due to the red blood cell deformation at high
shear rates is accounted for by following Horner et al., J. Rheol. 62 (2018) 577-591. An advantage of this
modeling approach is that the parameters have specific physical meaning that allows for independent
estimates and/or evaluations through appropriately designed independent experiments. Conversely,
parameters with specific microscopic interpretations, such as the fractal dimension of the aggregates, d,,
are obtained fits of macroscopic shear experiments. Fitting and predictions use steady shear, and uni-
directional large-amplitude oscillatory shear (UD-LAQOS) experiments on whole blood samples of two

healthy donors, as reported in Horner et al. We obtain values for d, in the range of 1.5 + 0.2 which is

consistent with the rod-like shape of rouleaux structures reported in the literature. Furthermore, the shear
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predictions compare favorably against the experiments. While this approach is not as accurate as the fits of
prior structure kinetics modeling of Horner et al., these promising results provide a pathway for model
improvement by including independently verified physical properties of blood. This work demonstrates a
new particle-level approach for describing and predicting the non-Newtonian, thixotropic rheology of

human blood.
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I. Introduction

Human blood is a dense suspension consisting of erythrocytes or red blood cells (RBCs), platelets, and
leukocytes or white blood cells (WBCs) suspended in plasma, along with dissolved proteins [1]. It exhibits
yield stress, thixotropy, viscoelasticity, and shear thinning. At low shear rates, much of its complex
rheology arises from RBCs forming coin-stack like aggregates called rouleaux (shown in FIG. 1.). Currently,
there are two proposed mechanisms for the formation of rouleaux — bridging and depletion, both of which
are topics of ongoing research [2], both of them involving the fibrinogen, which therefore, along with the
hematocrit (i.e. the RBC volume fraction) play a critical role in determining blood’s yield stress [3,4].
Whereas over the years many phenomenological viscoplastic constitutive models have proposed to
describe blood’s steady state rheology [5], the Casson model [6] is the one that has been proven most
successful [3,7]. Using several existing data sets from the literature, Apostolidis and Beris [8] have
developed parametric expressions for the yield stress and Casson model viscosity in terms of blood
hematocrit and fibrinogen concentration. However, since the rouleaux structures can break and reform
under the action of the flow, they also give rise to a history-dependent viscosity, i.e. thixotropy. Of the
several phenomenological thixotropic models that have been proposed for blood that of Apostolidis et al.,
[8] has the characteristic that its steady-state behavior reduces to that of a Casson fluid, therefore allowing

the previously mentioned Casson model parametrization to be used.

Under normal physiological flow, the shear rates at the walls of the blood vessels vary from 10s™ in
the veins to 2000 s™' in small arteries and are typically around 100 s™' in large arteries [9]. At high shear
rates, the rouleaux are not observed, and blood flow becomes almost Newtonian with slight shear thinning
that arises from the deformation of red blood cells themselves [10]. In vessels with smaller diameters, the
erythrocytes tend to migrate toward the center of the vessel, leaving a layer of plasma (also known as a
cell-free layer) near the vessel walls—a phenomenon known as the Féhreeus effect [1]. This results in a
decrease in the apparent viscosity and the resistance to blood flow — a phenomenon known as the Fahreeus-
Lindqvist effect [11]. Such heterogeneities in fluid microstructure complicates the modeling of blood flow
within small vessels. Capturing these effects requires adopting a multiphase continuum approach, where
the cell-free layer and fluid core are represented by different fluids, or by performing two-dimensional or
three-dimensional flow simulations that explicitly model individual red cells along with their interactions
with cell walls and other blood constituents. Starting with the pioneering work of Fedosov and Karniadakis
and co-workers [12,13], several workers [14-16] have devoted effort to build a foundation for the migration

and margination behavior of red cells in various geometries and flow regimes using both theoretical and



computational approaches. Kumar and Graham [17] present a detailed review of the phenomena of
margination along with available mechanistic models. It has been demonstrated that the cell stiffness, size,
and shape strongly influence the rheological behavior which could become complicated in diseases such
as the sickle cell disease, where the morphology of the blood cell exhibits a substantial departure from the

healthy red blood cells.

In this study, we only consider vessels with larger diameters, where the blood flow can be considered
to be homogeneous, as the cell-free layer is very thin compared to the vessel diameter. The effect of rouleaux
on blood rheology becomes more critical in low shear rates conditions, such as flow in the veins, near the
center of vessels, at bifurcations, and in ex-vivo measurements. An accurate constitutive model would be
vital in understanding the changes in blood rheology because of diseases that affect blood morphology
and/or kinetics of rouleaux formation and could potentially also lead to diagnostic tools based on

rheological measurements [18-20].

The aggregation and breakage kinetics of rouleaux structures is a complex phenomenon as it is affected
by the orientation of RBCs [21], owing to their biconcave disk shape. Moreover, the aggregation tendencies
of RBCs are strongly affected by the presence of constituents like fibrinogen [2]. FIG. 1. illustrates multiple

length scales that are involved in the aggregation process, starting from RBCs (~6-8 um ) that aggregate to

form rouleaux, which are stacks of about 4-12 cells [22]. The transient dynamics of rouleaux as they form

and collapse under shear and Brownian motion leads to the emergence of thixotropy.

Thixotropy characterizes the time-varying apparent viscosity of a complex, usually heterogeneous,
material upon a given imposed flow deformation, decreasing as the flow deformation continues or
intensifies, followed by an increasing one upon flow cessation, due to internal microstructural
rearrangements that are typically connected to the reversible breakage/formation of weak bonds that hold
together temporary mesoscale structures [23-29]. Depending on the extent of structure formation, one may
also observe large networks that impart solid-like characteristics such as yield stress and elasticity to the
suspension [30,31]. The morphology of such structures usually changes dynamically during flow and
results in a rich interplay between the structure and rheology across multiple length scales [31-33].
Empirical kinetic equations have been developed to describe the evolution of mesoscale structure as a result
of the competition between Brownian and flow deformation-induced effects. These formulations are
usually limited to shear flows and use a structure variable that is selected such that one limit corresponds

to the virgin structure at static equilibrium, and the other corresponds to a fully collapsed structure under



the action of flow deformation. Although a scalar parameter is commonly used to describe the structure,
Jamali et al. [34] have proposed the use of a fabric tensor to characterize the microstructure as it can better
monitor the collective dynamics of heterogeneous mesoscale structures. The structural contribution of
stress (again, typically restricted to the shear stress in shear flows) is postulated on a phenomenological
empirical basis, representing the shear stress as the superposition of an elastic (yield) and a viscous stress
contribution with the stress parameters depending on both the structure variables and the shear rate.
Various enhancements have been proposed (such as the inclusion of viscoelastic models to the stress
description and the use of kinematic hardening for the modeling of the material elasticity patterned after

theories of plasticity —see [23] for a historical overview and [28,29] for more recent reviews on the subject.

Horner et al. [35] formulated a scalar structure kinetics model (HAWB model hereafter) to describe the
effects of rouleaux formation in human blood. A phenomenological scalar structural parameter 4 accounts
for the degree of rouleaux formation, with 4 =1 indicating fully structured rouleaux and 4 =0 indicating
the absence of any structure. An evolution equation includes Brownian aggregation and breakage due to
shear. While this approach was successful in fitting blood rheology as well as in making predictions for
homogeneous blood thixotropic behavior, the phenomenological nature of structure-kinetics modeling
precludes direct microstructural interpretation and validation. Such a model would be required, ultimately,
to describe the aforementioned, complex phenomena in blood rheology. Therefore, it is desirable to
develop a more physical theory of thixotropy incorporating the physics at the level of the red blood cells,

which is also advantageous for reducing the number of phenomenological parameters in such models.

Owens [36] developed a microstructure-based approximate constitutive modeling approach following
a generalized Smoluchowski equation that was able to capture the key rheological signatures of a hysteresis
experiment. Another approach (and that explored in this work) is the general multiscale constitutive model
for thixotropic fluids with self-similar fractal aggregates based on population balance modeling developed
by Mwasame et al. [37]. This modeling approach utilizes extensive literature available on aggregation and
breakage rates and fractal scaling theories for colloidal suspensions; however, for the sake of simplicity,
authors propose coarse-graining using the zeroth moment of the aggregate size distribution, assuming the
aggregates are monodisperse. Although this model is still semi-phenomenological, it describes the shear
stress and thixotropic response using microscopic information of primary particles and aggregates. With
the recent availability of detailed rheometric data on both steady and a variety of start-up as well as large
amplitude oscillatory flows [38], this model has been tested for a model thixotropic fumed silica particles

suspension providing results that compared well to those rheological experiments [37].
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Following the work of Mwasame et al. [37], we propose here an extension for the monodisperse
population balance model to describe a much more complex thixotropic rheology of human blood in terms
of physiologically relevant physical quantities (such as hematocrit and RBC size) by involving fewer
empirical approximations and a multiscale model with a more direct connection to the internal
microstructure (rouleaux) compared to current phenomenological models for blood rheology. We explore
and demonstrate the general applicability of this approach by comparing against extensive sets of steady-
state and transient rheological data [35,39] for human donors. An important byproduct of the endeavor is
the demonstration of the capability to extract useful mesoscopic structural information, as, for example,
contained in the fractal dimension of the aggregates, from fitting bulk rheological data. It is indeed
remarkable that the fractal dimension for the blood aggregates ended up being significantly smaller than
that corresponding to fumed silica suspensions as mentioned in previous work [30], which is consistent

with the topology changes corresponding to the aggregates of those two different systems.
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FIG. 1. A schematic indicating the rouleau and dimensions of red blood cells.

A brief overview of the modeling methodology in Section I includes the modifications necessary to
adapt the population balances developed by Mwasame ef al. [37] to be appropriate for human blood.
Section III is a summary of the model and outlines the optimization protocol used to obtain the fitting
parameters. Steady shear and unidirectional large amplitude oscillatory shear (UDLAQOS) data from two
healthy donors collected earlier by Horner et al. [35] are used to fit the model parameters using a parallel
tempering algorithm [40]. Model validation is done through direct comparisons to the experimental data

and to the predictions obtained with the HAWB model, especially at low shear rates. Key features and



outcomes of the model are discussed in Section IV and present a comparison of its results with the HAWB

model, followed by conclusions in Section V.



IL. Modeling methodology

The constitutive modeling is based on a multiscale population balance approach developed by
Mwasame et al. [37]. At the particle level the suspension’s aggregate microstructure is described as it
changes with time under Brownian motion and shear deformation. Contributions to the rheological
properties are expressed in terms of this microstructure, such that the overall macroscopic shear stress is
expressed as in terms of rheological variables and applied deformation rates, which in this work are

restricted to shear flows.

A. Microstructure evolution

The population balance equations (PBEs) provide a general mean-field framework to model
aggregation in colloidal suspensions. In particular, instead of modeling individual particle-particle
interactions as in microscopic particle-based simulations, the kinetics of the aggregation and breakage are
modeled using statistical distributions. In the most general form, PBEs are a set of integro-differential
equations that describe the change in particle state (size, mass, or volume) with time and space [41] using
particle properties. For a homogeneous system undergoing aggregation and breakage, Ramkrishna [41]
has proposed a time evolution equation for the total number of particles as

%:%J.Om[a(m—m',m';)})+c(m—m',m’)] n(m—m")n(m")dm'
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where mand n(m) are the number of primary particles per aggregate and the aggregate number density,
respectively, in a spatially homogeneous and univariate population. The above equation keeps track of
particle “births” and “deaths” due to shear and Brownian motion using rate kernels. In the above equation,
a, b and ¢ are defined as shear aggregation, shear breakage, and Brownian aggregation rate kernels,

respectively. P(m|m') is the distribution of daughter fragments after breakage. The Smoluchowski

aggregation kernels are used to describe aggregation from shear and Brownian motion [42], and the kernel
proposed by Spicer and Pratsinis [43] is used for the breakage, which is considered to be purely collisional
in this case. Note that the particles are assumed to be spherical and kinetics orientation independent. Note
that in this initial attempt to apply this model with as few modifications as possible, we approximate the
RBCs as spheres such that the volume of each sphere is equal to that of the biconcave RBC. This yields an

effective spherical particle with a diameter of 5 pm .



Mwasame et al. [37] use the method of moments to reduce the governing equation into a system of

ordinary differential equations (ODEs). For a system with N, total primary particles, the moment of the

variable n(m) is defined as

= n(m)
v, =| m"—=dm. 2
k J. 0 N, 2)
A closure is required to enable solving the moment evolution described in equation (1). Mwasame et al. [37]
assumed the simplest closure such that the moments are approximated by those of the equivalent
monodisperse particle distribution, which is mathematically represented as n(m)= N,u,6(m—m, ). This
closure has been previously shown to give good approximation of rouleaux kinetics by Chen et al. [44].

This coarse-graining approximation reduces equation (1) to a single ordinary differential equation in terms

of the zeroth moment of the distribution, given by
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where W is the Fuchs’ stability ratio, which is a function of interaction potential, & is the Boltzmann
constant, and T is the temperature of the fluid element. The volume fraction of the primary particle
suspended is represented by ¢,. In the shear aggregation term, & is the collision efficiency and y is the
applied shear rate. The zeroth moment v, represents the reciprocal of the average aggregation number.
For the purposes of this study, an aggregate (rouleau) is assumed to be a fractal with d, as its
corresponding fractal dimension. We can compute the volume fraction of RBCs in the rouleaux using the
relation, ¢, = ¢pv(§73/d’ where ¢, is the volume fraction of RBCs in the blood, also called the hematocrit.
Here, the fractal dimension d, isa fit parameter in the final model, but this could also be determined from
structural measurements. Furthermore, g, is the zeroth moment of the distribution of daughter fragments,

and it represents the number of fragments upon breakage. Here, the simple assumption of binary, uniform

breakage specifies 6, =2 . Finally, b, is a constant of proportionality in the breakage term and is also

treated as a fit parameter in this modeling.



An important contribution by Mwasame et al. [1] to enable applying population balances to yield-stress
fluids is the introduction of the criterion of dynamic arrest. The authors propose the use of a cutoff function

as a pre-factor in both Brownian and shear aggregation term in the equation (3), defined as follows

A/

B(¢,)=tanh| y=25—= 1, 4)
( ) ¢max - ¢p

where y is a dimensionless parameter. Consistent with the prior work, the value of y is chosen to be 2.65,

such that f approaches a value of 0.99 when all aggregates are broken down to their minimum allowable

size characterized by a corresponding volume fraction. Note that the cutoff function stops the growth of

aggregates once the aggregate volume fraction reaches space-filling volume fraction ¢, . The maximum

packing fraction ¢, . is 0.68 considering the RBCs pack like ellipsoids with aspect ratio 3 [45].

Under the conditions of interest, the rouleaux cannot break down beyond a single RBC. The following
modification in the shear breakage rate term stops the breakage when the aggregation number becomes

unity [1],
b7 P (v =n). 5)

Under these assumptions, the zeroth moment of the population balance equation for the kinetics of

breakage and aggregation becomes:
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Note that the zeroth moment has the physical interpretation of the number of RBCs in the rouleaux. The
resulting equation provides a low-resolution approach to describing the rouleaux structures. It is limiting
because one cannot make precise predictions about the size of the rouleaux at any given time, as the
rouleaux are more likely to follow a distribution of sizes. Moreover, the accuracy of the volume fraction
prediction is limited by the correlations selected to describe the rheological variables. If one is to only use
rheological measurements for fitting the model, introducing additional complexity to allow for a size
distribution might give rise to an ill-posed optimization problem for the fit parameters that admits multiple

solutions. The use of more detailed versions of correlations for rheological variables, in conjunction with
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fluid microstructure measurement during flow, is recommended in order to determine the fit parameters

with reasonable error bounds in the higher-order population balance equation.

B. Thixotropy and yield stress

The presence of rouleaux leads to both viscous and elastic contributions to the stress, as well as a yield
stress when they fill space. Both thixotropy and viscoelasticity are present due to the rouleaux and their
dependence on shear rate. The elastic response is described as the product of a modulus, G, and an elastic

strain, y, . The viscous response is described by a viscosity, u . These properties are modeled as functions

of the microstructure and the shear rate as follows

Elastic modulus and elastic strain

A key assumption is that the rouleaux impart a nonzero yield stress, o,, and elasticity at low

deformation rates. This elastic response is assumed to be a function of the length of the rouleaux structures,
and it arises due to the weak hydrodynamic interactions and finite deformability of the rouleaux. It is

specified based on an effective elastic modulus, G, and elastic strain, y, . This is expressed in terms of the

rouleaux structure using a fractal scaling relation proposed by Shih et al. [46] for the elastic modulus in the

weak link regime:

1
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The elastic strain, y,, is modeled using the ordinary differential equation
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based on the kinematic strain hardening theory [8]. The parameter 7 involved in the above expression is

the relaxation time for elastic stress defined as
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_ 7/ lin

- ) 9
Te(4) ©)

11



where y,, is the limit of linearity of elastic strain, defined as y,, =&, /G and y(4,) is the structural shear

d
rate defined at the stationary point of the equation (6) such that g , e
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: 10
B=4pa [¢—p] v (49

r

kT
C=2p _KTY, = v
2uW za,

Viscosity
Due to the finite deformability of the isolated RBCs, human blood exhibits shear thinning behavior at
high shear rates, starting around 100s™, where the rouleau structures do not exist [44]. Such a contribution

is modeled with a Cross model [35],

Hoc _ﬂw,c] 11)

te (7)) =t e J{ peE

where u, . and g, are the infinite shear and zero shear viscosities, respectively. The first term is,

however, further corrected through a multiplicative factor, 771’ , assumed shear rate-independent, arising

from the suspension of the rouleau structures, as described below. More recently, Horner et al. [39]
proposed as an extension the use of an extended White-Metzner model to capture the viscoelastic
contribution of isolated deformed RBCs in the stress tensor, so formulated as to reduce to the same Cross

model under steady-state conditions. For the sake of simplicity, we opted not to use this extension here.

The multiplicative factor, 77:1 , corrects the viscosity such that in the limit of very high shear rates when
only singly dispersed RBCs are in suspension, it approaches the infinite shear viscosity u, .. To account

for the effects of the rouleaux networks on the suspension viscosity, we modified the relationship proposed
by Batchelor and Green [47] with an additional term. This added contribution goes to zero at higher shear

rates when no rouleaux exist. The final expression is
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where the hydrodynamic volume fraction, ¢,, is defined as

R
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where R, /R, is the ratio of hydrodynamic radius to the radius of the aggregate.

The overall viscosity can then be expressed as a sum of the contributions from both the suspension and

the deformable isolated RBCs as

. Lo — My
w(8.7)= m.cnm o+ [ﬁj (14)

|
Deformable RBC contribution

Suspension Contribution

where x4, . and g, . are the infinite shear and zero shear viscosities, respectively.

C. Shear stress relation

The overall expression for the shear stress is based on a linear superposition of elastic and viscous

contributions,

O =0 +0

elastic

. viscous . (15)
o=Gy,+uy
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III. Model summary and data fitting

The overall constitutive model consists of two coupled time-evolution equations; one for the zeroth

moment of the aggregate size distribution, v,, and the other for the elastic strain y, , that need to be solved

simultaneously. The equations involved in the model are summarized in TABLE 1. The model contains a
total of 11 undetermined parameters that must be fit using experimental data. The fitting is performed to
the steady-state flow curve and at least one transient experiment. The experimental data set for whole blood
measurements obtained by Horner et al. [35] was used. As the contribution of isolated RBCs describing the
shear-thinning behavior used in this model is identical to the HAWB model, the values of the parameters (

Hocrt, o &7 ) were directly taken from Horner et al. [35]. Two other parameters ( G,,o, ) were

independently fit to low shear rate steady data. The remaining 6 parameters were all fit together based on

steady-state shear and transient data.

UD-LAQOS experiments are used to determine kinetic parameters as the oscillatory nature of the
externally applied deformation in such experiments mimics the pulsatile nature of blood flow in the human
body. For the purpose of comparing the population balance model with the HAWB structure kinetics
model [35], the same data sets for UD-LAOS experiments were used for fitting. The strain and strain rate
in UD-LAQOS experiments follow a sinusoid superimposed on a steady shear, given as

)f = y,0t + ¥, sin wt ‘ (16)
Y =Y @+ Y008 ot

A global optimization procedure outlined by Armstrong et al. [40] following a parallel tempering
algorithm is used, which is efficient in determining the fit parameters for highly non-linear models using
data from oscillatory and dynamic experiments. This approach does not suffer from harsh convergence or
computational penalty if one starts from a poor initial guess of the solution as it utilizes parallel runs to
avoid local trapping. Data of steady-state and 4 UD-LAOS measurements for different combinations of
strain amplitudes and frequencies ({w=10,7, =10}, {®=10,7, =1}, {®=0.2,5, =100} and {w=1,7, =5} )

were fit by minimizing the objective function,

O
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which represents the normalized L, norm of the error, using the parallel tempering algorithm to compute

the parameters. Here N is the total number of experiments and F, refers to the total number of points in

the k" experiment. The parameters standard deviations were estimated using 10 runs with randomly

generated initial guess values within physical limits. As the problem is highly non-linear, all the ordinary

differential equations and their corresponding steady-state algebraic forms were solved numerically, using

built-in MATLAB functions ode23s and fsolve, respectively.

TABLE 1. Summary of the model used for population balance-based constitutive equation for blood using
monodisperse closure following Mwasame et al. [37]
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balance 270 _2'g # v(f —4(1,3 | },| & V§—3/d/ +bo ‘ 7 ‘2 V(l)—]/d,. (18)
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IV.  Results and Discussion

The parameters developed through estimates, independent measurements, independent experiments,
and the final parallel-tempering-based fit of the steady-state flow and 4 UD-LAOS measurements, are listed
in TABLE 2 for Donor 1 and TABLE 3 for Donor 2. As can be seen by comparing the fitted parameter values
between the two donors, the values are comparable with reasonably small variability. This provides good
evidence in favor of the physical significance of those parameters and the PB model. Of particular
importance is the fact that the fitted fractal dimension of the aggregated RBCs is approximately 1.5 + 0.2,
which is statistically significantly lower than previous values reported for fumed silica aggregates
(reported at an approximate value of 2.2) and relatively consistent to the more linear rouleaux structure of
the RBC aggregates. The fact that this value is greater than one be attributed to rouleaux forming branched
networks, as observed in microscopy [48]. In addition, the best (minimum) value of the weighted residual
used after 10 tries for both the HAWB and PB models are shown in TABLE 4. While reasonable, the
residuals are not as low as those achieved with the HAWB model. Note that both HAWB model and the
PB model involve a total of 11 fit parameters. Nonetheless, a good fit is achieved to the experimental data,
and this is also reflected in the detailed comparisons of the PB model predictions against experiments and

the predictions obtained with the HAWB model that follow.

First, regarding steady-state shear, the comparisons between the experimental measurements and the
population balance (PB) model fits are presented in FIG. 2. The model fits obtained with the structure
kinetics-based HAWB model are also shown in the same figure. For Donor 1, the HAWB model and the
experimental bulk rheology measurements agree reasonably well with the PB model fit. In particular, this
good agreement is observed in both low and high shear rate regions as most easily observed in FIG. 2(a)
due to the logarithmically scaled coordinates used there. As also indicated in FIG. 2(b) that shows the fits
and measurements in Casson (square root) coordinates, both the PB and HAWB models successfully
capture the departures of the data from a linear (Casson) behavior; still, this is approximately well predicted
based on the a priori hematocrit and fibrinogen correlations offered in the Apostolidis and Beris

parametrization [8].

For Donor 2, a similar level of agreement is obtained for moderate and high shear rates. However, at
low shear rates, we see a substantial deviation between the PB model fit and the steady-state measurements
(FIG. 2.). The measured stress is higher than the one described by the model, which indicates that the model

underestimates the structural elasticity contribution of the rouleaux. However, the HAWB model offers an
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equally good fit for the Donor 2 data as it did for the Donor 1 data. The PB model predictions for the
rouleaux structures volume fractions appear to be very similar for both donors, as shown in FIG. 3. As
seen there, in both cases the fractions reach asymptotically the maximum packing limit of 0.68 as the shear
rate goes to zero whereas they reach the hematocrit levels (slightly different for the two donors—see
TABLES 2 and 3) as the shear rate becomes very high indicating the complete destruction of the rouleaux

aggregates under those conditions.

Second, regarding the transient UD-LAOS, the comparisons between the experimental measurements
and the predictions from the two models, PB and HAWB, are shown in FIG. 4 and FIG. 5 for Donor 1 and
2, respectively. Overall, as shown there, and despite the significant variations in both frequency and
amplitude, the PB model does a good job in capturing the dominant changes observed in both the
magnitude and the shape of the stress vs. strain curves. Again, the PB model predictions come a bit closer
to the experiments for Donor 1 than Donor 2, and those from the HAWB are in general better (but not
always: see, for example, FIG. 4(d)). The predictions are also much better for the lower frequencies (graphs
(c) and (d)) as compared to the higher one (graphs (a) and (b)). In general, in comparison to the data and
the HAWB model predictions, the PB model seems to have a difficulty (especially pronounced at the higher
frequency and for Donor 2) in capturing the left-right asymmetry correctly in the elastic projections that
indicates the presence of time-dependent complex viscoelasticity that the model is unable to capture. It is
possible that an extension replacing viscous with viscoelastic contributions, similar to that implemented in

the latest structure-based kinetic blood rheology model [39], may be needed.

Also, as seen in FIG. 4(b), FIG. 5(b) and FIG. 5(d) corresponding to the lowest values of strain
amplitude, there is a measurable vertical shift in the elastic projection of UD-LAOS measurements around
zero strain that indicates the presence of finite stress above the yield stress even when the transient strain
and shear rate are zero. This seems to be due to the stored elastic energy in the system that the PB model
(and to a slightly lesser extent the HAWB model) does not account for. Again, the extension to a Maxwell
type viscoelasticity may be able to capture better this behavior. In contrast, the model shows good
agreement with experiments where the strain amplitude and frequencies are such that it results in a
complete collapse of the rouleaux and rebuilding of structure over long times. This can be better
appreciated in FIG. 6 where a complete comparison is presented between the PB model predictions and
UD-LAQOS experimental data obtained upon a systematic variation of both frequencies and amplitude
further extending upon the four cases that were explicitly considered when fitting the model parameters

(shown with rectangular boxes in FIG. 6). It is indicative of the good qualities of the model for blood flow
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that the agreement is best under conditions that are more physiologically relevant (indicated in FIG. 6 with
the shaded region — the low-frequency and high-strain amplitude region of the Pipkin diagram indicates
the venous flows where their pulsatile nature dampens and shear rates are lower). There is, however,
significant room for improvement for low strain amplitudes, which is where the particular simplifying
assumptions used in the present model (regarding both the aggregation model and the dependence on the

elastic behavior on the aggregation state) may have caused the most error—an area of current work.

This first implementation of this generic coarse-grained monodisperse population balance-based model to
blood rheology is observed to capture the qualitative aspects of thixotropy arising from the rouleaux
formation with physiologically relevant properties and a minimum of phenomenological parameters. This
is somewhat surprising as human blood is a suspension vastly different from that for which the model was
developed, i.e., fumed silica and carbon black suspensions. While this model, based on a single moment
approximation to the PB, does not provide as good a fit as more evolved structure-kinetics modeling in
literature, the method provides a rigorous and systematic approach for model improvement without
introducing additional phenomenological parameters, as demonstrated by Mwasame [49]. Another
significant advantage offered by this approach is that it can incorporate physical processes and particle-
level properties derived from the first principles or independently measured. The model provides new
structural information, which can be independently measured (through optical microscopy and/or
scattering), as demonstrated here with the extraction of the fractal dimension of the aggregates from the
fits to steady-state and transient rheology in a range (1.3 — 1.7). This range is close to that expected for the
rouleaux structures in blood and significantly lower than the values obtained for other systems for which
microscopic information indicated higher dimensionality fractal aggregates (such as the value 2.2 deduced

for fumed silica particles [1]).
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TABLE 2. Model parameters used for Donor 1. The highlighted parameters were obtained after 10 independent runs
of parallel tempering algorithm. Errors reported are standard deviations of the parameter values. The objective
function (normalized residual error) is Fyp; = 0.029.

Parameters Description Best Value Avg Value Method

a, Size of the primary particle 2.5 pm =) Physical Estimate

B Maximum packing fraction 0.68 =) Physical Estimate

é, Hematocrit 0.426 =) Measured [35]

G, Equilibrium modulus 0.173 Pa =) Independent Fit [35]

o, Yield stress 2.03 mPa =) Independent Fit [35]

Ho Zero-shear viscosity 7.82mPas =) Independent Fit [35]
corresponding to isolated RBCs

T Infinite-shear viscosity 3.07 mPas =) Independent Fit [35]
corresponding to isolated RBCs

7. Time constant for RBC 0.0383s = Independent Fit [35]
contribution

w Stability ratio 175.7 107.7 £ 67.48 Fit

a Collision efficiency 0.722 0.617 £+ 0.113 Fit

b, Breakage constant 0976 s 0.776 + 0.203s  Fit

d, Fractal dimension 1.647 1.672 £ 0.097  Fit

R,/R, Porosity 0.915 0.900 +£0.037  Fit

() Suspension viscosity correction 2.3 49 %52 Fit

TABLE 3. Model parameters used for Donor 2. The highlighted parameters were obtained after 10 independent runs
of parallel tempering algorithm. Errors reported are standard deviations of the parameter values. The objective
function (normalized residual error) F,p; = 0.033

Parameters Description Best Value Avg Value Method

a, Size of the primary particle 2.5 pum =) Physical Estimate

B Maximum packing fraction 0.68 =) Physical Estimate

é, Hematocrit 0.408 =) Measured [35]

G, Equilibrium modulus 0.164 Pa = Independent Fit [35]

o, Yield stress 3.17 mPa =) Independent Fit [35]

Lo ¢ Zero-shear viscosity 8.56 mPas =) Independent Fit [35]
corresponding to isolated RBCs

Hoy Infinite-shear viscosity 3.50 mPas ) Independent Fit [35]
corresponding to isolated RBCs

7. Time constant for RBC 0.0361s = Independent Fit [35]
contribution

W Stability ratio 165.8 752 +436  Fit

a Collision efficiency 0.50 0.65 + 0.16 Fit

b, Breakage constant 0.596's 0848 + 01355  Fit

d, Fractal dimension 1.319 1421 + 0.162 Fit

R,/R, Porosity 0.808 0.723+0.131 Tt

c, Suspension viscosity correction 2.6 121+ 109 Fit
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TABLE 4. Comparison of the optimal values of normalized residual errors obtained after 10 parallel runs of parallel
tempering algorithm applied to the HAWB model and population balance-based model.

Donor HAWB Model [35] Population balance model
Donor 1 2.7x1073 2.9 %1072
Donor 2 1.8x1073 3.3 %1072
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to the experimental measurements. The model seems to agree well with low as well as high shear rates.
The model has also been compared to the structure kinetics-based HAWB model (b). The inset plot is a
magnification of model fit and data at low shear rates. The dotted lines represent the steady-state Casson-
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FIG. 4. UD-LAOS experimental data on blood from Donor 1 plotted for (a) frequency of 10 rad/s and strain
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amplitude of 100, and (d) frequency of 1 rad/s and a strain amplitude of 5. The model agrees with the
experimental measurements reasonably at a wide range of shear rates and provides comparable accuracy
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V. Conclusions

A monodisperse coarse-grained population balance-based constitutive equation, first developed by
Mwasame et al. [37] for fumed silica particles aggregating suspensions, was adapted to describe the
rheology of human blood in the context of shear flows. By following a systematic multilevel parameter
estimation approach, we then showed how it is possible to obtain reliable model parameter values, using
physiological information and rheological data on steady and UD-LAOS transient shear previously
collected from two healthy donors, with small variations in measured physiological properties. A critical
parameter, the fractal dimension, was obtained with values between 1.3 — 1.7 substantially less than that
obtained for aggregating hard-sphere particles (around 2.2 for fumed silica particles) and consistent with
the lower dimensionality (rouleaux) aggregates observed with blood as compared with the silica system.
Furthermore, we showed that the model predictions obtained with those parameters agree reasonably well
with the experimental rheological data, both steady and transient and that although not as accurate as the
HAWB model, the PB model still captures well all major trends seen in the experiments. The multiscale
population balance model presents a promising approach in describing the aggregation and breakage
processes in general thixotropic complex fluids. Furthermore, with appropriate refinements of the model,
such as adapting the population balance kinetic kernels to represent non-spherically symmetric aggregates
in a better way, allowing for a higher level moment approximation, and incorporating viscoelasticity and
more rigorous tensor-based descriptions for the stress, one may even arrive at a substantially more accurate
representation of the human blood rheology. An additional benefit will then be the easier connection to
physiology and personalized descriptions (through coupling to mass transfer of the individual
components) as well as the accommodation of a full nonhomogeneous description that is able to capture

wall and shear-induced concentration gradients phenomena.

As all the parameters involved in the model have a microscopic origin, using this multiscale approach
opens up the possibility of developing a truly predictive model by examining aggregation and breakage
processes with more mathematical and experimental rigor. This approach establishes a clear link with the
interaction potentials in colloidal suspensions and their effect on bulk rheology. The current constitutive
models require data sets of rheological experiments to be of any practical utility. This approach can be
helpful in reducing the excessive reliance on rheological measurements and allowing for ab initio estimates
for rheological variables, thereby aiding in the design and formulation of materials. Inversely, this
multiscale approach where the structure is clearly defined can allow for a direct inference of the

microstructure from macroscopic rheological measurements.
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Nomenclature

Vi k"™ moment of aggregate size distribution
k Boltzmann constant

T Temperature

w Stability ratio

a Collision efficiency

b, Breakage constant

R, Hydrodynamic size

R Aggregate size

9, Hematocrit (RBC volume fraction)
@, Rouleaux volume fraction

b, Hydrodynamic volume fraction
d, Fractal dimension

B Hyperbolic cutoff function
a Radial dimension of RBC

V4 Strain
o Stress
Shear rate

Elastic modulus

G, Equilibrium elastic modulus

o, Yield stress
T Elastic stress relaxation time
H Suspension viscosity

Uy  Zero-shear viscosity corresponding to isolated RBCs
M, Infinite-shear viscosity corresponding to isolated RBCs
Tc Time constant for RBC viscosity contribution

c, Suspension viscosity correction coefficient
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Highlights

Highlights

Application of a multiscale, population balance-based thixotropy model to the rheology of blood
using steady and transient shear experimental data and in comparison to a recent model.

When applied to human blood, the population balance approach offers a first attempt to model
the size evolution of predominantly coin-stack like rouleaux structures of the red blood cells that
are the primary source behind the observed yield stress and thixotropy of blood at low shear
rates.

This work demonstrates a new particle-level approach for describing and predicting the non-
Newtonian, thixotropic rheology of human blood.

Fitted parameters to macroscopic rheology data offer interpretation that is compatible to our
microscopic understanding of the underlying rouleaux structure.



Manuscript File Click here to view linked References %

Application of population balance-based thixotropic model to human blood

Version 1.11, 04/01/2020 13:35 EST

Soham Jariwala, Jeffrey S. Horner, Norman J. Wagner, and Antony N. Beris !

Center for Research in Soft matter & Polymers (CRiSP), Department of Chemical and Biomolecular Engineering,
University of Delaware, Newark, Delaware, USA-19716

Abstract
Modeling blood rheology remains challenging in part because of its multiphase, aggregating colloidal
nature that gives rise to complex viscoplastic and time-dependent (thixotropic) behavior. Here, we
demonstrate that a multiscale approach incorporating a direct coupling of coarse-graining particle-level
modeling to the macroscopic phenomenological modeling can provide new insights and a promising
methodology. Specifically, a general population balance-based, multiscale, thixotropic modeling approach,
first proposed by Mwasame et al., AIChE J. 63 (2017) 517-531, is applied to account for the rouleaux-induced
thixotropy in human blood in shear flow. Population balances offer a compelling alternative to previously
proposed structure-based heuristic kinetics models of aggregating colloidal suspensions as they use a
statistical approach to describe the aggregate size distribution with well-defined processes for either shear-
induced or Brownian aggregation and breakup under shear flow. When applied to human blood, the
population balance approach offers a first attempt to model the size evolution of predominantly coin-stack
like rouleaux structures of the red blood cells that are the primary source behind the observed yield stress
and thixotropy of blood at low shear rates. This microscopic information, suitably coarse-grained, is then
introduced into a semi-phenomenological macroscopic model that expresses the total stress in terms of an
elastic and viscous contribution. Shear-thinning introduced due to the red blood cell deformation at high
shear rates is accounted for by following Horner et al., J. Rheol. 62 (2018) 577-591. An advantage of this
modeling approach is that the parameters have specific physical meaning that allows for independent
estimates and/or evaluations through appropriately designed independent experiments. Conversely,
parameters with specific microscopic interpretations, such as the fractal dimension of the aggregates, d,,
are obtained fits of macroscopic shear experiments. Fitting and predictions use steady shear, and uni-
directional large-amplitude oscillatory shear (UD-LAOS) experiments on whole blood samples of two

healthy donors, as reported in Horner et al. We obtain values for d, in the range of 1.5 + 0.2 which is

consistent with the rod-like shape of rouleaux structures reported in the literature. Furthermore, the shear
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predictions compare favorably against the experiments. While this approach is not as accurate as the fits of
prior structure kinetics modeling of Horner et al., these promising results provide a pathway for model
improvement by including independently verified physical properties of blood. This work demonstrates a
new particle-level approach for describing and predicting the non-Newtonian, thixotropic rheology of

human blood.
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I. Introduction

Human blood is a dense suspension consisting of erythrocytes or red blood cells (RBCs), platelets, and
leukocytes or white blood cells (WBCs) suspended in plasma, along with dissolved proteins [1]. It exhibits
yield stress, thixotropy, viscoelasticity, and shear thinning. At low shear rates, much of its complex
rheology arises from RBCs forming coin-stack like aggregates called rouleaux (shown in FIG. 1.). Currently,
there are two proposed mechanisms for the formation of rouleaux — bridging and depletion, both of which
are topics of ongoing research [2], both of them involving the fibrinogen, which therefore, along with the
hematocrit (i.e. the RBC volume fraction) play a critical role in determining blood’s yield stress [3,4].
Whereas over the years many phenomenological viscoplastic constitutive models have proposed to
describe blood’s steady state rheology [5], the Casson model [6] is the one that has been proven most
successful [3,7]. Using several existing data sets from the literature, Apostolidis and Beris [8] have
developed parametric expressions for the yield stress and Casson model viscosity in terms of blood
hematocrit and fibrinogen concentration. However, since the rouleaux structures can break and reform
under the action of the flow, they also give rise to a history-dependent viscosity, i.e. thixotropy. Of the
several phenomenological thixotropic models that have been proposed for blood that of Apostolidis et al.,
[8] has the characteristic that its steady-state behavior reduces to that of a Casson fluid, therefore allowing

the previously mentioned Casson model parametrization to be used.

Under normal physiological flow, the shear rates at the walls of the blood vessels vary from 10s™ in
the veins to 2000 s™ in small arteries and are typically around 100 s™' in large arteries [9]. At high shear
rates, the rouleaux are not observed, and blood flow becomes almost Newtonian with slight shear thinning
that arises from the deformation of red blood cells themselves [10]. In vessels with smaller diameters, the
erythrocytes tend to migrate toward the center of the vessel, leaving a layer of plasma (also known as a
cell-free layer) near the vessel walls—a phenomenon known as the Féhreeus effect [1]. This results in a
decrease in the apparent viscosity and the resistance to blood flow — a phenomenon known as the Fahraeus-
Lindqvist effect [11]. Such heterogeneities in fluid microstructure complicates the modeling of blood flow
within small vessels. Capturing these effects requires adopting a multiphase continuum approach, where
the cell-free layer and fluid core are represented by different fluids, or by performing two-dimensional or
three-dimensional flow simulations that explicitly model individual red cells along with their interactions
with cell walls and other blood constituents. Starting with the pioneering work of Fedosov and Karniadakis
and co-workers [12,13], several workers [14-16] have devoted effort to build a foundation for the migration

and margination behavior of red cells in various geometries and flow regimes using both theoretical and



computational approaches. Kumar and Graham [17] present a detailed review of the phenomena of
margination along with available mechanistic models. It has been demonstrated that the cell stiffness, size,
and shape strongly influence the rheological behavior which could become complicated in diseases such
as the sickle cell disease, where the morphology of the blood cell exhibits a substantial departure from the

healthy red blood cells.

In this study, we only consider vessels with larger diameters, where the blood flow can be considered
to be homogeneous, as the cell-free layer is very thin compared to the vessel diameter. The effect of rouleaux
on blood rheology becomes more critical in low shear rates conditions, such as flow in the veins, near the
center of vessels, at bifurcations, and in ex-vivo measurements. An accurate constitutive model would be
vital in understanding the changes in blood rheology because of diseases that affect blood morphology
and/or kinetics of rouleaux formation and could potentially also lead to diagnostic tools based on

rheological measurements [18-20].

The aggregation and breakage kinetics of rouleaux structures is a complex phenomenon as it is affected
by the orientation of RBCs [21], owing to their biconcave disk shape. Moreover, the aggregation tendencies
of RBCs are strongly affected by the presence of constituents like fibrinogen [2]. FIG. 1. illustrates multiple

length scales that are involved in the aggregation process, starting from RBCs (~6-8 pm ) that aggregate to

form rouleaux, which are stacks of about 4-12 cells [22]. The transient dynamics of rouleaux as they form

and collapse under shear and Brownian motion leads to the emergence of thixotropy.

Thixotropy characterizes the time-varying apparent viscosity of a complex, usually heterogeneous,
material upon a given imposed flow deformation, decreasing as the flow deformation continues or
intensifies, followed by an increasing one upon flow cessation, due to internal microstructural
rearrangements that are typically connected to the reversible breakage/formation of weak bonds that hold
together temporary mesoscale structures [23-29]. Depending on the extent of structure formation, one may
also observe large networks that impart solid-like characteristics such as yield stress and elasticity to the
suspension [30,31]. The morphology of such structures usually changes dynamically during flow and
results in a rich interplay between the structure and rheology across multiple length scales [31-33].
Empirical kinetic equations have been developed to describe the evolution of mesoscale structure as a result
of the competition between Brownian and flow deformation-induced effects. These formulations are
usually limited to shear flows and use a structure variable that is selected such that one limit corresponds

to the virgin structure at static equilibrium, and the other corresponds to a fully collapsed structure under



the action of flow deformation. Although a scalar parameter is commonly used to describe the structure,
Jamali ef al. [34] have proposed the use of a fabric tensor to characterize the microstructure as it can better
monitor the collective dynamics of heterogeneous mesoscale structures. The structural contribution of
stress (again, typically restricted to the shear stress in shear flows) is postulated on a phenomenological
empirical basis, representing the shear stress as the superposition of an elastic (yield) and a viscous stress
contribution with the stress parameters depending on both the structure variables and the shear rate.
Various enhancements have been proposed (such as the inclusion of viscoelastic models to the stress
description and the use of kinematic hardening for the modeling of the material elasticity patterned after

theories of plasticity —see [23] for a historical overview and [28,29] for more recent reviews on the subject.

Horner et al. [35] formulated a scalar structure kinetics model (HAWB model hereafter) to describe the
effects of rouleaux formation in human blood. A phenomenological scalar structural parameter 4 accounts
for the degree of rouleaux formation, with 4 =1 indicating fully structured rouleaux and A =0 indicating
the absence of any structure. An evolution equation includes Brownian aggregation and breakage due to
shear. While this approach was successful in fitting blood rheology as well as in making predictions for
homogeneous blood thixotropic behavior, the phenomenological nature of structure-kinetics modeling
precludes direct microstructural interpretation and validation. Such a model would be required, ultimately,
to describe the aforementioned, complex phenomena in blood rheology. Therefore, it is desirable to
develop a more physical theory of thixotropy incorporating the physics at the level of the red blood cells,

which is also advantageous for reducing the number of phenomenological parameters in such models.

Owens [36] developed a microstructure-based approximate constitutive modeling approach following
a generalized Smoluchowski equation that was able to capture the key rheological signatures of a hysteresis
experiment. Another approach (and that explored in this work) is the general multiscale constitutive model
for thixotropic fluids with self-similar fractal aggregates based on population balance modeling developed
by Mwasame et al. [37]. This modeling approach utilizes extensive literature available on aggregation and
breakage rates and fractal scaling theories for colloidal suspensions; however, for the sake of simplicity,
authors propose coarse-graining using the zeroth moment of the aggregate size distribution, assuming the
aggregates are monodisperse. Although this model is still semi-phenomenological, it describes the shear
stress and thixotropic response using microscopic information of primary particles and aggregates. With
the recent availability of detailed rheometric data on both steady and a variety of start-up as well as large
amplitude oscillatory flows [38], this model has been tested for a model thixotropic fumed silica particles

suspension providing results that compared well to those rheological experiments [37].
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Following the work of Mwasame ef al. [37], we propose here an extension for the monodisperse
population balance model to describe a much more complex thixotropic rheology of human blood in terms
of physiologically relevant physical quantities (such as hematocrit and RBC size) by involving fewer
empirical approximations and a multiscale model with a more direct connection to the internal
microstructure (rouleaux) compared to current phenomenological models for blood rheology. We explore
and demonstrate the general applicability of this approach by comparing against extensive sets of steady-
state and transient rheological data [35,39] for human donors. An important byproduct of the endeavor is
the demonstration of the capability to extract useful mesoscopic structural information, as, for example,
contained in the fractal dimension of the aggregates, from fitting bulk rheological data. It is indeed
remarkable that the fractal dimension for the blood aggregates ended up being significantly smaller than
that corresponding to fumed silica suspensions as mentioned in previous work [30], which is consistent

with the topology changes corresponding to the aggregates of those two different systems.

~6—8um
+—>

Red blood cell
(Primary Particle)

Rouleau
(Aggregate)

FIG. 1. A schematic indicating the rouleau and dimensions of red blood cells.

A brief overview of the modeling methodology in Section I includes the modifications necessary to
adapt the population balances developed by Mwasame et al. [37] to be appropriate for human blood.
Section III is a summary of the model and outlines the optimization protocol used to obtain the fitting
parameters. Steady shear and unidirectional large amplitude oscillatory shear (UDLAQOS) data from two
healthy donors collected earlier by Horner et al. [35] are used to fit the model parameters using a parallel
tempering algorithm [40]. Model validation is done through direct comparisons to the experimental data

and to the predictions obtained with the HAWB model, especially at low shear rates. Key features and



outcomes of the model are discussed in Section IV and present a comparison of its results with the HAWB

model, followed by conclusions in Section V.



IL. Modeling methodology

The constitutive modeling is based on a multiscale population balance approach developed by
Mwasame et al. [37]. At the particle level the suspension’s aggregate microstructure is described as it
changes with time under Brownian motion and shear deformation. Contributions to the rheological
properties are expressed in terms of this microstructure, such that the overall macroscopic shear stress is
expressed as in terms of rheological variables and applied deformation rates, which in this work are

restricted to shear flows.

A. Microstructure evolution

The population balance equations (PBEs) provide a general mean-field framework to model
aggregation in colloidal suspensions. In particular, instead of modeling individual particle-particle
interactions as in microscopic particle-based simulations, the kinetics of the aggregation and breakage are
modeled using statistical distributions. In the most general form, PBEs are a set of integro-differential
equations that describe the change in particle state (size, mass, or volume) with time and space [41] using
particle properties. For a homogeneous system undergoing aggregation and breakage, Ramkrishna [41]

has proposed a time evolution equation for the total number of particles as

dn(m,t) _
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where m and n(m) are the number of primary particles per aggregate and the aggregate number density,

respectively, in a spatially homogeneous and univariate population. The above equation keeps track of
particle “births” and “deaths” due to shear and Brownian motion using rate kernels. In the above equation,
a, b and ¢ are defined as shear aggregation, shear breakage, and Brownian aggregation rate kernels,

respectively. P(m\m') is the distribution of daughter fragments after breakage. The Smoluchowski

aggregation kernels are used to describe aggregation from shear and Brownian motion [42], and the kernel
proposed by Spicer and Pratsinis [43] is used for the breakage, which is considered to be purely collisional
in this case. Note that the particles are assumed to be spherical and kinetics orientation independent. Note
that in this initial attempt to apply this model with as few modifications as possible, we approximate the
RBCs as spheres such that the volume of each sphere is equal to that of the biconcave RBC. This yields an

effective spherical particle with a diameter of 5pm .



Mwasame et al. [37] use the method of moments to reduce the governing equation into a system of

ordinary differential equations (ODEs). For a system with N, total primary particles, the moment of the

variable n(m) is defined as

= n(m)
v, =| m"——=dm. 2
=l @
A closure is required to enable solving the moment evolution described in equation (1). Mwasame et al. [37]
assumed the simplest closure such that the moments are approximated by those of the equivalent
monodisperse particle distribution, which is mathematically represented as n(m)= N,z,&(m—m,) . This
closure has been previously shown to give good approximation of rouleaux kinetics by Chen et al. [44].

This coarse-graining approximation reduces equation (1) to a single ordinary differential equation in terms

of the zeroth moment of the distribution, given by

dV kT¢ . ¢ 2-3/d . 1-1/d
So ool =2 da || 2, 1 (6,-1), 3)
dt 2uW ra /4
P Shear breakage
Brownian aggregation Shear aggregation

where W is the Fuchs’ stability ratio, which is a function of interaction potential, k is the Boltzmann
constant, and 7 is the temperature of the fluid element. The volume fraction of the primary particle
suspended is represented by ¢,. In the shear aggregation term, @ is the collision efficiency and y is the
applied shear rate. The zeroth moment v, represents the reciprocal of the average aggregation number.
For the purposes of this study, an aggregate (rouleau) is assumed to be a fractal with d, as its
corresponding fractal dimension. We can compute the volume fraction of RBCs in the rouleaux using the

relation, ¢, = ¢pv(1)73/d

" where ¢, is the volume fraction of RBCs in the blood, also called the hematocrit.
Here, the fractal dimension d, is a fit parameter in the final model, but this could also be determined from

structural measurements. Furthermore, g, is the zeroth moment of the distribution of daughter fragments,

and it represents the number of fragments upon breakage. Here, the simple assumption of binary, uniform

breakage specifies 6, =2 . Finally, b, is a constant of proportionality in the breakage term and is also

treated as a fit parameter in this modeling.



An important contribution by Mwasame et al. [1] to enable applying population balances to yield-stress
fluids is the introduction of the criterion of dynamic arrest. The authors propose the use of a cutoff function

as a pre-factor in both Brownian and shear aggregation term in the equation (3), defined as follows

b — 0
= h max a , 4
A(4,) wan%m_%J 4)

where y is a dimensionless parameter. Consistent with the prior work, the value of y is chosen to be 2.65,
such that # approaches a value of 0.99 when all aggregates are broken down to their minimum allowable

size characterized by a corresponding volume fraction. Note that the cutoff function stops the growth of

aggregates once the aggregate volume fraction reaches space-filling volume fraction ¢, . The maximum

packing fraction ¢, is 0.68 considering the RBCs pack like ellipsoids with aspect ratio 3 [45].

Under the conditions of interest, the rouleaux cannot break down beyond a single RBC. The following

modification in the shear breakage rate term stops the breakage when the aggregation number becomes

unity [1],

b7 (v =vy)- @)

o

Under these assumptions, the zeroth moment of the population balance equation for the kinetics of

breakage and aggregation becomes:
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Note that the zeroth moment has the physical interpretation of the number of RBCs in the rouleaux. The
resulting equation provides a low-resolution approach to describing the rouleaux structures. It is limiting
because one cannot make precise predictions about the size of the rouleaux at any given time, as the
rouleaux are more likely to follow a distribution of sizes. Moreover, the accuracy of the volume fraction
prediction is limited by the correlations selected to describe the rheological variables. If one is to only use
rheological measurements for fitting the model, introducing additional complexity to allow for a size
distribution might give rise to an ill-posed optimization problem for the fit parameters that admits multiple

solutions. The use of more detailed versions of correlations for rheological variables, in conjunction with
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fluid microstructure measurement during flow, is recommended in order to determine the fit parameters

with reasonable error bounds in the higher-order population balance equation.

B. Thixotropy and yield stress

The presence of rouleaux leads to both viscous and elastic contributions to the stress, as well as a yield
stress when they fill space. Both thixotropy and viscoelasticity are present due to the rouleaux and their
dependence on shear rate. The elastic response is described as the product of a modulus, G, and an elastic

strain, y, . The viscous response is described by a viscosity, u . These properties are modeled as functions

of the microstructure and the shear rate as follows

Elastic modulus and elastic strain

A key assumption is that the rouleaux impart a nonzero yield stress, o, , and elasticity at low

deformation rates. This elastic response is assumed to be a function of the length of the rouleaux structures,
and it arises due to the weak hydrodynamic interactions and finite deformability of the rouleaux. It is

specified based on an effective elastic modulus, G, and elastic strain, y, . This is expressed in terms of the

rouleaux structure using a fractal scaling relation proposed by Shih et al. [46] for the elastic modulus in the

weak link regime:

¢a_¢7 ﬁ
G(¢,)=G,| ——2| . 7
-] ”

The elastic strain, y,, is modeled using the ordinary differential equation

N
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based on the kinematic strain hardening theory [8]. The parameter 7 involved in the above expression is

the relaxation time for elastic stress defined as
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where y,, is the limit of linearity of elastic strain, defined as y,, =0, /G and y(4,) is the structural shear

d
rate defined at the stationary point of the equation (6) such that % =0,ie.:

Vss (¢a) = 24 with
A=Db, (vé s VO)

. 10
B=4pa (¢—p] vy 1

Viscosity
Due to the finite deformability of the isolated RBCs, human blood exhibits shear thinning behavior at
high shear rates, starting around 100s™, where the rouleau structures do not exist [44]. Such a contribution

is modeled with a Cross model [35],

. Hoc —Huc
()= FocZfnc | 11
e (7) ﬂw,c+L e J (11)

where x4, . and g, are the infinite shear and zero shear viscosities, respectively. The first term is,

however, further corrected through a multiplicative factor, 7" , assumed shear rate-independent, arising

from the suspension of the rouleau structures, as described below. More recently, Horner et al. [39]
proposed as an extension the use of an extended White-Metzner model to capture the viscoelastic
contribution of isolated deformed RBCs in the stress tensor, so formulated as to reduce to the same Cross

model under steady-state conditions. For the sake of simplicity, we opted not to use this extension here.

The multiplicative factor, 1 , corrects the viscosity such that in the limit of very high shear rates when
only singly dispersed RBCs are in suspension, it approaches the infinite shear viscosity x, .. To account

for the effects of the rouleaux networks on the suspension viscosity, we modified the relationship proposed
by Batchelor and Green [47] with an additional term. This added contribution goes to zero at higher shear

rates when no rouleaux exist. The final expression is
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where the hydrodynamic volume fraction, ¢,, is defined as

R Y
& :(R—] b (13)

where R, /R, is the ratio of hydrodynamic radius to the radius of the aggregate.

The overall viscosity can then be expressed as a sum of the contributions from both the suspension and

the deformable isolated RBCs as

. Hoc = Ho
w(b.7)=  mem o+ | (14)
I+7, |y

|
Deformable RBC contribution

Suspension Contribution

where u, . and g, are the infinite shear and zero shear viscosities, respectively.

C. Shear stress relation

The overall expression for the shear stress is based on a linear superposition of elastic and viscous

contributions,

o= Gelastic +o

] viscous . (15)
o =Gy, +uy
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III. Model summary and data fitting

The overall constitutive model consists of two coupled time-evolution equations; one for the zeroth

moment of the aggregate size distribution, v,, and the other for the elastic strain y,, that need to be solved

simultaneously. The equations involved in the model are summarized in TABLE 1. The model contains a
total of 11 undetermined parameters that must be fit using experimental data. The fitting is performed to
the steady-state flow curve and at least one transient experiment. The experimental data set for whole blood
measurements obtained by Horner et al. [35] was used. As the contribution of isolated RBCs describing the
shear-thinning behavior used in this model is identical to the HAWB model, the values of the parameters (

Hocs o &T. ) were directly taken from Horner et al. [35]. Two other parameters ( G,,o,) were

independently fit to low shear rate steady data. The remaining 6 parameters were all fit together based on

steady-state shear and transient data.

UD-LAOS experiments are used to determine kinetic parameters as the oscillatory nature of the
externally applied deformation in such experiments mimics the pulsatile nature of blood flow in the human
body. For the purpose of comparing the population balance model with the HAWB structure kinetics
model [35], the same data sets for UD-LAOS experiments were used for fitting. The strain and strain rate
in UD-LAQOS experiments follow a sinusoid superimposed on a steady shear, given as

yf = y,0t + 7, sin wt . (16)
V= Y,0+ y,0c08 ot

A global optimization procedure outlined by Armstrong et al. [40] following a parallel tempering
algorithm is used, which is efficient in determining the fit parameters for highly non-linear models using
data from oscillatory and dynamic experiments. This approach does not suffer from harsh convergence or
computational penalty if one starts from a poor initial guess of the solution as it utilizes parallel runs to
avoid local trapping. Data of steady-state and 4 UD-LAOS measurements for different combinations of
strain amplitudes and frequencies ({w=10,5, =10}, {®=10,y, =1}, {®#=0.2,5, =100} and {w=1,y,=5})

were fit by minimizing the objective function,

Gmodel,k - Udala,k

1 1| 2.k
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which represents the normalized L, norm of the error, using the parallel tempering algorithm to compute
the parameters. Here N is the total number of experiments and P, refers to the total number of points in
the k" experiment. The parameters standard deviations were estimated using 10 runs with randomly
generated initial guess values within physical limits. As the problem is highly non-linear, all the ordinary

differential equations and their corresponding steady-state algebraic forms were solved numerically, using

built-in MATLAB functions ode23s and fsolve, respectively.

TABLE 1. Summary of the model used for population balance-based constitutive equation for blood using
monodisperse closure following Mwasame et al. [37]

Population dv kT¢ ¢
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IV. Results and Discussion

The parameters developed through estimates, independent measurements, independent experiments,
and the final parallel-tempering-based fit of the steady-state flow and 4 UD-LAOS measurements, are listed
in TABLE 2 for Donor 1 and TABLE 3 for Donor 2. As can be seen by comparing the fitted parameter values
between the two donors, the values are comparable with reasonably small variability. This provides good
evidence in favor of the physical significance of those parameters and the PB model. Of particular
importance is the fact that the fitted fractal dimension of the aggregated RBCs is approximately 1.5 + 0.2,
which is statistically significantly lower than previous values reported for fumed silica aggregates
(reported at an approximate value of 2.2) and relatively consistent to the more linear rouleaux structure of
the RBC aggregates. The fact that this value is greater than one be attributed to rouleaux forming branched
networks, as observed in microscopy [48]. In addition, the best (minimum) value of the weighted residual
used after 10 tries for both the HAWB and PB models are shown in TABLE 4. While reasonable, the
residuals are not as low as those achieved with the HAWB model. Note that both HAWB model and the
PB model involve a total of 11 fit parameters. Nonetheless, a good fit is achieved to the experimental data,
and this is also reflected in the detailed comparisons of the PB model predictions against experiments and

the predictions obtained with the HAWB model that follow.

First, regarding steady-state shear, the comparisons between the experimental measurements and the
population balance (PB) model fits are presented in FIG. 2. The model fits obtained with the structure
kinetics-based HAWB model are also shown in the same figure. For Donor 1, the HAWB model and the
experimental bulk rheology measurements agree reasonably well with the PB model fit. In particular, this
good agreement is observed in both low and high shear rate regions as most easily observed in FIG. 2(a)
due to the logarithmically scaled coordinates used there. As also indicated in FIG. 2(b) that shows the fits
and measurements in Casson (square root) coordinates, both the PB and HAWB models successfully
capture the departures of the data from a linear (Casson) behavior; still, this is approximately well predicted
based on the a priori hematocrit and fibrinogen correlations offered in the Apostolidis and Beris

parametrization [8].

For Donor 2, a similar level of agreement is obtained for moderate and high shear rates. However, at
low shear rates, we see a substantial deviation between the PB model fit and the steady-state measurements
(FIG. 2.). The measured stress is higher than the one described by the model, which indicates that the model

underestimates the structural elasticity contribution of the rouleaux. However, the HAWB model offers an
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equally good fit for the Donor 2 data as it did for the Donor 1 data. The PB model predictions for the
rouleaux structures volume fractions appear to be very similar for both donors, as shown in FIG. 3. As
seen there, in both cases the fractions reach asymptotically the maximum packing limit of 0.68 as the shear
rate goes to zero whereas they reach the hematocrit levels (slightly different for the two donors—see
TABLES 2 and 3) as the shear rate becomes very high indicating the complete destruction of the rouleaux

aggregates under those conditions.

Second, regarding the transient UD-LAQOS, the comparisons between the experimental measurements
and the predictions from the two models, PB and HAWB, are shown in FIG. 4 and FIG. 5 for Donor 1 and
2, respectively. Overall, as shown there, and despite the significant variations in both frequency and
amplitude, the PB model does a good job in capturing the dominant changes observed in both the
magnitude and the shape of the stress vs. strain curves. Again, the PB model predictions come a bit closer
to the experiments for Donor 1 than Donor 2, and those from the HAWB are in general better (but not
always: see, for example, FIG. 4(d)). The predictions are also much better for the lower frequencies (graphs
(c) and (d)) as compared to the higher one (graphs (a) and (b)). In general, in comparison to the data and
the HAWB model predictions, the PB model seems to have a difficulty (especially pronounced at the higher
frequency and for Donor 2) in capturing the left-right asymmetry correctly in the elastic projections that
indicates the presence of time-dependent complex viscoelasticity that the model is unable to capture. It is
possible that an extension replacing viscous with viscoelastic contributions, similar to that implemented in

the latest structure-based kinetic blood rheology model [39], may be needed.

Also, as seen in FIG. 4(b), FIG. 5(b) and FIG. 5(d) corresponding to the lowest values of strain
amplitude, there is a measurable vertical shift in the elastic projection of UD-LAOS measurements around
zero strain that indicates the presence of finite stress above the yield stress even when the transient strain
and shear rate are zero. This seems to be due to the stored elastic energy in the system that the PB model
(and to a slightly lesser extent the HAWB model) does not account for. Again, the extension to a Maxwell
type viscoelasticity may be able to capture better this behavior. In contrast, the model shows good
agreement with experiments where the strain amplitude and frequencies are such that it results in a
complete collapse of the rouleaux and rebuilding of structure over long times. This can be better
appreciated in FIG. 6 where a complete comparison is presented between the PB model predictions and
UD-LAOS experimental data obtained upon a systematic variation of both frequencies and amplitude
further extending upon the four cases that were explicitly considered when fitting the model parameters

(shown with rectangular boxes in FIG. 6). It is indicative of the good qualities of the model for blood flow
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that the agreement is best under conditions that are more physiologically relevant (indicated in FIG. 6 with
the shaded region — the low-frequency and high-strain amplitude region of the Pipkin diagram indicates
the venous flows where their pulsatile nature dampens and shear rates are lower). There is, however,
significant room for improvement for low strain amplitudes, which is where the particular simplifying
assumptions used in the present model (regarding both the aggregation model and the dependence on the

elastic behavior on the aggregation state) may have caused the most error —an area of current work.

This first implementation of this generic coarse-grained monodisperse population balance-based model to
blood rheology is observed to capture the qualitative aspects of thixotropy arising from the rouleaux
formation with physiologically relevant properties and a minimum of phenomenological parameters. This
is somewhat surprising as human blood is a suspension vastly different from that for which the model was
developed, i.e., fumed silica and carbon black suspensions. While this model, based on a single moment
approximation to the PB, does not provide as good a fit as more evolved structure-kinetics modeling in
literature, the method provides a rigorous and systematic approach for model improvement without
introducing additional phenomenological parameters, as demonstrated by Mwasame [49]. Another
significant advantage offered by this approach is that it can incorporate physical processes and particle-
level properties derived from the first principles or independently measured. The model provides new
structural information, which can be independently measured (through optical microscopy and/or
scattering), as demonstrated here with the extraction of the fractal dimension of the aggregates from the
fits to steady-state and transient rheology in a range (1.3 — 1.7). This range is close to that expected for the
rouleaux structures in blood and significantly lower than the values obtained for other systems for which
microscopic information indicated higher dimensionality fractal aggregates (such as the value 2.2 deduced

for fumed silica particles [1]).
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TABLE 2. Model parameters used for Donor 1. The highlighted parameters were obtained after 10 independent runs
of parallel tempering algorithm. Errors reported are standard deviations of the parameter values. The objective
function (normalized residual error) is F,p; = 0.029.

Parameters Description Best Value Avg Value Method

a, Size of the primary particle 2.5 pm = Physical Estimate

. Maximum packing fraction 0.68 =) Physical Estimate

9, Hematocrit 0.426 = Measured [35]

G, Equilibrium modulus 0.173 Pa = Independent Fit [35]

o, Yield stress 2.03mPa = Independent Fit [35]

Ho ¢ Zero-shear viscosity 7.82mPas = Independent Fit [35]
corresponding to isolated RBCs

Ly ¢ Infinite-shear viscosity 3.07mPas = Independent Fit [35]
corresponding to isolated RBCs

T, Time constant for RBC 0.0383s = Independent Fit [35]
contribution

w Stability ratio 175.7 107.7 £ 67.48 Fit

a Collision efficiency 0.722 0.617 £ 0.113 Fit

b, Breakage constant 0.976s 0.776 £ 0.203s  Fit

d, Fractal dimension 1.647 1.672+ 0.097  Fit

R,/R, Porosity 0.915 0.900 £0.037  Fit

¢, Suspension viscosity correction 2.3 49452 Fit

TABLE 3. Model parameters used for Donor 2. The highlighted parameters were obtained after 10 independent runs
of parallel tempering algorithm. Errors reported are standard deviations of the parameter values. The objective
function (normalized residual error) F,p; = 0.033

Parameters Description Best Value Avg Value Method

a, Size of the primary particle 2.5 um =) Physical Estimate

B Maximum packing fraction 0.68 =) Physical Estimate

¢, Hematocrit 0.408 =) Measured [35]

G, Equilibrium modulus 0.164 Pa = Independent Fit [35]

o, Yield stress 3.17 mPa ) Independent Fit [35]

Ho ¢ Zero-shear viscosity 8.56 mPas = Independent Fit [35]
corresponding to isolated RBCs

My Infinite-shear viscosity 3.50 mPas = Independent Fit [35]
corresponding to isolated RBCs

T, Time constant for RBC 0.0361s = Independent Fit [35]
contribution

74 Stability ratio 165.8 75.2 + 43.6 Fit

a Collision efficiency 0.50 0.65 + 0.16 Fit

bO Breakage constant 0.596's 0.848 + 0.135 s Fit

d, Fractal dimension 1319 1421+ 0162 Tit

R,/R, Porosity 0.808 0.723+0.131  Fit

c, Suspension viscosity correction 2.6 12.1 + 10.9 Fit
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TABLE 4. Comparison of the optimal values of normalized residual errors obtained after 10 parallel runs of parallel
tempering algorithm applied to the HAWB model and population balance-based model.

Donor HAWB Model [35] Population balance model
Donor 1 2.7x 1073 2.9 x 1072
Donor 2 1.8x 1073 3.3x1072
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FIG. 2. The initial steady shear data for Donor 1 and Donor 2 obtained from Horner et al. [35] indicated by
symbols (a) in log-log and (b) Casson coordinates. The solid line in the plot (a) compares the fit of the model
to the experimental measurements. The model seems to agree well with low as well as high shear rates.
The model has also been compared to the structure kinetics-based HAWB model (b). The inset plot is a
magnification of model fit and data at low shear rates. The dotted lines represent the steady-state Casson-
type model proposed by Apostolidis and Beris [8] that computes yield stress and viscosity based on the
hematocrit and fibrinogen concentration (see Horner et al. [35] supplementary material for detail).
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FIG. 3. The volume fraction of red blood cells in the aggregate as a function of the shear rate for the initial
steady shear flow curves for both donors. The volume fractions decrease to the hematocrit volume fraction,
indicating that rouleaux completely collapse at high shear rates.
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FIG. 4. UD-LAOS experimental data on blood from Donor 1 plotted for (a) frequency of 10 rad/s and strain
amplitude of 10, (b) frequency of 10 rad/s and strain amplitude of 1, (c) frequency of 0.2 rad/s and strain
amplitude of 100, and (d) frequency of 1 rad/s and a strain amplitude of 5. The model agrees with the
experimental measurements reasonably at a wide range of shear rates and provides comparable accuracy
to the HAWB model.

22



®=10 rad/s, y,=10 ®=10 rad/s, y,=1

0.18
0.9+(a) — . (b)
- — L
0.8 g 0.16 LT Y
' 0.14 - -
0.7 - o ~N
’
§0.6 §0.12 - B
=05 =010} E
% : = Donor 2 Data %
0 0.4 - = HAWB Model Fit © 0.08F = Donor 2 Data 1
3 —— PB Model Fit @ - - HAWB Model Fit
0.3 0.06 - —— PB Model Fit ]
0.2 0.04 - E
0.1 0.02 F - J
b T
0.0 0.00 L . " "
-1.0 05 0.0 0.5 1.0
Transient Strain Transient Strain
©=0.2 rad/s, y,=100 ®=1rad/s, y,=5
0.10
0.25(c) ]
020k ] 0.08 | 4
& o5l ] éi 006 1
P = Donor 2 Data » = Donor 2 Data
@ - — HAWB Model Fit 2 - - HAWB Model Fit
g i —— PB Model Fit ] =004} —— PB Model Fit [ -
0.10
n n
0.05 ] 0.02 J
0.00 L . . ! 0.00
-100 -50 0 50 100 5 4 3 2 4 0 1 2 3 4 5
Transient Strain Transient Strain

FIG. 5. UD-LAQOS experimental data on blood from Donor 2 plotted for (a) frequency of 10 rad/s and strain
amplitude of 10, (b) frequency of 10 rad/s and strain amplitude of 1, (c) frequency of 0.2 rad/s and strain
amplitude of 100, and (d) frequency of 1 rad/s and a strain amplitude of 5.
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FIG. 6. Pipkin diagram of UD-LAOS elastic projections for blood from Donor 2. As per Horner et al. [35], the four
curves used for data fitting are indicated with a box. The highlighted region indicates the frequencies and strain
amplitudes corresponding to the physiologically relevant flow rates [9]. The model shows good agreement for the
physiological flow regime; however, it significantly underpredicts the elastic component at higher frequencies and
lower strain amplitudes.
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V. Conclusions

A monodisperse coarse-grained population balance-based constitutive equation, first developed by
Mwasame et al. [37] for fumed silica particles aggregating suspensions, was adapted to describe the
rheology of human blood in the context of shear flows. By following a systematic multilevel parameter
estimation approach, we then showed how it is possible to obtain reliable model parameter values, using
physiological information and rheological data on steady and UD-LAOS transient shear previously
collected from two healthy donors, with small variations in measured physiological properties. A critical
parameter, the fractal dimension, was obtained with values between 1.3 — 1.7 substantially less than that
obtained for aggregating hard-sphere particles (around 2.2 for fumed silica particles) and consistent with
the lower dimensionality (rouleaux) aggregates observed with blood as compared with the silica system.
Furthermore, we showed that the model predictions obtained with those parameters agree reasonably well
with the experimental rheological data, both steady and transient and that although not as accurate as the
HAWB model, the PB model still captures well all major trends seen in the experiments. The multiscale
population balance model presents a promising approach in describing the aggregation and breakage
processes in general thixotropic complex fluids. Furthermore, with appropriate refinements of the model,
such as adapting the population balance kinetic kernels to represent non-spherically symmetric aggregates
in a better way, allowing for a higher level moment approximation, and incorporating viscoelasticity and
more rigorous tensor-based descriptions for the stress, one may even arrive at a substantially more accurate
representation of the human blood rheology. An additional benefit will then be the easier connection to
physiology and personalized descriptions (through coupling to mass transfer of the individual
components) as well as the accommodation of a full nonhomogeneous description that is able to capture

wall and shear-induced concentration gradients phenomena.

As all the parameters involved in the model have a microscopic origin, using this multiscale approach
opens up the possibility of developing a truly predictive model by examining aggregation and breakage
processes with more mathematical and experimental rigor. This approach establishes a clear link with the
interaction potentials in colloidal suspensions and their effect on bulk rheology. The current constitutive
models require data sets of rheological experiments to be of any practical utility. This approach can be
helpful in reducing the excessive reliance on rheological measurements and allowing for ab initio estimates
for rheological variables, thereby aiding in the design and formulation of materials. Inversely, this
multiscale approach where the structure is clearly defined can allow for a direct inference of the

microstructure from macroscopic rheological measurements.
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Nomenclature

X ®x & | = N =

S

Hoc

Haoc

k™ moment of aggregate size distribution
Boltzmann constant

Temperature

Stability ratio

Collision efficiency

Breakage constant

Hydrodynamic size

Aggregate size

Hematocrit (RBC volume fraction)
Rouleaux volume fraction
Hydrodynamic volume fraction
Fractal dimension

Hyperbolic cutoff function

Radial dimension of RBC

Strain

Stress

Shear rate

Elastic modulus

Equilibrium elastic modulus

Yield stress

Elastic stress relaxation time

Suspension viscosity

Zero-shear viscosity corresponding to isolated RBCs
Infinite-shear viscosity corresponding to isolated RBCs
Time constant for RBC viscosity contribution

Suspension viscosity correction coefficient
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