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Abstract. Mutually beneficial behavior in repeated games can be en-
forced via the threat of punishment, as enshrined in game theory’s well-
known “folk theorem.” There is a cost, however, to a player for gen-
erating these disincentives. In this work, we seek to minimize this cost
by computing a “Stackelberg punishment,” in which the player selects a
behavior that sufficiently punishes the other player while maximizing its
own score under the assumption that the other player will adopt a best
response. This idea generalizes the concept of a Stackelberg equilibrium.
Known efficient algorithms for computing a Stackelberg equilibrium can
be adapted to efficiently produce a Stackelberg punishment. We demon-
strate an application of this idea in an experiment involving a virtual au-
tonomous vehicle and human participants. We find that a self-driving car
with a Stackelberg punishment policy discourages human drivers from
bullying in a driving scenario requiring social negotiation.

Keywords: Algorithmic Game Theory · Autonomous Driving · Behavior and
Control · Human-Agent Interaction · Social Robots

1 Introduction

Driving is an inherently social activity, and it will remain so as long as human
drivers share the road with autonomous vehicles. The social nature of driving
introduces several problems that are often overlooked in self-driving car (SDC)
research. An effective SDC will have to account for the variance in human driving
styles and preferences [1], as well as varying norms [4] and laws [2] in different
parts of the world. Additionally, SDCs will have to navigate the many nuanced
“corner cases” of driving that require complex social negotiation.

Current planning algorithms for self-driving cars are hard-coded and pro-
grammed to be cautious. Caution is important for safety, but single-minded
caution can make it impossible to complete required driving tasks. For exam-
ple, to merge onto a busy highway, a driver must stick the car’s nose out and
encourage other drivers to slow down [5]. Furthermore, human drivers can take
advantage of overly-cautious SDCs by driving aggressively, effectively bullying
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SDCs by forcing them to yield when they should otherwise have the right of way.
Such behavior has been noted as a possible impediment to mainstream adoption
of SDCs [13,3].

In this work, we explore a computational game theoretic approach that might
be useful in these scenarios. In particular, we examine the idea of using a strat-
egy that adaptively discourages anti-social behavior while remaining safe. Our
proposed strategy has the overall structure of the “folk theorem” of repeated
games—stabilize mutually beneficial behavior with the threat of punishment in
later rounds of play [11]. However, unrestricted punishment could include unsafe
behavior like intentionally crashing into the opponent’s car. We propose using a
punishment strategy that only restricts the opponent’s utility to some safe target
level while maximizing the utility of the agent. With analogy to a Stackelberg
equilibrium, which is the strategy with maximum utility when paired with the
opponent’s best response, we call such a strategy a Stackelberg punishment.

A Stackelberg punishment can be computed efficiently in several classes of
games for which efficient Stackelberg equilibria algorithms exist. We demonstrate
the concept deployed in a simple but strategically relevant driving scenario of
negotiating right of way on a one-lane bridge.

In the first part of this paper, we discuss efficient algorithms for computing
Stackelberg punishment. In the second part, we describe an application of a
Stackelberg punishment to solving the SDC bullying problem and demonstrate
its efficacy in an experiment with human participants.

2 Tree-Based Games

We define a tree-based alternating-move two-player game as a tuple 〈S,A,B, I,F ,
sr, T, R〉. Here, S is a set of states with A ⊆ S being the subset of states where
the first player (the leader) has control, B ⊆ S being the subset of states where
the second player (the follower) has control, and F ⊆ S being the subset of
states that are final states (leaves), ending the decision process. The sets A, B,
and F partition S. The initial state sr is the root of the tree. The set I is the
set of actions available at each state with the transition function T : S × I → S
returning the next state reached from non-final state s ∈ S \ F when action i is
selected. The state space forms a tree in that each state can be reached by only
one path from the root. The pair R(s) = (α, β) is the reward values obtained by
the players when state s ∈ F is reached.

A policy π(s, i) maps each non-final state s ∈ S \ F and action i to the
probability that action i is taken in that state. We can define the value of a
policy π from state s ∈ S \ F as

V π(s) =
∑
i

π(s, i)V π(T (s, i)),

where V π(s) = R(s) for s ∈ F . That is, V π(s) represents the payoff pair for
the two players if they adopt the joint (stochastic stationary Markov) strategy
π. The leader makes the selection in the A states and the follower makes the
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selection in the B states. Given a policy πA defined on the states in A and a
policy πB defined on the states in B, we write π = (πA, πB) to represent the
policy π(s, i) = πA(s, i) if s ∈ A and πB(s, i) if s ∈ B.

For policies for the two players, πA and πB , we can write VA(πA, πB) and
VB(πA, πB) representing the expected payoffs to the two players when these
policies are executed:

(VA(πA, πB), VB(πA, πB)) = V π(sr).

Given such a tree-based game and a policy πA, we call a policy πB a best response
if, for all π′B , VB(πA, πB) ≥ VB(πA, π

′
B). That is, the follower cannot improve its

value by adopting a different policy. We write πB = M(πA) for the best response
to πA.

In this setting, a Stackelberg equilibrium policy for the leader is

argmax
πA

VA(πA,M(πA)).

That is, assuming the follower will adopt a best response to whatever the leader
elects to do, the leader behaves so as to maximize its reward.

Letchford and Conitzer [7] introduced an efficient algorithm for computing
Stackelberg equilibria in tree-based games. In a tree with n leaves and m internal
nodes, their approach runs in time O(mn2). The algorithm works by determining,
for each state s, a set of payoff pairs that can be obtained through some choice
of πA and a best response πB . Since the objective is to find a policy πA that
maximizes reward for the leader, we need only maintain the points of this set
that maximize reward for the leader for each possible value obtained by the
follower.

The algorithm represents the set via a finite set of payoff points P (s) and
a finite set of line segments L(s) connecting some subset of the points in P (s).
It builds up the representation for a state s out of the representation computed
for the children of s. At the leaves of the tree, the representation is simply the
rewards at the leaves.

For a state s where the leader selects the action, the representation is com-
puted by noting that the leader can choose any child of s, therefore any of the
achievable payoffs at any of the children of s are also achievable. However, the
leader can also probabilistically select any of its children. This translates into
line segments where one endpoint comes from the representation of one child
node and the other endpoint comes from the representation of a different child
node. This set is sufficient for capturing the representation of the set of possible
values at s, but it may include some unnecessary lines (or even points). These
extra bits of representation can be removed or ignored, as we are ultimately only
concerned with the points with maximum value for the leader.

For a state s where the follower selects the action, the follower will select the
action that gives it the highest value, assuming it has adopted a best response
policy. For an action i, we compute σi to be the lowest value for which one
should be willing to tolerate selecting i over the alternatives. To compute this
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value, we assume the leader will make the alternatives maximally unattractive.
We then modify the points and lines representing the child’s values to reflect
this preference. Once that modification is completed, every value for every child
can be achieved at s.

Once the set of points and lines needed to represent the achievable values at
the root sr are computed, the point with the largest value for the leader can be
returned as the value of the Stackelberg equilibrium for the tree. (Computing the
policy itself involves unrolling this computation in reverse order and is detailed
in the original paper.)

A single change is all that is needed to adapt the algorithm to produce a
Stackelberg punishment—the strategy must also result in an expected reward
for the follower that does not exceed θ:

argmax
πA:VB(πA,M(πA))≤θ

VA(πA,M(πA)).

That is, the leader maximizes its reward against a best responding follower while
holding the follower’s value to a cap of θ. It follows that the leader cannot improve
its value without the follower’s value rising above θ.

Our algorithm for computing a Stackelberg punishment is a simple extension
over the Stackelberg equilibrium solution. In particular, it finds the point on
the line segments that maximizes the leader’s value subject to the follower’s
value being below θ. For lines that fall completely below θ in terms of their
follower values, we need only check the endpoints to see which is largest for the
leader. For lines that span θ in terms of their follower values, we need to check
the intersection point with θ as well as the endpoint that falls below θ. This
calculation does not increase the overall complexity over that of computing the
Stackelberg equilibrium.

3 Other Models

The game representation in which transitions form a general graph, payoffs can
occur at any node, and actions can have stochastic effects has also been called
a simple stochastic game [6] or an alternating Markov game [9]. The difference
between a stochastic game [12] and an alternating stochastic game is that actions
are selected non-simultaneously in an alternating stochastic game.

Since a Stackelberg equilibrium is a Stackelberg punishment with θ = ∞,
computing a Stackelberg punishment is at least as hard as computing a Stack-
elberg equilibrium. Letchford and Conitzer [7] provide complexity results for
a variety of Stackelberg equilibrium problems, showing that allowing stochastic
transitions, simultaneous actions, or DAG-structured transition functions results
in an NP-hard problem. As such, we should not expect efficient algorithms for
computing Stackelberg punishment in these other game models.
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Fig. 1. The SDC uses its horn to indicate its internal state. For example, in this
sequence, the human driver forces the SDC (in cooperative mode) off the back of the
bridge. The SDC honks to indicate that it considers itself to have been bullied and will
retaliate on the next round.

4 User Study

Our motivation for studying Stackelberg punishment is as a component of an
algorithm that can work productively with people. We conducted an experiment
to assess the efficacy of this idea in a simple SDC-inspired game that requires
social negotiation.

The scenario we used consists of a one-lane bridge fed from both ends by
a 2-lane road (Figure 1). When two cars arrive on opposite sides of the bridge
at roughly the same time, right-of-way rules dictate that the car closer to the
bridge should cross, while the further car should wait. However, the further car
has the opportunity to “bully” the closer car by crossing the bridge first, forcing
the closer car to wait. In this case, a self-driving car that is hard coded to be
cautious would be forced to back off the bridge, yielding to the human bully to
avoid a collision, despite having the right of way.

Our experiment takes the form of an online game in which a virtual self-
driving car (controlled by our algorithm) starts on one side of the bridge, dis-
played at the top of the screen, and a human-controlled car starts on the other
side, shown at the bottom. On each turn, a player can move one position for-
ward, stay in place, or move one position backward. The human participants
control their own car’s actions using the arrow keys on their keyboard.

Human participants were sourced online through Amazon Mechanical Turk
and were rewarded monetarily based on how quickly they got to the other side
of the bridge. The reward for each episode was $0.13, minus $0.01 for every
two seconds before the user reached the goal. This structure was designed to
encourage participants to finish quickly while still receiving a fair wage for their
time (around $15/hour). We limited our study to participants from the US to
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ensure that all participants had experience with similar driving laws and norms.
Other demographic information was not collected.

Participants were placed into either a control group or an experimental group,
and each participant completed 20 episodes of the game. At the start of each
episode, one car begins noticeably closer to the bridge than the other (controlled
so that each participant has an equal number of “close” and “far” starts.) We
consider the closer-starting car to always have the right of way in terms of
crossing the bridge first.

In response to the human participant’s behavior in prior episodes, the SDC
follows either a hard-coded “cautious” policy or a Stackelberg punishment-based
policy. The policy-switching logic will be explained in Section 4.3.

4.1 Stackelberg Punishment Policy

We computed a Stackelberg punishment policy on a simplified game with four
abstract positions for each car (start, before-bridge, on-bridge, finish), resulting
in a total of 16 distinct arrangements of the cars. On each decision round, one
car could move forward, backward, or stay in place. We built a tree-based game
over these arrangements with a maximum depth of 20 (10 decision rounds for
each player). The resulting tree has 2,621,437 nodes and 1,572,862 leaves. Payoffs
were computed using the same scheme as for the interactive game, $0.13 minus
$0.01 for each step it takes to reach the finish. Each step in this abstracted game
corresponds to two seconds of gameplay in the interactive game.

The result of running the algorithm on the abstracted game is shown in
Figure 2. It produces no more than 11 line segments in any one node. Three
behaviors for the SDC emerge, block (θ < 0.10), bully (0.10 ≤ θ < 0.12), and
yield (θ ≥ 0.12), by setting θ to different values. In the bully case, the SDC always
crosses the bridge first, regardless of starting position, as quickly as possible. This
behavior is analogous to the human driver’s bullying behavior. The block strategy
also takes the bridge first regardless of starting position, but drives slowly while
on the bridge. Doing so decreases the reward for both players by forcing the
human player to wait longer while the SDC crosses the bridge. To achieve more
severe punishments, the block strategy waits on the bridge for more time steps
before proceeding to the finish line. The yield strategy causes the SDC to let
the human driver take the bridge first. For θ values other than those labeled in
the figure, the SDC would behave according to a stochastic mixture of the pure
strategies on either side of it.

In our experiments, we used the strategy resulting from setting θ = $0.02,
which results in a Stackelberg punishment in which the SDC blocks the human
driver for 9 steps (18 seconds) before proceeding. Note that the Stackelberg equi-
librium strategy is for the SDC to always bully (maximizing the leader’s payoff),
and the minimax punishment for the game is to block the human car indefinitely
(minimizing the follower’s payoff). Our Stackelberg punishment strategy strikes
a more humane balance between these extremes.
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4.2 Control Group

In the control group, the SDC is controlled by a näıve, cautious policy: If the
SDC starts farther away from the bridge than does the human driver, it will
wait until the human driver passes the bridge before proceeding. If the SDC
starts closer to the bridge, it will try to cross the bridge, but will back off to
avoid a collision if the human driver takes the bridge. We say the human has
“bullied” the SDC if either (1) the human forces the SDC to back off the bridge
and finishes first on a round where the SDC had the right of way, or (2) if the
human blocks the SDC from finishing within the round time limit (26 seconds).
We hypothesized that once participants in the control group discover that they
can force the SDC to yield to them, they will bully the SDC at every opportunity
to maximize their monetary reward.

4.3 Experimental Group

In the experimental group, the SDC is controlled by a policy that can be in
one of two driving modes, determined by a computational version of the folk
theorem [8,10]. In cooperative mode, the SDC is hard coded to follow right-of-
way rules and avoid collisions (as in the control group). In punishing mode, the
SDC selects actions according to a computed Stackelberg punishment policy that
limits the human driver’s reward. Informally, the resulting policy is: go to the
start of the bridge and drive forward slowly (to block the human driver) until
enough time has passed that the participant’s final reward cannot be above the
imposed limit (θ = $0.02), then finish crossing the bridge.

We also use a horn to signal the SDC’s state to the human driver. In coop-
erative mode, the SDC will honk while it is being bullied. In punishing mode,
the SDC will honk the entire round (Figure 1). Anecdotally, we found honking
to be an important signaling device. Without it, the human participants did not
understand the motivation behind the SDC’s reactive behavior. To our knowl-
edge, this work is the first research that explores the use of the horn as a social
signaling device for autonomous vehicles. Further experimentation is necessary
to decorrelate the effects of honking from the effects of the adaptive policy, but
exit survey responses (discussed in the Results section) suggest that participants’
decision-making was mainly affected by the adaptive policy.

The SDC selects its mode based on the human driver’s behavior in the pre-
vious round, tit-for-tat style. If the human driver obeys right-of-way rules, the
SDC uses its cooperative mode in the following round. If the participant bullies
the SDC, it switches to punishing mode in the following round. This tit-for-tat
strategy provides the necessary incentives to cooperate with the SDC. Other
response strategies could be used, but this is left to future work. We hypothe-
sized that participants in the experimental group who bully the SDC at first will
learn to treat the SDC fairly over the course of multiple episodes, as bullying
will cause our adaptive policy to restrict the participant’s subsequent reward.

To test this hypothesis, we compared occurrences of bullying between a con-
trol group of 18 participants and an experimental group of 37 participants. (We
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assigned fewer participants to the control group because pilot testing suggested
that their behavior would have lower variability than the experimental group).
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Fig. 2. The Stackelberg punishment pay-
offs for our one-lane bridge game. Labels
are a verbal description of the policy at
that point. Different line colors indicate
that they are separate line segments. The
red vertical line indicates a θ of $0.02.

Fig. 3. The relative dropoff in the num-
ber of times participants bullied the SDC,
by group. Participants in the experimen-
tal group bullied far fewer times before
stopping, signaling that our Stackelberg
punishment policy effectively encourages
drivers to behave fairly.

4.4 Results

In both the experimental and control groups, around 15% of participants never
bullied. Since the conditions look exactly the same up until the first occurrence
of bullying (punishing mode is never triggered), we only consider data from par-
ticipants in both groups who bullied at least once, leaving 31 and 16 participants
in the experimental and control groups, respectively.

Of these participants, Figure 3 shows the dropoff in the fraction who bully
more than a given number of rounds. Most participants in the experimental
group stop bullying after just a few initial rounds in which they experience
punishment, while participants in the control group bully many more times.

The first takeaway from the control group is that human bullying of SDCs
does occur. Once participants in the control group realized that the SDC would
yield to them even when they did not have the right of way, they tended to take
advantage of that fact at every opportunity, despite understanding it was unfair.
In a post-experiment survey, control group participants commented:

Once I realized that the other car would reverse as soon as I crossed the
line, I used it to my advantage. I would go no matter what so that I could
cross the finish line faster.
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Since the other car was completely submissive, I just did whatever was
in my own best interests to ‘win’ the game.

In the post-experiment survey for the experimental group, participants ex-
pressed that the adaptive policy stopped them from bullying:

At first it made me more aggressive, since I noticed I could easily barge
my way through to get a bit of extra cash. However it only took one time
for me to realize anything I gained by doing that was quickly lost in the
next round as the car went agonizingly slow.

When asked to rate the fairness of their driving compared to the SDC’s,
only 32% of the control group described their own behavior as fair, while 91%
described the SDC’s behavior as fair. In contrast, in the experimental group, 73%
of subjects described their own behavior as fair (different from the control group
at p < .005), and 85% described the SDC’s behavior as fair (not significantly
different from the control group).

It is worth noting that the reason the control group fraction in Figure 3
eventually dips is because there are a limited number of rounds per subject (20
rounds), and it usually takes subjects a few rounds to “discover” that bullying
is possible (that is, that the SDC will back off the bridge to let them pass).
We expect that if the number of rounds were considerably larger, the fraction of
control group participants who bully would remain high for an indefinite number
of rounds, and the experimental group would drop to zero.

To quantitatively evaluate the results, we looked at how the adaptive policy
influences drivers after their first exposure to the punishing mode. Participants
in the experimental group face an SDC in punishing mode in the round imme-
diately following their first occurrence of bullying, so we compared the fraction
of subjects in both groups that bully only once to the fraction that bully more
than once. We use a Fisher Exact Test with an alpha level of 0.05 to determine
statistical significance. Table 1 shows the categorical data from our experiments.
The result of the Fisher Exact Test gives a p value of 0.0016, meaning that the
adaptive Stackelberg punishment policy significantly reduced repeat bullying.

Table 1. The contingency table for bullying as a function of participant group.

Control Experimental

Bullied Only Once 0 14
Bullied More Than Once 16 17

5 Conclusion

Research on self-driving cars has historically focused on the hard technical prob-
lems of perception, planning and control. Social interaction between autonomous
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vehicles and human drivers has been largely overlooked, but has major implica-
tions for the mainstream adoption of self-driving technology.

In this paper, we explored “right-of-way bullying”—a social problem that
could hinder the effectiveness of self-driving cars. Through an online experiment
with human subjects, we showed that such bullying does occur in a simplified
driving scenario. By adopting an adaptive driving policy based on a novel Stack-
elberg punishment formulation, we showed how to significantly decrease repeat
occurrences of bullying and encourage pro-social driving behavior.

Future work should explore how Stackelberg punishment could interact with
hard-coded safety features in a production self-driving car. In addition, the so-
lution algorithm needs to be made considerably more efficient to scale to more
complex social behaviors with finer-grained states and actions.

We hope that this work can be a foundation for further investigation of au-
tonomous driving as an inherently social problem that necessitates novel tech-
nological, behavioral and sociological solutions.
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