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Summary. Penalized likelihood methods have been a success in analyzing high dimen-
sional data. Tang and Leng (2010) extended the penalization approach to the empirical
likelihood scenario and showed that the penalized empirical likelihood estimator can iden-
tify the true predictors consistently in the linear regression models. However, this desired
selection consistency property of the penalized empirical likelihood method relies heavily
on the choice of tuning parameter. In this work, we propose a tuning parameter selection
procedure for penalized empirical likelihood to guarantee that this selection consistency
can be achieved. Specifically, we propose a generalized information criterion (GIC) for
the penalized empirical likelihood in the linear regression case. We show that the tuning
parameter selected by the GIC yields the true model consistently even when the number
of predictors diverges to infinity with the sample size. We demonstrate the performance of

our procedure by numerical simulations and a real data analysis.

1. Introduction

Empirical likelihood (EL) proposed by Owen (1991) has been a great success as a non-
parametric likelihood approach. Not only does empirical likelihood enjoy the reliability
of nonparametric methods, but also achieves the effectiveness of the likelihood meth-

ods. Especially, it turns out appealing in constructing confidence regions, formulating



2 C. Zheng and Y. Wu

goodness-of-fit tests and incorporating auxiliary information. For a comprehensive re-
view of applications of EL method, interested readers can refer to Chen and Van Keile-
gom (2009).

Recently, penalized likelihood method has been extensively studied for dealing with
high dimensional data (Fan and Li, 2001; Fan et al., 2004; Fan and Lv, 2011). Extend-
ing the regularization approach to the EL method, Tang and Leng (2010) proposed a
penalized empirical likelihood (PEL). In Tang and Leng (2010), they established the or-
acle property of the PEL estimator for the high dimensional linear regression case that
allows the dimensionality of the parameter p diverges with the sample size. And they
applied the PEL approach to construct confidence regions and to facilitate hypothesis
testing by showing that the profiled PEL ratio follows x? distribution asymptotically.
Furthermore, Leng and Tang (2012) extended the PEL approach to general estimating
equation case with a diverging dimensionality. For more discussion on PEL approach,
interested readers can refer to Lahiri et al. (2012), Chang et al. (2015) and Chang et al.
(2018).

Obviously, the oracle property of the PEL estimator depends on the choice of tuning
parameter. There is a rich body of literature for the tuning parameter selection in
penalized likelihood methods. The most commonly used methods are cross-validation
and information criterion, such as Akaike information criterion (AIC) (Akaike, 1973),
and Bayes information criterion (BIC) (Schwarz et al., 1978). Wang et al. (2007) showed
that the tuning parameter obtained by minimizing BIC can identify the true model with
probability tending to 1. However, their results only applies to the fixed dimensionality.
Wang et al. (2009) modified the BIC to deal with the high dimensional case, but their
analysis can only deal with the penalized least square method. Wang and Zhu (2011)
also proposed a family of high dimensional Bayesian Information Criterion, HBIC for
tuning parameter selection in ultra-high dimensional situations. Recently, Fan and Tang
(2013) proposed a generalized information criterion to select the tuning parameter in high
dimensional penalized likelihood which is limited to parametric models.

The information criterion mentioned above can be summarized as follows,

a measure of model fitting + C,, X measure of model complexity,
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where C), is a positive sequence depending on sample size n that controls the balance
between model fitting and model complexity. In parametric models, a common choice of
measure of model fitting is the minus log-likelihood. Similarly, we propose a generalized
information criterion (GIC) for PEL by choosing minus log of empirical likelihood as
our measure of model fitting. And with a carefully selected C,, we show that the
tuning parameter selected by our GIC can identify the true model consistently. In
this paper, we mainly focus on the high dimensional linear regression problems, that
is, we allow the dimensionality to diverge to infinity as the sample size goes to infinity.
Without any change, our proposed GIC can be extended to handle the tuning parameter
selection in penalized empirical likelihood for general estimating equations with growing
dimensionality. However, it is much more challenging to establish the selection coistency
for this case and it merits further investigation.

The rest of this paper is organized as follows. Section 2 defines the GIC for tuning
parameter selection in the PEL for linear models and presents the asymptotic properties
of our proposed GIC. Numerical studies are conducted in Section 3 to demonstrate our
theoretical findings. Some discussions are given in Section 4. All proofs are presented

in Appendix.

2. GIC for penalized empirical likelihood

2.1. Penalized empirical likelihood estimator for linear model

We consider the following linear model:
Y, =XIB+¢,i=1,..,n, (1)

where X; € RP? is the predictor vector with p denoting the dimensionality, 8 € RP is the
regression coefficient, and ¢; is the error term with E(¢;) = 0 and var(e;) = 0. We denote
the true regression coefficient as By = (Bo1, -+ ,Bop)’. Without loss of generality, we
assume By = (81,0, ...,0)T where 819 € R? corresponds to the non-zero coefficients and
d denotes the number of non-zero coefficients. In other words, we assume that only the
first d predictors are included in the true model. In this paper, we allow the dimension
of the predictors, p diverge to co as n — oco. Also, we allow that the dimension of the

true model, namely d, to diverge at the same rate of p as n — oc.
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Following Tang and Leng (2010), we assume that {X;}” ; are independently and

identically distributed(iid) random vectors from the following model,
X; =T7Z;, (2)

where T is a p x m matrix with m > p and TT7 = ¥, and Z; € R™ satisfies E(Z;) =
0,cov(Z;) = L, E(Zy)* = my € (0,00) and E(ZZ‘;ZZ‘;ZZO;Z) = E(Z3)E(Z?)
E(Zfl‘z), Sy ap < 4k for some positive integer k and Iy # lp # --- # l;. Here
I, denotes the m-dimensional identity matrix. This model is commonly used in high
dimensional EL literature such as Chen et al. (2009) and Tang and Leng (2010) .
Owen (1991) proposed the empirical likelihood (EL) for linear models based on mo-

ment equations. Let U;(8) = X;(Y; — X7 3). The EL of 3 is defined as

L(B) = Sup{ﬁ w; w; > 0, zn:wi = l,zn:wiUi(,B) = 0}.
i=1 i=1 i=1

. PR T s 1 n U, (@) —
Using Lagrange multiplier method, let Ag denote the solution to - > 1" ; TAU.@)
0. Then we have that w; = 1 —7+——. As a result, we have the following expression

n 1+A5U;(8)
for the log empirical likelihood,

log(L(B)) = —nlog(n) — Y log(1 + A5Ui(8)). (3)
i=1

We define £.(8) = —log(L(B)) —nlog(n) = > i, log(1+ )\Z;Ui(ﬂ)). Following Tang
and Leng (2010), the penalized empirical likelihood(PEL) estimator B is defined to be

the minimizer of
P n P
p(B) = Le(B) +n Y pr(18i]) = D log{l + AFU(B)} +n Y _ p-(|8il), (4)
i=1 i=1 i=1
where p;(t) is a penalty function with tuning parameter 7. In this paper, we adopt the

smoothly clipped absolute deviation(SCAD) penalty function with tuning parameter

which is symmetric with the first derivative p. (t) = 7{I(t < 7) + ((a J:lt)); (t > 1)} for
t > 0 with a = 3.7. The SCAD penalty function proposed in Fan and Li (2001) has
been widely used in variable selection since it can shrink the estimates of unimportant

coeflicients to zero while yielding unbiased estimates for the important coefficients. For
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a detailed explanation and application of SCAD penalty, interested readers can refer to
Fan and Li (2001), Kim et al. (2008) and Fan and Li (2002).

Under appropriate regularity conditions, Tang and Leng (2010) showed that the PEL
estimator [3’ can achieve selection consistency and asymptotic efficiency. Moreover, the
PEL estimator enjoys the oracle properties which were first introduced by Fan and Li
(2001). However, the oracle properties of the PEL estimator depend heavily on the
choice of the tuning parameter. In order to guarantee the oracle properties of the PEL
estimator, it is essential to propose an appropriate criterion to select suitable tuning

parameter.

2.2. GIC tuning parameter selector

Before we propose our tuning parameter selector, we introduce the following notations
first. Let o = {41, ..., Jp~} denote a candidate model with predictors Xj,,...,X; .. For
each candidate model «, we denote its model size as df,,. For each tuning parameter 7 in
the penalized empirical likelihood (3), we denote the PEL estimator for the coefficients as
B;. For each estimator 3;, we denote the corresponding model as a, = {j: (ﬁT)j # 0}
and its model size as df, ., where (BT) ;j denotes the jth component of BT. And we denote
the full model as & = {1,...,p} and the true model as oy = {1,...,d}. In addition, we
use 2/ to denote the collection of all candidate models.

For each model a, we can obtain a non-penalized estimate for the regression coeffi-
cients, B; by minimizing ¢.(8) subject to the the constraints 8; = 0 Vj ¢ «. Thus,
for each selected model o, we denote the corresponding non-penalized estimate for the
regression coefficients as BZT

Following Tang and Leng (2010), we propose the following Generalized Information
Criterion(GIC),

A~ ~

GIC(B) = 26e(B)+ Cn-df,
GIC(r) = 20(B;)+Cy-dfs (5)

where ,(:} is the parameter estimator and dfﬁ is the corresponding degrees of freedom

associated with ,3 Let C), be some positive constant to be discussed more carefully. Note
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that BT is the penalized empirical likelihood estimator for the regression coefficients. The
first term 2£.(3) in (5) evaluates the goodness of fit while the second term penalizes the
model complexity. In other words, the GIC trades off between the model complexity
and goodness of fit by using a proper C,. Such criterion was first introduced by Akaike
(1974) and Schwarz et al. (1978). Wang et al. (2009) modified the BIC for the high
dimensional case. And Fan and Tang (2013) generalized such information criterion to

the likelihood based method with diverging number of parameters. We shall justify the
GIC in the case of penalized empirical likelihood in this paper.

2.3. Theoretical Property

In this section, we show that the above GIC can identify the true model consistently
with an appropriately chosen C,. First, we assume that the true model is unique and
that the regression coefficients for the true model g are nonzero. Thus, we say that
each candidate model a D «g is an overfitted model while each candidate model « ;é QaQ
is an underfitted model. As a result, we divide the tuning parameters into three separate

sets as follows,
Q- ={r:a; D}, Q={7:ar =ao}, Q4 ={7:a; D ag}.

We introduce the following technical assumptions.

(E1) The {X;}}", are i.i.d. from the model (2) for some k > 3. The errors {¢;} are
i.i.d. with mean 0 and E(e¥) < oo for the same k.

(E2) Ymin(E) > C1 and Yz (X) < Co for some Cy > Cp > 0, where 7, denotes
the minimum eigenvalue and 7,4, denotes the maximum eigenvalue.

(E3) p — o0, pz/nl_l/(‘”“) — 0, p1_25/n1/2_25 — 0 as n — oo for the § to be specified
in statement (S1) in the proof of Lemma 2 in the Appendix.

(E4) There exits a constant h such that the penalty p,(£) satisfies p,(¢) = 0 for
&> hr.

(E5) For the underfitted model o 2 «, there exits a constant C_ > 0 such that
hnrg gf { 012%101110 %&;(BQ)} > C_ with probability tending to 1.

(E6) For the {Z;}} , in model (2), B; = Z;¢; are sub-Gaussian random vectors

2

with variance proxy o° > 0. We briefly introduce the concept of sub-Gaussian here.
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A random variable T' € R is said to be sub-Gaussian if E(T) = 0 and Elexp(sT)] <
exp(02s2/2), Vs € R, for some 2 > 0. In this case, we wirte T ~ subG(c?). And we
say a random vector T € R™ is sub-Gaussian with variance proxy o2, if E(T) = 0 and
u”'T is a sub-Gaussian random variable with variance proxy o2 for any vector u € R™
with u”u = 1, which we denote as T ~ subG,,(c?). For a comprehensive review of

sub-Gaussian distribution, interested readers can refer to Rivasplata (2012).

Here, Assumption (E1)-(E3) are from Tang and Leng (2010). Briefly speaking, As-
sumption (E1) characterizes the tail probability behaviors of X; which is satisfied by the
elliptical contoured distribution and the Gaussian family. Assumption (E3) controls the
rate at which the dimension of X; is allowed to diverge. Assumption (E4) controls the
effect of the penalty such that the penalized estimator is asymptotically unbiased. And
it is easy to verify that the SCAD penalty satisfies Assumption (E4). Assumption (E5)
assures that the underfitted model yields a larger model deviance than that of the true
model. Assumption (E6) further controls the tail behavior of the estimating equation
U;(8) = X;(Y; — XI'8). With these assumptions, we can now present our main result

on asymptotic performance of GIC selector.

Theorem 1: Suppose that the data are generated according to the model (1) and

that Assumptions (E1)-(E6) hold. If C,, satisfies log&)) — oo and \C;ﬁ — 0 as n — oo,

we have that the tuning parameter 7 obtained by minimizing GIC(7) satisfies P(a; =

040) — 1.

To better understand our main result, we give a sketch for the proof of Theorem 1 in

the rest of this section. The details of the proof can be found in the Appendix.
First, we introduce the following lemma.

Lemma 1: Suppose that the data are generated according to the model (1) and
that Assumptions (E1)-(E4) hold. Let 7, be a sequence of tuning parameters satisfy-
ing that 7, — 0, 7,(n/p)/>% — oo for the § specified in Assumption (E3) and that
min;<;<q |Boj|/mn — o0. Then we have that B, = ,E:};m with probability tending to 1.

Lemma 1 assures that there exists a tuning parameter sequence 7,, such that a,, = ayg
with probability tending to 1. Thus, it remains to show that P{inf ¢ uq,) GIC(B;) >
GIC(B,,)} — 1.
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By the definition of B;T, we have that £.(3;) > EC(B;T). Therefore, we have that
GIC(B,) —GIC(Br,) > 2.(8%.) —2Le(BL,) + Cu(dfa. —dfa,) as n — oo with probability
tending to 1. Thus, the key to our problem is to characterize the asymptotic behavior
of £c().

For the true and overfitted model a O ag, we have the following lemma.

Lemma 2: Suppose that the data are generated according to the model (1) and that
Assumptions (E1)-(E3) hold. Then, for any o 2 a, we have

20.(85) = nUTSTHY(H,Z'HD) ' H, 271U + 0,(1),

where H, is a (p — df,) X p matrix such that (Hy,);;, = 1 fori =1,...,p — df, with
Therefore, we have that 20.(3%) — 2/( Ago) =nUTS 2(Ag— Ay, )2 20U+ op(1) for
any a D ag, where A, = S2HL (H,X'HL) " 'H, 2 2 and A,, = ¥ 2HZ (H, =

Hgo)*lH%E_% are two projection matrices. In the Appendix, we show that min,-qa,
nOTS 2 (A.—A.,)5 2
dfa—df g

minasa, {26c(84) — 26e(B4,) + Culdfa — dfa,)} > 0 for Cy, satisfying pors — co. As a
result, we conclude that P{inf cq, GIC(B;) > GIC(B,,)} — 1.

v _ Op(log(p)) which implies that with probability tending to 1,

For any underfitted model, & 2 «g, the Assumption (E5) ensures that min, 4,

w >C_— % with probability tending to 1. We show in the Appendix
that % = 0p(1). Together with the fact that C,p/n — 0, we conclude that

with probability tending to 1, P{inf,cq_GIC(B,) > GIC(3,,)} > P{minaza, % -
2elPin) _ Codlon 5 0} > PLC_ + 0,(1) > 0} — 1.

In the above procedure, we give a sketch of the proof for the statement that P{inf,co_un,)
GIC(B,) > GIC(B,,)} — 1. Together with Lemma 1, Theorem 1 can be established

easily as shown in the Appendix.

3. Numerical study

In this section, we conduct several simulation studies and analyze one real data problem
to confirm our theoretical findings. For all computation issues in PEL, we follow the

strategy in Tang and Leng (2010). For comparison purpose, we define an AIC-like
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Table 1. Summary of results for Example 1

Method | n=100 | n=200 | n=400 | n=800 | n=1600
AIC 1.00 0.76 0.65 0.71 0.63
MRME

GIC 1.00 0.73 0.43 0.34 0.23

oM AIC 0.33 0.46 0.52 0.35 0.32
GIC 0.39 0.58 0.91 0.95 0.99

\S AIC 5.39 5.74 6.22 7.06 7.67
GIC 4.99 5.05 5.09 5.05 5.03

A~ A~

criterion, AIC(83) = 2(c(8) + 2df 5. And we compare our GIC with AIC to demonstrate
the superior performance of our tuning parameter selector. For all the simulation studies,
we compute the median of the relative model error (MRME), the average model size (MS)
and the percentage of the correctly identified true models (CM). Basically, a smaller
MRME means more accurate prediction results. Interested readers can refer to Fan and
Li (2001) and Wang et al. (2009) for more detailed explanation of MRME, MS and CM.

In our simulation studies, we directly adopted the settings in Wang et al. (2009).
Specifically, the covariate X; follows a multivariate normal distribution N,(0,3) with
3 = (04,4,),05.,5, = 1if j1 = jo and 0, 5, = 0.5 if j1 # jo. The error term {e}"
independently follows the standard Gaussian distribution N(0,1). And we choose the
C,, in our GIC criterion to be log(log(p)) * log(n) for all simulation studies. In addition,

we repeat all the experiments 100 times.

3.1. Example 1.

In this example, we take p = [4n'/4]—5, B = (11/4,—-23/6,37/12,-13/9,1/3,0,...,0)T €
RP where [t] denotes the largest integer that is smaller or equal to ¢. It impies that the
dimension of the true model is fixed to be 5.

The results are depicted in the left panels of Figure 1. For illustration purpose, we
also present the results in Table 1. We can see that the GIC method approaches 100%
CM quickly while AIC can not identify the true model consistently, which confirms our
theoretical findings. Therefore, the MRME values corresponding to GIC method are
smaller than those of AIC method.
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Table 2. Summary of results for Example 2

Method | n=100 | n=200 | n=400 | n=800 | n=1600
AIC 0.72 0.63 0.57 0.67 0.64
MRME

GIC 0.51 0.31 0.31 0.33 0.32
AIC 0.01 0.24 0.17 0.20 0.11

CM
GIC 0.27 0.79 0.95 0.97 0.97
\S AIC 12.03 12.54 14.68 16.99 20.11
GIC 8.75 8.29 10.08 12.03 14.03

3.2. Example 2.

In contrast to example 1, we are allowing the dimension of the true model to diverge.
Specifically, we set p = [7n'/4] and d = [p/3]. And we generate the true regression
coefficients from the uniform distribution over [0.5,1.5]. The results are depicted in the
right panels of Figure 1. For illustration purpose, we also present the results in Table
2. As one can see, the results are quite similar to Simulation 1 which confirms our

theoretical findings again.

3.3. Real data analysis

In our real data example, we re-explore the Fifth National Bank’s employee salary data
analyzed by Fan et al. (2004) and Wang et al. (2009). The main goal here is to estimate
the salary difference between male and female employees. Following Fan et al. (2004), we
adopt their semiparametric model Salary = Sy+ 1 *Female+G2,PCJ ob—i—zzlzl BoyiEdu;+
Z?:l Be+iJobGrd; + f1(YrsExp)+ fo(Age)+€ where fi(x) = a1z +apz?+aus (az—x“)iJr
-+ ay7(z — 245)? are parameterized continuous functions, {1, Z2, ..., 755} denotes the
{2/7,3/7,...,6/7} quantiles of the empirical distribution of the variables YrsExp (i = 1)
and Age (i = 2). Thus, there are a total of 26 predictors whose corresponding coefficients
are {8}, {ou; }]7:1, {ag; }]7:1 in this model. A detailed explanation of the variates and
the parameterized functions fi, f2 in this model can be found in Fan et al. (2004). As
suggested by Fan et al. (2004), we deleted the observations with working experience over
30 or age over 60, that results in a sample of size 199. Then we apply the PEL approach

to estimate the coefficients with tuning parameters selected by our proposed GIC and
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Table 3. Analysis result of the Bank Salary Dataset
Method OLS SCAD-AIC SCAD-GIC

Female -0.940 -0.885 0.000
PCJob 3.685 3.842 3.951
Edul -1.750 -1.426 0.000
Edu2 -3.134 -2.975 -2.040
Edu3 -2.277 -1.936 -1.189
Edu4 -2.112 -1.358 0.000
JobGrdl -22.910 -22.995 -24.869
JobGrd2 -21.084 -21.180 -22.502
JobGrd3 -17.197 -17.460 -18.996
JobGrd4 -12.837 -12.985 -13.767
JobGrdbs  -7.604 -7.808 -8.372

AIC. The detailed results are presented in Table 1. It is clear that the model selected by
GIC is more sparse than that selected by AIC which is consistent with our theoretical
findings. Consequently, only the tuning parameter selected by GIC identifies the gender
as an irrelevant predictor which is accordance with the conclusion obtained by Fan et al.

(2004) and Wang et al. (2009).
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4. Appendix

Proof of Lemma 1.
Under Assumption (E1)-(E4), by Theorem 3 in Tang and Leng (2010), it has been
shown that with probability tending to 1,

~

B =0, (6)

where 3, = (ﬁfi,ﬁfé)T is the minimizer of (4), with BTni € Rd,,énj € Rr4. As
indicated by Lemma A4 in Tang and Leng (2010), we have that B, wil fall into D,, =
{B: |8 — Bol|| < ca,} with probability tending to 1, where a,, is defined as (p/n)'/2=7,

¢ and o are strictly positive constants satisfying pl_‘s/nl/Q_(S — 0. Thus, we have that

mln |B7'nj’ 2 mln |60]| - Can7
jEay Tp VIS Tn

with probability tending to 1, where ﬁATn ;j denotes the jth component of ,C:}Tn. By m.(n/p)

oo, we have that 2= — 0 and minjeq, |BTL7| — 00. Therefore, we have that with proba-

n

bility tending to 1

ST -
JjeEay  Tp
Under Assumption (E4), there exits a constant h such that p._ By ]‘) — 0 for ﬂ:ﬁ‘ >
h which implies, together with (7), we have that
bu(Br,) = 0, (8)

with probability tending to 1, where by (8) = (p;., (61) sign (61). pr,, (B2) sign (B2), ..., p, (Ba)

sign (84), 07)".

By the definition of penalized empirical likelihood and the result (6), the estimator
BT" based on penalized empirical likelihood is the constrained minimizer of (4) subject to
H,,B = 0, with probability tending to 1, where H,,, are defined in Lemma 2. According
to Qin and Lawless (1995), by the Lagrange multiplier method, obtaining the estimates

is equivalent to minimizing a new objective function

n p
lpen(B, X, 0) =071 “log(1+ ATU(B)) + > pr, (85]) + v Ha, B, 9)

i—1 j=1

1/2—6

%
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where v € RP~%=0 is the vector of extra Lagrange multipliers.

Define Q1 (8, A,0) = L Y0 {1+ ATU(8)}1UL(8), Qua(B, A v) = 2 Y0 {1+
ATU(B)} A + b, (8) + HE v and Q3,(B8, A, v) = Hy,v. Denotes the minimizer of (9)
as (,épen, Xpen,@pen) which satisfies 0 = an(,@, Av) (7=1,2,3). And since Bm is the
minimizer of (5), we have that ,épen =B,

By the definition of unpenalized empirical likelihood, the estimator B;O is the con-
strained maximizer of ¢.(83) subject to H,,3 = 0. Similarly, obtaining the estimates is
equivalent to minimizing a new objective function

n
le(B, A, 0) =171 "log(1+ ATU(B)) + v H,, 8. (10)
i=1

Define My, (8, A, v) = 2 37 {1+ATU;(8)}1U;(8), Man(B, A, v) = =1 30 {1+
ATU(B)} A + HIv and M3, (B8,\,v) = Hqv. Denotes the minimizer of (10) as
(Be, A, ©c) which satisfies 0 = M, (8, A, v) (j = 1,2,3). And due to the fact that 37,
is the maximizer of ¢.(3), we have that B. = /@l;‘m

By (8), we have that with probability tending to 1, (Br,, Apen, Upen) satisfies 0 =
M, (B,A,v) (j = 1,2,3), which implies that 3,, = B with probability tending to 1.

Proof of Lemma 2.

From the definition, we know that B:; is the solution to the following problem:

min  £.(8) = log{l+ A5U;(8)}, 11
i 1e(8) = 3 ou{1 + X5 UL(6) (1)
where Ag solves that l Z % =0.
n P 1+ )\ﬁUZ(B)

According to Qin and Lawless (1995), by the Lagrange multiplier method, obtaining

the estimates 3} is equivalent to minimizing a new objective function

1A 0) = -3 log{1 + NTUL(B)) + o' Hap,

i=1

where v € RP~#= is the vector of extra Lagrange multipliers.
~ ~ xXT -1
Define Q1 (8, A, v) = £ S0 {1+ATUL(8)} ' Ui(8), Qua(B. A v) = ~L T, (XXA T,

HZv and an(ﬁ, A,v) = H,8. The minimizer (,é’, A, U) satisfies 0 = an(ﬁ, Av) (4=
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1,2,3). To ensure the expansions of an around the value (8y,0,0) (j =1,2,3), we
first present the following two statements which are similar to the Lemma A3 and Lemma
A4 in the Tang and Leng (2010).

(S1). Let a, = (p/n)/?>9. D, = {B : ||B — Bo|| < can,HyB = 0} where 6,¢ > 0
are strictly positive constants and § satisfies p' =0 /n'/279 — 0. Then || Ag|| = Op(ay,) for
B € D,.

(S2). As n — oo, with probability tending to 1, the problem (11) has a minimum in
D,.

Statement (S1) follows directly from Lemma A3 in Tang and Leng (2010) since D,, C
D,,, where D,, = {3 : ||B—Bo|| < ca,}. And according to the proof of Lemma A4 in Tang
and Leng (2010), we have that for any given C, as n — oo, P{20.(8) —2(.(By) > C} — 1
for 3 € 0D,, where dD,, denotes the boundary of D,,. Since 8Dn C 0D,,, we can see that
as n — 00, P{20.(B8) — 2(.(By) > C} — 1 for B € AD,, which established Statement
(52).

Therefore, we have from (S2), ||8 — Bo|| = Op(ay) and from (S1) that || A| = O, (an)
is stochastically small. Similar to the argument in Qin and Lawless (1995), from
0 = Qu.(3, A, ), we conclude that ||[0| = Op(a,). Hence, we can use the stochas-

tic expansions of an (j = 1,2,3) around the value (8, 0,0). This yields

_an(/@0707 0) -3 X 0 X -0
0 =|-= o HI||[B8-5|+Rn, (12)
0 0 H, 0 -0

where ||Ry|| = 0,(n~/2) according to the proof of Theorem 3 in Tang and Leng (2010).

Let
-3 -3 0
K=|-x o H!
0 H, O
By inverting (12), we have
A-0 ~Q1n (B0, 0,0)
B-B| =K' 0 -R,

v—0 0
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This implies that

B-By={Z-S 'HI(H.ZHL) "H,Z ' }Hn ') Xie; — Ran), (13)
=1

where Ra, is the corresponding component in vector R, = (RY ,RZ RI)T and
IRanll = 0p(n="/2).
Let z; = )\ZUZ(B) As max; |}\Z;Uz([§)| = 0p(1) indicated by the proof of Lemma A3
in Tang and Leng (2010), we have by Taylor’s expansion,
. ~ "2 & 23
le(B) = (;Zz - ;QZ +;3(1 _:&)4>7
where |&;] < \)\EUZ-(B)].

Following the proof of Lemma A4 in Tang and Leng (2010), we have the expan-
sion of Ag for B8 € D, to be Ag = T,(8)"'U(B) + Tp(B) 'ry, where T,(8) =
n~ Y Ui(B)UT (8), rn =t 0 [U(B{AEU(8) 2 (14€:) ] and |ei] < [AFU(B)].
Let U=n"1Y" | X¢. Similarly to the establishment of (A5) in the proof of Theorem
2 in Tang and Leng (2010), by substituting the expansion of B in (13) and )‘B into z;,

we have that
2.(B) = nUTS'HL(H, = THL) TH, X 71U + 0,(1),

which completes the proof of Lemma 2.
Proof of Theorem 1.
Let 7,, be the sequence of tuning parameters in Lemma 1. By Lemma 1, with prob-

ability tending to 1, we have
KC(B%) = 60(320)-

Thus we have that df,, = dfs, with probability tending to 1. Hence it follows that,
P{GIC(B,) = GIC(8;,)} — 1. (14)

Next we want to show that GIC(8,) > GIC(B,,) with probability tending to 1, for
any 7 that cannot result in the true model. First, we consider 7 that would result in

underfitting models, namely, 7 € Q_ = {7: a 2 ap}.
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Recall that based on the selected model «,, we are able to obtain its corresponding

non-penalized estimates BZT.Then we have that
Ce(B5,) 2 Le(Br),
and 20,(8;) + Codf, > 20c(B%.). Thus, we have
GIC(B:) > 2£e(BY,)- (15)
By (15) and (14), with probability tending to 1, it follows that
GIC(B;) — GIC(Bs,) > 26c(B}.) — 2e(By,) — Crdfa,-

For any 7 € Q_ = {7 : a 2 o}, we can take irg over GIC(3;). By Assumption
Tell

(E5) and % — 0,% — 0, for any 7 € Q_ , we have with probability tending to 1

inf GIC(8,) — GIC(3,,)
TEQ_

20:(B5,)  2Le(B5,)  Cudfa,

> inf
T€Q. n n n
> min L0B8) _ Le(Ba) _ Cudfay
aday N n 2n
> C_ +o0p(1), (16)
as n — 00. (16) is due to Assumption (E5), % — 0 and the fact that &(ii‘*”o) = 0p(1),

which we will show as follows.

By Lemma 2, we have that

EC( 3" ) lnGTHgo (Haoz_ngo)_lHaoﬁ + Op(l)

Xo

n 2 n

1W!P, W
= 5% +0,(1),

where W,, = /nE£~Y2U0 and P, = £~V?HL (H,, ='H. )~'H,,="'/2. Since P,
is a projection matrix with rank p — df,,, we have that WZ P,W, < WZWn Let
F, = ﬁ >, Zie;, where Z; € R™ is defined in model (2). We have that wWiw, =
FITTS~'TF,, and that F,, ~ subG,,(c?) by Assumption (E6). Since TTT = 2, we

know that there exists vectors {a;}/_; such that TTX 1T = YP  aal with ala; = 1.
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For the sub-Gaussian variables a! F,, ~ subG(0?), we have that E{(al F,)?} < 40? and
E{(al'F,)*} <160 Thus, we have that

Wz:Wn) R b FlaalF,

p p
WIw,

E( ) < 4o’

For the second moment of

, we have that

wi'w D (Fra;alF,,)?
E{(nin)Q} SpE( =1 721,927/ 7 TN )S 1604-
Thus, we have that WP Wo Op(1). It follows that w = 0p(1) which

P
completes the proof of (16). From (16), we have that inf, . GIC BT —GIC BT must
p p (16) (16) € ( )

be positive asymptotically.

Therefore, we have that

P{ inf GIC(B;) > GIC(B,)} — 1. (17)

Next, for any 7 € Q4 = {7 : a D ap}, we have with probability tending to 1
GIC(BT) - GIC(ﬂATﬂ,)

= 260(67) - 2£C(BTn) + Cn(dfozT - dfoc.rn)
20e(B,) = 26e(B3,) + Cr(dfa, = dfay),

Y

as n — oQ.

We then take inf over GIC(BT). So we have with probability tending to 1

TEQ

inf GIC(3,) — GIC(B:,)

TEQL
> min <2wc<ﬁ;> — LelB5,)) + Culdfo — dfao>>
Ce(Bh,) — Le(Bh
= min (a0, — 2By ), (13)

For any o D a9, we have dfy, — dfa, > 1. Next, we are going to show that

0B85 ) — L(BL
e Ol =LABE) ), 10g1)),

By Lemma 2, we have

e LeBE,) — Le(B)
adao  df — dfu,
B nUTS"3(Ag, — Aa)Z U +0,(1)
= TS / 1
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where A, = S :HI(H, S 'H])"'H, X", A,, = S >H (H,, X 'H. )"'H, 7>
are two projection matrices. Let W, = \/nX "2 U, then (19) becomes

WZ(Aao — An)W,, +0y(1)
o Afo — dfm, ' (20)

The numerator of (20) is dominated by W1 (A,, — A,)W,,. Therefore, we only need

to show that
Wg(Aao — AW,
alga&}g dfa o dfao = Op(log(p)) (21)

Before the derivation of (21), let’s introduce the following notation. Let a¢ = a'\ ayp,

ap = a\ag, B= >~1/2 and B, be the matrix composed by the columns of B indexed by
a, that is, 3712 = B = (Bg,,Ba, ). And let P5 denote A(ATA) AT, Qa =1—- Py
for any matrix A. Denote T, (A) as the minimal eigenvalues of A, for any arbitrary
positive definite matrix A. Then we have WZ(ACM0 —A)W, = WZ(PBQ - Pg,, YW,
Inspired by the idea used in the proof of Theorem 2 in Wang et al. (2009), we let
Bac = QBao B,:. Then we have Pg_ — PBa0 = PBQC and

WAy, — Ay)W, WiPs W,
dfe — dfa, dfe — dfa,
(WIB,:)(BL.B,.) "(BL.W,)
acl
2

o
hm

oz

WIB,.
|ac|
h?ncam Zjeac (WZB])2
|ac|

€ T \2
< hgwm %%%(Wn Bj) )

IN

IN

where h,, = 7,1 (BL.Bac), Bj is the jth column of B and B; = Qg, B;. Note that
a® C ay. Thus we have that 7} (Bz;]:%a) <7l (Eglf;al) = (h&

min min max

)~L. We then must

have
WZ(Aao_Aa)Wn “gPBOCHn
max = max ——
aDag dfo — dfa, acCay lac|
S h%’blaac X ma}f( vV z:BJ)Q (22)

We next examine the two terms of (22) respectively.
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Firstly, let v be the eigenvector associated with Tmm(]gglfial), ie|v] =1 and

Tmin(BEIBal) = 'YT(B&BOH)’Y = HBal'Ynz-

By definition, we know that Ba,v = Ba, ¥ + Ba,¥* with v* = —(BI B,,)"'BL B,,7.

Therefore, we have that

Tmin(BL, Bay) = [ Bay + Bay7*[|> = [|Bo|> = 74 B'Bo

[e5)

A\

Tmm(BTB>H70”2 > Tmm(BTB) > Tmzn(z) > Cla

where vo = (v*7,4T)T

(E2). This indicates that hSY,. < C%

satisfies that ||yo||> > 1 and Cj is the constant in the Assumption

mar —

BT BRTY—1/2 )
Secondly, under the sub-Gaussian Assumption (E6), we know that B Wn _ B> TTF.

g g

subG(c?), where F,, = ﬁ S Zie; ~ subGyy,(0?) and 0']2- = ||]~3]T§]_1/21"||2 = ||]~3;-F2_1/21"
I‘Tg_l/QBjHQ = ||]~3]H2 < ”Bj||2 < Tmaz(B?Bj) < Tmaz(BTB) < Tinaz(B) < Cg, O is
the constant in the Assumption (E2). Thus, (22) can be further bounded by

T
W, Pg W,  (Cyo? )
max < X max V7,
a°Con ’th| 1 j€an

where Vj2 = (Vzégj s the square of a sub-Gaussian variable with variance proxy 1.
Even though these variables V]?, J € a1 might be dependent, we can still proceed by

using Bonferroni’s inequality to obtain

P(maxV}? > 3log(p)) < px P(V} > 3log(p))
Jeon

N

p x P(|Vj| > v/31og(p))

< 2pexp_310g(p)/2 < 2p_1/2,

which implies that max Vj2 < 3log(p) with probability tending to 1 as p — oo. Therefore,

JEQ1
we have that .
W.Ps Wn 300,
ac <
BT e =Gy E®)
. . . . WI(A,, — AW,
with probability tending to 1. So it follows that max = Op(log(p))

a>Dag dfo — dfao
as n — oQ.
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Therefore, we have shown that with probability tending to 1,

. 60( A;m) - 60(62)
e
(BL,) — Le(B)
R
2 Cn - Op(log(p))v

}

v

which is guaranteed to be positive asymptotically.

Now let’s continue with (18). Together with the fact that ming-a, (dfa — dfa,) > 0,
we have that with probability tending to 1,

inf GIC(3,) — GIC(B;.)

T€Q+

min <2[£C(Bg) — 0(BE)] + Co(dfe — dfao)>

v

aDoyg

. C(BL,) — Le(BE)
= 0{%121 <<dfa — df o ){Cn — 2 dfon — dfa, }>a

which must be positive asymptotically.

Thus, we have that

P( inf GIC(8;) > GIC(BTH)> — 1. (23)

TEQ

Based on (17) and (23) together, we have that P{inf,co_ua,) GIC(B;) > GIC(B3;,)} —
1 which implies that P{inf,cq ug,)GIC(8:) > GIC(B:,)} — 1. Consequently, this

completes the proof of theorem 1.
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