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Summary. Penalized likelihood methods have been a success in analyzing high dimen-

sional data. Tang and Leng (2010) extended the penalization approach to the empirical

likelihood scenario and showed that the penalized empirical likelihood estimator can iden-

tify the true predictors consistently in the linear regression models. However, this desired

selection consistency property of the penalized empirical likelihood method relies heavily

on the choice of tuning parameter. In this work, we propose a tuning parameter selection

procedure for penalized empirical likelihood to guarantee that this selection consistency

can be achieved. Specifically, we propose a generalized information criterion (GIC) for

the penalized empirical likelihood in the linear regression case. We show that the tuning

parameter selected by the GIC yields the true model consistently even when the number

of predictors diverges to infinity with the sample size. We demonstrate the performance of

our procedure by numerical simulations and a real data analysis.

1. Introduction

Empirical likelihood (EL) proposed by Owen (1991) has been a great success as a non-

parametric likelihood approach. Not only does empirical likelihood enjoy the reliability

of nonparametric methods, but also achieves the effectiveness of the likelihood meth-

ods. Especially, it turns out appealing in constructing confidence regions, formulating
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goodness-of-fit tests and incorporating auxiliary information. For a comprehensive re-

view of applications of EL method, interested readers can refer to Chen and Van Keile-

gom (2009).

Recently, penalized likelihood method has been extensively studied for dealing with

high dimensional data (Fan and Li, 2001; Fan et al., 2004; Fan and Lv, 2011). Extend-

ing the regularization approach to the EL method, Tang and Leng (2010) proposed a

penalized empirical likelihood (PEL). In Tang and Leng (2010), they established the or-

acle property of the PEL estimator for the high dimensional linear regression case that

allows the dimensionality of the parameter p diverges with the sample size. And they

applied the PEL approach to construct confidence regions and to facilitate hypothesis

testing by showing that the profiled PEL ratio follows χ2 distribution asymptotically.

Furthermore, Leng and Tang (2012) extended the PEL approach to general estimating

equation case with a diverging dimensionality. For more discussion on PEL approach,

interested readers can refer to Lahiri et al. (2012), Chang et al. (2015) and Chang et al.

(2018).

Obviously, the oracle property of the PEL estimator depends on the choice of tuning

parameter. There is a rich body of literature for the tuning parameter selection in

penalized likelihood methods. The most commonly used methods are cross-validation

and information criterion, such as Akaike information criterion (AIC) (Akaike, 1973),

and Bayes information criterion (BIC) (Schwarz et al., 1978). Wang et al. (2007) showed

that the tuning parameter obtained by minimizing BIC can identify the true model with

probability tending to 1. However, their results only applies to the fixed dimensionality.

Wang et al. (2009) modified the BIC to deal with the high dimensional case, but their

analysis can only deal with the penalized least square method. Wang and Zhu (2011)

also proposed a family of high dimensional Bayesian Information Criterion, HBIC for

tuning parameter selection in ultra-high dimensional situations. Recently, Fan and Tang

(2013) proposed a generalized information criterion to select the tuning parameter in high

dimensional penalized likelihood which is limited to parametric models.

The information criterion mentioned above can be summarized as follows,

a measure of model fitting + Cn ×measure of model complexity,
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where Cn is a positive sequence depending on sample size n that controls the balance

between model fitting and model complexity. In parametric models, a common choice of

measure of model fitting is the minus log-likelihood. Similarly, we propose a generalized

information criterion (GIC) for PEL by choosing minus log of empirical likelihood as

our measure of model fitting. And with a carefully selected Cn, we show that the

tuning parameter selected by our GIC can identify the true model consistently. In

this paper, we mainly focus on the high dimensional linear regression problems, that

is, we allow the dimensionality to diverge to infinity as the sample size goes to infinity.

Without any change, our proposed GIC can be extended to handle the tuning parameter

selection in penalized empirical likelihood for general estimating equations with growing

dimensionality. However, it is much more challenging to establish the selection coistency

for this case and it merits further investigation.

The rest of this paper is organized as follows. Section 2 defines the GIC for tuning

parameter selection in the PEL for linear models and presents the asymptotic properties

of our proposed GIC. Numerical studies are conducted in Section 3 to demonstrate our

theoretical findings. Some discussions are given in Section 4. All proofs are presented

in Appendix.

2. GIC for penalized empirical likelihood

2.1. Penalized empirical likelihood estimator for linear model

We consider the following linear model:

Yi = XT
i β + εi, i = 1, ..., n, (1)

where Xi ∈ Rp is the predictor vector with p denoting the dimensionality, β ∈ Rp is the

regression coefficient, and εi is the error term with E(εi) = 0 and var(εi) = σ2. We denote

the true regression coefficient as β0 = (β01, · · · , β0p)
T . Without loss of generality, we

assume β0 = (βT10, 0, ..., 0)T where β10 ∈ Rd corresponds to the non-zero coefficients and

d denotes the number of non-zero coefficients. In other words, we assume that only the

first d predictors are included in the true model. In this paper, we allow the dimension

of the predictors, p diverge to ∞ as n → ∞. Also, we allow that the dimension of the

true model, namely d, to diverge at the same rate of p as n→∞.
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Following Tang and Leng (2010), we assume that {Xi}ni=1 are independently and

identically distributed(iid) random vectors from the following model,

Xi = ΓZi, (2)

where Γ is a p ×m matrix with m ≥ p and ΓΓT = Σ, and Zi ∈ Rm satisfies E(Zi) =

0, cov(Zi) = Im,E(Zil)
4k = m4k ∈ (0,∞) and E(Zα1

il1
Zα2

il2
· · ·Zαqilq ) = E(Zα1

il1
)E(Zα2

il2
)

· · ·E(Z
αq
ilq

),
∑q

l=1 αl ≤ 4k for some positive integer k and l1 6= l2 6= · · · 6= lq. Here

Im denotes the m-dimensional identity matrix. This model is commonly used in high

dimensional EL literature such as Chen et al. (2009) and Tang and Leng (2010) .

Owen (1991) proposed the empirical likelihood (EL) for linear models based on mo-

ment equations. Let Ui(β) = Xi(Yi −XT
i β). The EL of β is defined as

L(β) = sup{
n∏
i=1

wi : wi ≥ 0,

n∑
i=1

wi = 1,

n∑
i=1

wiUi(β) = 0}.

Using Lagrange multiplier method, let λβ denote the solution to 1
n

∑n
i=1

Ui(β)
1+λTβUi(β)

=

0. Then we have that wi = 1
n

1
1+λTβUi(β)

. As a result, we have the following expression

for the log empirical likelihood,

log(L(β)) = −n log(n)−
n∑
i=1

log(1 + λTβUi(β)). (3)

We define `c(β) = − log(L(β))− n log(n) =
∑n

i=1 log(1 +λTβUi(β)). Following Tang

and Leng (2010), the penalized empirical likelihood(PEL) estimator β̂ is defined to be

the minimizer of

`p(β) = `c(β) + n

p∑
i=1

pτ (|βi|) =

n∑
i=1

log{1 + λTβUi(β)}+ n

p∑
i=1

pτ (|βi|), (4)

where pτ (t) is a penalty function with tuning parameter τ . In this paper, we adopt the

smoothly clipped absolute deviation(SCAD) penalty function with tuning parameter τ

which is symmetric with the first derivative p
′

τ (t) = τ{I(t ≤ τ) + (aτ−t)+
(a−1)τ I(t > τ)} for

t > 0 with a = 3.7. The SCAD penalty function proposed in Fan and Li (2001) has

been widely used in variable selection since it can shrink the estimates of unimportant

coefficients to zero while yielding unbiased estimates for the important coefficients. For
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a detailed explanation and application of SCAD penalty, interested readers can refer to

Fan and Li (2001), Kim et al. (2008) and Fan and Li (2002).

Under appropriate regularity conditions, Tang and Leng (2010) showed that the PEL

estimator β̂ can achieve selection consistency and asymptotic efficiency. Moreover, the

PEL estimator enjoys the oracle properties which were first introduced by Fan and Li

(2001). However, the oracle properties of the PEL estimator depend heavily on the

choice of the tuning parameter. In order to guarantee the oracle properties of the PEL

estimator, it is essential to propose an appropriate criterion to select suitable tuning

parameter.

2.2. GIC tuning parameter selector

Before we propose our tuning parameter selector, we introduce the following notations

first. Let α = {j1, ..., jp∗} denote a candidate model with predictors Xj1 , ..., Xjp∗ . For

each candidate model α, we denote its model size as dfα. For each tuning parameter τ in

the penalized empirical likelihood (3), we denote the PEL estimator for the coefficients as

β̂τ . For each estimator β̂τ , we denote the corresponding model as ατ = {j : (β̂τ )j 6= 0}

and its model size as dfατ , where (β̂τ )j denotes the jth component of β̂τ . And we denote

the full model as ᾱ = {1, . . . , p} and the true model as α0 = {1, . . . , d}. In addition, we

use A to denote the collection of all candidate models.

For each model α, we can obtain a non-penalized estimate for the regression coeffi-

cients, β̂∗α by minimizing `c(β) subject to the the constraints βj = 0 ∀j /∈ α. Thus,

for each selected model ατ , we denote the corresponding non-penalized estimate for the

regression coefficients as β̂?ατ .

Following Tang and Leng (2010), we propose the following Generalized Information

Criterion(GIC),

GIC(β̂) = 2`c(β̂) + Cn · dfβ̂,

GIC(τ) = 2`c(β̂τ ) + Cn · dfβ̂τ , (5)

where β̂ is the parameter estimator and dfβ̂ is the corresponding degrees of freedom

associated with β̂. Let Cn be some positive constant to be discussed more carefully. Note
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that β̂τ is the penalized empirical likelihood estimator for the regression coefficients. The

first term 2`c(β̂) in (5) evaluates the goodness of fit while the second term penalizes the

model complexity. In other words, the GIC trades off between the model complexity

and goodness of fit by using a proper Cn. Such criterion was first introduced by Akaike

(1974) and Schwarz et al. (1978). Wang et al. (2009) modified the BIC for the high

dimensional case. And Fan and Tang (2013) generalized such information criterion to

the likelihood based method with diverging number of parameters. We shall justify the

GIC in the case of penalized empirical likelihood in this paper.

2.3. Theoretical Property

In this section, we show that the above GIC can identify the true model consistently

with an appropriately chosen Cn. First, we assume that the true model is unique and

that the regression coefficients for the true model α0 are nonzero. Thus, we say that

each candidate model α ⊃ α0 is an overfitted model while each candidate model α + α0

is an underfitted model. As a result, we divide the tuning parameters into three separate

sets as follows,

Ω− = {τ : ατ 6⊇ α0},Ω0 = {τ : ατ = α0},Ω+ = {τ : ατ ⊃ α0}.

We introduce the following technical assumptions.

(E1) The {Xi}ni=1 are i.i.d. from the model (2) for some k ≥ 3. The errors {εi} are

i.i.d. with mean 0 and E(ε4ki ) <∞ for the same k.

(E2) γmin(Σ) ≥ C1 and γmax(Σ) ≤ C2 for some C2 > C1 > 0, where γmin denotes

the minimum eigenvalue and γmax denotes the maximum eigenvalue.

(E3) p→∞, p2/n1−1/(4k) → 0, p1−2δ/n1/2−2δ → 0 as n→∞ for the δ to be specified

in statement (S1) in the proof of Lemma 2 in the Appendix.

(E4) There exits a constant h such that the penalty pτ (ξ) satisfies p
′

τ (ξ) = 0 for

ξ > hτ .

(E5) For the underfitted model α + α0, there exits a constant C− > 0 such that

lim inf
n→∞

{min
α+α0

1

n
`c(β̂

?
α)} ≥ C− with probability tending to 1.

(E6) For the {Zi}ni=1 in model (2), Bi = Ziεi are sub-Gaussian random vectors

with variance proxy σ2 > 0. We briefly introduce the concept of sub-Gaussian here.
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A random variable T ∈ R is said to be sub-Gaussian if E(T ) = 0 and E[exp(sT )] ≤

exp(σ2s2/2), ∀s ∈ R, for some σ2 > 0. In this case, we wirte T ∼ subG(σ2). And we

say a random vector T ∈ Rm is sub-Gaussian with variance proxy σ2, if E(T) = 0 and

uTT is a sub-Gaussian random variable with variance proxy σ2 for any vector u ∈ Rm

with uTu = 1, which we denote as T ∼ subGm(σ2). For a comprehensive review of

sub-Gaussian distribution, interested readers can refer to Rivasplata (2012).

Here, Assumption (E1)-(E3) are from Tang and Leng (2010). Briefly speaking, As-

sumption (E1) characterizes the tail probability behaviors of Xi which is satisfied by the

elliptical contoured distribution and the Gaussian family. Assumption (E3) controls the

rate at which the dimension of Xi is allowed to diverge. Assumption (E4) controls the

effect of the penalty such that the penalized estimator is asymptotically unbiased. And

it is easy to verify that the SCAD penalty satisfies Assumption (E4). Assumption (E5)

assures that the underfitted model yields a larger model deviance than that of the true

model. Assumption (E6) further controls the tail behavior of the estimating equation

Ui(β) = Xi(Yi −XT
i β). With these assumptions, we can now present our main result

on asymptotic performance of GIC selector.

Theorem 1: Suppose that the data are generated according to the model (1) and

that Assumptions (E1)-(E6) hold. If Cn satisfies Cn
log(p) → ∞ and Cn√

n
→ 0 as n → ∞,

we have that the tuning parameter τ̂ obtained by minimizing GIC(τ) satisfies P (ατ̂ =

α0)→ 1.

To better understand our main result, we give a sketch for the proof of Theorem 1 in

the rest of this section. The details of the proof can be found in the Appendix.

First, we introduce the following lemma.

Lemma 1: Suppose that the data are generated according to the model (1) and

that Assumptions (E1)-(E4) hold. Let τn be a sequence of tuning parameters satisfy-

ing that τn → 0, τn(n/p)1/2−δ → ∞ for the δ specified in Assumption (E3) and that

min1≤j≤d |β0j |/τn →∞. Then we have that β̂τn = β̂?α0
with probability tending to 1.

Lemma 1 assures that there exists a tuning parameter sequence τn such that ατn = α0

with probability tending to 1. Thus, it remains to show that P{infτ∈(Ω−∪Ω+) GIC(β̂τ ) >

GIC(β̂τn)} → 1.
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By the definition of β̂∗ατ , we have that `c(β̂τ ) ≥ `c(β̂
∗
ατ ). Therefore, we have that

GIC(β̂τ )−GIC(β̂τn) ≥ 2`c(β̂
?
ατ )−2`c(β̂

?
α0

)+Cn(dfατ −dfα0
) as n→∞ with probability

tending to 1. Thus, the key to our problem is to characterize the asymptotic behavior

of `c().

For the true and overfitted model α ⊇ α0, we have the following lemma.

Lemma 2: Suppose that the data are generated according to the model (1) and that

Assumptions (E1)-(E3) hold. Then, for any α ⊇ α0, we have

2`c(β̂
?
α) = nŪTΣ−1HT

α(HαΣ−1HT
α)−1HαΣ−1Ū + op(1),

where Hα is a (p − dfα) × p matrix such that (Hα)i,ji = 1 for i = 1, . . . , p − dfα with

{ji}i=1,...,p−dfα = ᾱ−α and the other entries of Hα are all zero, and Ū = n−1
∑n

i=1 Xiεi.

Therefore, we have that 2`c(β̂
?
α)− 2`c(β̂

?
α0

) = nŪTΣ−
1

2 (Aα−Aα0
)Σ−

1

2 Ū + op(1) for

any α ⊇ α0, where Aα = Σ−
1

2 HT
α(HαΣ−1HT

α)−1HαΣ−
1

2 and Aα0
= Σ−

1

2 HT
α0

(Hα0
Σ−1

HT
α0

)−1Hα0
Σ−

1

2 are two projection matrices. In the Appendix, we show that minα⊃α0

nŪTΣ−
1
2 (Aα−Aα0

)Σ−
1
2 Ū

dfα−dfα0

= Op(log(p)) which implies that with probability tending to 1,

minα⊃α0
{2`c(β̂?α) − 2`c(β̂

?
α0

) + Cn(dfα − dfα0
)} > 0 for Cn satisfying Cn

log(p) → ∞. As a

result, we conclude that P{infτ∈Ω+
GIC(β̂τ ) > GIC(β̂τn)} → 1.

For any underfitted model, α + α0, the Assumption (E5) ensures that minα+α0

2`c(β̂?α )−2`c(β̂?α0
)

n ≥ C−−
2`c(β̂?α0

)

n with probability tending to 1. We show in the Appendix

that
−2`c(β̂?α0

)

n = op(1). Together with the fact that Cnp/n → 0, we conclude that

with probability tending to 1, P{infτ∈Ω− GIC(β̂τ ) > GIC(β̂τn)} ≥ P{minα6⊇α0

2`c(β̂?α)
n −

2`c(β̂?α0
)

n − Cndfα0

n > 0} ≥ P{C− + op(1) > 0} → 1.

In the above procedure, we give a sketch of the proof for the statement that P{infτ∈(Ω−∪Ω+)

GIC(β̂τ ) > GIC(β̂τn)} → 1. Together with Lemma 1, Theorem 1 can be established

easily as shown in the Appendix.

3. Numerical study

In this section, we conduct several simulation studies and analyze one real data problem

to confirm our theoretical findings. For all computation issues in PEL, we follow the

strategy in Tang and Leng (2010). For comparison purpose, we define an AIC-like
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Table 1. Summary of results for Example 1

Method n=100 n=200 n=400 n=800 n=1600

MRME
AIC 1.00 0.76 0.65 0.71 0.63

GIC 1.00 0.73 0.43 0.34 0.23

CM
AIC 0.33 0.46 0.52 0.35 0.32

GIC 0.39 0.58 0.91 0.95 0.99

MS
AIC 5.39 5.74 6.22 7.06 7.67

GIC 4.99 5.05 5.09 5.05 5.03

criterion, AIC(β̂) = 2`c(β̂) + 2dfβ̂. And we compare our GIC with AIC to demonstrate

the superior performance of our tuning parameter selector. For all the simulation studies,

we compute the median of the relative model error (MRME), the average model size (MS)

and the percentage of the correctly identified true models (CM). Basically, a smaller

MRME means more accurate prediction results. Interested readers can refer to Fan and

Li (2001) and Wang et al. (2009) for more detailed explanation of MRME, MS and CM.

In our simulation studies, we directly adopted the settings in Wang et al. (2009).

Specifically, the covariate Xi follows a multivariate normal distribution Np(0,Σ) with

Σ = (σj1,j2), σj1,j2 = 1 if j1 = j2 and σj1,j2 = 0.5 if j1 6= j2. The error term {εi}ni=1

independently follows the standard Gaussian distribution N(0, 1). And we choose the

Cn in our GIC criterion to be log(log(p)) ∗ log(n) for all simulation studies. In addition,

we repeat all the experiments 100 times.

3.1. Example 1.

In this example, we take p = [4n1/4]−5, β = (11/4,−23/6, 37/12,−13/9, 1/3, 0, . . . , 0)T ∈

Rp where [t] denotes the largest integer that is smaller or equal to t. It impies that the

dimension of the true model is fixed to be 5.

The results are depicted in the left panels of Figure 1. For illustration purpose, we

also present the results in Table 1. We can see that the GIC method approaches 100%

CM quickly while AIC can not identify the true model consistently, which confirms our

theoretical findings. Therefore, the MRME values corresponding to GIC method are

smaller than those of AIC method.
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Fig. 1. Summary of simulation results for Example 1 and 2
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Table 2. Summary of results for Example 2

Method n=100 n=200 n=400 n=800 n=1600

MRME
AIC 0.72 0.63 0.57 0.67 0.64

GIC 0.51 0.31 0.31 0.33 0.32

CM
AIC 0.01 0.24 0.17 0.20 0.11

GIC 0.27 0.79 0.95 0.97 0.97

MS
AIC 12.03 12.54 14.68 16.99 20.11

GIC 8.75 8.29 10.08 12.03 14.03

3.2. Example 2.

In contrast to example 1, we are allowing the dimension of the true model to diverge.

Specifically, we set p = [7n1/4] and d = [p/3]. And we generate the true regression

coefficients from the uniform distribution over [0.5, 1.5]. The results are depicted in the

right panels of Figure 1. For illustration purpose, we also present the results in Table

2. As one can see, the results are quite similar to Simulation 1 which confirms our

theoretical findings again.

3.3. Real data analysis

In our real data example, we re-explore the Fifth National Bank’s employee salary data

analyzed by Fan et al. (2004) and Wang et al. (2009). The main goal here is to estimate

the salary difference between male and female employees. Following Fan et al. (2004), we

adopt their semiparametric model Salary = β0+β1∗Female+β2PCJob+
∑4

i=1 β2+iEdui+∑5
i=1 β6+iJobGrdi+f1(YrsExp)+f2(Age)+ε where fi(x) = αi1x+αi2x

2+αi3(x−xi1)2
++

· · ·+ αi7(x− xi5)2 are parameterized continuous functions, {xi1, xi2, ..., xi5} denotes the

{2/7, 3/7, ..., 6/7} quantiles of the empirical distribution of the variables YrsExp (i = 1)

and Age (i = 2). Thus, there are a total of 26 predictors whose corresponding coefficients

are {β}11
i=0, {α1j}7j=1, {α2j}7j=1 in this model. A detailed explanation of the variates and

the parameterized functions f1, f2 in this model can be found in Fan et al. (2004). As

suggested by Fan et al. (2004), we deleted the observations with working experience over

30 or age over 60, that results in a sample of size 199. Then we apply the PEL approach

to estimate the coefficients with tuning parameters selected by our proposed GIC and
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Table 3. Analysis result of the Bank Salary Dataset

Method OLS SCAD-AIC SCAD-GIC

Female -0.940 -0.885 0.000

PCJob 3.685 3.842 3.951

Edu1 -1.750 -1.426 0.000

Edu2 -3.134 -2.975 -2.040

Edu3 -2.277 -1.936 -1.189

Edu4 -2.112 -1.358 0.000

JobGrd1 -22.910 -22.995 -24.869

JobGrd2 -21.084 -21.180 -22.502

JobGrd3 -17.197 -17.460 -18.996

JobGrd4 -12.837 -12.985 -13.767

JobGrd5 -7.604 -7.808 -8.372

AIC. The detailed results are presented in Table 1. It is clear that the model selected by

GIC is more sparse than that selected by AIC which is consistent with our theoretical

findings. Consequently, only the tuning parameter selected by GIC identifies the gender

as an irrelevant predictor which is accordance with the conclusion obtained by Fan et al.

(2004) and Wang et al. (2009).
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4. Appendix

Proof of Lemma 1.

Under Assumption (E1)-(E4), by Theorem 3 in Tang and Leng (2010), it has been

shown that with probability tending to 1,

β̂τn2̃ = 0, (6)

where β̂τn = (β̂T
τn1̃
, β̂T

τn2̃
)T is the minimizer of (4), with β̂τn1̃ ∈ Rd, β̂τn2̃ ∈ Rp−d. As

indicated by Lemma A4 in Tang and Leng (2010), we have that β̂τn wil fall into Dn =

{β : ‖β − β0‖ ≤ can} with probability tending to 1, where an is defined as (p/n)1/2−σ,

c and σ are strictly positive constants satisfying p1−δ/n1/2−δ → 0. Thus, we have that

min
j∈α0

|β̂τnj |
τn

≥ min
j∈α0

|β0j | − can
τn

,

with probability tending to 1, where β̂τnj denotes the jth component of β̂τn . By τn(n/p)1/2−δ →

∞, we have that an
τn
→ 0 and minj∈α0

|β0j |
τn
→ ∞. Therefore, we have that with proba-

bility tending to 1

min
j∈α0

|β̂τnj |
τn

→∞. (7)

Under Assumption (E4), there exits a constant h such that p
′

τn(
∣∣∣β̂τnj∣∣∣) = 0 for

∣∣∣β̂τnj∣∣∣
τn
≥

h which implies, together with (7), we have that

bn(β̂τn) = 0, (8)

with probability tending to 1, where bn(β) = (p
′

τn(β1) sign (β1), p
′

τn(β2) sign (β2), ..., p
′

τn(βd)

sign (βd),0
T )T .

By the definition of penalized empirical likelihood and the result (6), the estimator

β̂τn based on penalized empirical likelihood is the constrained minimizer of (4) subject to

Hα0
β = 0, with probability tending to 1, where Hα0

are defined in Lemma 2. According

to Qin and Lawless (1995), by the Lagrange multiplier method, obtaining the estimates

is equivalent to minimizing a new objective function

˜̀
pen(β,λ,υ) = n−1

n∑
i=1

log(1 + λTUi(β)) +

p∑
j=1

pτn(
∣∣βj∣∣) + υTHα0

β, (9)
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where υ ∈ Rp−dfα0 is the vector of extra Lagrange multipliers.

Define Q̃1n(β,λ,υ) = 1
n

∑n
i=1{1 + λTUi(β)}−1Ui(β), Q̃2n(β,λ,υ) = − 1

n

∑n
i=1{1 +

λTUi(β)}−1λ + bn(β) + HT
α0
υ and Q̃3n(β,λ,υ) = Hα0

υ. Denotes the minimizer of (9)

as (β̂pen, λ̂pen, υ̂pen) which satisfies 0 = Q̃jn(β,λ,υ) (j = 1, 2, 3). And since β̂τn is the

minimizer of (5), we have that β̂pen = β̂τn .

By the definition of unpenalized empirical likelihood, the estimator β̂?α0
is the con-

strained maximizer of `c(β) subject to Hα0
β = 0. Similarly, obtaining the estimates is

equivalent to minimizing a new objective function

˜̀
c(β,λ,υ) = n−1

n∑
i=1

log(1 + λTUi(β)) + υTHα0
β. (10)

Define M̃1n(β,λ,υ) = 1
n

∑n
i=1{1+λTUi(β)}−1Ui(β), M̃2n(β,λ,υ) = − 1

n

∑n
i=1{1+

λTUi(β)}−1λ + HT
αυ and M̃3n(β,λ,υ) = Hαυ. Denotes the minimizer of (10) as

(β̂c, λ̂c, υ̂c) which satisfies 0 = M̃jn(β,λ,υ) (j = 1, 2, 3). And due to the fact that β̂?α0

is the maximizer of `c(β), we have that β̂c = β̂?α0
.

By (8), we have that with probability tending to 1, (β̂τn , λ̂pen, υ̂pen) satisfies 0 =

M̃jn(β,λ,υ) (j = 1, 2, 3), which implies that β̂τn = β̂?α0
with probability tending to 1.

Proof of Lemma 2.

From the definition, we know that β̂?α is the solution to the following problem:

min
β:Hαβ=0

`c(β) =

n∑
i=1

log{1 + λTβUi(β)}, (11)

where λβ solves that
1

n

n∑
i=1

Ui(β)

1 + λTβUi(β)
= 0.

According to Qin and Lawless (1995), by the Lagrange multiplier method, obtaining

the estimates β̂?α is equivalent to minimizing a new objective function

˜̀(β,λ,υ) =
1

n

n∑
i=1

log{1 + λTUi(β)}+ υTHαβ,

where υ ∈ Rp−dfα is the vector of extra Lagrange multipliers.

Define Q̃1n(β,λ,υ) = 1
n

∑n
i=1{1+λTUi(β)}−1Ui(β), Q̃2n(β,λ,υ) = − 1

n

∑n
i=1

XiXT
i λ

1+λTUi(β)

−1
+

HT
αυ and Q̃3n(β,λ,υ) = Hαβ. The minimizer (β̂, λ̂, υ̂) satisfies 0 = Q̃jn(β,λ,υ) (j =
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1, 2, 3). To ensure the expansions of Q̃jn around the value (β0,0,0) (j = 1, 2, 3), we

first present the following two statements which are similar to the Lemma A3 and Lemma

A4 in the Tang and Leng (2010).

(S1). Let an = (p/n)1/2−δ, D̃n = {β : ‖β − β0‖ ≤ can,Hαβ = 0} where δ, c > 0

are strictly positive constants and δ satisfies p1−δ/n1/2−δ → 0. Then ‖λβ‖ = Op(an) for

β ∈ D̃n.

(S2). As n→∞, with probability tending to 1, the problem (11) has a minimum in

D̃n.

Statement (S1) follows directly from Lemma A3 in Tang and Leng (2010) since D̃n ⊆

Dn, where Dn = {β : ‖β−β0‖ ≤ can}. And according to the proof of Lemma A4 in Tang

and Leng (2010), we have that for any given C, as n→∞, P{2`c(β)−2`c(β0) > C} → 1

for β ∈ ∂Dn where ∂Dn denotes the boundary of Dn. Since ∂D̃n ⊆ ∂Dn, we can see that

as n → ∞, P{2`c(β) − 2`c(β0) > C} → 1 for β ∈ ∂D̃n, which established Statement

(S2).

Therefore, we have from (S2), ‖β̂ − β0‖ = Op(an) and from (S1) that ‖λ̂‖ = Op(an)

is stochastically small. Similar to the argument in Qin and Lawless (1995), from

0 = Q̃2n(β̂, λ̂, υ̂), we conclude that ‖υ̂‖ = Op(an). Hence, we can use the stochas-

tic expansions of Q̃jn (j = 1, 2, 3) around the value (β0,0,0). This yields
−Q̃1n(β0,0,0)

0

0

 =


−Σ −Σ 0

−Σ 0 HT
α

0 Hα 0




λ̂− 0

β̂ − β0

υ̂ − 0

+ Rn, (12)

where ‖Rn‖ = op(n
−1/2) according to the proof of Theorem 3 in Tang and Leng (2010).

Let

K =


−Σ −Σ 0

−Σ 0 HT
α

0 Hα 0

 .

By inverting (12), we have
λ̂− 0

β̂ − β0

υ̂ − 0

 = K−1



−Q̃1n(β0,0,0)

0

0

−Rn

 .
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This implies that

β̂ − β0 = {Σ−Σ−1HT
α(HαΣ−1HT

α)−1HαΣ−1}(n−1
n∑
i=1

Xiεi −R2n), (13)

where R2n is the corresponding component in vector Rn = (RT
1n,R

T
2n,R

T
3n)T and

‖R2n‖ = op(n
−1/2).

Let zi = λT
β̂
Ui(β̂). As maxi |λTβ̂Ui(β̂)| = op(1) indicated by the proof of Lemma A3

in Tang and Leng (2010), we have by Taylor’s expansion,

`c(β̂) =

( n∑
i=1

zi −
n∑
i=1

z2
i

2
+

n∑
i=1

z3
i

3(1 + ξi)4

)
,

where |ξi| < |λTβ̂Ui(β̂)|.

Following the proof of Lemma A4 in Tang and Leng (2010), we have the expan-

sion of λβ for β ∈ D̃n to be λβ = Tn(β)−1Ū(β) + Tn(β)−1rn, where Tn(β) =

n−1
∑n

i=1 Ui(β)UT
i (β), rn = n−1

∑n
i=1[Ui(β){λTβUi(β)}2(1+εi)

−3] and |εi| < |λTβUi(β)|.

Let Ū = n−1
∑n

i=1 Xiεi. Similarly to the establishment of (A5) in the proof of Theorem

2 in Tang and Leng (2010), by substituting the expansion of β̂ in (13) and λβ̂ into zi,

we have that

2`c(β̂) = nŪTΣ−1HT
α(HαΣ−1HT

α)−1HαΣ−1Ū + op(1),

which completes the proof of Lemma 2.

Proof of Theorem 1.

Let τn be the sequence of tuning parameters in Lemma 1. By Lemma 1, with prob-

ability tending to 1, we have

`c(β̂τn) = `c(β̂
?
α0

).

Thus we have that dfατn = dfα0
with probability tending to 1. Hence it follows that,

P{GIC(β̂τn) = GIC(β̂?α0
)} → 1. (14)

Next we want to show that GIC(β̂τ ) > GIC(β̂τn) with probability tending to 1, for

any τ that cannot result in the true model. First, we consider τ that would result in

underfitting models, namely, τ ∈ Ω− = {τ : α 6⊇ α0}.
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Recall that based on the selected model ατ , we are able to obtain its corresponding

non-penalized estimates β̂?ατ .Then we have that

`c(β̂
?
ατ ) ≥ `c(β̂τ ),

and 2`c(β̂τ ) + Cndfτ > 2`c(β̂
?
ατ ). Thus, we have

GIC(β̂τ ) > 2`c(β̂
?
ατ ). (15)

By (15) and (14), with probability tending to 1, it follows that

GIC(β̂τ )−GIC(β̂τn) > 2`c(β̂
?
ατ )− 2`c(β̂

?
α0

)− Cndfα0
.

For any τ ∈ Ω− = {τ : α 6⊇ α0}, we can take inf
τ∈Ω−

over GIC(β̂τ ). By Assumption

(E5) and Cn√
n
→ 0, p√

n
→ 0, for any τ ∈ Ω− , we have with probability tending to 1

inf
τ∈Ω−

GIC(β̂τ )−GIC(β̂τn)

≥ inf
τ∈Ω−

2`c(β̂
?
ατ )

n
−

2`c(β̂
?
α0

)

n
− Cndfα0

n

≥ min
α6⊇α0

`c(β̂
?
α)

n
−
`c(β̂

?
α0

)

n
− Cndfα0

2n

≥ C− + op(1), (16)

as n→∞. (16) is due to Assumption (E5), Cnp
n → 0 and the fact that

`c(β̂?α0
)

n = op(1),

which we will show as follows.

By Lemma 2, we have that

`c(β̂
?
α0

)

n
=

1

2

nŪTHT
α0

(Hα0
Σ−1HT

α0
)−1Hα0

Ū + op(1)

n

=
1

2

WT
nPnWn

n
+ op(1),

where Wn =
√
nΣ−1/2Ū and Pn = Σ−1/2HT

α0
(Hα0

Σ−1HT
α0

)−1Hα0
Σ−1/2. Since Pn

is a projection matrix with rank p − dfα0
, we have that WT

nPnWn ≤ WT
nWn. Let

Fn = 1√
n

∑n
i=1 Ziεi, where Zi ∈ Rm is defined in model (2). We have that WT

nWn =

FT
nΓTΣ−1ΓFn and that Fn ∼ subGm(σ2) by Assumption (E6). Since ΓΓT = Σ, we

know that there exists vectors {ai}pi=1 such that ΓTΣ−1Γ =
∑p

i=1 aia
T
i with aTi ai = 1.
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For the sub-Gaussian variables aTi Fn ∼ subG(σ2), we have that E{(aTi Fn)2} ≤ 4σ2 and

E{(aTi Fn)4} ≤ 16σ4. Thus, we have that

E(
WT

nWn

p
) = E(

∑p
i=1 FT

naia
T
i Fn

p
) ≤ 4σ2.

For the second moment of WT
nWn

p , we have that

E{(WT
nWn

p
)2} ≤ pE(

∑p
i=1(FT

naia
T
i Fn)2

p2
) ≤ 16σ4.

Thus, we have that WT
nPnWn

p = Op(1). It follows that WT
nPnWn

n = op(1) which

completes the proof of (16). From (16), we have that infτ∈Ω− GIC(β̂τ )−GIC(β̂τn) must

be positive asymptotically.

Therefore, we have that

P{ inf
τ∈Ω−

GIC(β̂τ ) > GIC(β̂τn)} → 1. (17)

Next, for any τ ∈ Ω+ = {τ : α ⊃ α0}, we have with probability tending to 1

GIC(β̂τ )−GIC(β̂τn)

= 2`c(β̂τ )− 2`c(β̂τn) + Cn(dfατ − dfατn )

≥ 2`c(β̂
?
ατ )− 2`c(β̂

?
α0

) + Cn(dfατ − dfα0
),

as n→∞.

We then take inf
τ∈Ω+

over GIC(β̂τ ). So we have with probability tending to 1

inf
τ∈Ω+

GIC(β̂τ )−GIC(β̂τn)

≥ min
α⊃α0

(
2[`c(β̂

?
α)− `c(β̂?α0

)] + Cn(dfα − dfα0
)

)
= min

α⊃α0

(
(dfα − dfα0

){Cn − 2
`c(β̂

?
α0

)− `c(β̂?α)

dfα − dfα0

}
)
. (18)

For any α ⊃ α0, we have dfα − dfα0
≥ 1. Next, we are going to show that

max
α⊃α0

`c(β̂
?
α0

)− `c(β̂?α)

dfα − dfα0

= Op(log(p)).

By Lemma 2, we have

max
α⊃α0

`c(β̂
?
α0

)− `c(β̂?α)

dfα − dfα0

= max
α⊃α0

nŪTΣ−
1

2 (Aα0
−Aα)Σ−

1

2 Ū + op(1)

dfα − dfα0

, (19)
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where Aα = Σ−
1

2 HT
α(HαΣ−1HT

α)−1HαΣ−
1

2 , Aα0
= Σ−

1

2 HT
α0

(Hα0
Σ−1HT

α0
)−1Hα0

Σ−
1

2

are two projection matrices. Let Wn =
√
nΣ−

1

2 Ū, then (19) becomes

max
α⊃α0

WT
n (Aα0

−Aα)Wn + op(1)

dfα − dfα0

. (20)

The numerator of (20) is dominated by WT
n (Aα0

−Aα)Wn. Therefore, we only need

to show that

max
α⊃α0

WT
n (Aα0

−Aα)Wn

dfα − dfα0

= Op(log(p)). (21)

Before the derivation of (21), let’s introduce the following notation. Let αc = α \α0,

α1 = ᾱ\α0, B = Σ−1/2 and Bα be the matrix composed by the columns of B indexed by

α, that is, Σ−1/2 = B = (Bα0
,Bα1

). And let PA denote A(ATA)−1AT , QA = I−PA

for any matrix A. Denote τmin(A) as the minimal eigenvalues of A, for any arbitrary

positive definite matrix A. Then we have WT
n (Aα0

−Aα)Wn = WT
n (PBα

−PBα0
)Wn.

Inspired by the idea used in the proof of Theorem 2 in Wang et al. (2009), we let

B̃αc = QBα0
Bαc . Then we have PBα

−PBα0
= PB̃αc

and

WT
n (Aα0

−Aα)Wn

dfα − dfα0

=
WT

nPB̃αc
Wn

dfα − dfα0

=
(WT

n B̃αc)(B̃
T
αcB̃αc)

−1(B̃T
αcWn)

|αc|

≤ hα
c

max‖WT
n B̃αc‖2

|αc|

≤
hα

c

max

∑
j∈αc(W

T
n B̃j)

2

|αc|
≤ hα

c

max max
j∈αc

(WT
n B̃j)

2,

where hα
c

max = τ−1
min(B̃T

αcB̃αc), Bj is the jth column of B and B̃j = QBα0
Bj . Note that

αc ⊂ α1. Thus we have that τ−1
min(B̃T

αcB̃αc) ≤ τ−1
min(B̃T

α1
B̃α1

) = (hα1
max)−1. We then must

have

max
α⊃α0

WT
n (Aα0

−Aα)Wn

dfα − dfα0

= max
αc⊂α1

WT
nPB̃αc

Wn

|αc|
≤ hα1

max ×max
j∈αc

(WT
n B̃j)

2. (22)

We next examine the two terms of (22) respectively.
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Firstly, let γ be the eigenvector associated with τmin(B̃T
α1

B̃α1
), i.e ‖γ‖ = 1 and

τmin(B̃T
α1

B̃α1
) = γT (B̃T

α1
B̃α1

)γ = ‖B̃α1
γ‖2.

By definition, we know that B̃α1
γ = Bα1

γ + Bα0
γ? with γ? = −(BT

α0
Bα0

)−1BT
α0

Bα1
γ.

Therefore, we have that

τmin(B̃T
α1

B̃α1
) = ‖Bα1

γ + Bα0
γ?‖2 = ‖Bγ0‖2 = γT0 BTBγ0

≥ τmin(BTB)‖γ0‖2 ≥ τmin(BTB) ≥ τmin(Σ) ≥ C1,

where γ0 = (γ?T ,γT )T satisfies that ‖γ0‖2 > 1 and C1 is the constant in the Assumption

(E2). This indicates that hα1
max ≤ 1

C1
.

Secondly, under the sub-Gaussian Assumption (E6), we know that
B̃T
j Wn

σj
=

B̃T
j Σ−1/2ΓFn

σj
∼

subG(σ2), where Fn = 1√
n

∑n
i=1 Ziεi ∼ subGm(σ2) and σ2

j = ‖B̃T
j Σ−1/2Γ‖2 = ‖B̃T

j Σ−1/2Γ

ΓTΣ−1/2B̃j‖2 = ‖B̃j‖2 ≤ ‖Bj‖2 ≤ τmax(BT
j Bj) ≤ τmax(BTB) ≤ τmax(Σ) ≤ C2, C2 is

the constant in the Assumption (E2). Thus, (22) can be further bounded by

max
αc⊂α1

WT
nPB̃αc

Wn

|αc|
≤ C2σ

2

C1
×max

j∈α1

V 2
j ,

where V 2
j = (WT

n B̃j)2

σ2
jσ

2 is the square of a sub-Gaussian variable with variance proxy 1.

Even though these variables V 2
j , j ∈ α1 might be dependent, we can still proceed by

using Bonferroni’s inequality to obtain

P (max
j∈α1

V 2
j > 3 log(p)) ≤ p× P (V 2

j > 3 log(p))

≤ p× P (|Vj | >
√

3 log(p))

≤ 2p exp−3 log(p)/2 ≤ 2p−1/2,

which implies that max
j∈α1

V 2
j ≤ 3 log(p) with probability tending to 1 as p→∞. Therefore,

we have that

max
αc⊂α1

WT
nPB̃αc

Wn

|αc|
≤ 3σC2

C1
log(p)

with probability tending to 1. So it follows that max
α⊃α0

WT
n (Aα0

−Aα)Wn

dfα − dfα0

= Op(log(p))

as n→∞.
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Therefore, we have shown that with probability tending to 1,

min
α⊃α0

{Cn − 2
`c(β̂

?
α0

)− `c(β̂?α)

dfα − dfα0

}

≥ Cn − 2 max
α⊃α0

`c(β̂
?
α0

)− `c(β̂?α)

dfα − dfα0

≥ Cn −Op(log(p)),

which is guaranteed to be positive asymptotically.

Now let’s continue with (18). Together with the fact that minα⊃α0
(dfα − dfα0

) > 0,

we have that with probability tending to 1,

inf
τ∈Ω+

GIC(β̂τ )−GIC(β̂τn)

≥ min
α⊃α0

(
2[`c(β̂

?
α)− `c(β̂?α0

)] + Cn(dfα − dfα0
)

)
= min

α⊃α0

(
(dfα − dfα0

){Cn − 2
`c(β̂

?
α0

)− `c(β̂?α)

dfα − dfα0

}
)
,

which must be positive asymptotically.

Thus, we have that

P

(
inf
τ∈Ω+

GIC(β̂τ ) > GIC(β̂τn)

)
→ 1. (23)

Based on (17) and (23) together, we have that P{infτ∈(Ω−∪Ω+) GIC(β̂τ ) > GIC(β̂τn)} →

1 which implies that P{infτ∈(Ω−∪Ω+) GIC(β̂τ ) > GIC(β̂τn)} → 1. Consequently, this

completes the proof of theorem 1.
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