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Bacteria can attach to essentially all materials and form

multicellular biofilms with high-level tolerance to antimicrobials.

Detrimental biofilms are responsible for a variety of problems

ranging from food and water contamination, bio-corrosion, to

drug resistant infections. Besides the challenges in control,

biofilms are also difficult to detect due to the lack of biofilm-

specific biomarkers and methods for non-destructive imaging.

In this article, we present a concise review of recent

advancements in this field, with a focus on medical device-

associated infections. We also discuss the technologies that

have potential for non-destructive detection of bacterial

biofilms.
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Bacterial biofilms
As the oldest life form on earth, bacteria have developed

remarkable capabilities to survive in harsh environments.

One such strategy is to colonize surfaces and form biofilms,

which are complex structures of bacterial cells embedded

in an extracellular matrix comprised of polysaccharides,

proteins, DNA and lipids produced intrinsically by these
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bacteria [1]. Biofilm cells are up to 1000 times more tolerant

to antibiotics than their planktonic counterparts, rendering

biofilm-related infections largely unresponsive toantibiotic

therapies [2]. Thus, detrimental biofilms are of great con-

cern especially when formed by pathogenic species on

implanted medical devices and biomaterials such as

indwelling catheters, orthopedic implants, cochlear

implants, among others [3–6].

Challenges in biofilm detection
Although a number of methods have become quite rou-

tine for biofilm characterization in controlled laboratory

settings [7�], biofilm detection in clinical settings has

multiple challenges [8–10]. In general, biofilm associated

infections (BAI) are chronic and remain local to the

infection sites such as an implant. Additionally, clinical

evidence suggests that for long periods of time biofilms

can produce occult, or subclinical, infections, in which the

inflammatory symptoms are less pronounced than acute

infections, only revealing themselves when biofilm cells

shed off resulting in bacteremia [11]. Usually BAIs

involving foreign bodies are not confirmed until the

device is explanted and even then often a diagnosis of

biofilm is based on anecdotal evidence [9]. When a

biofilm is formed on an implanted medical device, it

cannot be directly sampled without a surgical procedure.

This essentially precludes the detection using standard

microbiological methods such as bacterial culturing on

agar plates until intra-operative access. Even if the cells

can be sampled, slow-growing variants of bacteria and

dormant persister cells [12] may not form colonies under

routine culturing conditions and thus cause a false nega-

tive result [13]. Culturing methods also face challenges

with the highly heterogeneous distribution of biofilms

and the involvement of fastidious strains and/or mixed-

species biofilms that require specific growth factors [9]. A

standardized, reliable method for the detection of bio-

films in clinical settings is still missing. Besides BAI

diagnosis in vivo, microbial detection on explanted medi-

cal devices is also challenging if the cells are difficult to

sample (if trapped in crevices such as those in endo-

scopes) or culture (if dormant or missing growth factors).

Sampling may not be effective without removing bacteria

using a stronger force such as sonication [14]. In this

article, we provide a concise review of recent advance-

ments (focusing on the past three years) in biofilm detec-

tion in medical settings and possible future directions

(Figure 1).
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Figure 1
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Schematic of biofilm formation and potential targets for detection. Biofilm formation causes significant changes in bacterial gene expression and

metabolism, triggers host immune response, and alters the chemical/physical properties of the substrate material. These changes are potential

targets for biofilm detection.
Molecular methods
Compared to culturing methods, DNA-based analyses are

more sensitive in detecting microbes including uncultur-

able cells and samples with mixed species. Conventional

polymerase chain reaction (PCR)-based approaches tar-

get ribosomal RNA for detection [15]. Inclusion of spe-

cific gene targets can reveal additional information such as

antibiotic resistance [16��]. Compared to PCR tests that

target individual genes, meta-genomic sequencing can

reveal more information regarding antibiotic resistance,

virulence factors and other important physiological traits.

Recent development of whole-genome sequencing

(WGS) has drastically improved the throughput and

accuracy, and lowered the cost [17�]. DNA-based tech-

nologies do have limitations, one being the lack of infor-

mation about the viability of cells and not being able to

distinguish whether the organisms are in a biofilm or

planktonic phenotype (if the cells cannot be separated

during sampling). Combining DNA detection with mes-

senger RNA analysis for biofilm-specific gene expression

may be able to distinguish the phenotype of the

organisms. However, contaminating DNA from the clini-

cal environment (including the patient’s skin, surgical

instruments, gloves and irritants) are also a concern.
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Biofilm associated biomarkers
Although biofilms formed on implanted devices cannot

be directly sampled, biofilm growth may produce unique

molecules, or stimulate biofilm-specific host responses,

that can be detected using standard methods. Antibodies

may not be detectable during acute infections, but can be

used to help with chronic BAI diagnosis. For example,

alpha defensin, an antimicrobial peptide produced by the

body to fight infection, has been found in the synovial

fluid of infected hip and knee joints and shows good

sensitivity and specificity for periprosthetic joint infection

(PJI) [18�]. However, like antibody tests, alpha defensin is

not biofilm specific.

Besides host factors, identifying biofilm-specific markers

on bacterial cells will enable effective detection of bio-

films. Since the discovery of biofilm-associated protein

(Bap) in Staphylococcus aureus, Bap homologs have been

found in many bacterial species. These proteins are

present on bacterial surfaces and many are involved in

biofilm formation [19] and chronic infection in mammary

glands [20]. Recombinant subunits of Acinetobacter
baumannii Bap has been shown to stimulate an immune

response in mice [21]. However, bap was not detected in
www.sciencedirect.com
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S. aureus isolates from patients with urinary tract infec-

tions (UTI) [22]. Further studies are needed to identify

markers that are unique to bacterial biofilms, especially

those present in multiple bacterial species.

In addition to cellular targets, biofilm matrix components

provide potential markers of biofilms and may offer

species identification. One of such possible biomarkers

is cellulose, a major component of the biofilm matrix of

uropathogenic Escherichia coli (UPEC). Antypas et al. [23�]
developed an assay based on optotracing that can detect

cellulose in urine in less than 45 min, which can help

determine if biofilm is involved in UTI. Similarly,

exopolysaccharide (EPS) is a possible marker for detect-

ing biofilm as has been demonstrated for Histophilus
somni biofilms [24]. Chronic lung infection by mucoid

Pseudomonas aeruginosa biofilms leads to an IgG antibody

response against P. aeruginosa components including algi-

nate, lipopolysaccharides and proteins, which is currently

used for diagnosis [25�]. Interestingly, many species of

bacteria incorporate their own extracellular DNA (eDNA)

into the matrix; and thus, cell-free DNA analysis [26] in

combination with polysaccharide analysis [27] might pro-

vide evidence of biofilm and identify the species

involved. Another possibility is to quantify biomass by

measuring proteins in biofilms. For example, Guan et al.
[28��] modified the o-phthalaldehyde (OPA) protein assay

to achieve extraction-free detection of biofilms.

Quorum sensing (QS) is a well-known system found in

numerous microbial species, which enables the cells to

regulate cell density-dependent activities by sensing and

responding to signaling molecules named autoinducers

[29]. For lung infection by P. aeruginosa, QS signal profil-

ing has been shown to be a potential biomarker for biofilm

detection [30]. QS signals are also known to alter the level

of immune factors and immune cell proliferation [31,32],

which may help identify new biomarkers for biofilm

detection. The chronic nature of BAIs indicates that host

immunity is unable to eradicate biofilm cells. Thus, it is

believed that the innate and acquired immune responses

coexist [33�]. Deciphering the types and dynamics of

immune factors involved in such infections may provide

new biomarkers for better diagnosis.

Biofilm imaging
Laboratory methods for biofilm culturing, imaging and

analysis have been well summarized in recent reviews

[7�]. Confocal laser scanning microscopy (CLSM), fluores-

cence in situ hybridization (FISH), and later improved

peptide nucleic acid (PNA)-FISH [34] and locked nucleic

acids (LNA)-FISH [35], can provide spatial information

about biofilms and the location of different species. But

these advanced imaging techniques require a clear line of

sight with the specimen, which are destructive and not

applicable for in situ detection/diagnosis. Similar issues exist

for scanning electron microscopy (SEM), time-of-flight
www.sciencedirect.com 
secondary ion mass spectrometry (TOF-SIMS), transmis-

sion electron microscopy (TEM) and Mass Spectrometry

Imaging (MSI).

In comparison, Raman spectroscopy and surface enhanced

Raman spectroscopy (SERS) offer non-destructive molec-

ular detection with high sensitivity [36�]. By detecting the

photons that change energy when scattering off a material

(Raman scattering), Raman spectroscopy is highly sensitive

in detecting low-abundant biomolecules, e.g. 5 ppb of

P. aeruginosa pyocyanin in sputa [37] and quorum sensing

signals in P. aeruginosa biofilms in mice [38].

For preoperative and intraoperative guidance, imaging

techniques that can ‘see’ through tissues into the body

will arguably have the greatest medical utility. A useful

tool for non-invasive biofilm detection is Near Infra-Red

(NIR) imaging. Systems with such capabilities have been

commercialized. For example, the Spectrum In Vivo
Imaging System (IVIS) from PerkinElmer combines

2D optical imaging and 3D NIR tomography, achieving

3D tracking of bioluminescence and fluorescence signals.

Combining IVIS with biofilm-specific markers may

improve biofilm diagnoses.

Hyperspectral imaging is a label-free method that has been

used in wound monitoring and to detect biofilms in the

natural environment. This technology provides visible and

near-IR spectra in a 2D image and may have future poten-

tial for detecting color changes associated with biofilms

themselves or reaction of the host tissues to biofilms.

While signs of infection can be diagnosed from observing

host tissues in X-rays, direct detection of biofilm will likely

require a contrast agent. For example, with appropriate

contrast agents such as iron sulfate, X-ray tomography can

differentiate biofilm from surrounding water and allow 3D

quantificationofbiofilmstructures [39��].Further improve-

ment in biofilm characterization can be achieved using

X-ray micro-force computed tomography (mCT), which

has been used for non-destructive analysis of biofilm grown

in central venous catheters (CVC) [40]. Sellmyer et al. [41]

synthesized [18F] fluoropropyl-trimethoprim and showed

it can label bacteria but not inflammatory or cancer cells in

rodents, allowing direct visualization of infection using

positron emission tomography imaging. Future work to

improve sensitivity and reduce background signals from

bowel and bone uptake may bring exciting opportunities

for non-invasive imaging of biofilm infections.

Currently medical imaging modalities do not have the

spatial resolution to detect biofilms which can exist as

aggregates with a diameter of 10–100 mm diameter. If

biofilm specific labels can be found, radiolabeling has the

potential to increase sensitivity in signal detection and

would also offer theranostic potential, in which localized

imaging is combined with a therapeutic benefit [42].
Current Opinion in Biotechnology 2020, 64:79–84
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Unconventional methods
Bio-impedance based sensing

Biofilm formation on an implant and associated inflam-

mation can significantly alter the environment near the

device surface and device-host tissue interface, which

provides an opportunity for biofilm-specific sensing. One

approach to characterize such changes is to use electric

impedance, which represents the retardation of a circuit

under alternating current/voltage applied at specific fre-

quencies [43]. Previous improvements in instrumentation

and data analysis [44,45] have made EIS a promising

technology for biofilm detection.

Recently, a CMOS on-chip impedance analysis system was

engineered using lithography. These devices are highly

sensitive,compact, andcanbereproducedata largescale by

modern fabrication processes [46]. Single-frequency

impedance spectroscopy has been developed as a label-

free system for monitoring biofilm growth and treatment

[43,47]. EIS could become a promising monitoring method

in the future since it does not require sample preparation

and can be done continuously without physically sampling

the biofilm, a major advantage over many other methods.

Recent advances have also made it possible to integrate

impedimetric sensors with existing electronic medical

devices. The most important addition in such an integra-

tion is the electrode/probe, which has been demonstrated

in the form of a microfluidic chip [48��]. This device

combines real-time monitoring and a threshold activated

treatment. It was later adapted by the same group into a

wireless monitoring enabled urinary catheter [49]. It is

worth noting that synergy between antibiotics and elec-

trochemical treatment has been reported to have signifi-

cant effect on killing biofilms including persister cells

[50–52]. With the capability to combine treatment and

monitoring, it is possible to engineer smart medical

devices that can deliver on-demand control of biofilms.

Surface acoustic waves

Surface Acoustic Waves (SAW) are referred to a form of

vibrational wave propagating through a solid material

affected by its elasticity. Combing with Love Waves

(LW), which travel across a surface, LW-SAW devices

can provide label-free real-time monitoring of high-

molecular weight molecules with high sensitivity [53].

LW-SAW sensors have been developed for early-detection

of biofilm formation on surfaces with pg level sensitivity

and real-time biofilm monitoring [54]. Using gold nano-

particles as a signal enhancer, LW-SAW can also be used to

detect antigen at pg/mL level [55]. Such high sensitivity

might be useful for detecting biofilm markers in the future.

A new device based on SAW was engineered recently,

which can be clamped onto a liquid filled tube and act as

an actuator to monitor soft layer deposition on the tube
Current Opinion in Biotechnology 2020, 64:79–84 
surface. This device is capable of distinguishing between

a soft layer such as biofilm or a hard layer such as limescale

in a metal tube [56]. This adaptable device has possible

applications in piping inspection and medical catheter

check-ups, demonstrating an alternative to integrating

into devices. Instead of putting SAW sensor onto the

surface of interest, it rather turns the said surface into a

substrate for analysis. Besides sensing, SAW has also been

used in biofilm treatment [57], presenting a future

possibility to engineer smart devices.

Other approaches

With advancements in analytic biotechnology and device

fabrication, researchers continuously push the boundary

towards more sensitive and portable detection systems. For

example, a disposable sensor consisting of a small segment

of optical fiber and antibody surface coating developed for

C-reactive protein sensing has a consistent linear response

to the target protein between 0.01–20 mg/mL [58]. Mean-

while, Zhang et al. [59] reported the capability to monitor

biofilm formation and treatment in real time using surface

plasmon resonance waveguide mode. Cantilever technol-

ogy can be used to form an array sensor, and achieve

simultaneous detection of multiple targets of interest

[60]. Although some of these are not directly applicable

to biofilm monitoring in vivo, they have potential for

biomarker detection and analysis of explanted medical

devices. Future development in this field will also benefit

from new technologies that combine molecular markers

with advanced imaging [61�], and more in-depth under-

standing of biofilm physiology [62].

Conclusions
With the increasing challenges associated with microbial

biofilms, there is an urgent need to develop the capability for

non-destructive real-time detection of microbial biofilms.

However, the patchy nature, size scale and lack of biofilm

specific targets provide obstacles in meeting this goal. Con-

ventional methods for microbial detection are largely based

on culturing methods and the detection of immunoglobulin

antibodies in the blood or other bodily fluids. Although these

methods are effective in diagnosing acute infections, they

commonly fail indiagnosingBAIs.Similarchallengesexist in

detecting microbes from explanted medical devices. Many

of the future development will rely on the discovery of new

biomarkers and engineering more sensitive detection sys-

tems. Most BAIs are culturing negative and involve multiple

species, which require universal biomarkers rather than

species-specific molecules for detection. It is also important

to improvetheknowledgeof invivobiofilmformation,which

has significant differences than that in in vitro pure-culture

systems. Understanding the dynamics and inter-species

interactions  will be essential for identifying the right bio-

markers. Achieving effective biofilm detection also requires

low-cost, easy-to-manufacture, portable/wearable/implant-

able devices that have a long-life span and require minimal

maintenance. Addressing these challenges will bring
www.sciencedirect.com
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exciting new technologies for safer medical devices and

better healthcare.
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