
Topology-Custom UGAL Routing on Dragonfly

Md Shafayat Rahman
rahman@cs.fsu.edu

Department of Computer Science
Florida State University
Tallahassee, Florida

Saptarshi Bhowmik
bhowmik@cs.fsu.edu

Department of Computer Science
Florida State University
Tallahassee, Florida

Yevgeniy Ryasnianskiy
ryasnian@cs.fsu.edu

Department of Computer Science
Florida State University
Tallahassee, Florida

Xin Yuan
xyuan@cs.fsu.edu

Department of Computer Science
Florida State University
Tallahassee, Florida

Michael Lang
mlang@lanl.gov

Los Alamos National Laboratory
Los Alamos, New Mexico

ABSTRACT

The Dragonfly network has been deployed in the current gener-

ation supercomputers and will be used in the next generation su-

percomputers. The Universal Globally Adaptive Load-balance rout-

ing (UGAL) is the state-of-the-art routing scheme for Dragonfly.

In this work, we show that the performance of the conventional

UGAL can be further improved on many practical Dragonfly net-

works, especially the ones with a small number of groups, by cus-

tomizing the paths used in UGAL for each topology. We develop

a scheme to compute the custom sets of paths for each topology

and compare the performance of our topology-custom UGAL rout-

ing (T-UGAL)with conventional UGAL. Our evaluationwith differ-

ent UGAL variations and different topologies demonstrates that by

customizing the routes, T-UGAL offers significant improvements

over UGAL onmany practical Dragonfly networks in terms of both

latency when the network is under low load and throughput when

the network is under high load.

CCS CONCEPTS

• Networks→ Routing protocols; Network performance analy-

sis; • Computer systems organization → Interconnection archi-

tectures;

KEYWORDS

Interconnection network, Dragonfly, UGAL routing

ACM Reference Format:

MdShafayat Rahman, Saptarshi Bhowmik, Yevgeniy Ryasnianskiy, Xin Yuan,

andMichael Lang. 2019. Topology-CustomUGAL Routing on Dragonfly. In

The International Conference for High Performance Computing, Networking,

Storage, andAnalysis (SC ’19), November 17–22, 2019, Denver, CO, USA.ACM,

New York, NY, USA, 12 pages.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SC ’19, November 17–22, 2019, Denver, CO, USA

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6229-0/19/11. . . $15.00
https://doi.org/10.1145/3295500.3356208

1 INTRODUCTION

The Dragonfly topology is cost-effective for large-scale intercon-

nection networks [1]. The Cray Cascade architecture [2] employs

a variation of Dragonfly, and has been deployed in current super-

computers including Titan at Oak Ridge National Laboratory [3]

and Trinity at Los Alamos National Laboratory [4]. The Cray Sling-

shot network, designed for future exascale computing, also uses

the Dragonfly topology [5].

The routing to achieve high performance on Dragonfly is chal-

lenging: different routing schemes must be used for different traf-

fic conditions to achieve high performance [1]. In particular, mini-

mal routing (MIN) is suited for uniform traffic while non-minimal

Valiant Load-balanced routing (VLB) is required for adversarial

traffic patterns. To unify the two routing schemes in one system,

the Universal Globally Adaptive Load-balanced routing (UGAL)

has been developed [1] that adapts the routing decision for each

packet between MIN and VLB paths based on queue lengths [6].

A Dragonfly network has a two-layer structure and consists of

a number of groups. A practical Dragonfly topology typically has a

fixed group topology, but can configure the number of groups and

the number of global links between each pair of groups [2]. Dif-

ferent configurations will have very different connectivity charac-

teristics. For example, for full-sized Dragonfly topologies, there is

only one link between each pair of groups [1] while for some other

topologies, there are many links between each pair of groups[2],

resulting in significant path diversity using just the MIN paths.

Note that path diversity means the number of different paths that

can be used to transmit a packet. For an adversarial traffic pattern,

having path diversity in a routing scheme is essential for the rout-

ing scheme to explore network capacity and achieve high perfor-

mance. Yet, the conventional UGAL does not adapt to topologies

in the sense that the method to decide MIN or VLB paths is the

same across different Dragonfly topologies. Although UGAL has

been shown to achieve high performance on Dragonfly, it may

not achieve the best routing performance for different Dragonfly

topologies.

In this work, we propose topology-custom UGAL routing (T-

UGAL) that has the same routing mechanism and the same set

of MIN paths as the conventional UGAL. T-UGAL uses different

sets of VLB paths that are customized for each topology. We de-

velop a general approach to determine the custom VLB paths for

https://doi.org/10.1145/3295500.3356208

SC ’19, November 17–22, 2019, Denver, CO, USA Md Shafayat Rahman et al.

each topology and compare the performance of T-UGAL with the

conventional UGAL on different topologies and different UGAL

variations including UGAL-L (UGAL with local information) [1],

progressive adaptive routing (PAR) [7], and the theoretical UGAL-

G (UGAL with global information) [1]. The results show that T-

UGAL significantly improves over UGAL in terms of both latency

when the network is under low load and throughput when the net-

work is under high load for many practical topologies. Our results

also show for Dragonfly topologies where there is only one link

between each pair of groups, UGAL converges with T-UGAL and

achieves high performance. Such networks were used in the design

and evaluation of the original UGAL for Dragonfly [1, 7]. Note that

T-UGAL only changes the set of candidate paths for UGAL, and

thus is complement to other schemes developed to improve UGAL

[8–13] and can be applied to any UGAL variations.

The rest of the paper is structured as follows. Section 2 presents

the background and relatedwork. Section 3 describes our proposed

topology-custom UGAL. Section 4 reports the performance study.

Finally, Section 5 concludes the paper.

2 BACKGROUND AND RELATED WORK

This section gives background and related work. We will describe

the Dragonfly topology and the UGAL routing, and discuss the re-

lated work to improve UGAL on Dragonfly.

2.1 Dragonfly Topology

Details about the Dragonfly topology can be found in Kim et al.’s

original paper [1]. Here, we will briefly introduce the topology for

the completeness of this paper. The Dragonfly topology has a 2-

layer structure. A group of routers/switches are interconnected

with an intra-group topology into a group that can be treated as a

single virtual router with a very high radix. We will use the terms

router and switch interchangeably. The groups are then connected

with an inter-group topology. Figure 1 shows an example of the 2-

layer dragonfly topology. In this example, each group consists of 4

switches; there are a total of 9 groups in the system.

G0

G1 G2 G8

R0 R1 R2 R3

p0 p1 p2 p3 p4 p5 p6 p7

Figure 1: An example Dragonfly topology (d f ly (p = 2,a =

4,h = 2,д = 9)

Various topologies can be used to form the intra-group connec-

tivity. A typical intra-group topology is a fully connected graph

where all switches are directly connected to each other [1]. An ex-

ample of such an intra-group topology is shown in the G0 group in

Figure 1. The intra-group connectivity in the Cascade architecture

is a 2-dimensional all-to-all mesh [2]. In this work, we focus on

Dragonfly networks with a fully connected intra-group topology,

which is used in the Cray’s newer generation Slingshot network

[5]. Our techniques, however, can be applied to other Dragonfly

variations.

The number of groups in a Dragonfly can vary. The largest pos-

sible Dragonfly has only one global link connecting each pair of

groups. When the intra-group topology is a fully connected graph,

the largest Dragonfly is uniquely defined by three parameters: the

number of links per switch connecting to local compute nodes p,

the number of switches in each group a, and the number of global

links per switch connecting to switches in other groups h. In such

a topology, the number of ports in each switch is p + a − 1+h; the

number of global links from each group is a×h; and the number of

groups is a×h+1; the total number of switches is (a×h+1)×a; and

the total number of compute nodes is (a×h+1)×a×p. As discussed

in [1], a load-balanced Dragonfly system should have a = 2p = 2h.

Figure 1 illustrates a balanced Dragonfly networkwithp = 2,a = 4,

and h = 2. In this case, each group has a = 4 switches and a×h = 8

global links. The largest topology can thus have 8 + 1 = 9 groups

with each group having one global link connecting to any other

group.

The number of groups (д) in aDragonfly topologymay be smaller

than a × h + 1. For example, Figure 2 shows a topology where

p = h = 2, a = 4, and д = 3. As shown in the figure, 4 global links

are used to connect each pair of groups. Different ways to arrange

the global connectivities have been proposed [14] including rela-

tive, absolute, and circulant-based arrangements. In this paper, we

assume the global links are connected using a minor variation of

absolute arrangement. The variation is able to form bi-directional

Dragonfly topology with different numbers of groups. Our tech-

niques, however, do not depend on the link arrangement schemes

and can be applied for Dragonfly with different link arrangement

schemes. With the assumption of the global link arrangement, the

Dragonfly topology can be determined with 4 parameters: p, h, a,

and д. We will use the notation d f ly (p,a,h,д) to represent such a

topology. Figure 2 shows the topology of d f ly (p = 2,a = 4,h =

2,д = 3) while Figure 1 is the topology of d f ly (p = 2,a = 4,h =

2,д = 9).

In the past, global links (the longer links between groups) in-

cur significantly higher latency than local links (the shorter links

within a group), a ratio of 1:10 [7]. However, recent technologi-

cal advances have significantly reduced the latency gap between

global and local links. In the Cascade architecture [2], the latency

of global links is roughly 1.5 times the latency of local links (de-

pending on the length of the global cable).

2.2 Universal Globally Adaptive Load-balanced
Routing (UGAL)

The following terminologywill be used to describe routing inDrag-

onfly. Packets are routed from a source compute node to a destina-

tion compute node. The switch that the source compute node con-

nects to is called the source switch. The switch that the destina-

tion compute node connects to is called the destination switch. The

group that the source compute node is in is called the source group;

Topology-Custom UGAL Routing on Dragonfly SC ’19, November 17–22, 2019, Denver, CO, USA

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

p0

p1

p2

p3

p4

p5
p6p7

p8

p9

p10

p11

p12

p13

p14

p15

p16

p17
p18 p19

p20

p21

p22

p23

Figure 2: An example Dragonfly topology with absolute

global link arrangement (d f ly (p = 2,a = 4,h = 2,д = 3)

the group that the destination compute node is in is called the des-

tination group. We will use the notation s → d to represent a link

from node s to node d .

In theDragonfly topology, packets are routed along either amin-

imal or a non-minimal path. A minimal path is a path from the

source compute node to the destination compute node that con-

tains at most one global link. The thick segmented line in Figure 3

shows a typical minimal path from s to d , where the path takes one

local hop in the source group from the source switch to the switch

that has a global link to the destination group, then the global link

to the destination group, and finally a local link at the destination

group to the destination switch. Depending on the positions of the

source and the destination, the minimal path may have fewer hops.

The Minimal routing (MIN) scheme routes packets only with

minimal paths. It minimizes the resource usage and works well for

traffic patterns where MIN can evenly distribute the load such as

the random uniform traffic. However, since the number of links

between each pair of groups is small (e.g. one link in d f ly (p =

2,a = 4,h = 2,д = 9)), for traffic patterns where many nodes

in one group must communicate to many nodes in another group,

the MIN routing will perform poorly since all of the traffic from

one group to another must use the small number of links between

the two groups. Such traffic patterns are considered adversarial in

Dragonfly.

To avoid congestion on global links for an adversarial traffic

pattern, Valiant Load-balanced routing (VLB) [15] can be used to

spread non-uniform traffic evenly over the set of available links. A

VLB path can be considered as using MIN to find a path from the

source to a randomly selected intermediate switch that is not in

the source and destination groups, and then, from the intermedi-

ate switch to the destination. A VLB path is non-minimal as it uses

two global links to route inter-group traffic packets. Figure 3 shows

a 6-hop VLB path in solid thick lines. With a VLB route, a packet

is first sent to an intermediate router (Ri in this example) that is

randomly selected from routers not in the source and destination

groups, and then to the destination.

Figure 3: MIN and VLB routing on Dragonfly

TheUniversal Globally Adaptive Load-balanced routing (UGAL)

selects among MIN and VLB paths for each packet based on the

traffic condition. The traffic condition is inferred from the occu-

pancy of packet queues of the network sensed at the source switch.

For each packet, UGAL first randomly selects a small number of

candidateMIN and VLB paths from all possibleMIN and VLB paths

for further consideration for routing. In the original UGAL pro-

posal and its Dragonfly adaptation, the number of MIN paths is 1

and the number of VLB paths is 1 [1, 6]. After that, among the can-

didate paths, UGAL selects one that it anticipates would achieve

the smallest packet delay.

An ideal UGAL routing, called UGAL-G (UGAL with global in-

formation) [1], assumes that the precise global network state infor-

mation is available, and estimates the smallest packet delay along

a path using the total queue length on all links along the path. Let

TQMIN be the total queue length for the MIN path, andTQV LB be

the total queue length for the VLB path. UGAL-G selects the MIN

path if

TQMIN ≤ TQV LB +T

and the VLB path otherwise. Here,T is an offset constant that can

be tuned to decide how much the path selection will be biased

toward MIN paths (a large value of T giving preference to MIN

paths). Clearly, UGAL-G is a theoretical scheme that cannot be im-

plemented under existing technological constraints. Other practi-

cal UGAL-based schemes [2, 7] use some practical methods to esti-

mate the packet delay and approximate UGAL-G. In this work, we

evaluate our topology-custom UGAL with three UGAL variations:

the theoretical UGAL-G and two practical UGAL routing schemes,

UGAL-L (UGAL with local information) [1] and progressive adap-

tive routing (PAR) [7]. UGAL-L uses the local queue length multi-

plied by the path length to estimate the total queue length along

the path. PAR behaves like UGAL-L, but allows the routing deci-

sion for a packet to be revised in the second hop within the group

when it decides to use a MIN path for the packet in the first switch.

SC ’19, November 17–22, 2019, Denver, CO, USA Md Shafayat Rahman et al.

2.3 Related Work

Many techniques have been developed to improve UGAL perfor-

mance for the Dragonfly topology. When the Dragonfly network

was first introduced, Kim et al. proposed selecting a random in-

termediate group to route non-minimally in order to load-balance

adversarial traffic patterns over global channels [1]. Jiang et al. pro-

poses several adaptive routing heuristics that approximate UGAL-

G [7]. Improvements over the original UGAL-based scheme have

been developed. Garcia et al. [8] are the first to address local con-

gestion insideDragonfly groups. They proposed using non-minimal

routing on both intra- and inter-group communication in their

OFAR routing scheme. OFAR-CM [9] proposes throttling packet

injection at local nodes as well as routing through an escape sub-

network to mitigate congestion on OFAR routing at the cost of

additional hops. Opportunistic local misrouting (OLM) [10] allows

non-minimal routing on both local and global levels of the Dragon-

fly hierarchy and the routing decision may be updated at any hop.

Traffic pattern-based adaptive routing enhances UGAL by using

local counters to infer the traffic pattern and guide routing deci-

sions in the system [13]. Improvements for load estimation with

UGAL-based routing schemes have also been developed [11, 12].

This work is different from the existing research in that we develop

systematic techniques to find subsets of all possible VLB paths to

be used in UGAL based on the Dragonfly topology, which results

in improved throughput at high load and reduced latency at low

load in comparison to the traditional UGAL as shown in our evalu-

ation. Our schemes are orthogonal to all of the existing techniques

to improve UGAL performance on Dragonfly and can be combined

with the techniques to further optimize the routing performance

on Dragonfly. Using limited length paths for load balance routing

has also been proposed in different contexts and different network

topologies [6]. However, none of the existing techniques can be

directly applied to the Dragonfly network.

3 TOPOLOGY-CUSTOM UGAL ROUTING
(T-UGAL)

Topology-custom UGAL routing (T-UGAL) is essentially the same

as UGAL except that the set of candidate VLB paths is customized

for each topology. The set of candidate VLB paths in T-UGAL,which

will be denoted as T-VLB, is a subset of all VLB paths in UGAL and

has a smaller average path length than the average path length of

all VLB paths. This allows T-UGAL to use, on average, a shorter

path to deliver each packet, which results in less network resource

usage for each packet (and thus less overall network load for a

given user traffic) and potentially improves the overall routing per-

formance. The challenge is to ensure that T-VLB has sufficient

path diversity for all traffic conditions. Note that our focus

is on performance. Thus, if T-UGAL that uses T-VLB has equal or

better performance than the conventional UGAL for a traffic condi-

tion, we consider the T-VLB to have sufficient path diversity for the

traffic condition. In the following, we will first discuss the motiva-

tion for T-UGAL, list important properties of T-UGAL, and present

the algorithm to determine the custom T-VLB for any given Drag-

onfly topology.

3.1 Motivation

Given a topology, a routing scheme that achieves good performance

should in general have two properties: (1) the routing should use a

minimal amount of network resources to deliver each packet, and

(2) the routing should be able to distribute traffic evenly over the

network. The first property is generally achieved by using shorter

paths for each packet; and the second property requires that the

routing scheme can exploit path diversity to achieve load-balance.

UGAL has these two properties by adapting between MIN and

VLB paths: when possible, UGAL delivers packets usingMIN paths,

which are short; when necessary, UGAL uses the long VLB paths

for path diversity and load balancing.

However, the method to decide candidate VLB paths in UGAL

does not adapt to the network topology. As discussed in Section 2,

for any Dragonfly topology, the VLB paths used in UGAL are ob-

tained by randomly selecting an intermediate switch; and a VLB

path consists of two MIN paths: one from the source to the inter-

mediate switch and the other one from the intermediate switch

to the destination. As shown in Figure 3, a typical MIN path has

3 hops and a typical VLB path has 6 hops. Although VLB routing

provides path diversity and thus load-balancing, there is a question

whether all the VLB paths are necessary for path diversity on all

Dragonfly topologies.

In some Dragonfly topologies such as the one in Figure 2, there

are many links between each pair of groups. In such a topology,

there existmany 3-hop, 4-hop, and 5-hopVLB paths that are shorter

than the typical 6-hop VLB paths. As will be shown later, many

practical Dragonfly networks have a large number of such shorter

paths that can provide sufficient path diversity even for the most

demanding adversarial traffic patterns. For such topologies, if one

can find the set of shorter VLB paths that can provide sufficient

path diversity, and restrict the candidate VLB paths to these shorter

paths, the performance of UGAL will be improved.

Using shorter paths with sufficient path diversity has clear ad-

vantages. To simplify the discussion, let us assume that the aver-

age length of MIN paths is 3; the average length of VLB paths is

6. Let us further assume that 70% of packets are delivered with

MIN paths. Using UGAL, each packet on average goes through

0.7 × 3 + 0.3 × 6 = 3.9 hops. If T-UGAL can reduce the average

length of VLB paths to be 4.8 hops, each packet would on average

go through 0.7×3+0.3×4.8 = 3.54 hops. Assume that the load bal-

ancing property for UGAL and T-UGAL is the same, T-UGAL will

enjoy a 3.9
3.54 − 1 ≈ 10% reduction in packet latency when the net-

work is under low load and 10% reduction of the network overall

load when the network is under high load.

Another important question is how to make sure that T-VLB

paths have sufficient path diversity (T-UGAL performs at least as

good as the conventional UGAL). For a general network, this is

a difficult question to answer. However, Dragonfly has a unique

property that themost demanding traffic patterns that requiremost

path diversity to support are known: the adversarial shift traffic

patterns [1, 13]. Since the inter-group connectivity in any Dragon-

fly is a fully connected network with the same number of (one or

more) direct links connecting each pair of groups, the number of

direct global links between one pair of groups is always small com-

pared to the total number of global links in the whole network: the

Topology-Custom UGAL Routing on Dragonfly SC ’19, November 17–22, 2019, Denver, CO, USA

ratio of 1 to д(д − 1) remains the same regardless of the number of

direct links between groups. The adversarial shift traffic patterns

incur maximum traffic from one group to another throughout the

network. Such a pattern can quickly consume the capacity on the

direct links between the two groups and force UGAL to use VLB

paths. This applies to all Dragonfly; and the adversarial shift traf-

fic patterns are adversarial also for non-maximal Dragonfly with

many links between each pair of groups. If T-UGAL can support

such patterns better than or at least as well as UGAL, it should per-

form at least as well as UGAL for any other traffic condition on the

network (having sufficient path diversity for any traffic condition).

Practical, deployable Dragonfly networks such as Cascade and

Slingshot, have a fixed group structure; and the systems can be con-

figured with different numbers of groups and different numbers of

global links between each pair of groups. Our techniques can be

applied to find T-VLB for any of such topologies and achieve im-

proved routing performance.

3.2 T-UGAL Properties

Our scheme selects paths in T-VLB based on the topology in such

a way that T-UGAL has the following properties:

(1) T-UGAL achieves higher or similar performance in compari-

son to UGAL for the most demanding adversarial traffic pat-

terns. The most demanding adversarial traffic patterns are

the ones that require most path diversity for performance.

The idea is that if T-UGAL can have higher or similar perfor-

mance for such patterns, it should be able to achieve higher

or similar performance for any other traffic patterns, which

are less demanding.

(2) The average path length of T-VLB is as small as possible.

The advantage of T-UGAL over the conventional UGAL is

using shorter paths for communications, which results in

low packet latency aswell as less average network resources

to deliver a packet that can yield higher throughput at high

load.

(3) T-UGALhas a similar load-balancing property as UGAL. The

load balancing property is essential for any routing scheme

to achieve high performance.

3.3 Computing T-VLB

3.3.1 Most Demanding Adversarial Pa�erns for Dragonfly. Themain

idea of T-UGAL is to find T-VLB with the smallest average path

length while being able to provide sufficient path diversity even for

themost demanding traffic patterns for the network. Thus, the first

problem is to find the most demanding traffic patterns for Dragon-

fly. Finding representative adversarial traffic patterns for a general

network is challenging if at all possible. Luckily, as explained in

Section 3.1, for Dragonfly themost demanding adversarial patterns

are well known [1, 13]: the shift pattern where all compute nodes

from one group communicate with all compute nodes in another

group. There are different forms of such adversarial patterns. Con-

sider d f ly (p,a,h,д). The topology consists of д group; each group

has a switches; and each routing has p compute nodes. We will use

the notation (дi , sj ,nk) to denote the k-th compute node in the j-

th switch in the i-th group, 0 ≤ i < д, 0 ≤ j < a, 0 ≤ k < p. To

ensure that different forms of adversarial traffic are considered in

the design of T-UGAL, we consider two types of shift patterns.

The first type of patterns is denoted as shi f t (∆д ,∆s) where

node (дi , sj ,nk) transmits to node (д(i+∆д) mod д , s(j+∆s) mod a ,nk).

The set of this type of patterns used in our procedure is

TYPE_1_SET = {

shi f t (1, 0), shi f t (1, 1), ..., shi f t (1,a − 1),

shi f t (2, 0), shi f t (2, 1), ..., shi f t (2,a − 1),

... ,

shi f t (д − 1, 0), shi f t (д − 1, 1), ..., shi f t (д − 1,a − 1)

}

TheTYPE_1_SET contains the traffic patternswhere each group

shifts to any other group. Additionally, nodes from each switch

also shift to every other switches. This set contains (д − 1)a pat-

terns.

The second type of patterns can be specified by first having a

random permutation at the group level, and then having a random

permutation at the switch level for each source and destination

group pair in the group permutation. Consider a Dragonfly with

3 groups and each group having 4 switches. An example group-

level random permutation can be 0 → 2 → 1 → 0. After the

group-level permutation is generated, switch-level permutations

are generated for each of the group-level communications. For ex-

ample, for group-level communication 0 → 2, an example switch-

level permutation can be 0 → 0 and 1 → 2 → 3 → 1. In this

case, the communication pattern from nodes in group 0 to group 2

includes the following traffic: nodes (д0, s0,nk) send to (д2, s0,nk),

0 ≤ k < p; nodes (д0, s1,nk) send to (д2, s2,nk); nodes (д0, s2,nk)

send to (д2, s3,nk); nodes (д0, s3,nk) send to (д2, s1,nk). We in-

clude 20 of such random patterns in TYPE_2_SET .

Patterns in TYPE_1_SET and TYPE_2_SET are representative

for different adversarial traffic patterns on Dragonfly. To support

these patterns effectively, maximum path diversity is necessary.

On the other hand, since any other pattern will be more “uniform”

in comparison to these adversarial patterns, if a routing scheme is

able to support these patterns effectively, the path diversity sup-

ported by the routing scheme should also be able to support any

other pattern effectively (or at least as effectively as UGAL).

3.3.2 Deciding T-VLB: Step 1 - Coarse-Grain Estimation of T-VLB.

Now that we know the most demanding traffic patterns, the next

step is to find the subset VLB paths for all pairs of source-destination

switches. Our scheme uses a two-step approach to obtain T-VLB.

The first step, which performs coarse-grain estimation, uses a per-

formance model to evaluate many potential data points (different

subsets of VLBs) and find a small number of candidate configura-

tions. In the second step, after some fine-tuning is performed, the

final T-VLB is decided through simulation (if there is a working

system, T-VLB for the system can be decided by experimentation).

The performance model that we use is a minor modification of

theModel No. 3 in [16]. The model is based on linear programming

and has been shown to quite accurately model the UGAL through-

put for adversarial traffic patterns [16]. Additionally, the model is

efficient and can obtain the modeling results for adversarial traf-

fic patterns even for very large Dragonfly networks with tens of

thousands of end points. When adopting the model for this work,

we found that although the model is accurate for UGAL with all

SC ’19, November 17–22, 2019, Denver, CO, USA Md Shafayat Rahman et al.

VLB paths, the accuracy drops when a small percentage of 5-hop

or 6-hop paths are used. To overcome this problem, we modified

the model by adding constraints in the linear programming for-

mulation to enforce that the data rate allocated for a longer VLB

path for a source-destination pair is no more than the data rate

allocated for a shorter VLB path for the same source-destination

pair. This is because UGAL has an inherent tendency to prefer

shorter paths over longer ones when such paths are available, and

thus a model allocating higher data rate to some specific longer

paths even while enough shorter paths are available will overesti-

mate the final throughput.We validate this enhancedmodel, which

consistently produces accurate results for different compositions

of VLB paths, and use it in our coarse-grain estimation. We note

that the specific performance model is not a requirement for our

scheme, any mechanism that allows the probing of a large number

of configurations can replace the model.

Table 1 lists the data points (or configurations) that are probed

in Step 1. For any d f ly (p,a,h,д), the number of hops for VLB

paths is between 2 and 6. Each data point is applied to all source-

destination switches in a synchronized manner. For example, the

point “4-hop paths”means that all pairs of switcheswill use all VLB

paths that are 4 hops or less in length. Similarly, the configuration

“20% 5-hop paths” means that all pairs of switches will use all of

their VLB paths that are 4 hops long or less in addition to the 20%

randomly selected 5-hop paths. In this step, the paths are randomly

selected if not fully specified. For each data point, the modeled per-

formance for the patterns inTYPE_1_SET andTYPE_2_SET is ob-

tained and the average performance is used to identify the best

performing data point. For example, Figure 4 shows the average

modeled throughput for d f ly (4, 8, 4, 9). As can be seen in the fig-

ure, the best performing data point in this case is “60% 5-hop”.

Notation explanation

3-hop paths all paths 3-hop or less

10% 4-hop paths all paths 3-hop or less plus 10% 4-hop paths

20% 4-hop paths all paths 3-hop or less plus 20% 4-hop paths

... ...

90% 4-hop paths all paths 3-hop or less plus 90% 4-hop paths

4-hop paths all paths 4-hop or less

10% 5-hop paths all paths 4-hop or less plus 10% 5-hop paths

... ...

90% 5-hop paths all paths 4-hop or less plus 90% 5-hop paths

5-hop paths all paths 5-hop or less

10% 6-hop paths all paths 5-hop or less plus 10% 6-hop paths

... ...

90% 6-hop paths all paths 6-hop or less plus 90% 6-hop paths

6-hop paths all VLB paths

Table 1: The data points probed in coarse-grain Step 1

Once the best performance point is identified, we consider a

small number of data points in the vicinity of the best performance

point and form a set of candidate data points that are considered

in Step 2. For d f ly (4, 8, 4, 9), as shown in Figure 4, 40% 5-hop, 50%

5-hop, and 70% 5-hop all have similar performance as 60% 5-hop

based on the model. We pass all four as candidate data points to be

considered in Step 2.

We note that since the performance model is efficient, one may

repeat this step multiple times to deal with the problem potentially

caused by the randomization (e.g. a bad random seed). However, in

all of our experiments, randomization has never caused a problem.

3.3.3 Deciding T-VLB: Step 2 – Finalizing T-VLB. After we obtain

the candidate configurations from Step 1, we first examine the can-

didate sets to possibly expand the set by including some determin-

istic strategic choices. These deterministic choices are easier to

obtain and reason. Our experiments show that such sets of paths

sometimes have special characteristics that help the performance

in routing schemes. For example, for d f ly (4, 8, 4, 9), Step 1 results

in four candidate choices: 40% 5-hop, 50% 5-hop, 60% 5-hop, and

70% 5-hop. Since there are two ways to obtain a 5-hop VLB path:

(1) a 2-hop MIN path (from the source to the intermediate node)

followed by a 3-hop MIN path (from the intermediate node to the

destination) and (2) a 3-hop MIN path followed by a 2-hop MIN

path. Thus, 50% 5-hop paths can strategically be obtained either by

having all 2-hopMIN paths followed by 3-hopMIN paths or by hav-

ing all 3-hop MIN paths followed by 2-hop MIN paths. We include

these two strategic choices in the candidate set. Hence, in Step 2,

we will consider six candidate configurations for d f ly (4, 8, 4, 9):

the four from Step 1 and the 2 strategic path choices for 50% 5-hop.

Note that the paths in T-VLB may not be obtained by specifying

an intermediate switch only, since T-VLB may have restrictions on

the hop count of the MIN paths which need to be considered while

determining a path to reach the intermediate switch.

For each of the candidate configurations, our scheme checks

the load balancing properties of the set of VLB paths, performs

load balancing adjustments, and then evaluates the adjusted candi-

dates through simulation. For the traditional UGAL routing, since

all intermediate routers can be selected for VLB paths, the VLB

paths use the links in the network in a balanced manner due to the

symmetricity of the Dragonfly topology. T-VLB uses a subset of

VLB paths and can potentially result in an imbalanced use of links.

The imbalance may happen in two levels: locally for each pair of

switches when some links are significantly more likely to be used

to carry the traffic of this pair of switches than other links, and

globally for all pairs of switches when some links are significantly

more likely to be used to carry traffic than others.

In our scheme, we detect local imbalance by computing the prob-

ability of link usage for each pair of switches under the assumption

that all VLB paths for the pair of switches are equally likely to be

used and then checking if some link usage probability is signifi-

cantly higher than others. We detect the global imbalance by com-

puting the probability of link usage of all links under the assump-

tion that a packet between any pair of switches is equally likely.

When such imbalances are detected, we perform simple load bal-

ance adjustments by removing paths that cause high link usage

probability either at the local level (per pair of switches) or at the

global level (all pairs of switches). In theory, imbalance can also be

removed by replacing paths that use highly loaded links by paths

that do not use highly loaded links. But the simple mechanism of

just removing paths work sufficiently well in our experiments, so

we do not explore other mechanisms.We note that UGAL can itself

Topology-Custom UGAL Routing on Dragonfly SC ’19, November 17–22, 2019, Denver, CO, USA

tolerate some imbalanced use of paths and still achieve high per-

formance in the presence of some level of imbalanced link usage,

which has been shown in other studies [17].

After the load balancing adjustments, we simulate all candidate

sets using adversarial patterns and select the highest performing

candidate as the final T-VLB. In our experiments, we simulate 5

patterns fromTYPE_2_SET and use the average throughput of the

5 patterns as the final performance metric.

3.3.4 Put It All Together. Algorithm 1 shows the whole procedure

to determine the T-VLB. The procedure takes a dragonfly topol-

ogyd f lд(p,a,h,д) as input and outputs T-VLB. The procedure first

computes the adversarial patternsTYPE_1_SET andTYPE_2_SET

(Line 3). Lines 4 to 7 sort the VLB paths based on the path length

and randomize the order of VLB paths of the same length. Lines 8

to 12 is the Step 1 coarse-grain estimation of the number of VLB

paths needed as described in Section 3.3.2. Lines 13 to 21 is the

Step 2 finalizing T-VLB described in Section 3.3.3. Finally, Line 22

outputs the results.

1 Input: A Dragonfly topology, d f ly (p,a,h,д)

2 Output: The sets of T-VLB paths for all pairs of switches

3 Generate TYPE_1_SET and TYPE_2_SET for the topology

4 for each pair of switches do

5 Compute all VLB paths and randomize the order

6 Sort all VLB paths based on the path length

7 end

8 /* Step 1: coarse-grain */

9 Compute the modeled throughput for all patterns and all VLB

subsets described in Table 1

10 Find the point with the largest average modeled throughput

11 Decide candidate set in the vicinity of the largest average

throughput

12 /* end of Step 1 and begin of Step 2 */

13 Expand the candidate set if necessary

14 for each candidate configuration do

15 Compute per pair link usage probability

16 Do local load balance adjustment if necessary

17 Compute all-to-all link usage probability

18 Do global load balance adjustment if necessary

19 Simulate a set of traffic patterns and record the results

20 end

21 The data point with the highest average simulated

throughput is selected

22 Output the associated VLB paths, which is T-VLB

Algorithm 1: Algorithm to determine T-VLB for any

d f ly (p,a,h,д)

4 PERFORMANCE STUDY

Extensive simulation studies have been carried out to study T-UGAL

and compare its variations with the corresponding conventional

UGAL variations. The experiments were designed to investigate

the characteristics of T-UGAL as well as its routing performance

on different topologies. In the following, we first describe our ex-

perimental methodology and simulation settings and then report

the performance results.

4.1 Methodology

4.1.1 Topology. We present results for topologies d f ly (p = 4,a =

8,h = 4,д = 33), d f ly (p = 4,a = 8,h = 4,д = 17), and d f ly (p =

4,a = 8,h = 4,д = 9). These topologies are built with 15-port

switches and represent a range of Dragonfly topologies with dif-

ferent connectivity characteristics: these topologies have the same

intra-group connectivity, but different numbers of groups as well

as different numbers of links connecting each pair of groups. We

also report results on d f ly (p = 13,a = 26,h = 13,д = 27), a

larger topology, to demonstrate that T-UGAL also works for larger

topologies. Table 2 lists the major parameters of topologies.

Topology No. of No. of No. of links per

PEs switches groups group pair

d f ly (4, 8, 4, 33) 1056 264 33 1

d f ly (4, 8, 4, 17) 544 135 17 2

d f ly (4, 8, 4, 9) 288 72 9 4

d f ly (13, 26, 13, 27) 9126 702 27 13

Table 2: Topologies used in the experiments

4.1.2 Routing Variations and Simulator Se�ings. We use Booksim

2.0, a cycle-accurate interconnection network simulator [18], in

our experiments. TheDragonfly topology code that Booksim comes

with always creates a network where g = a * h + 1. We extend the

code to accommodate different network sizes and implement the

absolute arrangement of global links [14]. Booksim provides a ba-

sic implementation of UGAL-L. To study the performance of other

UGAL variations, we added PAR and UGAL-G and incorporated T-

UGAL with the three variations: UGAL-L, UGAL-G and PAR. We

will use the notations T-UGAL-L, T-PAR, and T-UGAL-G to denote

the three variations of T-UGAL. UGAL-L, PAR, UGAL-G are briefly

described in Section 2.2. We note that UGAL-L and PAR are prac-

tical and can be deployed while UGAL-G is an ideal-case scheme.

UGAL routing selects from one candidate MIN path and one

candidate VLB path. The adaptive routing threshold (the value T

described in Section 2.2) is set to zero, so the routing schemes do

not bias towards MIN or VLB paths.

Booksim supports the traditional four-stage pipeline router mi-

croarchitecture. Input-queued routers can suffer from head-of-line

blocking which may degrade the overall performance of the sys-

tem. For the studies like ours where the focus is on the perfor-

mance of the routing algorithms instead of the router microarchi-

tecture, Booksim provides a feature to increase the speed of the

router’s internal pipeline. With a speedup of 2, the router pipeline

runs at twice the speed of the network channels. For our simula-

tions, we set the default speedup to 2 as in [11].

We use virtual-channels (VCs) to ensure deadlock-freedom in

the network. As demonstrated by Won et el. [11], UGAL in Drag-

onfly requires 4 virtual channels to ensure no deadlock can occur.

We follow their VC-allocation scheme and use 4 VCs per channel

for UGAL-L and UGAL-G. For PAR, a flit can take one extra hop at

the source group while switching from a minimal to non-minimal

route. So we allocate 5 VCs for PAR to accommodate the extra hop.

SC ’19, November 17–22, 2019, Denver, CO, USA Md Shafayat Rahman et al.

In the seminal Dragonfly paper [1], Kim et al. set both the lo-

cal latency and global latency in their simulations to 1 cycle. More

recently, a number of researchers [7, 8, 10, 11] used 10 cycles as lo-

cal channel latency and 100 cycles as global channel latency. In this

work, we set the latency of local and global channel to 10 and 15 cy-

cles, respectively. The reasoning behind these numbers is to mimic

the Cascade [2] system architecture, where the ratio of global and

local link latency is roughly 1.5 to 1.

Booksim uses credit-based flow control for buffer management

among adjacent routers. Credits are sent back to the opposite di-

rection when a packet reaches its destination. In order to accom-

modate this round-trip delay, we set each virtual channel buffer

size to 32. This is in accordance with [11] and [8].

We use single-flit packets to avoid any potential flow-control

issue, which is not the focus of our study. The default network

parameters in the simulation are summarized in Table 3. Besides

the default parameters, we also study the sensitivity of the rout-

ing performance to various network parameters including link la-

tency, buffer length, virtual channel allocation scheme, and switch

speedup.

Parameter value

of virtual channels 4 for UGAL-L and UGAL-G

5 for PAR

buffer size 32

link latency 10 cycles (local)

15 cycles (global)

switch speed-up 2

Table 3: Default network parameters in the simulations

The simulation results are collected over a window of 10000 cy-

cles, and the simulator is warmed-up for 3 samplewindows of same

size each before result collection starts. Booksim considers a net-

work as saturated when the average latency for the sample period

crosses over 500 cycles. We note the last injection rate before satu-

ration happens, and report it as the network throughput. In Book-

sim, injection rate (offered load) is specified as packets per cycle

(per node). So an injection rate (offered load) of 0.1 means a node

can generate 1 packet on average in 10 cycles. Throughput is also

measured in unit of packets per cycle per node. For each synthetic

traffic pattern, we simulate with a sufficient number of injection

rates to infer the latency curve.

4.1.3 Traffic Pa�erns. Five different types of traffic patterns are

used in the evaluation: uniform random traffic, adversarial shift

traffic, random permutation traffic, a mix of uniform random and

adversarial traffic in the space domain, and a mix of uniform ran-

dom and adversarial traffic in the time domain. With uniform ran-

dom traffic (UR), the probability of sending a packet to each desti-

nation is equal. For adversarial traffic (ADV), all nodes connecting

to a router i in a group send to all nodes connecting to router i in

another group to stress the global links connecting the two groups:

the shi f t (k, 0) pattern described in Section 3.3.1. In a random per-

mutation pattern, the compute nodes perform a randomly gener-

ated permutation pattern: each node sending to and receiving from

at most one destination in the pattern. The space-based mixed traf-

fic is generated by combining UR and ADV traffic patterns.Wewill

use the notation MIXED(UR%, ADV%) to represent the combined

traffic patterns, where UR% of nodes generate UR traffic andADV%

of nodes generate ADV traffic. For example, in MIXED(25,75), 25%

of processing nodes are randomly selected to perform uniform traf-

fic while the rest 75% perform adversarial shift traffic. The last type

of traffic is the time-based mixed traffic pattern.Wewill use the no-

tation TMIXED(UR%, ADV%) to represent such a traffic pattern. In

TMIXED(UR%, ADV%), each packet from every node has an UR%

probability to have a uniform random destination and an ADV%

probability to have an adversarial destination.

4.2 T-VLB for Different Topologies

Figure 4 shows the average modeled throughput for d f ly (4, 8, 4, 9)

with different configurations probed in the Step 1 estimation for

this topology. The error bar in the figure is the standard error of

the mean. As can be seen from the figure, that best throughput of

0.58 for this topology is achieved at 60% 5-hop: all VLB paths that

are 4-hop or less and 60% of 5-hop VLB paths. The throughput

of 0.58 means that each node can communicate at 58% of its link

speed when the network saturates. This throughput is higher than

the throughput of 0.56 with the conventional UGAL when all VLB

paths are used. With 4 global links between each pair of groups,

sufficient path diversity is provided by short VLB paths; and not

all VLB paths are needed to achieve the best performance for the

most demanding adversarial traffic patterns. Four candidate config-

urations are considered in Step 2: 40% 5-hop, 50% 5-hop, 60% 5-hop

and 70% 5-hop, all having very similar average modeled through-

put. The final T-VLB’s for T-UGAL-L, T-PAR, and T-UGAL-G are

the strategic choice with all 2-hop MIN paths followed by all 3-hop

MIN paths with load-balance adjustment (removing some paths).

Same results are obtained for d f ly (4, 8, 4, 17).

number of paths
0.35

0.40

0.45

0.50

0.55

0.60

m
o
d
e
l
th
ro
u
g
h
p
u
t

all max 4­hop, and x% of 5­hop

paths, x increased by 10% intervals

all max 5­hop, and x% of 6­hop

paths, x increased by 10% intervals

all 4­hop paths

all 4­hop, and 60% of 5­hop paths

all 5­hop paths

all paths

Figure 4: Average modeled throughput in Step 1 calculation

for d f ly (4, 8, 4, 9)

Figure 5 shows the averagemodeled throughput ford f ly (4, 8, 4, 33)

with different configurations that are probed in the Step 1 estima-

tion. As can be seen from the figure, the best performance for this

topology is achieved when all VLB paths are used. Simulation re-

sults confirm that using any subset of VLB paths for this topology

degrades the performance for the adversarial traffic patterns: T-

UGAL converges with UGAL for this topology. In this topology,

Topology-Custom UGAL Routing on Dragonfly SC ’19, November 17–22, 2019, Denver, CO, USA

there is only one link between each pair of groups. As such, all

VLB paths are necessary to achieve high performance for the ad-

versarial patterns. Note that maximum-sized Dragonfly topologies

like d f ly (4, 8, 4, 33) with 1 link per pair of groups have been used

in the design and evaluation of UGAL for dragonfly [1, 7].

number of paths

0.25

0.30

0.35

0.40

0.45

0.50

m
o
d
e
l
th

ro
u
g
h
p
u
t

all max 4-hop, and x% of 5-hop
paths, x increased by 10% intervals
all max 5-hop, and x% of 6-hop
paths, x increased by 10% intervals

all 4-hop paths

all 5-hop paths

all paths

Figure 5: Average modeled throughput in Step 1 calculation

for d f ly (4, 8, 4, 33)

4.3 Simulation Results

Figure 6 shows the latency as the offered load increases for UGAL-

L, T-UGAL-L, PAR, and T-PAR ond f ly (4, 8, 4, 9) with the adversar-

ial traffic (shift(2, 0) pattern). The x-axis is the offered load in the

unit of packets per cycle per node while the y-axis is the latency

in the unit of cycles. As can be seen from the figure, T-UGAL-L im-

proves over UGAL-L in latency when the network is not saturated

and has a much higher saturation throughput. Specifically, when

the offered load is 0.1, the average packet latency is 52.1 cycles

for T-UGAL-L, 9.2% lower than the 56.9 cycles latency for UGAL-

L. For this pattern, the saturation throughput of T-UGAL-L is 0.29,

26.1% higher than the 0.23 saturation throughput of UGAL-L. The

results for PAR are similar.When the offered load is 0.2, the average

packet latency for T-PAR is 59.9 cycles, 12.9% lower than the 67.6

cycles average packet latency for PAR. The saturation throughput

of T-PAR is 0.38, 31.0% higher than the 0.29 saturation through-

put of PAR. Figure 7 shows results for UGAL-G. T-UGAL-G im-

proves the latencywhen the network is not saturated: at 0.1 offered

load, the average latency for T-UGAL-G is 54.2, 12.9% lower than

the 61.2 average latency for UGAL-G. The saturation throughput

for T-UGAL-G is 0.3, 30% higher than the 0.23 saturation through-

put for UGAL-G. For all UGAL-L, UGAL-G, and PAR, using our

topology-custom scheme, significant improvements have been ob-

served for the adversarial traffic pattern. We note that UGAL-G

performs worse than PAR for this pattern: this is due to the fact

that UGAL-G makes the decision at the source node. Due to the

(large) link latency, as the packet moves through the network, the

network information used by UGAL-G to make the routing deci-

sion becomes inaccurate. On the other hand, PAR can update the

routing decision in the next hop, which results in higher perfor-

mance.

0.2 0.4 0.6

offered load

0

50

100

150

la
te

n
c
y
 (

c
y
c
le

s
)

UGAL_L

T_UGAL_L

PAR

T_PAR

Figure 6: Latency for the adversarial shift(2, 0) pattern for

UGAL-L and PAR on d f ly (4, 8, 4, 9)

0.1 0.2 0.3 0.4 0.5

offered load

0

50

100

150

la
te

n
c
y
 (

c
y
c
le

s
)

UGAL_G

T_UGAL_G

Figure 7: Latency for the adversarial shift(2, 0) pattern for

UGAL-G on d f ly (4, 8, 4, 9)

Figure 8 shows the latency as the offered load increases for UGAL-

L, T-UGAL-L, PAR, and T-PAR on d f ly (4, 8, 4, 9) for a random per-

mutation pattern. The results for permutation are somewhat sim-

ilar to those for the adversarial traffic with less improvement. T-

UGAL-L improves over UGAL-L in latency when the network is

not saturated and has a higher saturation throughput. For exam-

ple, when the offered load is 0.3, the average packet latency for

T-UGAL-L is 43.7, 2.1% lower than the 44.6 cycles with UGAL-L.

The saturation throughput of T-UGAL-L is 0.68, 7.9% higher than

the 0.63 saturation throughput of UGAL-L. The reason that less

improvement is observed in this experiment in comparison to the

results for adversarial traffic is that a smaller percentage of pack-

ets are routed using VLB paths in the permutation pattern. Fig-

ure 9 shows results for UGAL-G. In this case, T-UGAL-G has sim-

ilar average packet latency when the network is under low load.

However, the saturation throughput for T-UGAL-G, 0.66, is 11.9%

higher that the 0.59 saturation throughput for UGAL-G. This is due

to the use of shorter paths that reduces the overall network load

and improves the saturation throughput. Even with the precise in-

formation, UGAL-G is forced to use longer paths since it randomly

selects one VLB path for consideration for each packet.

Figure 10 and Figure 11 show the results for MIXED(75, 25) and

MIXED(25, 75) on d f ly (4, 8, 4, 17), respectively. T-UGAL only op-

timizes VLB paths. As such, its advantage can only be observed

when more traffic are routed using VLB paths. This trend can be

SC ’19, November 17–22, 2019, Denver, CO, USA Md Shafayat Rahman et al.

0.25 0.50 0.75 1.00

offered load

0

100

200

300

400
la

te
n
c
y
 (

c
y
c
le

s
)

UGAL_L

T_UGAL_L

PAR

T_PAR

Figure 8: Latency for a random permutation pattern for

UGAL-L and PAR on d f ly (4, 8, 4, 9)

0.25 0.50 0.75 1.00

offered load

0

100

200

300

400

la
te

n
c
y
 (

c
y
c
le

s
)

UGAL_G

T_UGAL_G

Figure 9: Latency for a random permutation pattern for

UGAL-G on d f ly (4, 8, 4, 9)

observed in the two figures: as the traffic becomes more adver-

sarial (MIXED(25,75)), the saturation throughput decreases for all

schemes, but the advantage of T-UGAL-L and T-PAR becomes larger.

For example, for MIXED(75, 25), the saturation throughput for T-

PAR is 0.46, 15% higher than the saturation throughput 0.40 for

PAR; for MIXED(25, 75), the saturation throughput for T-PAR is

0.30, 20% higher than the saturation throughput 0.25 for PAR. The

advantage of T-UGAL over UGAL is also observed for time-based

mixed traffic as shown in Figure 12.

Figure 13 shows the latency as the offered load increases for

UGAL-L, T-UGAL-L, PAR, T-PAR, UGAL-G, and T-UGAL-G, on

a larger Dragonfly topology d f ly (13, 26, 13, 27) for an adversar-

ial traffic pattern (shift(1, 0) pattern). While the specific numbers

differ, the trend is very similar to that for the smaller topologies

d f ly (4, 8, 4, 9) and d f ly (4, 8, 4, 17). T-UGAL-L has significant im-

provement over UGAL-L while T-PAR have significant improve-

ment over PAR, at both low and high loads. Figure 14 shows the

results for a mixed traffic (MIXED(50, 50)). Again, T-UGAL varia-

tions have clear advantage over their corresponding UGAL varia-

tions. The results for other traffic patterns on d f ly (13, 26, 13, 27)

have a similar trend as the results on smaller d f ly (4, 8, 4, 9) and

d f ly (4, 8, 4, 17): T-UGAL offers advantages over the correspond-

ing UGAL for Dragonfly topologies of different sizes and shapes.

0.2 0.4 0.6

offered load

0

200

400

la
te

n
c
y
 (

c
y
c
le

s
)

UGAL_L

T_UGAL_L

PAR

T_PAR

Figure 10: Mixed traffic: MIXED(75, 25) with UGAL-L and

PAR on d f ly (4, 8, 4, 17)

0.1 0.2 0.3 0.4

offered load

0

200

400

la
te

n
c
y
 (

c
y
c
le

s
)

UGAL_L

T_UGAL_L

PAR

T_PAR

Figure 11: Mixed traffic: MIXED(25, 75) with UGAL-L and

PAR on d f ly (4, 8, 4, 17)

0.2 0.4 0.6

offered load

0

200

400

la
te

n
c
y
 (

c
y
c
le

s
)

UGAL_L

T_UGAL_L

PAR

T_PAR

Figure 12: Time-based mixed traffic: TMIXED(50, 50) with

UGAL-L and PAR on d f ly (4, 8, 4, 17)

Figures 15, 16, 17, and 18 show the sensitivity of UGAL and

T-UGAL to different network parameters. For these experiments,

we alter one network parameter and keep the remaining parame-

ters as the default (Table 3). Figure 15 shows the sensitivity to the

link latency. The legend format for this figure is routinд(local_link

_latency,дlobal_link_latency). For example, UGAL_G(40, 60) de-

notes UGAL_G with local link latency of 40 cycles and global link

latency of 60 cycles. Figure 16 shows the sensitivity to the buffer

length. The legend format for this figure is routinд(bu f f er_lenдth).

Topology-Custom UGAL Routing on Dragonfly SC ’19, November 17–22, 2019, Denver, CO, USA

0.1 0.2 0.3 0.4

offered load

0

50

100

150

la
te

n
c
y
 (

c
y
c
le

s
)

UGAL_L

T_UGAL_L

PAR

T_PAR

UGAL_G

T_UGAL_G

Figure 13: Adversarial traffic (shift(1, 0) pattern) for UGAL-L,

PAR, and UGAL-G on d f ly (13, 26, 13, 27)

0.2 0.4

offered load

0

50

100

150

la
te

n
c
y
 (

c
y
c
le

s
)

UGAL_L

T_UGAL_L

PAR

T_PAR

UGAL_G

T_UGAL_G

Figure 14: Mixed traffic: MIXED(50, 50) for UGAL-L, PAR,

and UGAL-G on d f ly (13, 26, 13, 27)

For example, UGAL_L(8) denotes UGAL_L with buffer size of 8

flits. Figure 17 shows the sensitivity to the switch speedup. The

legend format for this figure is routinд(speedup). PAR(1) denotes

PARwith switch speedup of 1. Finally, Figure 18 shows the sensitiv-

ity to the virtual channel allocation scheme. The legend format for

this figure is routinд(4) or routinд(6). routinд(4) denotes the net-

work with the virtual channel allocation scheme in [11] to avoid

deadlock where UGAL_G takes 4 virtual channels. routinд(6) de-

notes the network with a simple deadlock avoidance virtual chan-

nel scheme where each packet is sent on a new virtual channel ev-

ery hop. As can be seen from the figures, all of these parameters can

have significant impacts on packet latency and saturation through-

put. For example, T_UGAL(4) performs worse than T_UGAL(6) in

Figure 18 due to the smaller total number of buffers per link and

head-of-line blocking. However, a common observation on all of

these experiments is that a T-UGAL variation consistently and sub-

stantially out-performs its UGAL counterpart. This has been ob-

served in all of the experiments that we have performed with dif-

ferent topologies and network parameters, which highlights the

performance advantage of our proposed T-UGAL.

In summary, for all three variations of UGAL: UGAL-L, PAR,

and UGAL-G, T-UGAL has a clear advantage when the adversar-

ial traffic components are present in the network. By using a sub-

set of shorter VLB paths, computed based on the network topol-

ogy, T-UGAL reduces the packet latency when the network is not

0.5 1.0 1.5

offered load

0

100

200

300

la
te

n
c
y
 (

c
y
c
le

s
)

UGAL_G (1,1)

T_UGAL_G (1,1)

UGAL_G (10,15)

T_UGAL_G (10,15)

UGAL_G (40,60)

T_UGAL_G (40,60)

Figure 15: Effect of varying link latency on UGAL-G on

d f ly (4, 8, 4, 17) for random permutation pattern

0.2 0.4 0.6 0.8

offered load

0

100

200

300

la
te

n
c
y
 (

c
y
c
le

s
)

UGAL_L (8)

T_UGAL_L (8)

UGAL_L (16)

T_UGAL_L (16)

UGAL_L (32)

T_UGAL_L (32)

UGAL_L (64)

T_UGAL_L (64)

Figure 16: Effect of varying buffer length on UGAL-L on

d f ly (4, 8, 4, 17) for MIXED(50,50) pattern

0.1 0.2 0.3 0.4 0.5

offered load

0

100

200

300

400

500

la
te

n
c
y
 (

c
y
c
le

s
)

PAR (1)

T_PAR (1)

PAR (2)

T_PAR (2)

PAR (4)

T_PAR (4)

Figure 17: Effect of varying router internal speedup on PAR

on d f ly (4, 8, 4, 17) for MIXED(25,75) pattern

saturated while improving the saturation throughput. Moreover,

T-UGAL has more advantage with practical UGAL schemes such

as UGAL-L and PAR than with the idealistic UGAL-G since using

shorter VLB paths also helps in the estimations of path latency

(such estimation is used to make routing decisions). As shown in

the experiments, depending on the traffic condition, the improve-

ment can be very significant.

SC ’19, November 17–22, 2019, Denver, CO, USA Md Shafayat Rahman et al.

0.2 0.4 0.6

offered load

0

100

200

300
la

te
n
c
y
 (

c
y
c
le

s
)

UGAL_G (6)

T_UGAL_G (6)

UGAL_G (4)

T_UGAL_G (4)

Figure 18: Effect of different virtual channel allocation

schemes on UGAL-G on d f ly (4, 8, 4, 9) for the adversarial

shift(1,0) pattern

5 CONCLUSION

Wepropose topology-customUGAL routing (T-UGAL) for Dragon-

fly topologies. We show that by using a subset of VLB paths with

shorter average path length (than the average path length of all

VLB paths), T-UGAL improves over the conventional UGAL rout-

ing very significantly onmany topologies, especially the ones with

a small number of groups and a large number of links between each

pair of groups which is common in many practical systems. We de-

velop a general scheme that can be applied to any Dragonfly topol-

ogy to obtain T-UGAL. Our scheme is orthogonal to other tech-

niques for improving UGAL performance and can be used alone or

combined with other UGAL-enhancement techniques. All the anal-

ysis and selection of candidate VLB paths happen during network

designing, and the set of eligible paths does not need to change un-

less the network topology is altered; so it does not add any extra

computational burden over existing routers.

ACKNOWLEDGMENTS

This work is supported in part by Los Alamos National Labora-

tory under subcontract 497357. The material is also based upon

work supported by the National Science Foundation under Grants

CICI-1738912 and CRI-1822737. Any opinions, findings, and con-

clusions or recommendations expressed in this material are those

of the author(s) and do not necessarily reflect the views of the Na-

tional Science Foundation. This work used the Extreme Science

and Engineering Discovery Environment (XSEDE), which is sup-

ported by National Science Foundation grant number ACI-1548562.

This work used the XSEDE Bridges resource at the Pittsburgh Su-

percomputing Center (PSC) through allocation TG-ECS190004.

REFERENCES
[1] John Kim, Wiliam J. Dally, Steve Scott, and Dennis Abts. Technology-driven,

highly-scalable dragonfly topology. In Proceedings of the 35th Annual Interna-
tional Symposium on Computer Architecture, ISCA ’08, pages 77–88, Washington,
DC, USA, 2008. IEEE Computer Society.

[2] Greg Faanes, Abdulla Bataineh, Duncan Roweth, Tom Court, Edwin Froese, Bob
Alverson, Tim Johnson, Joe Kopnick, Mike Higgins, and James Reinhard. Cray
cascade: A scalable hpc system based on a dragonfly network. In Proceedings of
the International Conference on High Performance Computing, Networking, Stor-
age and Analysis, SC ’12, pages 103:1–103:9, Los Alamitos, CA, USA, 2012. IEEE
Computer Society Press.

[3] Oak Ridge National Laboratory. Introducing Titan—the world’s #1 open science
supercomputer. https://www.olcf.ornl.gov/titan/, 2012.

[4] Billy J. Archer and Manuel Vigil. The Trinity system. In Nuclear Explosive
Code Development Conference (NECDC), Los Alamos, New Mexico, October 20–
24, 2014. Also appears as Los Alamos Technical Report LA-UR-15-20221.

[5] Cray Inc. Slingshot: the interconnect for exascale computing. White paper,
Feburary 2019. available at https://www.cray.com/sites/default/files/Slingshot-
The-Interconnect-for-the-Exascale-Era.pdf.

[6] Arjun Singh. Load-Balanced Routing In Interconnection Networks. PhD thesis,
Stanford University, 2005.

[7] Nan Jiang, John Kim, and William J. Dally. Indirect adaptive routing on large
scale interconnection networks. In Proceedings of the 36th Annual International
Symposium on Computer Architecture, ISCA ’09, pages 220–231, New York, NY,
USA, 2009. ACM.

[8] M. Garcia, E. Vallejo, R. Beivide, M. Odriozola, C. Camarero, M. Valero, G. Ro-
dríguez, J. Labarta, and C. Minkenberg. On-the-fly adaptive routing in high-
radix hierarchical networks. In Parallel Processing (ICPP), 2012 41st International
Conference on, pages 279–288, Sept 2012.

[9] M. Garcia, E. Vallejo, R. Beivide, M. Valero, and G. Rodríguez. OFAR-CM:
Efficient Dragonfly networks with simple congestion management. In High-
Performance Interconnects (HOTI), 2013 IEEE 21st Annual Symposium on, pages
55–62, Aug 2013.

[10] M. Garcia, E. Vallejo, R. Beivide, M. Odriozola, and M. Valero. Efficient routing
mechanisms for Dragonfly networks. In Parallel Processing (ICPP), 2013 42nd
International Conference on, pages 582–592, Oct 2013.

[11] J. Won, G. Kim, J. Kim, T. Jiang, M. Parker, and S. Scott. Overcoming far-end
congestion in large-scale networks. In High Performance Computer Architecture
(HPCA), 2015 IEEE 21st International Symposium on, pages 415–427, Feb 2015.

[12] P. Fuentes, E. Vallejo, M. Garcia, R. Beivide, G. Rodríguez, C. Minkenberg, and
M. Valero. Contention-based nonminimal adaptive routing in high-radix net-
works. In Parallel and Distributed Processing Symposium (IPDPS), 2015 IEEE In-
ternational, pages 103–112, May 2015.

[13] Peyman Faizian, Juan Francisco Alfaro, Md Shafayat Rahman, Md Atiqul Mol-
lah, Xin Yuan, Scott Pakin, and Michael Lang. TPR: traffic pattern-based adap-
tive routing for dragonfly networks. IEEE Trans. Multi-Scale Computing Systems,
4(4):931–943, 2018.

[14] E. Hastings, D. Rincon-Cruz, M. Spehlmann, S. Meyers, A. Xu, D. P. Bunde, and
V. J. Leung. Comparing global link arrangements for dragonfly networks. In 2015
IEEE International Conference on Cluster Computing, pages 361–370, Sep. 2015.

[15] L. G. Valiant. A scheme for fast parallel communication. SIAM Journal on Com-
puting, 11(2):350–361, 1982.

[16] Md Atiqul Mollah, Peyman Faizian, Md Shafayat Rahman, Xin Yuan, Scott Pakin,
and Michael Lang. Modeling ugal on the dragonfly topology. In International
Workshop on Performance Modeling, Benchmarking, and Simulation on High Per-
formance Computer Systems (PMBS’17), pages 136–157, 01 2017.

[17] Md Shafayat Rahman, Md Atiqul Mollah, Peyman Faizian, and Xin Yuan. Load-
balanced slim fly networks. In Proceedings of the 47th International Conference
on Parallel Processing, ICPP 2018, pages 41:1–41:10, New York, NY, USA, 2018.
ACM.

[18] N. Jiang, D. U. Becker, G. Michelogiannakis, J. Balfour, B. Towles, D. E. Shaw,
J. Kim, and W. J. Dally. A detailed and flexible cycle-accurate network-on-chip
simulator. In 2013 IEEE International Symposium on Performance Analysis of Sys-
tems and Software (ISPASS), pages 86–96, April 2013.

Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED
Step 1: We generated Linear Programming models for a number
of Dragonfly network topologies. The models were generated as
described in "Modeling Ugal on the Dragonfly Topology" by Mollah
et al. Wemade some further modifications on the models to increase
their accuracy. To be specific, we added the constraint that for a
source-destination pair, a longer VLB path will never have a larger
data rate allocated to it than a shorter VLB path between the same
SD pair.

We wrote a tool using Python 3.6.4 which creates the topology,
generates minimal and non-minimal paths, generates the linear
programming constraints, runs a linear programming solver to
solve the equations, and collects results.

Our implementation of the models can be found in the included
git repository.

IBM CPLEX optimizer was used as the linear-programming
solver.

Step 2: We used open-source Booksim 2.0 to simulate the selected
Dragonfly networks and analyze their performance. For Booksim,
we extended the code and implemented variations of Dragonfly
topology, routing functions and traffic patterns.

The extension code we wrote for Booksim is also shared in our
git repository.

ARTIFACT AVAILABILITY
Software Artifact Availability: Some author-created software ar-

tifacts are NOT maintained in a public repository or are NOT avail-
able under an OSI-approved license.

Hardware Artifact Availability: There are no author-created hard-
ware artifacts.

Data Artifact Availability: Some author-created data artifacts
are NOT maintained in a public repository or are NOT available
under an OSI-approved license.

Proprietary Artifacts: None of the associated artifacts, author-
created or otherwise, are proprietary.

List of URLs and/or DOIs where artifacts are available:

https://github.com/YashfatHarman/SC_2019_TUGAL_Dr ⌋

agonfly_source_code.git↪→

https://github.com/booksim/booksim2
https://www.ibm.com/analytics/cplex-optimizer

BASELINE EXPERIMENTAL SETUP, AND
MODIFICATIONS MADE FOR THE PAPER

Operating systems and versions: Ubuntu 16.04.5, CentOS Linux
release 7.4.1708

Compilers and versions: g+= 5.4.0, python 3.6.4

Applications and versions: Booksim 2.0, IBM CPLEX optimizer

Paper Modifications: As we mention in the previous section, we
made some changes in Booksim. Please check our git repository to
see the relevant modifications.

Output from scripts that gathers execution environment informa-
tion.

XDG_SESSION_ID=309
HOSTNAME=draco4.cs.fsu.edu
SELINUX_ROLE_REQUESTED=
SHELL=/bin/bash
TERM=xterm-256color
HISTSIZE=1000
SSH_CLIENT=192.168.123.12 60174 22
SELINUX_USE_CURRENT_RANGE=
SSH_TTY=/dev/pts/0
USER=USER
LS_COLORS=rs=0:di=38;5;27:ln=38;5;51:mh=44;38;5;15:p ⌋

i=40;38;5;11:so=38;5;13:do=38;5;5:bd=48;5;232;38 ⌋

;5;11:cd=48;5;232;38;5;3:or=48;5;232;38;5;9:mi=0 ⌋

5;48;5;232;38;5;15:su=48;5;196;38;5;15:sg=48;5;1 ⌋

1;38;5;16:ca=48;5;196;38;5;226:tw=48;5;10;38;5;1 ⌋

6:ow=48;5;10;38;5;21:st=48;5;21;38;5;15:ex=38;5; ⌋

34:*.tar=38;5;9:*.tgz=38;5;9:*.arc=38;5;9:*.arj= ⌋

38;5;9:*.taz=38;5;9:*.lha=38;5;9:*.lz4=38;5;9:*. ⌋

lzh=38;5;9:*.lzma=38;5;9:*.tlz=38;5;9:*.txz=38;5 ⌋

;9:*.tzo=38;5;9:*.t7z=38;5;9:*.zip=38;5;9:*.z=38 ⌋

;5;9:*.Z=38;5;9:*.dz=38;5;9:*.gz=38;5;9:*.lrz=38 ⌋

;5;9:*.lz=38;5;9:*.lzo=38;5;9:*.xz=38;5;9:*.bz2= ⌋

38;5;9:*.bz=38;5;9:*.tbz=38;5;9:*.tbz2=38;5;9:*. ⌋

tz=38;5;9:*.deb=38;5;9:*.rpm=38;5;9:*.jar=38;5;9 ⌋

:*.war=38;5;9:*.ear=38;5;9:*.sar=38;5;9:*.rar=38 ⌋

;5;9:*.alz=38;5;9:*.ace=38;5;9:*.zoo=38;5;9:*.cp ⌋

io=38;5;9:*.7z=38;5;9:*.rz=38;5;9:*.cab=38;5;9:* ⌋

.jpg=38;5;13:*.jpeg=38;5;13:*.gif=38;5;13:*.bmp= ⌋

38;5;13:*.pbm=38;5;13:*.pgm=38;5;13:*.ppm=38;5;1 ⌋

3:*.tga=38;5;13:*.xbm=38;5;13:*.xpm=38;5;13:*.ti ⌋

f=38;5;13:*.tiff=38;5;13:*.png=38;5;13:*.svg=38; ⌋

5;13:*.svgz=38;5;13:*.mng=38;5;13:*.pcx=38;5;13: ⌋

.mov=38;5;13:.mpg=38;5;13:*.mpeg=38;5;13:*.m2v ⌋

=38;5;13:*.mkv=38;5;13:*.webm=38;5;13:*.ogm=38;5 ⌋

;13:*.mp4=38;5;13:*.m4v=38;5;13:*.mp4v=38;5;13:* ⌋

.vob=38;5;13:*.qt=38;5;13:*.nuv=38;5;13:*.wmv=38 ⌋

;5;13:*.asf=38;5;13:*.rm=38;5;13:*.rmvb=38;5;13: ⌋

.flc=38;5;13:.avi=38;5;13:*.fli=38;5;13:*.flv= ⌋

38;5;13:*.gl=38;5;13:*.dl=38;5;13:*.xcf=38;5;13: ⌋

.xwd=38;5;13:.yuv=38;5;13:*.cgm=38;5;13:*.emf= ⌋

38;5;13:*.axv=38;5;13:*.anx=38;5;13:*.ogv=38;5;1 ⌋

3:*.ogx=38;5;13:*.aac=38;5;45:*.au=38;5;45:*.fla ⌋

c=38;5;45:*.mid=38;5;45:*.midi=38;5;45:*.mka=38; ⌋

5;45:*.mp3=38;5;45:*.mpc=38;5;45:*.ogg=38;5;45:* ⌋

.ra=38;5;45:*.wav=38;5;45:*.axa=38;5;45:*.oga=38 ⌋

;5;45:*.spx=38;5;45:*.xspf=38;5;45:

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

Rahman, et al.

PATH=/home/USER/anaconda3/bin:/usr/local/bin:/usr/bi ⌋

n:/usr/local/sbin:/usr/sbin:/home/USER/.local/bi ⌋

n:/home/USER/bin
↪→

↪→

MAIL=/var/spool/mail/USER
_=/usr/bin/env
PWD=/home/USER/Author-Kit
LANG=en_US.UTF-8
MODULEPATH=/usr/share/Modules/modulefiles:/etc/modul ⌋

efiles↪→

LOADEDMODULES=
SELINUX_LEVEL_REQUESTED=
HISTCONTROL=ignoredups
HOME=/home/USER
SHLVL=2
LOGNAME=USER
SSH_CONNECTION=192.168.123.12 60174 192.168.122.154

22↪→

MODULESHOME=/usr/share/Modules
LESSOPEN=||/usr/bin/lesspipe.sh %s
XDG_RUNTIME_DIR=/run/user/1001
BASH_FUNC_module()=() { eval `/usr/bin/modulecmd

bash $*`↪→

}
+ lsb_release -a
./collect_environment.sh: line 10: lsb_release:

command not found↪→

+ uname -a
Linux draco4.cs.fsu.edu 3.10.0-693.11.6.el7.x86_64 #1

SMP Thu Jan 4 01:06:37 UTC 2018 x86_64 x86_64
x86_64 GNU/Linux

↪→

↪→

+ lscpu
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 4
On-line CPU(s) list: 0-3
Thread(s) per core: 1
Core(s) per socket: 4
Socket(s): 1
NUMA node(s): 1
Vendor ID: GenuineIntel
CPU family: 6
Model: 94
Model name: Intel(R) Xeon(R) CPU E3-1220 v5

@ 3.00GHz↪→

Stepping: 3
CPU MHz: 900.234
CPU max MHz: 3500.0000
CPU min MHz: 800.0000
BogoMIPS: 6000.00
Virtualization: VT-x
L1d cache: 32K
L1i cache: 32K
L2 cache: 256K
L3 cache: 8192K
NUMA node0 CPU(s): 0-3

Flags: fpu vme de pse tsc msr pae mce
cx8 apic sep mtrr pge mca cmov pat pse36 clflush
dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx
pdpe1gb rdtscp lm constant_tsc art arch_perfmon
pebs bts rep_good nopl xtopology nonstop_tsc
aperfmperf eagerfpu pni pclmulqdq dtes64 monitor
ds_cpl vmx smx est tm2 ssse3 fma cx16 xtpr pdcm
pcid sse4_1 sse4_2 x2apic movbe popcnt
tsc_deadline_timer aes xsave avx f16c rdrand
lahf_lm abm 3dnowprefetch epb invpcid_single
intel_pt spec_ctrl ibpb_support tpr_shadow vnmi
flexpriority ept vpid fsgsbase tsc_adjust bmi1
hle avx2 smep bmi2 erms invpcid rtm mpx rdseed adx
smap clflushopt xsaveopt xsavec xgetbv1 dtherm ida
arat pln pts hwp hwp_notify hwp_act_window hwp_epp

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

+ cat /proc/meminfo
MemTotal: 65767632 kB
MemFree: 64013104 kB
MemAvailable: 64689900 kB
Buffers: 70816 kB
Cached: 794380 kB
SwapCached: 0 kB
Active: 506368 kB
Inactive: 420000 kB
Active(anon): 61448 kB
Inactive(anon): 16504 kB
Active(file): 444920 kB
Inactive(file): 403496 kB
Unevictable: 0 kB
Mlocked: 0 kB
SwapTotal: 16776188 kB
SwapFree: 16776188 kB
Dirty: 8 kB
Writeback: 0 kB
AnonPages: 61252 kB
Mapped: 27016 kB
Shmem: 16788 kB
Slab: 414520 kB
SReclaimable: 363376 kB
SUnreclaim: 51144 kB
KernelStack: 2032 kB
PageTables: 3568 kB
NFS_Unstable: 0 kB
Bounce: 0 kB
WritebackTmp: 0 kB
CommitLimit: 49660004 kB
Committed_AS: 253160 kB
VmallocTotal: 34359738367 kB
VmallocUsed: 384136 kB
VmallocChunk: 34358947836 kB
HardwareCorrupted: 0 kB
AnonHugePages: 4096 kB
HugePages_Total: 0
HugePages_Free: 0
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 2048 kB

Topology-Custom UGAL Routing on Dragonfly

DirectMap4k: 115672 kB
DirectMap2M: 4036608 kB
DirectMap1G: 62914560 kB
+ inxi -F -c0
./collect_environment.sh: line 14: inxi: command not

found↪→

+ lsblk -a
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sda 8:0 0 465.8G 0 disk

sda1 8:1 0 39.2M 0 part

sda2 8:2 0 2G 0 part

sda3 8:3 0 500M 0 part /boot

sda4 8:4 0 1K 0 part

sda5 8:5 0 347.2G 0 part /home

sda6 8:6 0 100G 0 part /

sda7 8:7 0 16G 0 part [SWAP]
sr0 11:0 1 1024M 0 rom
+ lsscsi -s
[0:0:0:0] disk ATA WDC WD5000AZLX-7 1A02

/dev/sda 500GB↪→

[4:0:0:0] cd/dvd HL-DT-ST DVD-ROM DU90N D3C1

/dev/sr0 -↪→

+ module list
++ /usr/bin/modulecmd bash list
No Modulefiles Currently Loaded.
+ eval
+ nvidia-smi
./collect_environment.sh: line 18: nvidia-smi:

command not found↪→

+ lshw -short -quiet -sanitize
+ cat
./collect_environment.sh: line 19: lshw: command not

found↪→

+ lspci
00:00.0 Host bridge: Intel Corporation Skylake Host

Bridge/DRAM Registers (rev 07)↪→

00:01.0 PCI bridge: Intel Corporation Skylake PCIe

Controller (x16) (rev 07)↪→

00:01.1 PCI bridge: Intel Corporation Skylake PCIe

Controller (x8) (rev 07)↪→

00:14.0 USB controller: Intel Corporation Sunrise

Point-H USB 3.0 xHCI Controller (rev 31)↪→

00:14.2 Signal processing controller: Intel
Corporation Sunrise Point-H Thermal subsystem
(rev 31)

↪→

↪→

00:16.0 Communication controller: Intel Corporation

Sunrise Point-H CSME HECI #1 (rev 31)↪→

00:16.1 Communication controller: Intel Corporation

Sunrise Point-H CSME HECI #2 (rev 31)↪→

00:17.0 SATA controller: Intel Corporation Sunrise

Point-H SATA controller [AHCI mode] (rev 31)↪→

00:1d.0 PCI bridge: Intel Corporation Sunrise Point-H

PCI Express Root Port #9 (rev f1)↪→

00:1d.2 PCI bridge: Intel Corporation Sunrise Point-H

PCI Express Root Port #11 (rev f1)↪→

00:1f.0 ISA bridge: Intel Corporation Sunrise Point-H

LPC Controller (rev 31)↪→

00:1f.2 Memory controller: Intel Corporation Sunrise

Point-H PMC (rev 31)↪→

00:1f.4 SMBus: Intel Corporation Sunrise Point-H

SMBus (rev 31)↪→

03:00.0 Ethernet controller: Broadcom Limited

NetXtreme BCM5720 Gigabit Ethernet PCIe↪→

03:00.1 Ethernet controller: Broadcom Limited

NetXtreme BCM5720 Gigabit Ethernet PCIe↪→

04:00.0 PCI bridge: Renesas Technology Corp. SH7758

PCIe Switch [PS]↪→

05:00.0 PCI bridge: Renesas Technology Corp. SH7758

PCIe Switch [PS]↪→

06:00.0 PCI bridge: Renesas Technology Corp. SH7758

PCIe-PCI Bridge [PPB]↪→

07:00.0 VGA compatible controller: Matrox Electronics

Systems Ltd. G200eR2 (rev 01)↪→

ARTIFACT EVALUATION
Verification and validation studies: 1. For linear programming

models, we followed the directions and reproduced some of the
result graphs published in "Modeling Ugal on the Dragonfly Topol-
ogy" by Mollah et al. The results were close enough to ensure that
we were following their directions properly.

2. For Booksim simulation, we reproduced some of the results
in "Technology-Driven, Highly-Scalable Dragonfly Topology" by
Kim et al. This way we ensured that our implementation of regular
Dragonfly network and UGAL routing is correct.

Quantified the sensitivity of results to initial conditions and/or
parameters of the computational environment: Booksim 2.0 is widely
used and most of the studies using Booksim mentions the simulator
settings. We ensured that we are following the standard practice.
We performed extensive tests with various Booksim parameters to
ensure that our results do not depend on the parameters, including
but not limited to buffer size, virtual channel count, link latency,
simulator speedup etc. Changing these values will change the ab-
solute output values, but the relative performance of the existing
schemes and our proposed scheme will remain same.

Controls, statistics, or other steps taken to make the measurements
and analyses robust to variability and unknowns in the system. For
each modeling and simulation run that depends on a random seed
for routing/path generation/traffic generation, we performed multi-
ple runs (8 to 20, depending on experiment) using different random
seeds. Final results were presented as average of the runs, with
standard error of mean, where applicable.

	Abstract
	1 Introduction
	2 Background and related work
	2.1 Dragonfly Topology
	2.2 Universal Globally Adaptive Load-balanced Routing (UGAL)
	2.3 Related Work

	3 Topology-Custom UGAL Routing (T-UGAL)
	3.1 Motivation
	3.2 T-UGAL Properties
	3.3 Computing T-VLB

	4 Performance Study
	4.1 Methodology
	4.2 T-VLB for Different Topologies
	4.3 Simulation Results

	5 Conclusion
	Acknowledgments
	References

