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Abstract
AMarkovian single-server queue is studied in an interactive random environment. The
arrival and service rates of the queue depend on the environment, while the transition
dynamics of the random environment depend on the queue length. We consider in
detail two types of Markov random environments: a pure jump process and a reflected
jump diffusion. In both cases, the joint dynamics are constructed so that the stationary
distribution can be explicitly found in a simple form (weighted geometric). We also
derive an explicit estimate for the exponential rate of convergence to the stationary
distribution via coupling.
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1 Introduction

In this paper, we propose a tractable modeling approach to studying queues in an
interactive random environment, where the arrival and/or service rates are modulated
by a Markov process and the dynamics of the environment also depend on the state of
the queue. Such models may be used in the following setting: In a service system (for
example, on-demand service platforms), the demand may be affected by the service
quality as indicated by dynamic “ratings” which may be modeled by a Markov chain,
while the ratings dynamics may depend on the congestion level in the system.

For an M/M/1 queue in an interactive random environment, let N (t) be the queue
length process (the number of customers in the system) and Z(t) be the randomprocess
for the environment. The joint process (N (t), Z(t)) can be modeled as a continuous-
time Markov process on N × Z (Z representing the range of Z(t)), with a generator

L f (n, z) = Mz f (n, z) + An f (n, z), (1.1)

whereMz describes the queueing dynamics depending on the environment state z and
An describes the environment dynamics depending on the queueing state n. Specifi-
cally, given the arrival and service rates λ(z) and μ(z), we can write

Mz f (n, z) = λ(z)( f (n + 1, z) − f (n, z)) + 1{n �=0}μ(z)( f (n − 1, z) − f (n, z)).

On the other hand, the generator An can, for a general Markov process, depend on
the queue length n. For example, for a given n, An may represent the generator of a
diffusion process

An f (n, z) = bn(z) · ∇z f (n, z) + 1

2
tr

(
�n(z)∇2

z f (n, z)
)

or a continuous-time jump Markov chain with a transition rate matrix depending on
the queueing state n. In the utmost generality, one can impose mild conditions on
the generators Mz and An to guarantee the existence of an invariant measure for the
joint process (N (t), Z(t)). However, it seems difficult to go beyond that without any
structural assumptions on the joint generator, especially An . In many applications, it
is convenient to have an explicit invariant measure to work with. In general, it is hard
to find an explicit form for stationary distributions of multidimensional Markov pro-
cesses. (For example, in [42], it is shown that an obliquely reflected Brownian motion
(RBM) in a polyhedral domain in R

d has a product-of-exponentials stationary distri-
bution under the skew symmetry condition, the only case with an explicit stationary
measure.)

Therefore, in order to provide an explicit expression for the invariant measure of
the joint process, we study a particular multiplicative (scaled) form in the generator
component An , that is,

An f (n, z) = βnρ
−n(z)A f (n, z),
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where βn is a positive constant, ρ(z) = λ(z)/μ(z) is the traffic intensity in the queue,
and A f (n, z) is a generator corresponding to a Markov process whose transition
dynamics do not depend on n. (In the case of reflected processes, the boundary con-
ditions should be treated carefully; see Sect. 3 for details.) The scaling factors not
only depend on the queue length n, but also include the traffic intensity ρ(z). For
an environment state z, ρ−n(z) > 1 for all queue states n, but the factor βn gives
more flexibility (slowing down or speeding up) to the scaling of the generatorA. Our
approach is motivated by applications where the environment dynamics may be sped
up or slowed down by the congestion. For example, in on-demand service systems, the
transitions among the different service quality “ratings” may simultaneously change
faster when many customers experience more congestion due to higher response rates.

We discuss two types of random environment: a pure jump Markov chain taking
values in a discrete state space D (finite or countable) and a reflected (jump) diffu-
sion in a piecewise smooth domain, also denoted by D. Each type of environment is
of interest. Under certain assumptions, we prove the existence of the joint invariant
measure, derive its explicit expression, and establish the exponential rate of conver-
gence to the steady state (in the total variation norm). The explicit expression of the
invariant measure can be regarded as a weighted geometric form (or some “product
form,” although not exactly in the same sense as in the literature on stochastic net-
works [10,22,23]). Specifically, we have the joint invariant measure for (N (t), Z(t))
of the form π({n}, dz) = �−1ρn(z)ν(dz), where � is some normalization constant,
and ν(·) is the invariant measure associated with the generator A. Recall that the
steady-state distribution of the M/M/1 queue itself given an environment state z is
geometric (P(N (∞) = n) = (1−ρ(z))ρn(z)). The product of the terms “ρn(z)” and
“ν(dz)” mixes the invariant measures for the queue and the environment, despite ρ(z)
depending on z. Here, the scaling factor ρ−n(z) inAn is critical. For the two types of
environment processes, we are able to establish the exponential rate of convergence.

With a diffusive environment, our work introduces new stochastic models. The
simple models include: (a) an M/M/1 queue with an interactive diffusive arrival rate:
The arrival rate is a one-dimensional reflected (jump) diffusion process in [0, 1] under a
fixed service rate 1; (b) anM/M/1 queuewith an interactive diffusive service rate: The
service rate is a one-dimensional reflected (jump) diffusion process in [1,∞) under a
fixed arrival rate 1; and (c) the arrival and service rates form a two-dimensional RBM in
anopen convex cone (with arrival rate strictly lower than service rate). RBMshave been
extensively studied in the queueing (network) literature as scaling limits. However,
RBMs as arrival and/or service rates have not been carefully studied. When there is no
interactive behavior, the M/M/1 queue with a RBM arrival rate can be regarded as a
special case of queues of the so-called doubly stochastic Poisson arrival processes with
the arrival rate being an independent stochastic process. (See, for example, [3–5].) Our
first model extends such existing interesting studies to include feedback from queue
to environment. The second and third models with RBM being the service rate or the
RBM in the wedge for both arrival and service rates are new, even in the setting of no
interactive behavior. Such models are worth further careful investigation. Of course,
our models go beyond RBMs, to general reflected (jump) diffusion models.

We aim to find the explicit rate of convergence to the stationary distribution in these
models. For standard M/M/1 queues, it is well known that the rate of convergence is
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exponential; see, for example, [36, Proposition 5.8]. However, for diffusion processes
(solutions of SDEs), reflected diffusions, and their versions with jumps, the character-
ization of an explicit rate of convergence to steady state (as opposed to simply proving
that there exists an exponential rate of convergence) is quite a challenging problem.
See, for example, [11,20,37,38]. Thus, it is a much more difficult problem to study
the rate of convergence for the joint Markov process with a generator in the general
form in (1.1) due to the complicated interactive behavior of the two processes (one
being discrete and the other being continuous). We attempt to solve this problem via a
coupling technique for the joint process (N , Z). We provide a novel way to construct
the coupling time for the joint process in order to prove that the convergence rate is
exponential and, more importantly, provide good estimates of the rate of convergence
via careful studies of the exponential bounds for the coupling time. This appears to be
the first work in the literature to carefully find estimates of the coupling times of joint
processes for queueing processes in random environments.

Although our main focus is on the multiplicative (scaling) form in the generator
An , we have also considered a setup where the environment jump diffusion described
above depends on the queue length n via its domain Dn ⊆ D. In particular, the drift
vector field, covariance matrix field and the jump measure remain the same for all n,
but reflection vector fields may depend on the queueing state n. The entire domain D
is the union of these Dn, n = 0, 1, 2, . . .. We assume that this reflected jump diffusion
in Dn has a unique invariant probability measure ν

(n)
Dn

inside the domain Dn , which is
the projection of a certain finite measure on D to Dn . (The corresponding boundary
measures may depend on n.) See Assumptions 3.3–3.6. We prove similar results as
above in this setting. We construct two special examples: an M/M/1 queue with a
fixed service rate and a reflected diffusion arrival rate, controlled based on a threshold
of queue length (Example 3.1), and an M/M/1 queue with a fixed arrival rate and a
diffusive service rate, controlled similarly (Example 3.2).

When the random environment is aMarkov chain taking discrete values, our results
also extend to the generator An of the form ρ−n(z)τn(z, z′), where the generator rate
τn may depend on the queueing state n unlike the multiplicative case. However, it is
assumed that an invariant measure associated with the transition rate τn(z, z′) exists
such that it is independent of the queueing state n (Assumption 2.1). This is slightly
more general than the multiplicative case, so we state the model and results in Sect. 2
in this setup.We also give an example to illustrate how this slightly more general setup
is used. (See Examples 2.1 and 2.2.)

1.1 Literature review on queues in interactive environments

Queues in random environments (for example, Markov-modulated models) have been
extensively studied in the literature. Most of the literature assumes that the queueing
dynamics are affected by the environment, but not interactive. For example, the paper
[35] studiesMarkov-modulated arrival and service rates with finite environment space
and finds expressions for waiting times. The paper [41] deals with similar questions by
comparing this queue with an appropriate M/M/1 queue. Optimization of the service
rate for the case when the arrival rate is a Markov process is studied in [26]. See also
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a birth–death process in random environment [13] and a Markov chain in Markov
environment, studied in [12,16,33]. A particular case of a Markov-modulated setting
is when the service dynamics are subject to interruptions. In this case, the random
environment only affects service rate μ. The survey [25] summarizes the existing
literature on this topic.

In the Markov-modulated queueing literature, the arrival or service rates under
modulation take a finite or countable number of values. However, in practice, the rates
under modulation can possibly take continuous values. Our work thus goes beyond
the existing frameworks and develops new queueing models.

In [18], the authors study a random particle (a distinguished customer) walking
randomly over the sites of a symmetric Jackson network (open or closed), where
the arrival rate of a station/node or the transition of customers from it to other sta-
tions/nodes is affected if the particle occupies it, while the jump rate of the particle
depends on the state of the station/node it currently occupies. An explicit steady-state
distribution for the joint process is derived. In [24], Jackson networks in interactive
random environments are studied, where the service capacities are affected by the
environment, while customer departure may force the environment to jump immedi-
ately. An explicit expression of the product form is derived for the joint queueing and
environment processes. Inspired by [18], a different construction of Markov processes
in random environments resulting in product-form invariant measure is provided. In
[6], various Markov processes with interactive random environments are constructed.
This paper is of the same flavor as [6]. The paper [17] deals with the feedback loop
created by blocking some channels in a multi-server queue and finds a product-form
stationary distribution for the joint process. None of these papers investigate the rate
of convergence to stationarity. Our model of a single-server queue is also constructed
in a more general manner.

The papers [14,44] study birth–death processes in a random environment with
feedback. This is a more general setup than in our paper, because an M/M/1 queue is
a particular case of a birth–death process. However, [14] is concerned with explosion
questions, rather than stationary distributions and convergence rates, and [44] focuses
on the generating function approach and achieves only partial results for the steady-
state distribution.

1.2 Notation

The integral with respect to the measure ν applied to the function f is written as
〈ν, f 〉. An exponential distribution with rate α is denoted by Exp(α). The arrow ⇒
indicates weak convergence. The dot product of two vectors a and b is denoted by
a · b. We say two finite measures μ, ν on R satisfy μ 
 ν if, for all u ∈ R, we
have μ(−∞, u] ≤ ν(−∞, u], but μ(R) = ν(R). We say that μ is stochastically
dominated by ν. We transfer this concept to random variables: X is stochastically
dominated by Y if the distribution of X is stochastically dominated by the distri-
bution of Y . Let Z+ = {0, 1, 2, . . .} and R+ := [0,∞). Define the total variation
norm: For a signed measure ν, let ‖ν‖TV := supA |ν(A)|. Throughout this article,
we consider continuous-time random processes (unless otherwise noted) on a filtered
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probability space (�,F , (Ft )t≥0, P) with the filtration satisfying the usual condi-
tions.

1.3 Organization of the paper

In Sect. 2, we study the model in an interactive jump environment. In Sect. 3, we
study the single-server queue with a reflected jump diffusion environment. In Sect. 4,
we estimate the explicit rate of exponential convergence for the case of a compact
environment state space, for both models in Sects. 2 and 3. In Sect. 6, we state and
prove some auxiliary lemmata. We make some concluding remarks in Sect. 5.

2 M/M/1 Queue in an interactive jump environment

Consider an M/M/1 queue with an infinite waiting space operating in an interactive
jump environment described as follows: Let D be a finite or countable state space. For
every n ∈ Z+, letTn = (τn(z, z′))z,z∈D be the generator of an irreducible continuous-
time Markov chain on D; this (finite or countable-sized) matrix is called the nominal
jump intensity matrix for the jump process Z in the queueing state n. We define a two-
component Markov process (N , Z) taking values in the countable state space Z+ × D
with the following generator matrix R = (

R[(n, z), (n′, z′)]):

R[(n, z), (n + 1, z)] = λ(z), R[(n, z), (n − 1, z)] = μ(z),

R[(n, z), (n, z′)] = ρ−n(z)τn(z, z
′), R[(n, z), (n′, z′)] = 0, n �= n′, z �= z′,

(2.1)

where ρ(z) := λ(z)/μ(z) for each z ∈ D. Here, N = {N (t) : t ≥ 0} represents the
number of jobs in the system (including those in the queue and in service), taking
values in Z+, and Z = {Z(t) : t ≥ 0} represents a jump process taking values in
D. When the environment is in state z, the arrival and service rates for the queueing
process are λ(z) and μ(z), respectively, both depending on the state z.

When the queue size is in state n, the transition of the environment Z from state
z to state z′ occurs at the rate ρ−n(z)τn(z, z′). Note that the fourth equation in (2.1)
does not allow simultaneous jumps for N and Z . It is evident that the pair (N , Z) is a
well-defined Markov process in Z+ × D with the generator R.

Remark 2.1 We do not multiply this transition rate τn by a factor βn : Dependence on
n is already enshrined in the rate τn . We impose a condition (2.2) to guarantee the
product form of the steady state.

We first make the following assumption on the nominal jump intensity matrix Tn .

Assumption 2.1 For each n ∈ Z+, z ∈ D, and for some function v : D → R+,

v(z)
∑

z′∈D
τn(z, z

′) =
∑

z′∈D
v(z′)τn(z′, z). (2.2)
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For fixed n ∈ Z+, if we define a Markov process Z̃n := {Z̃n(t) : t ≥ 0} on D
with the nominal jump intensity matrix Tn as the generator, then (2.2) implies that
v(·) defines an invariant measure for Z̃n . If

∑
z∈D v(z) < ∞, then this measure can

be normalized to a probability distribution. If

∑

z′∈D
τn(z, z

′) =
∑

z′∈D
τn(z

′, z),

then the counting measure is invariant for Z̃n ; if D is a finite set, then it is normalized
to a uniform distribution on D. It is important to note that the invariant measure v(·)
does not depend on n, although the jump intensity matrix Tn depends on n.

Remark 2.2 A simple example is when τn(z, z′) has a multiplicative form:

τn(z, z
′) = βnτ(z, z′)

for some transition rate matrix τ(z, z′) satisfying v(z)
∑

z′∈D τ(z, z′) = ∑
z′∈D

v(z′)τ (z′, z). However, we provide examples below in which τn(z, z′) depends on
n in a nontrivial manner, while the existence of v independent of n is guaranteed. See
Examples 2.1 and 2.2.

Assumption 2.2 The functions ρ, v satisfy

ρ(z) < 1 for z ∈ D, (2.3)

� :=
∑

z∈D

v(z)

1 − ρ(z)
=

∞∑

n=0

∑

z∈D
ρn(z)v(z) < ∞. (2.4)

Note that the constant � is the normalization constant in the joint invariant measure
π in (2.5).

Theorem 2.1 Under Assumptions 2.1 and 2.2 , the Markov process (N , Z) is irre-
ducible, aperiodic, and positive recurrent. It has an invariant probability measure

π(n, z) := η(n, z)/�, ∀(n, z) ∈ Z+ × D, (2.5)

where � is given in (2.4), and

η(n, z) := ρn(z)v(z), ∀(n, z) ∈ Z+ × D. (2.6)

This process has transition kernel Pt (x, ·) which converges to this invariant measure:

‖Pt (x, ·) − π(·)‖TV → 0 as t → ∞, for all x ∈ Z+ × D. (2.7)

Proof We first show that the process (N , Z) is irreducible and aperiodic. It follows
from the observation that for every t > 0, (n, z), (n′, z′) ∈ Z+ × D, one can with
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positive probability get from (n, z) to (n′, z′) in time t . For the measure η from (2.6)
to be finite, we need

∑

(n,z)

η(n, z) =
∑

(n,z)

ρn(z)v(z) =
∑

z

v(z)

1 − ρ(z)
< ∞,

which is implied by (2.3)–(2.4) in Assumption 2.2. If we prove that η from (2.6) is
indeed an invariantmeasure, the positive recurrent property follows from [34, Theorem
3.5.3], [40, Theorem 2.7.18], and then the ergodicity, as in (2.7), follows from [32].
To verify that η(n, z) in (2.6) is an invariant measure, we show that η′R = 0. Let us
show that for all n = 1, 2, . . . and z ∈ D,

−η(n, z)R[(n, z), (n, z)] = η(n − 1, z)R[(n − 1, z), (n, z)] + η(n + 1, z)R[(n + 1, z), (n, z)]
+

∑

z′ �=z

η(n, z′)R[(n, z′), (n, z)],

−η(0, z)R[(0, z), (0, z)] = η(1, z)R[(1, z), (0, z)] +
∑

z′ �=z
η(0, z′)R[(0, z′), (0, z)].

(2.8)

By (2.1), the left- and right-hand sides of the first equation in (2.8) are equal to,
respectively,

η(n, z)
∑

(n′,z′)�=(n,z)

R[(n′, z), (n′, z)]

= ρn(z)v(z)

⎛

⎝R[(n, z), (n + 1, z)] + R[(n, z), (n − 1, z)] +
∑

z′ �=z

R[(n, z), (n, z′)]
⎞

⎠

= ρn(z)v(z)

⎛

⎝λ(z) + μ(z) +
∑

z′ �=z

ρ−n(z)τn(z, z
′)

⎞

⎠

= ρn(z)v(z)(λ(z) + μ(z)) + v(z)
∑

z′ �=z

τn(z, z
′);

ρn−1(z)v(z)λ(z) + ρn+1(z)v(z)μ(z) +
∑

z′ �=z

ρn(z′)v(z′)ρ−n(z′)τn(z′, z)

= λ(z)v(z)ρn(z)(λ(z) + μ(z)) +
∑

z′ �=z

v(z′)τn(z′, z).

From (2.2) in Assumption 2.1, the last terms on the right-hand sides of these two last
equations are equal. This proves the first equation in (2.8); the second one is similar.
This completes the proof. ��
Example 2.1 (D as a union of finite sets) In Examples 2.1 and 2.2, δ(i, j) stands for
the Kronecker delta. Given n ∈ Z+, let Dn be a finite set in (0, 1) with cardinalitymn .
For definiteness, assume that 1 < mn < M , where M ∈ Z+ is a fixed value. Introduce
an enumeration of points in each Dn : Dn = {z(1), . . . , z(mn)} (say, in an increasing
order) and make a convention that z(0) = z(mn), z(mn + 1) = z(1). The sets Dn
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can have common points for different n or be pairwise disjoint. Sets D = ∪
n
Dn and

υ(z) = 1 for z ∈ D. The set D can be finite or countable.
Next, take a subset L ⊆ Z+ (L or Z+ \ L can be empty). For n ∈ L, set

τn(z, z
′) = βn

mn − 1
, ∀ z, z′ ∈ Dn with z �= z′.

For n ∈ Z+ \ L, set

τn(z(i), z( j)) = 1

2
δ( j, i ± 1), ∀ i, j ∈ {1, . . . ,mn}.

Here, βn ∈ (0,∞) are scaling constants depending on n (which is irrelevant for the
invariant measure of the process (N , Z)). Pictorially, τn for n ∈ L describes uniform
jumps on Dn , while for n ∈ Z+ \ L, τn yields a “nearest-neighbor” walk with cyclic
(periodic) boundary condition. Either way, the counting measure υ is invariant; cf. cf.
Assumption 2.1.Thus, (2.2) holds true.

Then, Tn = (
τn(z, z′)

)
generates a Markov chain Z̃n with an invariant probability

measure 1Dn (z)/mn , z ∈ D. The invariant measure η is then given in (2.6) with
η(n, z) = zn .

Example 2.2 (D as a countable set, τn as a null-recurrent jump chain.) Assume that
D ⊂ (0, 1) is countable and can be enumerated by i = 0,± 1,± 2, so that ρi := ρzi
for i ≥ 0 satisfies ρ0 < ρ1 < · · · < 1 and limi→∞ ρi = 1. (Enumeration with labels
i = −1,−2, . . . does not matter.) Set υ(z) = 1 and

τn(z0, z j ) = τn(zi , zi+ j ) = βnδ( j, n), ∀i, j ∈ Z.

Here, as earlier, βn is a scaling constant depending on n (again irrelevant for the
invariant measure of the process (N , Z)). Then, Tn = (

τn(z, z′)
)
generates a null-

recurrent Markov chain Z̃n with the invariant measure υ(z) = 1, z ∈ D. Thus,
the random traffic intensity ρZ̃n

, depending on both the state of the queue and the
environment, will approach the critical value 1 infinitely often. However, under the
condition (2.4), the resulting Markov process (N , Z) is positive recurrent, with an
invariant measure η(n, z) = ρn(z) for (n, z) ∈ Z+ × D.

3 M/M/1 Queue in an interactive diffusive environment

3.1 Reflected jump diffusions

In this section, we consider the queue with λ and μ dependent on a diffusive environ-
ment process Z(t). First, let us define the dynamics of this environment process as a
reflected (jump) diffusion in a certain domain in R

d .
It is instrumental to recapitulate some basic notion. A domain in R

d is the closure
of an open connected subset. A domain D is called smooth if its boundary ∂D is
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a (d − 1)-dimensional C2 manifold. Take m smooth domains D1, . . . , Dm in R
d .

Assume D = ∩m
i=1Di has boundary ∂D with m faces Fi := ∂D ∩ ∂Di which are

(d−1)-dimensional manifolds with an edge, and such that allm domains are essential:
Removal from the intersection of any domain will change the result. Then, D is called
a piecewise smooth domain in R

d . Define by ni (z) the inward unit normal vector to
∂Di at z ∈ Fi . Inward in this case is defined as pointing inside Di , even if this is not
inside D. An important example is a convex polyhedron with Di being half-spaces.
Of particular interest is the positive orthant D = R

d+. Of course, smooth domains also
belong to this class of domains, with m = 1.

Take continuous functions g : D → R
d and � : D → R

d×d such that the matrix
�(z) = (ai j (z)) is symmetric and positive definite for all z ∈ D, and there exists a
δ > 0 such that �(z)v · v ≥ δ‖v‖2 for all v ∈ R

d and z ∈ D. For every z ∈ D, define
a finite measure �(z, ·) on D such that �(z, ·) ⇒ �(z0, ·) as z → z0 in D. Recall
that⇒ denotes weak convergence. Take ri : Fi → R

d : continuous functions, pointing
inside D; that is, ri (z) · ni (z) > 0 for i = 1, . . . ,m, z ∈ Fi . Let us define a reflected
jump diffusion: a process Z = {Z(t) : t ≥ 0} in D with drift vector field g, diffusion
matrix field �, jump measures �(z, ·), and reflection vector fields r1, . . . , rm .

This process will be adapted and right continuous with left limits. Take a d-
dimensional Brownian motion B = {B(t) : t ≥ 0}, adapted to the filtration. Take
continuous nondecreasing processes �i = {�i (t) : t ≥ 0} for i = 1, . . . ,m such that
�i can grow only when Z(t) ∈ Fi , another right-continuous process with left limits
Z = (Z(t), t ≥ 0) with values in D, and yet another process N = {N (t) : t ≥ 0}
which is right-continuous and piecewise constant, with jump measure �(Z(t−), ·),
and such that

dZ(t) = g(Z(t)) dt + �1/2(Z(t)) dB(t) + N (t) +
m∑

i=1

ri (Z(t)) d�i (t), t ≥ 0.

(3.1)

We assume the Eq. (3.1) has a well-defined unique weak solution and forms a Feller
continuous strong Markov semigroup, with generator

A f (z) = g(z) · ∇ f (z) + 1

2
tr(�(z)∇2 f (z)) +

∫

D
( f (z′) − f (z))�(z, dz′),

(3.2)

which consists of a nondegenerate uniformly elliptic diffusion and a state-dependent
finite jump measure. This existence and uniqueness were proved under Lipschitz
conditions on vector field g(·) and the matrix (ai j (·)), as well as continuity of ri (·) for
each i = 1, . . . ,m, and some additional technical conditions. The case without jumps
was proved in [28]; the general case follows from the standard construction by piecing
out [39]. The reflection at the boundary translates into boundary conditions for (3.2):

ri (z) · ∇ f (z) = 0, z ∈ Fi , i = 1, . . . ,m. (3.3)
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The dynamics of this process can be described as follows:

• As long as it is strictly inside D, this process behaves as a jump diffusion in d
dimensions with drift vector field g, diffusion matrix field � and the family � of
jump measures. These jump measures are such that the process does not jump out
of D.

• At a point z ∈ Fi , i = 1, . . . ,m, it is reflected back inside the domain D, according
to the vector ri (z).

• If it hits the lower-dimensional edges, intersections of two or more faces
F1, . . . , Fm , it is reflected back inside D according to a positive linear combi-
nation of reflection vectors corresponding to these intersecting faces.

Normal reflection corresponds to the case when ri (z) = ni (z), where z ∈ Fi and
i = 1, . . . ,m.

Remark 3.1 In the case of a diffusion without reflection, the state space may be R
d ,

or still some subset D. The latter happens if the drift coefficient is sufficiently large
to compel the process to stay in a certain domain. An example of this is the drift for a
Bessel process on the half-line; see [21, Chapter 3, Problem 3.23].

In the case d = 1, for a reflection on [a, b], we have normal reflection and the
boundaries consisting of two pieces {a} and {b}. For a reflection on [a,∞), we have
normal reflection again, with the boundary {a}.

3.2 Construction of the joint Markov process

Let us now use symbol z for a point in D (instead of x). Take continuous functions
λ,μ : D → (0,∞) with λ(z) ≤ μ(z) for z ∈ D. Define the traffic intensity

ρ(z) := λ(z)

μ(z)
≤ 1. (3.4)

For every z ∈ D, consider an M/M/1 queue with arrival intensity λ(z) and service
intensity μ(z), where n is the state of this queue. The process Ñ counting the number
of jobs in the system, called the queueing process in the sequel, is a continuous-time
Markov process on Z+ with generator

Mz f (n) = λ(z)( f (n + 1) − f (n)) + 1{n �=0}μ(z)( f (n − 1) − f (n)). (3.5)

We now consider a (1+d)-dimensional Markov process (N , Z) = {(N (t), Z(t)) :
t ≥ 0} with values in Z+ × D which evolves as follows:

(a) If N (t) = n ∈ Z+, then Z behaves as a reflected jump diffusion in D with
generator ρ−n(z)βnA and reflection fields r1, . . . , rm .

(b) If Z(t) = z, then N (t) jumps from n to n + 1 with intensity λ(z), and (if n �= 0)
to n − 1 with intensity μ(z).

Here, βn is the variability coefficient for the diffusive environment, depending on the
queueing state n, and ρ−n(z) is the queueing impact factor, capturing the impact from
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the traffic intensity (congestion) from the queueing process. The component N can be
informally described as the queueing process of an M/M/1 queue with arrival and
service rates, λ(z) and μ(z), respectively. These rates depend on an auxiliary process
Z . The dynamics of Z , however, depend on the current position of this queueing
process. Therefore, we call such a system an M/M/1 queue in an interactive diffusive
environment.

The joint dynamics are described via a combined Markov process (N , Z) with the
following generator:

L f (n, z) = Mz f (n, z) + βnρ
−n(z)A f (n, z), f ∈ D. (3.6)

Here, D stands for the following subspace of the domain of L:

D := { f : Z+ × D → R | ∀n ∈ Z+ , f (n, ·) ∈ DD},
DD := { f ∈ C2

b (D) | ri (z) · ∇ f (z) = 0, z ∈ Fi , i = 1, . . . ,m}. (3.7)

(Note that we were intentionally loose on the domains of f in (3.2) and (3.5), but they
are clear from this definition.) From the general theory of piecing out, it follows that
this is a Feller process; see [39]. We denote by C2

b (D) the set of twice continuously
differentiable functions D → R which are bounded with their first and second deriva-
tives (the last condition is automatically fulfilled for bounded D). This is a separable
Banach space with the norm

‖ f ‖D,2 := sup
z∈D

(
| f (z)| + ‖∇ f (z)‖ + ‖∇2 f (z)‖

)
.

Denote by Pt (y, ·) the transition kernel of (N , Z), where y = (n, z) ∈ Z+ × D.
We give three special cases to illustrate the construction above.

(a) M/M/1 queue with an interactive diffusive arrival rate.
Assume that λ(z) = z and μ ≡ 1. Let D = [0, 1] and the generator A in (3.2)
be that of a reflected diffusion in (0, 1) without jumps. The reflections at 0 and 1
correspond to the Neumann boundary conditions

∂

∂z
f (n, 0+) = 0,

∂

∂z
f (n, 1−) = 0, ∀n ∈ Z+.

(b) M/M/1 queue with an interactive diffusive service rate.
Assume that λ ≡ 1 and μ(z) = z. Let D = [μ0,∞) for some μ0 ≥ 1 and the
generator A in (3.2) be that of a simple RBM on [μ0,∞) without jumps. The
reflection at μ0 satisfies the Neumann boundary condition.

(c) M/M/1 queue with both diffusive arrival and service rates.
Take D = {(z1, z2) ∈ R

2+ : z2 ≤ z1} be a cone in the positive orthant and the
generator A in (3.2) be that of a two-dimensional Brownian motion in D with
normal reflections at the boundary. Let (λ(z), μ(z)) = z. Then, the arrival and
service rates of the M/M/1 queue follow the dynamics of a reflected RBM in D
in the interactive manner described above.
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3.3 Invariant measures

We need the following assumptions on some properties of the reflected jump-diffusion
process. The first assumption states that, for each level, there exists a steady-state
distribution. The second assumption ensures that the whole process has a steady-state
distribution.

Assumption 3.1 Assume the (reflected) jump diffusion with generator A is positive
recurrent and has a unique stationary/invariant measure νD , together with boundary
measures νFi , i = 1, . . . ,m. This means that the stationary copy of this process
Z̃∗ = {Z̃∗(t) : t ≥ 0} with Z̃∗(t) ∼ νD for t ≥ 0 satisfies the following condition:
For every t ≥ 0, each i = 1, . . . ,m, and every bounded function f : Fi → R,

E

∫ t

0
f (Z̃∗(s)) d�i (s) = t

∫

Fi
f (z) νFi (dz), (3.8)

where �i (s) is the nondecreasing process in (3.1).

Assumption 3.2 The measure νD(·) satisfies

� :=
∫

D

νD(dz)

1 − ρ(z)
=

∞∑

n=0

∫

D
ρn(z)νD(dz) < ∞. (3.9)

Note that � is the normalization constant in the joint invariant measure of (N , Z)

in (3.10). This invariant measure on each boundary Fi has value zero.

Remark 3.2 Similar to (3.8), we can define the concept of boundary measures for the
joint process (N , Z). First, construct the boundary process �i = (�i (t), t ≥ 0) for
the component Z and face Fi of the boundary ∂D. Assume 0 = ρ0 < ρ1 < . . . are
jump times for N . Then, Z(ρk + t) for t ∈ [0, ρk+1 − ρk] behaves as a reflected
jump diffusion on D with generator ρ−nk (z)βnkA and reflection fields r1, . . . , rm ,
with N (t) = nk for t ∈ [ρk, ρk+1). Thus, there exists a continuous nondecreasing
process �

(k)
i (t), t ∈ [0, ρk+1 − ρk], such that (3.1) holds with adjusted drift vector

field, diffusion matrix field, and jump measure family. Define

�i (t) = �i (ρk) + �
(k)
i (t − ρk), t ∈ [ρk, ρk+1],

using induction over k. This defines �i = (�i (t), t ≥ 0) for i = 1, . . . ,m. Next, define
a boundary measure νFi on the face Fi corresponding to a stationary distribution π

for this joint process (N , Z): Take the corresponding stationary copy (N∗, Z∗) with
(N∗(t), Z∗(t)) ∼ π for t ≥ 0. For a bounded function f : Z+ × Fi → R and t ≥ 0,

E

∫ t

0
f (Ñ∗(s), Z̃∗(s)) d�i (s) = t

∞∑

n=0

∫

Fi
f (n, z) νFi ({n} × dz).

123



370 Queueing Systems (2020) 94:357–392

Now, we are ready to state and prove the main result of this section.

Theorem 3.1 Under Assumptions 3.1 and 3.2 , there is a unique invariant measure for
(N , Z):

π({n}, dz) = �−1ρn(z)νD(dz). (3.10)

The corresponding boundary measures πi for Fi (if there is reflection) are given by

πi ({n}, dz) = �−1ρn(z)νFi (dz), i = 1, . . . ,m. (3.11)

Finally, this Markov process is ergodic: For every y ∈ Z+ × D,

‖Pt (y, ·) − π(·)‖TV → 0 as t → ∞. (3.12)

Proof From stationarity, we immediately get that, for all f ∈ C2
b (D),

∫

D
A f (z) νD(dz) +

m∑

i=1

∫

Fi
ri · ∇ f (z) νFi (dz) = 0. (3.13)

This is called the basic adjoint relationship in the literature. We refer to [43] for its
deduction in the case of a convex polyhedron; the same is true for a general piecewise
smooth domain D, as in our case. Apply [27, Theorem 1.7, Theorem 2.2, Lemma 2.4,
Remark2.5] using their notation,with the state space E = Z+×D;U = {0, 1, . . . ,m},
where the point 0 corresponds to the domain D itself, and i = 1, . . . ,m correspond
to faces F1, . . . , Fm of the boundary; for all z ∈ D, n ∈ Z+, and u ∈ U ,

μ0({u} × {n} × dz) = 1(u = 0) ρn(z)νD(dz),

μ1({u} × {n} × dz) = 1(u �= 0) ρn(z)νFu (dz);
μE
0 ({n} × dz) = ρn(z)νD(dz),

μE
1 ({n} × dz) = ρn(z)

[
νF1(dz) + · · · + νFm (dz)

] ;
η0((n, z), {u}) = 1(u = 0),

η1((n, z), {u}) = 1(u �= 0);
A f ((n, z), u) := L f (n, z), cf. (3.6),

B f ((n, z), u) := 1(u �= 0, z ∈ ∂D) βnρ
−n(z)ru(z) · ∇ f (z).

(3.14)

We need to check [27, Condition 1.2] on the absolutely continuous generator A and
the singular generator B. Let

D := { f : Z+ × D → R | ∀n ∈ Z+, f (n, ·) ∈ C2
b (D)}.

Part (i) requires that A, B : D ⊂ Cb(E) → C(E × U ), and the unity function
1(n, z) = 1 for (n, z) ∈ E satisfies 1 ∈ D, A1 = 0, and B1 = 0. This is trivially
satisfied.
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Part (ii) requires that there exist ψA(n, z) and ψB(n, z) in C(E ×U ),ψA, ψB ≥ 1,
and constants a f , b f , f ∈ D such that

|A f (x, u)| ≤ a f ψA(x, u), |B f (x, u)| ≤ b f ψB(x, u), ∀(x, u) ∈ U ,

where U is any closed set of E ×U . We can take a f = b f := ‖ f ‖D,2, and

ψA = ψB = ‖A(z)‖ +
m∑

i=1

‖ri (z)‖ + ρn(z).

Part (iii) requires the following: Defining (A0, B0) = {( f , ψ−1
A A f , ψ−1

B B f ) : f ∈
D}, (A0, B0) is separable in the sense that there exists a countable collection {gk} ⊂ D
such that (A0, B0) is contained in the bounded, pointwise closure of the linear span
of {(gk, A0gk, B0gk) = (gk, ψ

−1
A Agk, ψ

−1
B gk)}. This is proved by taking a dense

countable subset ϒ of C2
b (D) in the norm ‖·‖2, and then taking a countable subset

∞⋃

n=0

[ϒ]n ⊆ D �
[
C2
b (D)

]Z+
.

This subset is dense in the sense of pointwise convergence.
Part (iv) requires that, for eachu ∈ U , the operators Au and Bu definedby Au f (x) =

A f (x, u) and Bu f (x) = B f (x, u) are pre-generators. This follows from [27, Remark
1.1], because all these operators satisfy the positive maximum principle.

Part (v) requires that D is closed under multiplication and separates points. This
follows directly from the definition.

Finally, we need to prove the main condition as in [27, Theorem 1.7, (1.17)]:

∫

E×U
A f (x, u) μ0(dx × du) +

∫

E×U
B f (x, u) μ1(dx × du) = 0. (3.15)

From (3.14) and (3.6), canceling βn and ρn(z) when appropriate, we rewrite the left-
hand side of (3.15) as follows:

∞∑

n=0

βn

[∫

D
A f (n, z) νD(dz) +

m∑

i=1

∫

Fi
ri (z) · ∇ f (n, z) νFi (dz)

]

+
∫

D

∞∑

n=0

ρn(z)Mz f (n, ·) νD(dz).

(3.16)

The first line in (3.16) is equal to zero; this follows from (3.13). Let us show that the
second line in (3.16) is equal to zero, too. For every z ∈ D,Mz is the generator of the
M/M/1 queue with arrival and service rates λ(z) and μ(z), respectively. This queue
has a geometric stationary distribution (1 − ρ(z))ρn(z), n ∈ Z+. Thus,

∞∑

n=0

ρn(z)Mz f (n, ·) = 0, z ∈ D. (3.17)
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Integrating (3.17) with respect to μD(dz), we get that the second line in (3.16) is
equal to zero. We interchanged integration and series, which we can do by uniform
boundedness of f combined with Assumption 3.2. This completes the proof of (3.15),
and with it [27, (1.17)]. Next, K1 := ∂D is the closed support forμE

1 . By [27, Remark
2.5], the results of [27, Lemma 2.4] hold, and we can apply [27, Theorem 2.2 (f)] and
obtain the stationary copy of our process (N , Z).

We have written the proof for reflected diffusions. For nonreflected ones, it is
simpler: We can simply verify (3.13), which in our case then becomes

∫

D
A f (z) νD(dz) = 0, f ∈ C2(D). (3.18)

This is done similarly to the computation above, but without all boundary terms. The
lack of reflection obviates the need to apply results cited above from [27].

Finally, ergodicity follows from [32, Theorem 6.1] in the following way. (For ter-
minology, we refer the reader to [32].) Our process is positive Harris recurrent, since
the invariant measure is finite. Meanwhile, every skeleton chain is irreducible, because
of the following irreducibility property: Define a Lebesgue measure on Z+ × D as a
sum of Lebesgue measures on each layer of this set. ��
Lemma 3.2 For every n ∈ Z+, z ∈ D, and a subset G ⊆ Z+×D of positive Lebesgue
measure,

Pt ((n, z),G) > 0. (3.19)

Proof Without loss of generality, assumeG = {m}×E for a subset E ⊆ D of positive
Lebesgue measure, and m ≥ n. We prove the statement (3.19) by induction over m.

Induction base m = n. Consider the probability

Pt (y,G) = P(n,z)(N (t) = n, Z(t) ∈ E)

that, starting from y = (n, z), the joint process (N , Z) at time t will be in {n} × E .
This probability is bounded from below by

Pt (y,G) ≥ Qt
n(z, E) := P(n,z)

(
Z(t) ∈ E, N (s) = n, ∀ s ∈ [0, t]). (3.20)

This probability Qt
n(z, E), in turn, is estimated from below by (with z∗ > 0 fixed

later)

Qt
n(z, E) ≥ Q̃t

n(z, z∗, E) := P(n,z)
(
Z(t) ∈ E, ‖Z(t)‖ ≤ z∗; N (s)=n, ∀ s∈[0, t])

≥ exp

(
− t max‖z‖≤z∗

(λ(z) + μ(z))

)
· q∗.

(3.21)
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Here,q∗ is the probability that, starting from Zn(0) = z, the reflected jumpdiffusion Zn

in D with generator ρ−n(z)L and reflection vector fields r1, . . . , rm ends at Zn(t) ∈ E
and ‖Zn(s)‖ ≤ z∗ for s ∈ [0, t]. It follows from known properties of a reflected jump
diffusionwith nonsingular covariancematrix�(·) thatq∗ > 0 for large enough z∗ > 0.
This, together with (3.20) and (3.21), proves that

Pt (y,G) ≥ Qt
n(z, E) ≥ Q̃t

n(z, z∗, E) > 0. (3.22)

Thus, we have proved the statement (3.19) for m = n.
Induction step First, consider the case m = n + 1. This probability Pt (y,G) is

estimated from below by the probability that, for some time τ ∈ [0, t], the process N
will stay an level n, then jump at time τ to level n + 1, and stay there until time t , and
Z(t) ∈ E . If μ̂ is the distribution of τ (which is a positive measure on [0, t]), then

Pt (y,G) ≥
∫ t

0

∫

D
Qs

n(y, dw) Qt−s
n+1(w, E) μ̂(ds). (3.23)

It suffices to show that the double integral on the right-hand side of (3.23) is positive.
Indeed, from (3.22), we get that Qs

n(y, E
′) > 0 for E ′ ⊆ D of positive Lebesgue

measure, and Qt−s
n+1(w, E) > 0. In addition, μ̂ is a positive measure on [0, t]. Use

twice the observation that the integral of a positive function over a positive measure is
positive, and complete the proof that the right-hand side (and therefore the left-hand
side) in (3.23) is positive.

Assumingweproved (3.19) form = n+k, k ≥ 0, let us prove this form = n+k+1:

Pt (y,G) ≥
∫

D
Pt/2(y, (n + k, dw)) Pt/2((n + k, w), {n + k + 1} × E) > 0.

(3.24)

This follows from the same logic: The function Pt/2((n + k, w), {n + k + 1} × E) is
positive by the previous part of the induction step, applied to n + k instead of n, and
to n + k + 1 instead of m = n + 1. The measure Pt/2(y, (n + k, dw)) is positive by
the induction hypothesis. This completes the proof of this lemma. ��

Using Lemma 3.2, we have shown ergodicity as in (3.12). Earlier, we have
proved (3.10) and (3.11). Thus, we have completed the proof of Theorem 3.1. ��
Remark 2.3 The crucial property is that for each n ∈ Z+, z ∈ D, t > 0, V , V ′ ⊆ D,

∫

D×D
1(z ∈ V , z′ ∈ V ′)pt (z, z′)νD(dz)νD(dz′)

= ∫
D×D 1(z ∈ V , z′ ∈ V ′)pt (z′, z)νD(dz)νD(dz′).

(3.25)

In fact, further generalizations depend on whether an analog of this equality can be
established. Here, pt stands for the transition density for the diffusion with generator
A in (3.2).
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3.4 Amore general setup

We offer a similar result under a more general feedback scheme. For n = 1, 2, . . ., fix
a piecewise smooth domain Dn ⊆ D with mn faces of the boundary ∂Dn ,

F (n)
1 , . . . , F (n)

mn
, (3.26)

and corresponding reflection vector fields

r (n)
i : F (n)

i → R
d . (3.27)

For each n ∈ Z+, this domain Dn , its boundary ∂Dn with faces (3.26), and reflection
vector fields (3.27) satisfy the same assumptions enunciated at the very beginning of
Sect. 3, as the original domain D and reflection vector fields r1, . . . , rm . In addition,
we impose the following assumptions on the domains D and Dn .

Assumption 3.3 For all n ∈ Z+, Dn ∩ Dn+1 contains an open subset of D; and
D = ∪n∈Z+ Dn .

For every level N (t) = n of the queue-size component, the environment variable
z ∈ D is kept fixed when z ∈ D \ Dn and follows a reflected jump-diffusion process
in Dn as in (3.1) where parameters vary with n. In other words, the process Z̃n lives
in D, but its mechanism depends on n. The generator An of Z̃n has the form

An f (z) = g(z) · ∇ f (z) + 1

2

d∑

i=1

d∑

j=1

ai j (z)
∂2 f (z)

∂zi∂z j
+

∫

Dn

( f (z′) − f (z))�(z, dz′),

(3.28)

for z ∈ Dn , andAn f (z) = 0 for other z. The generator L of the joint process, instead
of (3.6), has the following form:

L f (n, z) = Mz f (n, z) + βnρ
−n(z)An f (n, z), f ∈ D̃. (3.29)

Here, D̃ is the following domain, defined similarly to (3.7):

D̃ := { f : Z+ × D → R | ∀n ∈ Z+ , f (n, ·) ∈ D(n)}, (3.30)

D(n) := { f : D → R | f ∈ Cb(D), f |Dn
∈ C2

b (Dn) ∩ C1
b(Dn),

r (n)
i (z) · ∇ f (z) = 0, z ∈ F (n)

i , i = 1, . . . ,mn}. (3.31)

Note that in this setup, the dependence of the generator An on the queueing state n is
only through the domain Dn , while the drift vector field g(·), covariance matrix field
�(·), and jumpmeasure family�(·, ·) are all independent of n; see also Examples 3.1
and 3.2 .

Let us impose assumptions on An , similar to Assumptions 3.1 and 3.2 .
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Assumption 3.4 For every n ∈ Z+, the above (reflected) jump diffusion in Dn has a
unique invariant distribution ν

(n)
Dn

, with corresponding boundary measures ν
(n)

F (n)
i

, i =
1, . . . ,mn .

Assumption 3.5 There exists a finite measure υ on D whose restriction ν
(n)
Dn

on Dn is

a stationary measure for Z̃n , for every n.

This independence of the invariant measure υ of n is similar to Assumption 2.1 in
Sect. 3.

Assumption 3.6 We have

� :=
∞∑

n=0

∫

Dn

ρn(z)υ(dz) < ∞. (3.32)

Under these assumptions, we obtain the following theorem, analogous to Theo-
rem 3.1.

Theorem 3.3 Under Assumptions 3.3–3.6, the combined process (N , Z) with the gen-
erator L from (3.28) has a unique invariant probability distribution π given by

π({n}, dz) = �−1ρn(z)υ(dz). (3.33)

The corresponding boundary measures νFi for Fi (if there is reflection) are given by

νFi ({n}, dz) = �−1ρn(z)ν(n)
Fi

(dz), i = 1, . . . ,mn . (3.34)

Finally, this process is ergodic in the sense of (3.12).

Proof For the proof of the stationary measure, we proceed very similarly to the proof
of Theorem 3.1, except that we change (3.14):

μ0({u} × {n} × dz) = 1(u = 0) ρn(z) υ(dz),

μ1({u} × {n} × dz) = 1(u �= 0) ρn(z) ν
(n)
Fu

(dz);
μE
0 ({n} × dz) = ρn(z) υ(dz),

μE
1 ({n} × dz) = ρn(z)ν(n)

Fi
(dz), z ∈ Fi , i = 1, . . . ,m;

η0((n, z), {u}) = 1(u = 0),

η1((n, z), {u}) = 1(u �= 0);
A f ((n, z), u) := L f (n, z), cf. (3.29),

B f ((n, z), u) := 1(u �= 0, z ∈ ∂D) ρ−n(z) ru(z) · ∇ f (z).

(3.35)

To prove ergodicity as in (3.12), similarly to Theorem 3.1, we show an analog of
Lemma 3.2:
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Lemma 3.4 For all n,m ∈ Z+, z ∈ D, and a subset G ⊆ Z+×D of positive Lebesgue
measure

Pt ((n, z),G) > 0. (3.36)

Proof Similarly to Lemma 3.4, without loss of generality, assume G = {m} × E for
a subset E ⊆ D of positive Lebesgue measure, and m ≥ n.

Case (a) z ∈ Dn, E ⊆ Dm . We prove this statement similarly to Lemma 3.2, using
induction over m. The induction base (m = n) can be shown as in (3.20). Induction
step: for m = n + 1, we prove this as in (3.23) (using the same notation), but we
integrate over Dn ∩ Dn+1 instead of D:

Pt ((n, z), {m} × E) ≥
∫ t

0

∫

Dn∩Dn+1

Qs
n(y, dw) Qt−s

n+1(w, E) μ̂(ds).

Assuming we proved this form = n+k, let us prove this form = n+k+1. Similarly
to (3.24), but integrating over Dn+k ∩ Dn+k+1, we get

Pt ((n, z), {m} × E)

≥
∫

Dn+k

Pt/2(y, (n + k, dw)) Pt/2((n + k, w), {n + k + 1} × E) > 0.

This completes the proof of the induction step, and with it the proof of (3.36) in case
(a).

Case (b) z ∈ Dn, E ∩ Dm = ∅. (Clearly, we can reduce the case of a general E to
these two cases (a) and (b).) Since E ⊆ D = ∪k Dk , there exists a k such that E ∩ Dk

has positive Lebesgue measure. Take the k with such a property which is closest tom.
The process can get from (n, z) to {k} × (E ∩ Dk) with positive probability in time
t/2, using the path described in case (a) above. Afterward, for every z ∈ E ∩ Dk , the
process (N , Z) can jump from (k, z) to (m, z) in time t/2 with positive probability.
Indeed, for l between k and m, we have z /∈ Dl ; thus, the component N will jump
from k to m, and the environment component Z will stay constant at z.

Case (c) z /∈ Dn . There exists a k such that z ∈ Dk , since z ∈ D = ∪k Dk . Find
such k which is closest to n. The process (N , Z) can get from (n, z) to (k, z) in time
t/2 with positive probability: The queue component N will jump from n to k, and the
environment component Z will stay constant at z, since z /∈ Dl for l between n and k.
Starting the process from (k, z) instead of (n, z) now, we are back to cases (a) and (b).
Applying results from these cases for t/2 instead of t , we prove (3.36) for z /∈ Dn . ��

We proved Lemma 3.4, and with it, we proved ergodicity (3.12) and thus Theo-
rem 3.3. ��

Now, we provide examples in which the generator of the diffusive component in
the joint process depends on the queueing state in a nontrivial manner.

Example 3.1 Assume D = [0, 1], Dn = [0, αn], λ(z) = z, μ(z) = 1. Assume An is a
reflected diffusion (without jumps):
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An f (z) = a2(z)

2
f ′′(z) + b(z) f ′(z), z ∈ Dn . (3.37)

The functions a, b ∈ C2
b ([0, 1]) are given, describing the local diffusion coefficient

and the local drift of the processes Z̃n in Dn , with a(z) > 0 for z ∈ (0, 1). Standard
formulas from [8] guarantee that the measure υ on D has Lebesgue density

q(z) = 2

a2(z)
exp

(∫ z

0

2b(y)

a2(y)
dy

)
(3.38)

assuming that

∫ 1

0

|b(y)|
a2(y)

dy < ∞. (3.39)

Assumption 3.6 becomes

∞∑

n=0

∫ αn

0
ρn(z)q(z) dz < ∞. (3.40)

In particular, for a(z) ≡ 1 and b(z) = θ/(z−1)with θ > 0,we get q(z) = 2(1−z)−2θ .
If we choose

αn =
{
1, n < n0,

α∗, n ≥ n0,
(3.41)

for some α∗ ∈ (0, 1) and n0 ∈ N, then (3.40) holds for θ ∈ (0, 1/2). If a ≡ 1 and
b ≡ 0, then the driving process for the environment is a reflected Brownian motion,
with υ being the Lebesgue measure, and q(z) ≡ 1.

This example can be interpreted as follows: We keep the service rate fixed, μ = 1,
while the arrival rate λ varies as a reflected diffusion on [0, 1] if the queue size n is
less than an agreed threshold n0. However, if n reaches level n0, while λ < α∗, we
allow λ to vary only in a “safety range” [0, α∗]. If n attains the level n0, while λ ≥ α∗,
we simply “freeze” λ until the queue size becomes n0 − 1, at which time λ is again
allowed to follow the diffusion on [0, 1].
Example 3.2 Fix the arrival rate λ = 1, while the service rateμn is subject to a reflected
diffusionon the interval Dn := [αn, α

∗] ⊂ [1, α∗] =: D andkept unchanged inD\Dn .
Here, α∗ > 1 is a fixed constant. Here again, the generatorAn is given by (3.37), with
a, b ∈ C2

b ([1, α∗]); this operator from (3.37) acts on f ∈ C2([αn, α
∗])with boundary

conditions f ′(αn) = f ′(α∗) = 0. Instead of (3.38), we have

q(z) = 2

a2(z)
exp

(∫ z

1

2b(y)

a2(y)
dy

)
, (3.42)
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and instead of assumption (3.39), we have
∫ α∗

1

|b(y)|
a2(y)

dy < ∞. (3.43)

Assumption 3.6 becomes

∞∑

n=0

∫ α∗

αn

ρn(z)q(z) dz < ∞. (3.44)

As in Example 3.1, if a ≡ 1, b ≡ 0, then the driving process for the environment is a
reflected Brownian motion, with υ being the Lebesgue measure, and q(z) ≡ 1.

4 Explicit rates of exponential convergence

4.1 A brief summary of results andmethods

In this section, we prove (for both discrete-space and reflected diffusion environments)
that for some constants C, κ > 0, we have

‖Pt (x, ·) − π(·)‖TV ≤ C(x)e−κt , x ∈ D, t ≥ 0, (4.1)

and estimate the constant κ. We do this by coupling: Take two copies (N1, Z1) and
(N2, Z2) of this process starting from x1 = (n1, z1) and x2 = (n2, z2). Couple them
(that is, construct them on the same probability space) such that the coupling time

τ := inf{t ≥ 0 | N1(t) = N2(t), Z1(t) = Z2(t)}

satisfies E [eκτ ] < ∞ for some constant κ > 0. By the standard Lindvall inequality,
we get

‖Pt (x1, ·) − Pt (x2, ·)‖TV ≤ E
[
eκτ

]
e−κt , x ∈ D, t ≥ 0. (4.2)

We need only to integrate (4.2) with respect to x2 ∼ π to get (4.1). To obtain such a
coupling, we apply the following method: We wait until the queue component hits 0
for both copies. Thus, these queue components become coupled, that is, they are at
the same point. Then, we wait until: (a) either one of these queue components jumps
back to 1, or (b) the environment components become coupled. In case (b), we have
coupled both copies. In case (a), we have failed and need to repeat this procedure. Each
time, we succeed with positive probability (bounded from below). Thus, the number
of tries is dominated by a geometric distribution.

To couple the environment components, we use the results of [37]; however, it is
well known how to find the hitting time of zero by the M/M/1 queue [36]. Note that
assuming exponential rates of convergence of An given each queue state n does not
immediately imply the exponential rate of convergence of the joint process (N , Z). The
particular multiplicative structure we consider inAn enables us to obtain exponential

123



Queueing Systems (2020) 94:357–392 379

estimates for the coupling time constructed for the joint processes (N , Z) under the
mild conditions imposed on A as well as the arrival and service rates.

4.2 Main statements

We impose two assumptions. The first assumes exponential bounds on the coupling
time (uniform in state variables) associated with the generator A.

Assumption 4.1 The domain D ⊆ R
d is bounded. There exist constants α > 1 and

γ > 0 such that, for all z1, z2 ∈ D, we can couple two processes Z1, Z2 with generator
A, starting from Z1(0) = z1 and Z2(0) = z2, in time τz1,z2 := inf{t ≥ 0 | Z1(t) =
Z2(t)}, with

P(τz1,z2 ≥ t) ≤ αe−γ t . (4.3)

The other assumption is a stronger condition on the traffic intensity: In previous sec-
tions, we assumed it is less than 1, but now it has to be uniformly bounded away
from 1.

Assumption 4.2 There exist constants λ,μ > 0 which satisfy

λ(z) ≤ λ < μ ≤ μ(z), z ∈ D.

From this Assumption 4.2,

ρ(z) ≤ ρ := λ

μ
< 1, z ∈ D. (4.4)

Next, define the function

m(c) := −λc − μc−1 + (λ + μ), c ≥ 1. (4.5)

This function is concave, increasing on [1, c∗] and decreasing on [c∗,∞), with c∗ :=
ρ−1/2, and

m(1) = 0, m(c∗) =
(√

μ −
√

λ
)2

.

Finally, define the function

θ(α, β, γ, a) := aγ

(a − β)(β + γ − a)
α(a−β)/γ + β

β − a
, (4.6)

for any α > 1, β, γ > 0, and a ≥ 0.

Theorem 4.1 Fix an initial condition x0 = (n0, z0) ∈ Z+ × R+. Under Assump-
tions 4.1 and 4.2 , for some constants C > 0 and c ∈ (1, c∗),
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‖Pt ((n0, z0), ·) − π(·)‖TV ≤ C
(
1 + cn0

)
e−κt , t ≥ 0. (4.7)

where we can take any κ = (1 − ε)m(c) for ε ∈ (0, 1) and c ∈ (1, c∗) such that

cθ(α, λ, γ,m(c)) <
(
1 − α−λ/γ γ

λ + γ

)−ε/(1−ε)

. (4.8)

The proof of the theorem is given at the end of this section. The only condition
on the environment process is Assumption 4.1 on the coupling time with (uniformly)
exponential tail for the environment process corresponding to N (t) = 0. It is natural
to assume this condition also holds for the finite environment space.

Note that there exists a c ∈ (1, c∗) such that (4.8) is satisfied. Indeed, the left-hand
side of (4.8) is continuous with respect to c and is equal to 1 for c = 1, whereas
the right-hand side of (4.8) is larger than one for any ε ∈ (0, 1). However, to find
a maximal rate of convergence, one needs to maximize κ over the space of two
parameters (ε, c) which satisfy (4.8). Possible values of κ form an interval [0, κ∗),
which does not contain its upper endpoint; therefore, we cannot claim that κ∗ is itself
a rate of convergence.

Compare this with the simple M/M/1 queue with constant rates, arrival rate λ and
service rate μ, which has an exact rate of convergence e−m(c)t for c > 0 such that
m(c) > 0 from (4.5). [36, Proposition 5.8] states that the upper bound, restricting to
only the queueing process, is

(
1 + ρ−n/2) exp

[ − (
λ
1/2 − μ1/2)2t

]
.

The constant in the exponent does not depend on n. Our result matches this rate.
After somemodifications, this theorem is applicable not only to reflected diffusions

from Sect. 2, but for the discrete environment space from Sect. 3. Here is its version:

Assumption 4.3 There exist constants α > 1 and γ > 0 such that, for all z1, z2 ∈ D,
we can couple two continuous-time Markov chains Z1, Z2 with common generator
σ(·)T0, starting from Z1(0) = z1 and Z2(0) = z2, in time τz1,z2 , such that (4.3) holds.

Theorem 4.2 Under Assumptions 4.2 and 4.3, the result (4.7) for (c, ε) satisfying (4.8)
holds.

4.3 On Assumptions 4.1 or 4.3

Below, we give examples of discrete and continuous environment processes which
satisfy Assumptions 4.1 or 4.3.

4.3.1 Coupling of jump processes

First, let us start with discrete-space Markov chains. The relation between coupling
times and mixing times (for Pt (x, ·) to converge within a fixed TV distance from the
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stationary distribution) is partially explored in [19]. There is a lot of existing literature
on mixing times. For example, an extensive treatment of mixing times is given by
Levin et al. [30]. The literature on coupling times is sparse. Much of the existing
research is focused on γ from Assumption 4.1; see, for example, [9], but we need to
know both α and γ . We could not find articles which estimate both of them. Thus,
we present an elementary result, which we hope will be useful. The proof is in the
Appendix.

Lemma 4.3 Take a pure jump Markov process on the state space D (finite, countable,
or a domain in R

d ) such that the family of jump measures (ν(x, ·))x∈D obeys

Λ := sup
x∈D

λ(x), λ(x) := ν(x, D), x ∈ D,

and the family of probability measures

ν(x, ·) := 1

Λ
ν(x, ·) + Λ − λ(x)

Λ
δ{x}, x ∈ D,

satisfies the following condition:

q := sup
x,y∈D

‖ν(x, ·) − ν(y, ·)‖TV < 1. (4.9)

Then, the coupling times τx,y satisfy the following uniform estimate:

P(τx,y ≥ t) ≤ exp
( − (1 − q)Λt

)
.

Remark 4.1 The same result is true if the process is a reflected jump diffusion with
jump measures satisfying the conditions of Lemma 4.3.

Example 4.1 The condition (4.9) is not true if at least two measures ν(x, ·) and ν(y, ·)
are mutually singular; that is, there exists a set D0 ⊆ D such that ν(x, D0) = 0 but
ν(y, D0) = 1. Indeed, we then have

‖ν(x, ·) − ν(y, ·)‖TV ≥ |ν(x, D0) − ν(y, D0)| = 1.

Example 4.2 Assume that, for all x ∈ D, ν(x, ·) � μ(·) for some σ -finite Borel
measure μ on D. It can be the Lebesgue measure if D is a domain in R

d , or the
counting measure for discrete D. Define the Radon–Nikodym derivative

f (x, z) := dν(x, ·)
dμ(·) (z).

Then, condition (4.9) is equivalent to

sup
x,y∈D

∫

D
| f (x, z) − f (y, z)|dμ(z) = q < 1.
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For example, take a finite D (with m elements). Let μ be the counting measure, then
ν(·, ·) can be given by an m × m matrix (νi j ) (with zero diagonal elements). The i th
row gives the Radon–Nikodym derivative of ν(i, ·)with respect toμ. Thus, we obtain

q := max
i, j=1,...,m

m∑

k=1

|νik − ν jk |.

4.3.2 Coupling of reflected diffusions

Now, consider a reflected diffusion on [0, a]. It is stochastically ordered, so every τx,y
is stochastically dominated by T , the hitting time of a starting from 0. Thus,

P(τx,y ≥ t) ≤ P(T ≥ t).

Let us estimate the tail of T . Take a nonreflected diffusion Z∗ = {Z∗(t) : t ≥ 0} on
the real line, with drift and diffusion coefficients

g∗(x) =
{
g(x), x ≥ 0,

−g(−x), x < 0,
σ ∗(x) = σ(|x |), x ∈ R.

Let T ∗ := inf{t ≥ 0 : |Z∗(t)| = a}. Then, the laws of Z(· ∧ T ) and Z∗(· ∧ T ∗) are
the same, and the laws of T and T ∗ are the same. Thus, we have reduced this to tail
estimation for an exit time of a diffusion process from a strip [−a, a].

Denote by u∗(t, x) the probability that Z∗ stays in (−a, a) until at least time t , if
Z∗(0) = x . Denote by G(t, x, y) the transition density of this diffusion killed at ±a,
otherwise known as a Green’s function (or heat kernel) of the infinitesimal generator
A∗ of Z∗. Then, the function u∗ satisfies the initial-boundary value problem

∂u∗

∂t
= A∗u∗, t ≥ 0, −a < x < a,

with initial and boundary conditions u∗|t=0 = 1 and u|x=±a = 0. Thus, we can
express

u∗(t, x) =
∫ a

−a
G(t, x, y) dy.

Knowing the spectral decomposition of G gives us the exponent in (4.3). To find the
constant A is a little harder, since it requires some information on the function G
itself, or its eigenvalues. In some simple cases, however, it can be found explicitly. For
example, for a RBM Z on [0, a], the process Z∗ is also a Brownian motion, and [21,
Chapter 2, Problem 8.2] gives us an exact estimate.

4.4 Proof of Theorem 4.2

We proceed in seven steps. Step 1. It suffices to prove the following version of (4.2):
For (n1, z1), (n2, z2) ∈ Z+ × D,
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‖Pt ((n1, z1), ·) − Pt ((n2, z2), ·)‖TV ≤ C∗
(
cn1 + cn2

)
e−κt , t ≥ 0, (4.10)

for some constant C∗ (which will be determined below). Indeed, then we can
rewrite (4.10) as follows: For every Borel subset A ⊆ Z+ × D,

∣∣Pt ((n1, z1), A) − Pt ((n2, z2), A)
∣∣ ≤ C∗

(
cn1 + cn2

)
e−κt . (4.11)

Integrate (4.11) with respect to (n2, z2) ∼ π . Note that the function (n, z) �→ cn is
integrable with respect to π . Indeed, this integral is equal to

�−1
∞∑

n=0

∫

D
cnρn(z)νD(dz).

From (4.4), νD(D) = 1, and c < c∗ = ρ−1/2,

∞∑

n=0

∫

D
cnρn(z)νD(dz) ≤

∞∑

n=0

ρn/2 = (1 − ρ1/2)−1 < ∞. (4.12)

Combining (4.11) and (4.12), we get (4.7).
Step 2. To get (4.10), we use coupling: As explained in the beginning of this

section, we take on the same filtered probability space two copies X1 = (N1, Z1) and
X2 = (N2, Z2) of this queue, starting from x1 = (n1, z1) and x2 = (n2, z2). Assume
τ ≡ τ(x1, x2) is a stopping time such that X1(t) = X2(t) for t ≥ τ a.s. Then, τ is
called a coupling time. For every t ≥ 0 and a function f : Z+ ×D → R with | f | ≤ 1,
we can write

|E f (X1(t)) − E f (X2(t))| ≤ ∣∣E
[
f (X1(t))1{τ≤t}

] − E
[
f (X2(t))1{τ≤t}

]∣∣

+ ∣∣E
[
f (X1(t))1{τ>t}

] − E
[
f (X2(t))1{τ>t}

]∣∣ ≤ 2P(τ > t).
(4.13)

In other words, we get the classic Lindvall inequality

|E f (X1(t)) − E f (X2(t))| ≤ 2P(τ > t). (4.14)

Next, assuming that we prove that Eeκτ < ∞, then

P(τ > t) ≤ e−κt · Eeκτ . (4.15)

Combining (4.14) with (4.15), we get (4.11). In the proof below, we shall see that the
constant before e−κt turns out to be of the same form as required in (4.11).

Step 3. Let us now describe the coupling in detail.

(a) First, we couple the queue components. Both N1 and N2 are stochastically domi-
nated by N , which is defined as the M/M/1 queue with arrival rate λ and service
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rateμ, starting from N (0) = n1∨n2. Therefore, we can take copies of N1, N2, N
such that

N1(t) ≤ N (t) and N2(t) ≤ N (t), t ≥ 0. (4.16)

From (4.16), it follows that for τ0 := inf{t ≥ 0 | N (t) = 0}, we have N1(τ0) =
N2(τ0) = 0.

(b) At τ0, we start two competing clocks. The first one is an exponential clock η0 ∼
Exp(λ), which measures the time until arrival of the process N to 1 from 0. The
second one is ζ0, a coupling time of Z1(τ0+·) and Z2(τ0+·). This time ζ0 exists by
Assumption 4.1, since these two processes are copies of the environment process
with generatorA (recall β0 = 1) starting from Z1(τ0) and Z2(τ0), respectively. At
least (importantly for us here), this is true until η0, when those drift and diffusion
coefficients change.

(c) If ζ0 < η0, then Z1 and Z2 have time to couple, while N (t) = 0. By stochastic
domination, N1(t) = N2(t) = 0. Thus, S0 := τ0 + ζ0 is a coupling time for X1
and X2.

(d) If, however, ζ0 ≥ η0, then the coupling did not work. The process N has jumped
at time τ0 + η0 back to 1, and we need to repeat this procedure. Let

τ1 := inf{t ≥ 0 | N (t + τ0 + η0) = 0}, η1 ∼ Exp(λ).

Let ζ1 be a coupling time of Z1(τ1 + τ0 + η0 + ·) and Z2(τ1 + τ0 + η0 + ·).
If ζ1 < η1, then for S1 := τ0 + η0 + τ1 + ζ1, we have N (S1) = 0, and thus,
N1(S1) = N2(S1) = 0. But since ζ1 is also a coupling time for the environment
components, Z1(S1) = Z2(S1). Thus, S1 is a coupling time for (N1, Z1) and
(N2, Z2).

(e) If ζ1 ≥ η1, then this coupling did not work, and we need to repeat this procedure,
with ζ2, η2, S2, and so on. Let J := min{ j ≥ 0 | ζ j < η j }. Then, the ultimate
coupling time is

τ :=
J−1∑

j=0

(τ j + η j ) + τJ + ζJ =
J∑

j=0

(τ j + η j ∧ ζ j ) = SJ , (4.17)

where we define the following random times:

Sk :=
k∑

j=0

ξ j , ξk := τk + ζk ∧ ηk, k ∈ Z+. (4.18)

Next, we estimate the MGF of τ from (4.17).

Step 4. First, we estimate the MGF for each τk . The generator of N is

M f (n) = λ( f (n + 1) − f (n)) + μ1{n �=0}( f (n − 1) − f (n)).
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Therefore, letting f (n) = cn for a constant c > 1, we get

M f (n) = −m(c) f (n), n ≥ 1,

with the constant m(c) defined in (4.5). The process

L(t) := cN (t∧τ0) + m(c)
∫ t∧τ0

0
cN (s) ds, t ≥ 0,

is a local supermartingale, because the function WN : n �→ cn satisfies

MWN (n) ≤ −m(c)WN (n), n = 1, 2, . . . .

In the terminology of [37, Section 4], this is a modified Lyapunov function for N .
Then, the derivation is similar to [37, Section 5]. By Fatou’s lemma, L is a true
supermartingale. Let

L∗(t) :=
∫ t

0
em(c)s dL(s), t ≥ 0.

Because ems ≥ 0, this process is also a supermartingale. Consider the process

L∗(t) := em(c)(t∧τ0)cN (t∧τ0), t ≥ 0.

By an elementary calculation, dL∗(t) = dL∗(t). Therefore L∗(t) = L∗(t) + const,
and L∗ is itself a supermartingale. Thus, for every t ≥ 0,

E

[
em(c)(t∧τ0)cN (t∧τ0)

]
≤ EcN (0). (4.19)

Let t → ∞ in (4.19). By Fatou’s lemma with the observation that N (τ0) = 0, we get

Eem(c)τ0 ≤ cn1∨n2 . (4.20)

Similarly to (4.20), we get estimates for the MGFs of τ1, τ2, . . ., with the difference
that the initial state becomes 1 instead of n1 ∨ n2. Therefore,

Eem(c)τk ≤ c, k = 1, 2, . . . . (4.21)

Step 5. By Assumption 4.1, we have P(ζk > t) ≤ αe−γ t for t > 0, and we recall
that ηk ∼ Exp(λ̄). Also, ζk and ηk are independent. Thus, by Lemma 6.1, we have,
for all k ∈ Z+,

P(ζk ≤ ηk) ≤ γ

λ + γ
α−λ/γ =: p.
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Thus, the number of “tries,” J , is stochastically dominated by a geometric random
variable J̃ , which is the number of trials that one needs to get to the first success if the
probability of success of each trial is p. It has the distribution and generating function
(with q := 1 − p)

P(J̃ = n) = pqn−1, n = 1, 2, . . . , and E

[
sJ̃

]
= ps

1 − qs
, s ∈ [0, q−1).

(4.22)

Step 6. Let us estimate the MGF of ξk , defined in (4.18). By Assumption 4.1 and
Lemma 6.1 applied to a := m(c) for c ∈ [1, c∗],

E

[
em(c)(ζk∧ηk )

]
≤ θ(α, λ, γ,m(c)). (4.23)

The expression for θ(α, β, γ, a) is given in (4.6). Combining (4.21) and (4.23), we
get

E

[
em(c)ξk

]
≤ cθ(α, λ, γ,m(c)) =: κ(c), k = 1, 2, . . .

The same holds if we take conditional expectation

E

[
em(c)ξk | FSk−1

]
≤ cθ(α, λ, γ,m(c)), k = 1, 2, . . . (4.24)

Combining (4.20) and (4.23), we get

E

[
em(c)ξk

]
≤ cn1∨n2θ(α, λ, γ,m(c)). (4.25)

Step 7. Finally, recall (4.17). We estimate from above theMGF for appropriate κ > 0:
E

[
eκSJ

] = E [eκτ ]. By (4.24), the process (Mk)k∈Z+ defined by

Mk := exp
(
m(c)Sk − k ln κ(c)

)
, k ∈ Z+,

is an (FSk )k∈Z+-supermartingale. It is positive, and J is an (FSk )k∈Z+ -stopping time.
Applying the optional stopping theorem and using (4.25), we obtain

E
[
MJ

] ≤ E[M0] = E

[
em(c)ξ0

]
= cn1∨n2θ(α, λ, γ,m(c)). (4.26)

By Hölder’s inequality,

E
[
exp

(
(1 − ε)m(c)SJ

)]

≤
(
E

[
em(c)SJ −J ln κ(c)

])1−ε · (
E

[
exp (J ((1 − ε)/ε) ln κ(c))

])ε

= (
E

[
MJ

])1−ε
E

[
κ(c)(1−ε)J /ε

]
.

(4.27)

123



Queueing Systems (2020) 94:357–392 387

Since κ(c) > 0 for c ∈ [1, c∗], and J is stochastically dominated by a geometric
random variable J̃ as in (4.22), we have

E

[
κ(c)(1−ε)J /ε

]
≤ E

[
κ(c)(1−ε)J̃ /ε

]
= pκ(c)(1−ε)/ε

1 − κ(c)(1−ε)/εq
. (4.28)

Here, we require that κ(c)(1−ε)/ε < q−1, which is exactly the condition for c in (4.8).
Combining (4.26), (4.27) and (4.28), we get

E
[
exp

(
(1 − ε)m(c)SJ

)] ≤ c(1−ε)(n1∨n2)θ(α, λ, γ,m(c))1−ε pκ(c)(1−ε)/ε

1 − κ(c)(1−ε)/εq

= C∗c(1−ε)[(n1∨n2)−1] < C∗cn1∨n2 ≤ C∗(cn1 + cn2),

C∗ := pκ(c)(1−ε)(1/ε+1)

1 − κ(c)(1−ε)/εq
.

(4.29)

From (4.17), this completes the proof of (4.10) forκ := (1−ε)m(c) and Theorem 4.1.

5 Concluding remarks

We have found the explicit invariant measure for the joint interactive queueing and
environment process and estimated the exponential rate of convergence for the compact
environment case. One interesting question would be to consider unbounded environ-
ment domains, but with environment process being exponentially ergodic. This will
require much finer estimates, because Assumption 4.1 will hold only with α depen-
dent on z1 and z2. One way to find such coupling was developed in [7,20,31,37] via
Lyapunov functions. Subgeometric rates of convergence seem interesting. Some work
was done in [15,29] for general Markov processes and in [1,2] for some SDEs arising
from many-server queues, but to the best of our knowledge none for our setup.

6 Appendix

6.1 Proof of Lemma 4.3

Alternatively, we can describe such a pure jump process X = (X(t), t ≥ 0) as
follows: Run an exponential clock η1 ∼ Exp(Λ), and then let X(t) = X(0) for
t < η1, and X(η1) ∼ ν(X(0), ·) (independently of η1). Run another exponential
clock η2 ∼ Exp(Λ) independent of those random variables, then X(S2),Y (S2) with
S2 := η1 + η2, and repeat the process. Thus, we couple these processes X = {X(t) :
t ≥ 0} and Y = {Y (t) : t ≥ 0} starting from X(0) = x and Y (0) = y as follows:
We use the same exponential clocks η1, η2, . . ., and couple X(Sk) and Y (Sk) with
Sk := η1 + . . . + ηk , using the maximal coupling from [30, Proposition 4.7]:
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P
(
X(ηk) �= Y (ηk) | FSk−1

) = ‖ν(X(ηk−1, ·) − ν(Y (ηk−1, ·))‖TV, k = 1, 2, . . .

(6.1)

The coupling time then becomes

τx,y := SJ , J := min{k ≥ 1 : X(ηk) = Y (ηk)}. (6.2)

Combining (4.9) and (6.1), we get

P
(
X(ηk) = Y (ηk) | FSk−1

) ≥ p := 1 − q, k = 1, 2, . . . . (6.3)

Therefore, J is stochastically dominated by a geometric random variable J̃ (the
number of tries until the first success in a sequence of independent Bernoulli trials
with individual success probability p), independent of η1, η2, . . .. From (6.2), we get

τx,y 
 η1 + · · · + ηJ̃ =: S̃. (6.4)

The MGF of each of these exponential random variables is

E
[
euηk

] = Λ

Λ − u
, u < Λ,

and the generating function for this geometric random variable is

E
[
sJ̃

] = ps

1 − qs
, s < q−1.

Therefore, the MGF for S̃ from the right-hand side of (6.4) is the composition

E
[
euS̃

] = p Λ
Λ−u

1 − q Λ
Λ−u

= pΛ

pΛ − u
.

Thus, S̃ ∼ Exp(pΛ), and it satisfies P(S̃ ≥ t) ≤ e−pΛt . The rest is trivial.

6.2 A technical comparison lemma

Lemma 6.1 Fix constants α > 1, β, γ > 0. Take two independent random variables
ξ ∼ Exp(β) and η > 0 which satisfies P(η > u) ≤ αe−γ u for u ≥ 0. Then,

P(η < ξ) ≥ α−β/γ γ

β + γ
. (6.5)

For a ∈ [0, β + γ ), the moment generating function for ξ ∧ η satisfies

E

[
ea(ξ∧η)

]
≤ θ(α, β, γ, a), (6.6)

where the function θ is defined in (4.6).
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Proof Let us first show (6.5). We have αe−γ u < 1 for u > u0 := γ −1 ln(α). Then,
we can rewrite our tail estimate for η as follows:

P(η ≥ u) ≤
{

αe−γ u, u ≥ u0,

1, u < u0.

Therefore, we have

P(ξ ≤ η) =
∫ ∞

0
βe−βu

P(u ≤ η) du

≤
∫ ∞

u0
αβe−βue−γ u du +

∫ u0

0
βe−βu du

= αβ

β + γ
e−(β+γ )u0 + (1 − e−βu0) = 1 − γ

β + γ
α−β/γ .

From here, (6.5) immediately follows. Next, let us show (6.6). For every u ≥ 0,

E

[
ea(u∧η)

]
= eau P(η > u) +

∫ u

0
eav

P(η ∈ dv)

≤ eau P(η > u) −
∫ u

0
eav dP(η > v)

= eau P(η > u) − eav
P(η > v)

∣∣v=u
v=0 +

∫ u

0
P(η > v) deav

≤ 1 +
∫ u

0
(αe−γ v ∧ 1) aeav dv.

Calculate the integral on the right-hand side by splitting it into two integrals: from 0
to u0 (where u0 is defined above), and from u0 to u. If u ∈ [0, u0], this integral is
equal to

∫ u

0
(αe−γ v ∧ 1) aeav dv =

∫ u

0
aeav dv = eau − 1.

If u > u0, then this integral is equal to

∫ u

0
(αe−γ v ∧ 1) aeav dv =

∫ u0

0
aeav dv +

∫ u

u0
αae(a−γ )v dv

= eau0 − 1 + αa

a − γ

[
e(a−γ )u − e(a−γ )u0

]

= αa/γ + αa

a − γ

[
e(a−γ )u − α(a−γ )/γ

]
− 1

= γ

γ − a
αa/γ + αa

a − γ
e(a−γ )u − 1.
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Combining all these computations, we get

E

[
ea(u∧η)

]
≤

{
γ

γ−aαa/γ + αa
a−γ

e(a−γ )u, u > u0,

eau, u ∈ [0, u0].
(6.7)

Now, integrate (6.7) with respect to the exponential distribution of ξ , βe−βu du:

E

[
ea(ξ∧η)

]
≤

∫ u0

0
eau βe−βu du +

∫ ∞

u0

[
γ

γ − a
αa/γ + αa

a − γ
e(a−γ )u

]
βe−βu du

= β

a − β

[
e(a−β)u0 − 1

]
+ γ

γ − a
αa/γ e−βu0 + αβa

(a − γ )(γ + β − a)
e−(γ+β−a)u0

= a(β − γ )

(a − β)(a − γ )
α(a−β)/γ − β

a − β
+ β

(a − γ )(β + γ − a)
α1−(γ+β−a)/γ

= aγ

(a − β)(β + γ − a)
α(a−β)/γ + β

β − a
.

This completes the proof. ��
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