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SUMMARY
The frictional properties of large faults are expected to vary in space. However, fault models
often assume that properties are homogeneous, or nearly so. We investigate the conditions
under which the details of variations may be neglected and properties homogenized. We do so
by examining the behaviour of nonlinear solutions for unstably accelerating fault slip under
frictional heterogeneity. We consider a rate- and state-dependent fault friction in which the
characteristic wavelength for the property variations is a problem parameter. We find that
homogenization is permissible only when that wavelength shows scale separation from an
elasto-frictional length scale. However, fault models also often include property transitions
that occur over distances comparable to the elasto-frictional length. We show that under such
comparable variations, the dynamics of earthquake-nucleating instabilities is controlled by the
properties’ spatial distribution.
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1 INTRODUCTION

This study assesses the quasi-static evolution of fault slip consid-
ering a fault’s frictional properties to be non-uniformly distributed
over a wide range of length scales. We consider slip rate and state
dependence of fault shear strength and that the parameters in its con-
stitutive formulation (a, b, σ and Dc) are functions of position on
the fault. Previous studies with homogeneous fault frictional prop-
erties showed that blow-up solutions exist for slip rate instabilities
on a fault (e.g. Rubin and Ampuero 2005; Viesca 2016a,b). Subse-
quently, Ray & Viesca (2017) found that a finite number of blow-up
solutions exist when fault frictional properties are non-uniform.
Here we consider variations of frictional parameters over a char-
acteristic wavelength and examine how the size of that wavelength
influences the blow-up solutions as well as their stability.

Following laboratory rock friction studies (e.g. Stesky 1975; Di-
eterich 1981; Blanpied et al. 1991), fault frictional properties have
been thought to vary with depth and this variation has been re-
flected in seismic cycle models (e.g. Tse & Rice 1986). Often,
simple representations of these variations on mature faults are cho-
sen: homogeneity over large intervals with transitions occurring
further downdip. However, several observations indicate that fric-
tional heterogeneity may exist over large regions of a fault at various
scales, observations such as the clustering of microseismicity (e.g.
Waldhauser et al. 2004; Rubin et al.1999). This raises questions as
to what extent can homogeneity be taken in place of considering
detailed distributions of properties. Specifically, is important infor-
mation lost by using averages of variable quantities? In other words,
can homogenizing be ingenuous? How does the presence or absence
of homogeneity affect the dynamics of models of seismic cycles?

Past studies of the influence of heterogeneity on fault rupture
have focused on rate-independent descriptions of fault strength, as
implied by a slip-dependent strength or the assumption of constant
fracture energy. Such descriptions lend themselves to application of
concepts from classical, linear-elastic fracture mechanics in which
knowledge of the spatial distribution of stress or strength is used
to make predictions regarding rupture propagation and arrest. For
example, fault stress may be presumed to vary in space, while prop-
erties determining frictional strength are taken to be uniform, such
as in the determination of rupture extent in numerical simulations
or in experimental, laboratory ruptures (Ampuero et al. 2006; Rip-
perger et al. 2007; Kammer et al. 2015; Bayart et al. 2016; Ke et al.
2018). In the former, the stress field is known such that rupture
extent can be predicted a priori, and in the latter, rupture extent
is predicted retrospectively using measurements of stress changes
following rupture. While in both examples, the so-called fracture
energy of the fault is typically presumed a material constant, there
has also been an interest in understanding how variations of the
fault fracture energy, by way of varying frictional properties, affect
the statistics of rupture events (e.g. Aochi & Ide 2004).

However, laboratory and theoretical studies indicate that fault
strength has a rate dependence, in manners such that the fracture
energy may not be considered to be a local property of the fault.
The dependence may be weak at interseismic slip rates (e.g., Ru-
ina 1983) or strong for mechanisms thought to operate during fast,
co-seismic slip (e.g., Rice 2006; Goldsby & Tullis 2011). This rate
dependence, however, raises difficulties in the analysis of spatial
variations of frictional properties. Here we focus on the problem
of earthquake nucleation to begin to address the above questions.
Specifically, we consider a slip rate- and state-dependent fault fric-
tion and we examine instability development on faults with spatial
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distributions of frictional parameters. Prior work has considered
the emergence of earthquake-nucleating instabilities on faults with
spatially uniform properties using both linear (Rice & Ruina 1983;
Rice et al. 2001; Aldam et al. 2017) and nonlinear (Dieterich 1992;
Rubin & Ampuero 2005; Viesca 2016a,b) analyses and numerical
solutions. Using a prior analysis of instability under heterogeneous
frictional properties (Ray & Viesca 2017) and in the light of recent
developments on heterogeneous faults (Dublanchet 2017; Luo &
Liu 2019), we seek to determine the role of the length scale over
which properties vary.

2 EQUATIONS GOVERNING
QUAS I - STAT IC FAULT SL IP

2.1 Fault shear traction

We consider a geological fault as an interface, within a continuum,
that accommodates relative motion. The fault is presumed to be lo-
cated along the x–z plane containing the origin and we consider in-
or anti-plane deformation in which the magnitude of the displace-
ment varies only over x. The ambient stress and displacement fields
in the medium are identified respectively as σ ij(x, y, t) and ui(x, y,
t). On the fault, the magnitude of the displacement discontinuity is
referred to as slip, which is considered to vary only along x and is
given by δ(x, t) = ui(x, 0+, t) − ui(x, 0−, t), where i = x or z denote
in-plane (mode II) or anti-plane (mode III) shearing respectively.

In the absence of any differential slip along the fault, the shear
traction on the fault surface is purely due to any remote loading,
which resolves onto the fault surface as τ ex. When the fault accom-
modates slip, the fault shear traction changes by an amount τ el due
to the elastic deformation of the fault-bounding medium. The total
fault shear traction τ due to the medium’s loading and response to
non-uniform slip is then given by

τ (x, t) = τex(x, t) + τel(x, t). (1)

We consider here slow, quasi-static deformation in which τ el is
determined by the current distribution of the slip δ(x, t). For in-
or anti-plane slip on an unbounded fault between two elastic half-
spaces

τel(x, t) = μ̄

2π

∫ ∞

−∞

∂δ(ξ, t)/∂ξ

ξ − x
dξ, (2)

where μ̄ = μ/(1 − ν) and μ̄ = μ for the in- and anti-plane cases,
respectively (e.g. Bilby & Eshelby 1968; Rice 1968), μ is the shear
modulus and ν is Poisson’s ratio. For a fault lying below and parallel
to a free surface a distance h away, τ el is more simply expressed as

τel(x, t) = Ēh
∂2δ(x, t)

∂x2
, (3)

provided that variations in slip δ(x, t) occur over distances much
larger than h [supplementary materials in Viesca (2016b)]. The
elastic modulus Ē = 2μ/(1 − ν) and Ē = μ for the in- and anti-
plane cases, respectively.

Such a so-called thin-slab configuration has been presumed to
well represent the elastic deformation of translational landslides
and ice sheets in response to basal slip (e.g. Puzrin & Germanovich
2005; Lipovsky & Dunham 2017), and also as a more mathe-
matically convenient representation of elastic interactions between
points on a fault (e.g. Bar-Sinai et al. 2012). As discussed in Vi-
esca (2016a,b) and Ray & Viesca (2017), the two models, while
representing two end-members of elastic interactions, long- and
short-ranged, can give rise to qualitatively similar behaviour. In the

sections to follow, we present results for the thin-slab fault model,
though the results are generally qualitatively similar to the elastic
configuration.

2.2 Fault frictional strength

We presume the fault shear strength, τ s, is purely frictional and is
given by

τs(x, t) = σ (x, t) f (x, t), (4)

where σ is the fault-normal stress and f is the friction coefficient.
In the case of a fluid-saturated fault zone, σ is the effective fault-
normal stress, σ (x, t) = σ n(x, t) − p(x, t), where σ n(x, t) is the total
normal stress and p(x, t) is the pore fluid pressure. We consider a
rate- and state-dependent formulation (Dieterich 1978; Ruina 1983)
in which f is a function of the instantaneous rate of slip V(x, t) =
∂δ/∂t, a state variable θ (x, t), and heterogeneous material parameters
a(x) and b(x) at that position

f (x, t) = fo + a(x) ln

[
V (x, t)

Vo

]
+ b(x) ln

[
θ (x, t)

θo

]
. (5)

We consider the aging-law evolution of state (Ruina 1983) in which

∂θ

∂t
= 1 − V (x, t)θ (x, t)

Dc(x)
. (6)

Here, Dc(x) is the characteristic slip over which friction evolves,
which we also allow to vary along the fault. The formulation exhibits
the logarithmic rate dependence for steady-state sliding (∂θ /∂t =
0)

fss(x, t) = fo + [a(x) − b(x)] ln

[
V (x, t)

Vo

]
. (7)

In equations (5) and (7), fo is the reference coefficient of friction at
steady sliding velocity Vo and state θo = Dc/Vo. Fault surfaces with
a< b are potentially destabilizing because an increase in sliding rate
subsequently leads to a weakened steady-state shear strength. Such
steady-state rate-weakening surfaces, when subjected to stress or
velocity perturbations, can lead to an instability that might nucleate
an earthquake generating dynamic rupture (e.g. Rice & Ruina 1983)

Considering the form of slip acceleration (Appendix A) motivates
us to choose an alternate state variable 
(x, t) given by


(x, t) := − Dc(x)

V (x, t)

∂θ/∂t

θ (x, t)
, (8)

which for the aging law of state evolution assumes the form


(x, t) = 1 − Dc(x)

V (x, t)θ (x, t)
. (9)

With this definition, 
(x, t) can be interpreted as a convenient
measure for nearness of fault slip to steady-state sliding: 
 = 0
occurs for the steady state sliding and 
 = 1 when the state of the
slip is far from the steady state.

2.3 Slip rate and state evolution equations

Frictional resistance requires that when and where slip rate is
non-zero the total shear stress is equal to the strength of the fault
τ (x, t) = τ s(x, t). Evolution equations for slip rate and the alternate
state variable 
 follow from the equations in Section 2 and are
expressible in the form

∂V

∂t
= R [V (x, t),
(x, t)] (10a)
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∂


∂t
= S [V (x, t),
(x, t)] , (10b)

where the operators R and S depend on the elastic configuration,
the distribution of a(x), b(x) and Dc(x), and also on the external
stress-rate (Appendix A), though we have dropped explicit
reference to these latter terms here.

The interaction between the elasticity of the bounding medium
and the frictional strength of the interface defines an elasto-frictional
length scale for strength and slip variations along the interface.
For an interface lying within a full-space, such a length scale is
Lb = μ̄Dc/bσ (Dieterich 1992; Rubin & Ampuero 2005), when
the evolution-effect parameter b is uniform. Likewise, for the thin-
slab configurations, a length scale, when b is uniform, is given by
Lbh =

√
ĒhDc/bσ (Viesca 2016a,b). When b varies, we may use

instead Ln = μ̄Dc/σ and Lnh =
√
ĒhDc/σ , for the full-space and

thin-slab configurations, respectively (Ray & Viesca 2017).

3 F IN ITE -T IME INSTABIL ITY OF SL IP
RATE

Prior work showed the existence of solutions in which slip rate
quasi-statically diverges within finite time on faults with heteroge-
neous frictional parameters (Ray & Viesca 2017). Specifically, the
solutions have the form

V (x, t) = Dc(x)

tf (t)
W(x), (11)

where tf(t) = tin − t, tin is the finite time of the instability, and
the spatial distribution W(x) is to be solved for and depends on
the distribution of the parameters a, b, as well as the normal stress
distribution at times approaching tin.

In addition to showing the existence of eq. (11), Ray & Viesca
(2017) also determined whether these types of solutions would
likely represent how slip rate would locally, quasi-statically diverge
in the moments preceding dynamic rupture in a model with rate- and
state-dependent friction. Following Viesca (2016a,b), this was done
in treating the distribution W(x) as a fixed point of a dynamical
system and assessing its stability. The analysis reduces to determin-
ing whether perturbations to the diverging slip rate (11) themselves
diverge or decay as tf → 0. We look for perturbations of the form
(Barenblatt 1996)

V (x, t) = Dc(x)

tf

[
W(x) + ω(x)(tf/to)−λ

]
, (12)

where to is an arbitrary timescale, and the distribution ω(x) and
constant λ are to be determined and reduce to eigenfunctions and
eigenvalues, respectively, of an eigenvalue problem, described in
Ray & Viesca (2017). The stability of the blow-up solutions is
determined by the eigenvalue λ with a largest real part (other than
the symmetry modes). We distinguish that eigenvalue using the
notation λmax. If a mode exists with Re(λmax) > 0, then the solution
(11) is said to be unstable, and the solution is stable in the absence
of such a mode.

In Appendix B2, we note that eigenvalues λ = 0 and λ = 1—
with respective eigenfunctions W ′(x) and W(x)—correspond to,
respectively, spatial and temporal translational symmetries of the
problem: they have no bearing on the stability of the blow-up solu-
tions (e.g. Viesca 2016b; Ray & Viesca 2017). Temporal symmetry
exists for all problem parameters, and, consequently, the temporal
symmetry mode (λ = 1 and ω(x) = W(x)) appears in the stability

analysis of the solutions. However, the spatial symmetry mode (λ
= 0 and ω(x) = W ′(x)) appears when all the problem parameters
remain uniform in space.

4 ASSESS ING THE INFLUENCE OF
FAULT HETEROGENEITY ON
EARTHQUAKE NUCLEATION

The stability analysis of solutions (11) is particularly significant
when fault frictional properties are non-uniformly distributed. Con-
sidering a fault with homogeneous properties, an invariance exists
with respect to translations in space and, in turn, a solution of the
type (11) may be continuously translated along on the fault. In con-
trast to the homogenous case, a fault with heterogeneous properties
hosts only are a finite number of blow-up solutions (11), distributed
at critical points on the fault. Only a subset of these solutions are
stable; and, in turn, only those associated critical points on the fault
can be expected to nucleate a dynamic rupture (Ray & Viesca 2017).

However, an important question remains: how does the rate at
which properties vary along the fault affect the existence of solu-
tions (11), as well as their stability? A related question of partic-
ular interest is whether, and under what conditions, may frictional
properties be effectively homogenized. Rather than considering the
variations of parameters a or b individually, we focus on the varia-
tions of the magnitude of steady-state rate-weakening, as well as a
measure of its relative magnitude, defined respectively as

m(x) := b(x) − a(x) (13)

r (x) := 1 − a(x)/b(x).

We consider simple forms for their along-fault variations on fault

m(x) = mo + m1 cos (κx/Lef ) (14a)

r (x) = ro + r1 cos (κx/Lef ) , (14b)

where κ is a dimensionless wavenumber and Lef is an elasto-
frictional length, which is a placeholder for Lnh or Lbh, depending
on whether b varies or not, respectively, in arriving to the dis-
tributions (14). The dimensionless wavelength, 2πκ−1, measures
the length scale of property variation against the elasto-frictional
length. We now analyse how κ affects the blow-up solutions and
their stability.

5 RESULTS

We highlight blow-up solutions and their stability results for three
particular cases in Fig. 1: a case of homogenously distributed pa-
rameters (Fig. 1a), and two heterogeneous cases with an increasing
degree of heterogeneity, that is, an increase in the wavenumber κ

(Figs 1b and c). In the homogeneous case, there is one solution for
the distribution W(x) (Fig. 1d) that may be spatially translated. An
analysis of its stability shows that it is a stable, attractive solution.
Specifically, there are only two modes with Re(λmax) ≥ 0: these are
associated spatial and temporal translational invariances (Fig. 1g,
dashed and solid lines, respectively) and do not influence solution
stability (e.g. Viesca 2016b; Ray & Viesca 2017). Introducing some
heterogeneity (Fig. 1b), spatial translational invariance no longer
exists, and we find that blow-up solutions are confined to extrema
in the distribution (Fig. 1e). In this case the solution at the maxi-
mum of r is stable, and that at the minimum is unstable. A stability
analysis of the former shows no modes with Re(λmax) > 0, apart
from the temporal invariance mode (Fig. 1h, solid black curve). A
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Figure 1. Fixed point solutions and their stability under different wavelengths of frictional property variation. Plots, along the fault length x, of (a–c) the
variation of r = 1 − a/b; (d–f) stable (green) and unstable (red) blow-up solutions (11) corresponding to the overlying distributions; and (g–k) eigenmodes
including temporal (black) and spatial (dashed) symmetry modes, and unstable modes (red) with Re(λmax) > 0. Panels in rows (d)–(f) and (g)–(k) correspond
to the property variations (a)–(c) at the top of the panel columns. Introduction of heterogeneity restricts blow-up solutions to frictional property extrema. Only
a subset of these solutions are stable and increasing the degree of heterogeneity leads to reversals in stability.

Figure 2. Decreasing the wavelength of frictional property variations leads to a reversal in which fault locations are attractive for instability development. (a
and c) Distributions r(x) = 1 − a(x)/b along fault position x (blue) with two different wavelengths and location of a local, constant stressing rate (red). Green
(red) dots highlight locations of stable (unstable) blow-up solutions. (b and d) Numerical solutions for slip-rate evolution for a fault subject to the local stressing
for distributions (a) and (c), respectively. Slip rate shown at instants in time, scaled by the maximum value at each time (grey scale) and blow-up solutions
scaled by peak values (red, green). Green and red curves correspond to stable and unstable solutions.

stability analysis of the latter shows an unstable mode (Fig. 1i, red
curve), in addition to the translational mode (Fig. 1i, black curve).
Considering a heterogeneous case with increased κ (Fig. 1c), we
find that the solutions are still confined to extrema (Fig. 1f, in which
solutions for only two extrema are shown). However, we now find
that the stability of the solutions at the extrema is reversed from the
case of Fig. 1(b): the solutions at the maxima are unstable and those
at minima are stable (Figs 1j and k). This stability implies that the
regions with the lowest magnitude of steady-state rate-weakening
are now the attractive location for instability.

The remarkable reversal of stability with decreasing wavelength
of property variations is reflected in numerical solutions for the

evolution of slip rate (Fig. 2). Beginning with initially steady-state
conditions, we introduce at t = 0 a locally peaked stressing rate
centred at a position between a maximum and a minimum in the
distribution of r. An unstable acceleration of slip follows and we plot
in Fig. 2(b) the slip rate, scaled by its maximum value at snapshots in
time. As time progresses, the slip rate diverges and approaches the
expected distribution of the stable blow-up solution (green dashed
line, Fig. 2b). In Fig. 2(c), we increase κ to the point where the
stability is reversed. This reversal is reflected in the evolution of the
diverging slip rate (Fig. 2d).

To better understand the reversal of stability as κ changes, we
examined its influence on λmax, defined as the maximum eigenvalue
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associated with the blow-up solutions at the peak and troughs of
the distributions (Figs 3 and 4a). As before, the blow-up solution is
unstable when Re(λmax) > 0, and stable otherwise. We consider two
elementary scenarios: both r(x) andm(x) vary in phase, as may occur
if a varies and b is held fixed (Fig. 3); or a variable m(x) under a
constant and uniform r (Fig. 4). In each case, the blow-up solutions
are found to exist only at critical regions: about the extrema of
parameter distributions, and, in some cases, between them. In Figs 3
and 4(a), the cyan and blue curves are indicator of the stability of the
blow-up solutions at the minimum and maximum of the parameter
variations, respectively. In Fig. 4(a), the magenta-coloured curve
corresponds to the stability of the blow-up solutions that occur
around the inflection points of m(x) when wavenumber κ is within
the red-coloured regime. In the following subsections, we comment
on the behaviour at long, intermediate and short wavelengths of
parameter variations.

We make a brief aside to discuss what is meant by long (or
short) wavelengths. We recall that we have scaled wavelengths and
wavenumber by an elasto-frictional length, such that, for example,
the interpretation of small κ is that wavelengths are large in com-
parison to this length. However, we also recall that another relevant
length exists: the nucleation length denoted by L, which is the half-
length of the region over which a blow-up solution W is defined
(e.g. illustrated in Figs 1 and 2). In the homogeneous limit for the
cases studied here, in which a/b= 0.5, L is comparable to the elasto-
frictional length: L= πLbh (Viesca 2016b). Thus, a distinction does
not need to be explicitly made in our discussions above and to fol-
low. However, we must note that, for homogeneous properties, as
a/b → 1, L generally diverges in comparison with the elasto-
frictional length scales used here (Lb or Lbh; Viesca 2016a,b). In this
limit, careful attention must be paid to the relevant length scale with
which to compare distances over which frictional properties vary.
The most relevant length is L, the length over which solutions (11)
sample property variations. While L is not known a priori for ar-
bitrary property variations, L is known for homogeneous frictional
properties (Rubin & Ampuero 2005; Viesca 2016a,b), which pro-
vides a first estimate using averaged quantities for heterogeneous
faults. Apart from the elasto-frictional length scale, L is dependent
on the ratio a/b. For the half-space and thin-slab configurations,
respectively, L = Lb/[π (1 − a/b)2] and L = Lbh/(1 − a/b) in the
limit a/b → 1 Viesca (2016a,b)

5.1 Long and intermediate wavelengths

With variations over long wavelengths (κ � 1), we find that whether
the local maxima or minima of frictional properties are the locations
of attractive blow-up depends on what frictional properties vary. In
Fig. 3, in which m and r both vary in phase, blow-up solutions
about the local maxima are stable and those about the minima are
unstable (as in Figs 2a and b). To contrast, in Fig. 4(a), we find that
under fixed r and variable m, it is the minima of m that are attractive
locations for instability.

At small values of κ , we also find a third possibility for instability
progression when r is fixed and m varies: blow-up of slip rate at a
region between the maximum and minimum. As alluded to above,
this third possibility occurs transiently as κ increases: first appearing
close to κ = 0.2 and disappearing close to κ = 0.35 (red areas in
Fig. 4). Its corresponding value of λmax is shown in magenta in
Fig. 4(a). The appearance of these intervening solutions coincides
with the loss of stability of blow-up solutions occurring about the
minima of m, and their disappearance coincides with the return of

stability of the solutions occurring about the maxima. In Fig. 4(b),
we illustrate the abrupt appearance of these intervening blow-up
solutions. At κ = 0.15, we show the solution for W(x) that occurs
about a maximum. Additional solutions for W(x) suddenly appear
in the region between the maximum and adjacent minima around
κ = 0.2 and are stable. As κ increases further, the position of
these attractive intervening solutions approaches the solution at the
maximum. Ultimately, the intervening solutions collide with that
at the maximum around κ = 0.35. At this point, the latter solution
remains and regains stability.

Intermediate values of κ mark a qualitative transition in stability
behaviour of the blow-up solutions. As κ increases from small
values, λmax takes on its most positive and negative values close
to κ = 1 for the two cases. Subsequently, an exchange of stability of
the solutions at the maxima and minima occurs. It is this exchange
of stability that is captured in Fig. 2. This exchange of stability
repeats indefinitely as κ increases.

In Fig. 3, we show the value of the nucleation half-length L
for solutions at both extrema (dashed and dash-dotted lines). L is
shown as a relative change from its value under homogeneous fric-
tional properties (κ = 0) for which L = πLbh (Viesca 2016b). At
long wavelengths, there is a small departure from the homogeneous
value, which matches the asymptotic behaviour of λmax. The depar-
ture remains modest (<20 per cent) at intermediate wavelengths,
and returns to zero precisely when the exchange of stability occurs.

5.2 Short wavelengths and homogenization

Remarkably, the behaviour at large κ , at which the frictional
properties are highly heterogeneous, is that of a homogeneous
fault with the spatially averaged values of the variable proper-
ties. Specifically, the blow-up solutions at the extrema converge
to the spatially translatable solution under homogeneous condi-
tions for the average value of a/b = 0.4. As κ → ∞, W(x)
at both the maxima and minima converge towards the homoge-
neous solution, in which L = πLbh and, to within a spatial transla-
tion, W(x) = [1 + cos(x/Lbh)]/2 (Viesca 2016b). Simultaneously
in this limit, λmax and the corresponding eigenmode ω(x) asymp-
totically approach the expected values for a translational symmetry
mode: λ = 0 and ω(x) = W ′(x) = − sin(x/Lbh) (Viesca 2016b).
That a translational invariance re-emerges is the consequence of the
maxima and minima being separated over distances much smaller
than the nucleation length L as κ → ∞. The convergence of L and
λmax for the case of variable r and m is shown in Fig. 3, and the con-
vergence of λmax for the case of fixed r and variable m is shown in
Fig. 4. During the convergence, there is an exchange of stability be-
tween the solutions at maxima and minima, with an ever-decreasing
amplitude for the eigenvalue λmax for each solution. For the case of
variable r and m, the stability exchange occurs at integer values of
κ (Appendix C).

6 CONCLUS ION

We show that homogenization of frictional parameters for slip rate-
and state-dependent friction is justifiable in the limits of variations
occurring over relatively long or short length scales. In the former
case, frictional parameters vary gradually relative to spatial varia-
tions in slip rate, which scale with the elasto-frictional length. The
evolution of slip rate is expected to follow that of a homogeneous
fault with the local, zeroth-order approximation of the variable pa-
rameters. In the latter case, the behaviour is that of a homogeneous
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Figure 3. Exchange of stability of blow-up solutions occurring about the maxima and minima of a distribution of a frictional property distribution. The absolute
m and relative rate weakening r vary in phase with r(x) = 0.6 + 0.1cos (κx/Lbh), similarly to Fig. 2. We solve for the stability of blow-up solutions as a function
of the wavenumber κ . We show the maximum eigenvalue λmax for blow-up solutions occurring about the maxima (blue) and minima (cyan) of the distribution
of r. Solutions are unstable if λmax > 0 and stable otherwise. Coloured dots correspond to cases examined in Fig. 2. Stability exchanges occur at integer values
of κ . Also shown are the corresponding values for the nucleation half-length L for blow-up solutions at maxima (dashed) and minima (dash-dotted), relative to
its value in the homogeneous limit L(κ = 0) = πLbh.

(a)

(b)

Figure 4. Under fixed r = 1 − a/b and variable m = b − a, an exchange of stability occurs similarly to that in Fig. 3, except with additional bifurcations
at small values of κ (red region). Here m(x) = 0.06 + 0.02cos (κx/Lnh) with a constant r = 0.6. (a) Plot of the maximum eigenvalue λmax as a function κ

from the stability analysis of blow-up solutions at maxima (blue) and minima (cyan) of m(x). λmax for a third type of blow-up solution, which appears in the
region between extrema, is shown in magenta. (b) Illustration of the sudden appearance and disappearance of the third-type of blow-up solution (see the text
for description). The green and red dots in (a) correspond to the solutions of the same colours in (b); these colours correspond to stable (attractive) or unstable
(unattractive) blow-up solutions.

fault with properties being an average over the elasto-frictional
length, which samples the rapid variations in this short-wavelength
limit. Fig. 5 demonstrates the last point: a slip rate diverging on
a fault with short-wavelength property variations converges to a
blow-up solution corresponding to a completely homogenous fault.

How does one determine if the property variations of a fault lie
within either end-member regime or an intermediate one? If a length
scale for variation is posited, or otherwise assumed to exist on some
basis, it must then be first compared with an elasto-frictional length.
For a fault well represented as a slip between elastic half-spaces,
we recall that the appropriate length scale is Lb = μDc/(σb). For Dc

at the mm scale implies an elasto-frictional length of the order of

10–100 m for shear modulus, normal stress and coefficient b of the
orders of 10 GPa, 10–100 MPa and 0.01, respectively. Values of Dc

more typically found in laboratory-scale experiments on the order
of 10–100 μm would decrease that estimate by up to two orders
of magnitude. For pore-fluid pressure approaching lithostatic, the
reduction of the effective normal stress σ to very low values may
inflate the estimates of the elasto-frictional length, easily placing a
fault in the short-wavelength regime.
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Figure 5. Results of evolution of slip rate under high degree of fault fric-
tional heterogeneity is compared against the fixed point solution for ho-
mogenous case. (a) A variable r(x) = 0.6 + 0.1cos (κx/Lbh) with κ = 19.5,
large enough to satisfy the condition for homogenization: the wavelength of
property variation is small compared to the nucleation length. The instability
is provoked by an external stress rate, constant in time with a localized peak.
(b) Slip rate evolution at each time step is normalized by its peak value (black
curves)). The profile of the diverging slip rate gradually converges to the
blow-up solution corresponding to the homogenous (averaged) case (dashed
green curve), consistent with the results of the presented analyses: a fault
with a high degree of frictional heterogeneity behaves like a homogenous
one.
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APPENDIX A : SL IP RATE AND STATE
EVOLUTION

The analysis presented only explicitly considers thin-slab elastic
configuration wherein the slip-traction relation is given by

τel(x, t) = Ēh
∂2δ(x, t)

∂x2
, (A1)

where the elastic moduli Ē = 2μ/(1 − ν) and Ē = μ for mode-
II and mode-III slide respectively. μ and ν are the shear modulus
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and Poisson’s ratio, respectively. However, the results also apply to
the conventional slip surface within two half-spaces case where the
slip-traction relations is given by

τel(x, t) = μ̄

2π

L+∫
L−

∂δ(ξ, t)/∂ξ

ξ − x
dξ, (A2)

where μ̄ = μ/(1 − ν) and μ̄ = μ for in- and anti-plane slip, respec-
tively. The integrand is singular at ξ = x and the integral is evaluated
in a Cauchy principal-value sense.

We represent traction-slip relations for both the fault geometries
using an operator L acting on the slip distribution δ(x, t), that is,
τel(x, t) = L[δ(x, t)]. When and where fault has non-zero slip gra-
dient the total shear traction (τex + L[δ(x, t)]) is equal to the shear
strength (τs) of the interface. In terms of their rates that equality can
be expressed as

∂τex

∂t
+ L[V (x, t)] = ∂τs

∂t
, (A3)

where V(x, t) = ∂δ/∂t is the slip rate.
We note that as slip attains an unbounded amplitude and the

first term in the above equation becomes negligible. Considering
a frozen spatial distribution of fault normal stress σ (x) and using
time derivative of friction coefficient (eq. 5 in the main text), the
evolution of the slip rate V(x, t) can be expressed as

∂V

∂t
= V (x, t)

L[V (x, t)]

σ (x)a(x)
+ b(x)

a(x)

V (x, t)2

Dc(x)

×
[
− Dc(x)

V (x, t)

∂θ/∂t

θ (x, t)

]
. (A4)

A scaling analysis suggests the quantity within the bracket should
be of order 1 so that all the terms in the equation are comparable.
This motivates to define a surrogate state variable 
(x, t), given by,


(x, t) := − Dc(x)

V (x, t)

∂θ/∂t

θ (x, t)
. (A5)

When the aging-law form of state evolution is considered, the above
definition assumes the form


(x, t) = 1 − Dc(x)

V (x, t)θ (x, t)
. (A6)

With this definition, 
 can be interpreted as a measure of distance
from steady-state sliding: 
 = 0 for steady-state sliding (Vθ /Dc

= 1) and 
 = 1 when state of the slip is far from steady-state
(Vθ /Dc � 1). The coupled system of quasi-static slip acceleration
and evolution of 
(x, t) with time is given by

∂V

∂t
= V (x, t)

L[V (x, t)]

σ (x)a(x)
+ b(x)

a(x)

V (x, t)2

Dc(x)

(x, t) (A7a)

∂


∂t
= [1 − 
(x, t)]

[L[V (x, t)]

σ (x)a(x)

]

+ [1 − 
(x, t)]

[(
b(x)

a(x)
− 1

)
V (x, t)

Dc(x)

(x, t)

]
. (A7b)

The functional forms R[V (x, t),
(x, t)] and
S[V (x, t), 
(x, t)], in the system of eq. (10) of the main text, are
respectively given by the right sides of equations (A7a) and (A7b).

APPENDIX B : BLOW-UP SOLUTIONS
AND THEIR ATTAINABIL ITY

Previous studies (Viesca 2016a,b; Ray & Viesca 2017) showed that
system of eq. (A7) has a solution of the form

V (x, t) = Dc(x)

tf
W(x) and 
(x, t) = P(x), (B1)

where the tf = tin − t is the time remaining to instability and tin is the
time of instability. The profileW(x), referred to as blow-up solution,
and its support on the fault are to be solved for. The profile P(x)
is obtained from W(x) and shows the proximity of the instability
from the steady state slip. On substituting above in the evolution
equation (A7) and choosing thin-slab elastic configuration (3), we
get,

ĒhDc

σ (x)a(x)

d2W
dx2

+ b(x)

a(x)
W(x)P(x) = 1 (B2a)

[1 − P(x)][1 − W(x)P(x)] = 0. (B2b)

We recall that 
 by its definition (6) is the measure of proximity
to steady state sliding and lies between 0 (steady state) and 1 (far
above and below steady state); and hence, theP(x) = 1 orWP = 1,
respectively, for W(x) below or above unity (Viesca 2016a,b; Ray
& Viesca 2017).

B1 Stability analysis of the blow-up solutions

The blow-up solutions, W(x), and its support on the fault, 2L, are
straightforward to be solved for; however, Ray & Viesca (2017)
showed existence of multiple solutions under non-uniform param-
eter distributions. This naturally raises the question of attainability
of a particular blow-up solution; which, in turn, equivalent to asking
if a preferential evolution of eq. (A7) is possible when provoked by
an external or initial condition.

In order to address if a particular blow-up solution is realizable,
we perturb the blow-up solution W(x) by a small function ω(x), and
analyse when the perturbed velocity profile, given by,

V (x, t) = Dc(x)

tf
[W(x) + ω(x)(tf/to)−λ] (B3)

might converge to or diverge from the spatial profile W(x). That
is, we analyse when and where on the fault the perturbation ω(x)
could grow or decay as tf → 0, which is dictated by the sign of
Re(λmax). Likewise, we also consider whether a perturbation to the
state variable in the form


(x, t) = P(x) + φ(x)(tf/to)−λ (B4)

might grow or shrink as tf → 0.
On substituting the above perturbations (B3) and (B4) in eq.

(A7) permits to consider the functions ω(x) and φ(x) and the scalar
λ as solutions to an eigenvalue problem, given by

λ

[
ω(x)
φ(x)

]
=

[
A11 A12

A21 A22

][
ω(x)
φ(x)

]
, (B5)

where the terms inside the matrix, for the thin-slab elastic configu-
ration and with heterogeneity only in the parameter a(x), are given
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by

A11 = W(x)

a(x)/b

[
L2

bh

d2

dx2
+ P(x)

]

A12 = W(x)2

a(x)/b

A21 = 1 − P(x)

a(x)/b

[
L2

bh

d2

dx2
+ (1 − a(x)/b)P(x)

]

A22 = 1 − a(x)/b

a(x)/b
[1 − P(x)]W(x) − [1 − W(x)P(x)].

The blow-up solution W(x) is attainable when the maximum
eigenvalue, λ = λmax, has negative real and is referred to as stable
solution. In Figs 3 and 4 in the main text, we plot the maximum
eigenvalue, λ=λmax, that determines the attainability of the blow-up
solutions W(x) in eq. (B1).

We note that the above eigenvalue problem is equivalent to that
of the linear stability analysis of the fixed point solutions in Vi-
esca (2016a,b) and Ray & Viesca (2017). Considering solutions for
which P(x) = 1 in above allows us to focus on a reduced version
of the eigenvalue problem wherein only the eigenmode ω(x) needs
to be analysed. A suitable rearrangement of the terms allows us to
re-express the eigenequation in the simple form

L2
bh

d2ω

dx2
+ ω(x) = λ

[
a(x)/b

W(x)

]
ω(x). (B6)

B2 Spatial symmetry eigenmode

Here, we re-highlight the existence of spatial-symmetry eigenmode
for its relevance to the consideration of heterogeneous distributions
of properties and its apparent connection with the observed stability
reversals of blow-up solutions and homogenization.

We look for the eigenmode and eigenvalue indicating that a blow-
up solution remains invariant when translated along the fault (Ray
& Viesca 2017). Presuming that shifting the origin of the blow-up
solution, by a small quantity ε, has no bearing on the form of the
diverging slip rate (B1), we may write

V (x, t) = Dc

tf
W(x + ε),

which may be expanded to first order in the perturbation as

V (x, t) = Dc

tf

[
W(x) + εW ′(x)

]
.

Comparing this last result with eq. (B3), we see that transla-
tional symmetry corresponds to the existence of an eigenmode and
eigenvalue satisfying

ω(x) = W ′(x) with λ = 0. (B7)

APPENDIX C : BLOW-UP SOLUTIONS
UNDER VARIAT IONS OF a (x ) W ITH
INTEGER WAVENUMBER

We recall that in Fig. 3 of the main text, the blow-up solutions at
the maximum and minimum of the a(x)/b distribution exchange

their stability at integer wavenumbers κ 	= 1. In that figure, the
stability curves (λmax versus κ) for the solutions at the extrema
of a(x)/b cross λmax = 0 simultaneously. This is a signature of
a transcritical bifurcation of the fixed-point solutions. Here, we
show how the stability reversals may be anticipated to occur at
integer wavenumbers, if anywhere. Furthermore, we show how a
translational symmetry mode is retrieved in the limit of large values
of κ , the limit for which we found homogenization to be appropriate.

We consider the simple periodic variation of the parameter a(x)/b
= a0 + a1cos (κx/Lbh), with uniform σ and Dc. For solutions with
P(x) = 1, eq. (B2a) reduces to

L2
bh

d2W
dx2

+ W(x) = a0 + a1 cos(κx/Lbh) (C1)

with the boundary conditions W(±L) = 0 and W ′(±L) = 0 deter-
mining both W(x) and L/Lbh. The blow-up solutions corresponding
to the maximum and minimum of a(x)/b are obtained by switching
the algebraic sign of a1. For integer wavenumbers, κ = n 	= 1, the
solution to eq. (C1) is

W(x) = a0 [1 + cos(x/Lbh)] + a1

1 − n2

× [cos(x/Lbh) + (−1)n cos(nx/Lbh)] , L/Lbh = π.(C2)

We note that the value of L/Lbh is equal to that for the homogeneous
problem (a1 = 0) for all κ = n. We also note that at large n the second
term vanishes as n−2, leaving only the solution to the homogeneous
problem.

We may now proceed to find the eigenmodes associated with λ =
0 at integer κ following the linear stability analysis of these blow-up
solutions. Specifically, we substitute λ = 0 in the reduced eigenvalue
problem (B6) and solve for the corresponding eigenfunction which
satisfies

L2
bh

L2

d2ω

dx̃2
+ ω(x̃) = 0 (C3)

where we have performed a change of the independent variable
x̃ = x/L . Given that L/Lbh = π at integer κ , the general solution is a
linear combination of sin(π x̃) and cos(π x̃). Imposing the boundary
conditions ω(x̃ = ±1) = 0 eliminates the latter function and leave

ω(x) = sin(πx/L) with λ = 0 for κ = n = 2, 3, 4, ... (C4)

Re-examining eq. (C2), we see that

lim
n→∞

W ′(x) = −a0 sin(x/Lbh) = −a0 sin(πx/L) (C5)

and upon finding that this result is, to within an arbitrary pre-
factor, equal to the eigenmode (C4), we find that we retrieve the
translational symmetry mode condition (B7) in the limit of large κ .
Thus we find that, in the highly heterogeneous limit of large κ , the
blow-up solutions regain the translational invariance that would be
expected for a homogeneous fault.
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