PHYSICAL REVIEW APPLIED 12, 064059 (2019)

Soft Materials with Broadband and Near-Total Absorption of Sound

Shichao Cui and Ryan L. Harne"
Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio 43210, USA

™ (Received 8 October 2019; published 27 December 2019)

Low- and broadband-frequency sound absorption promotes myriad practical applications and scien-
tific endeavors. Yet emerging metamaterial concepts enable such sound absorption only by the use of a
complex assembly of attenuator constituents or by the addition of heavy undesirable mass. In this study,
multiple low-frequency hybrid resonances are achieved in a soft-lightweight-material-based Helmholtz
resonator. By replacing the rigid walls of a traditional Helmholtz resonator with compliant walls and by
tailoring the relative structural and acoustic compliances, a unique multiphysics coupling among the mate-
rial, structure, and sound is realized. These coupling mechanisms yield hybrid resonances that can be used
for subwavelength, broadband, and near-total absorption of sound. As a result, the compliant-material
resonator exploits a lightweight-material monolithic design that exerts dramatic and tunable control over
low-frequency and broadband acoustic-energy transfer. This paper details analytical and experimental
investigations to test the concept and reveals strategies for near-total absorption at arbitrary subwavelength

frequencies.
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I. INTRODUCTION

Low-frequency sound attenuation is of long-standing
interest to science and society, whether to realize non-
reciprocal wave propagation, to insulate interior spaces
from exterior noise, or for a wide range of other pur-
poses. Porous or barrier materials are commonly used to
control low-frequency acoustic waves. Yet, these materials
must be used in large heavy quantities to suppress the long
wavelengths of low-frequency sound, and tuning strate-
gies for these materials usually involve major changes to
material-system dimensions and mass. Investigations of
subwavelength sound-absorbing materials aimed at intro-
ducing unique potentials for tuning and to reduce the
challenges imposed by added mass are abundant [1-6].
Acoustic metamaterials and metasurfaces, which exhibit
properties not found in natural materials [7—9], enable pro-
grammable attenuation of low-frequency sound via sub-
wavelength constituents whose collective behavior allows
unusual macroscopic wave propagation [10—24].

Soft compliant materials and structural members are
widely utilized as constituents in metamaterials to intro-
duce coupling mechanisms that manipulate acoustic waves
[1,14,25-28]. Soft-material-based membrane-type meta-
materials may match the impedance between the acoustic
fluid and the metamaterial to provide near-perfect absorp-
tion of sound [1,14,28]. Yet, these concepts are inherently
effective for attenuating only single-frequency waves, so
that broadband frequency attenuation requires a complex
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parallel assembly of constituents [14]. In fact, modifica-
tions to traditional Helmholtz resonators (HRs) [29-32]
composed of more rigid materials may lead to a nega-
tive dynamic modulus [33], low-frequency wave absorp-
tion [34], and means of achieving multifrequency atten-
uation using embedded soft structural members [35,36].
Yet, unless heavy masses are added to reduce the fre-
quency of resonance phenomena, the control of sound
with such HR-based metamaterials remains limited to the
mid frequencies, such as those greater than 300 Hz. To
enable near-total absorption of the more intrusive low-
and broadband-frequency sound, an approach is needed
that does not rely on complex metamaterial assembly or
a heavy mass that lessens versatility and robustness.
Among the many strategies by which one can tailor and
enhance sound absorption in metamaterials, scientists may
leverage principles from materials science and mechanics
via integration of soft structural members to enable novel
interactions between material behavior and acoustic-wave
propagation [14,37]. Yet, there is a lack of knowledge on
how to achieve extreme absorption of sound over a broad
low-frequency range (e.g., less than 300 Hz) using such a
combination of principles without resorting to a complex
metamaterial assembly or to heavy mass. In this paper, we
investigate a compliant-material resonator (CMR), a soft-
material-based Helmholtz resonator, that enables unique
subwavelength, broadband, and near-total absorption of
sound with a monolithic material design. By replacing the
rigid walls of a traditional HR with strategically designed
compliant walls, multiple hybrid resonances are created at
frequencies less than 300 Hz for exceptional broadband

© 2019 American Physical Society


https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevApplied.12.064059&domain=pdf&date_stamp=2019-12-27
http://dx.doi.org/10.1103/PhysRevApplied.12.064059

SHICHAO CUI and RYAN L. HARNE

PHYS. REV. APPLIED 12, 064059 (2019)

control of sound. The paper describes the theory needed
to characterize these intricate influences, and the results
of efforts to experimentally confirm the efficacy of the
concept of the CMR.

II. MODEL FOR SOUND ABSORPTION BY A
COMPLIANT-MATERIAL RESONATOR

The CMR is a soft-walled cavity with a compact open-
ing. The particular shapes of the walls and opening and the
bulk compliant material may be selected in a vast number
of combinations. In this paper, we study a model CMR that
has six square walls that enclose a cubic inner cavity. Here,
the side lengths of the inner cavity are much smaller than
the acoustic wavelengths considered. A circular opening
is made through one of the square walls to interface with
the cavity and with the external acoustic pressure that is
absorbed. The geometry of the CMR is shown in Fig. 1.
A cross section of the CMR is also presented in Fig. 1 to
illustrate the internal geometry and the coupling among the
wall deflection, the inner acoustic pressure, and the motion
of the air mass in the opening. See Appendix B for details.

In this work, the CMR is molded from silicone rub-
ber with a constant wall thickness, and 3D printed annular
necks are securely placed in the opening in the wall to tune
the diameter and length of the cylindrical opening. The dis-
placement w of the compliant wall and the inner pressure
field p are coupled at the inner surfaces of the wall. Then,
the displacement of the lumped air mass in the opening &
is driven by a combination of the inner acoustic pressure p
and an external plane wave excitation Pe/®’, using complex
time-harmonic notation. In this way, the resonances of the
CMR are more intricately determined than for traditional
HRs. This is because the compliant walls of the CMR per-
mit low-frequency structural vibrations that engage with
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FIG. 1. Schematic illustration of the complete compliant-

material resonator and a cross-section. The wall displacement
is denoted by w, the inner acoustic-pressure field is represented
by p, the displacement of the lumped air mass in the opening
is expressed using &, and the harmonic plane wave excitation is
denoted by Pe/".

the acoustic field to yield multiple hybrid low-frequency
resonances and thus near-total sound absorption across a
broad frequency range.

A model of the CMR is generalized to investigate the
multiphysics couplings and mechanisms in the system. The
set of governing equations is given in Eqgs. (1)+3), where
qm 1s the mth modal displacement of the wall:
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Details of the derivation of the model, the expressions for
the coefficients, and solutions for the structural-acoustic
responses are presented in Appendix A. The specific
acoustic impedance Z of the CMR is obtained by solving
the governing equations of the system. Using the model
solutions to determine the absorption coefficient « for the
CMR leads to the result
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where Zj is the specific acoustic impedance of air.

III. ORIGINS OF HYBRID BROADBAND
RESONANCES AT LOW FREQUENCIES

The mechanisms governing the emergence of multiple
low-frequency hybrid resonances in the CMR are uncov-
ered by an analytical study of model results compared with
results for a traditional rigid HR. The frequency depen-
dence of the absorption coefficient for a range of opening
radii is presented in Fig. 2, contrasting a traditional rigid
HR and a CMR designed with the same geometric param-
eters. The dark red shading in Fig. 2 indicates near-total
sound absorption. The rigid HR and the CMR both have
an internal side length of the cubic cavity of 11 ¢cm and
a neck length of 1.7 cm. The CMR has a wall thickness
of 10 mm. The material properties of the walls of the
CMR are Young’s modulus 500 kPa, Poisson’s ratio 0.49,
and density 1145 kg/m>. For the rigid HR, the walls are
assumed to be rigid such that the material properties and
the thickness of the walls do not influence the absorption
coefficient.
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FIG. 2. Analytical absorption coefficients of (a) a rigid HR and (b) a CMR for 1-300 Hz and 1-30 mm opening radius. The side
length of the cubic cavity is 11 cm, the neck length is 1.7 cm, and the wall thickness of the CMR is 10 mm.

For a specific opening radius, Fig. 2(a) shows that the
rigid HR yields only one frequency where large sound
absorption is achieved. Given the prescribed volume of the
rigid HR, one opening radius maximizes the absorption
coefficient, i.e., around 2.5 mm in Fig. 2(a). In contrast,
for the CMR in Fig. 2(b), there are three local maxima
of the absorption coefficient for this range of opening
radii at frequencies less than 300 Hz. In addition, tuning
the opening radius can tune the frequency of peak sound
absorption while maintaining near-total sound absorption.
For instance, two hybrid resonances with near-total sound
absorption may be spectrally shifted within a frequency
range of 80-200 Hz by changes in the opening radius
from 5 to 12 mm. The large extent of coupling among the
air motion in the CMR opening, the inner acoustic pres-
sure in the cavity, and the structural displacement of the
soft-material walls is the unique attribute that yields such
intricate hybrid resonances.

Modeled as thin simply supported plates, the square
walls of the CMR exhibit lowest-order symmetric modes
with natural frequencies of 20, 101, and 181 Hz. The sym-
metric modes are strongly coupled to the acoustic field in
the cavity, resulting in the distinct multiple low-frequency
hybrid resonances observed in Fig. 2(b). For example, the
large sound absorption at frequencies around 10 Hz seen
for small opening radii in Fig. 2(b) is associated with a
CMR motion analogous to the contraction and expansion
of a balloon, according to the relative phases of the wall
deflection, inner acoustic pressure, and motion of the air
mass in the opening. In other words, the structural modes
of the CMR walls activate strong coupling to the inner
acoustic-pressure field and thus appear to magnify sound
absorption to near-perfect levels. Similar conclusions may
be reached regarding the hybrid resonances near 90 and
160 Hz for larger opening radii. Unlike a traditional rigid
HR that relies on acoustic-impedance matching to absorb

acoustic waves [29,38], the CMR appears to capitalize on
strong coupling among multiple types of physics to exert
tunable broadband control over the acoustic-energy trans-
fer. This hypothesis is specifically tested and verified in
Sec. IV.

The lines and labels in Fig. 2(b) identify the absorp-
tion coefficients of the CMR for opening radii of 5, 4, and
3 mm. For these opening radii, Fig. 3(a) presents exper-
imental (markers) and analytical (curves) results for the
absorption coefficient to validate the proposed concept of
the CMR. In the frequency range 50—200 Hz, there are
two local maxima of sound absorption for the CMR. With
an increase in the opening radius, the amplitudes of the
local maxima of the absorption coefficient increase, and
the peaks shift to higher frequencies. The impedance of the
CMR reveals the contributions from reciprocating energy
(reactance) and dissipated energy (resistance), and the
magnitude of the impedance. Figure 3(b) shows the exper-
imental (markers) and analytical (curves) results for the
components of the normalized specific acoustic impedance
of a CMR with a 5 mm opening radius. There are two
local minima in the impedance magnitude, occurring at
frequencies where sound absorption is locally maximized
for the case of a 5 mm opening radius shown in Fig. 3(a).
The impedance-match method [14] eliminates the reac-
tance and aims to match the resistance to the background
media to achieve near-total absorption. Here, for the CMR,
the local minimum in the magnitude of the impedance
leads to high or near-total absorption. Rather than requir-
ing subtle tuning of design parameters, the CMR permits
a wide range of design to achieve such near-total absorp-
tion, as exemplified in Fig. 2(b). One benefit of the CMR
is that high absorption is achieved over a wide frequency
range, unlike the narrowband tuned sound absorption pro-
vided by traditional rigid HRs. For instance, the CMR has
a broad 22 Hz bandwidth (full width at half maximum) of

064059-3



SHICHAO CUI and RYAN L. HARNE

PHYS. REV. APPLIED 12, 064059 (2019)

(a)
1

09| Analysis

« 0.8
0.7 +
0.6
05
0.4
2 0.3
<02

Experiments
O a=5mm
a=4mm

ption coefficien

Or

50 100 150 200
Excitation frequency (Hz)

/% Rigid HR Analysis

Absorption coefficient
o
(&) ]

50 100 150 200
Excitation frequency (Hz)

FIG. 3.

®),
12 Analysis Experiments
[ - Resistance % O Resistance |
Reactance b/ Reactance
10 L - Magnitude fb A Magnitude -

‘o Normalized specific acoustic impedance

-2 CMR ,
a=5mm
-4 ‘ ‘
50 100 150 200
Excitation frequency (Hz)

)

[0}
5

% a=5mm
g 4r
Q
£ 3l
o |
g 20
3
© 1
8
B b
g
o1 Analysis ]
e s Resistance
=-2r Reactance |
g Rigid HR ---- Magnitude
= ‘ ‘
2750 100 150 200

Excitation frequency (Hz)

(a) Analytical and experimental results for absorption coefficient of a CMR with opening radii of 5 mm (red dashed line and

red circles), 4 mm (green solid line and green squares), and 3 mm (blue dotted-dash line and blue triangles) as a function of frequency
from 50 to 200 Hz. (b) Analytical and experimental results for the resistance (red dash line and red circles), reactance (green solid
line and green squares), and impedance magnitude (blue dotted-dash line and blue triangles) of a CMR with opening radius 5 mm.
(c) Analytical results for absorption coefficient of a rigid HR (with the same volume as the CMR, and neck length 1.7 cm) with opening
radii 5 mm (red dashed line), 4 mm (green solid line), and 3 mm (blue dotted-dash line). (d) Analytical results for the resistance (red
dashed line), reactance (green solid line), and impedance magnitude (blue dotted-dash line) of a rigid HR with opening radius 5 mm.

the peak of sound absorption at 163 Hz for a 5 mm open-
ing radius, as shown in Fig. 3(a). For the same physical
dimensions as the CMR, a rigid HR with a 5 mm opening
radius has one local maximum of sound absorption that is
at most around « = 0.5, as found in Fig. 2(a). There are
also frequency shifts between the experimental and ana-
lytical results around the first sound absorption peak near
100 Hz in Fig. 3(b). These differences occur due to the rel-
atively small-diameter opening between the CMR and the
impedance tube, which may induce nonlinear aerodynamic
behavior [39] resulting from the high particle velocity in
the CMR neck.

To clarify the relations between impedance and absorp-
tion for a rigid-walled HR with the same volume and
open-neck dimensions as the CMR, the analytical model
is utilized to determine the absorption coefficients of a
rigid HR shown in Figs. 3(c) and 3(d) for opening radii
of 5 mm (red dashed lines), 4 mm (green solid lines), and
3 mm (blue dotted-dashed lines). For each opening radius

shown in Fig. 3(c), there is one absorption-coefficient peak.
With a decrease in the opening radius, the absorption-peak
amplitude increases, and the peak frequency decreases.
The resistance (red dashed line), reactance (green solid
line), and impedance magnitude (blue dotted-dashed line)
of the rigid HR with a 5 mm opening radius are shown
in Fig. 3(d). The absorption-peak frequency (5 mm, red
dashed line) in Fig. 3(c) corresponds to the frequency at
which the reactance is zero and the impedance magnitude
is minimized in Fig. 3(d), which is the definition of the
conventional Helmholtz resonant frequency [29].

A similar correlation between absorption peaks and
impedance-magnitude minimization is also observed in
Figs. 3(a) and 3(b) for the CMR. For both the rigid HR
and the CMR, the system resonance leads to absorption
of sound. Yet the origins of the resonances are distinct.
For the rigid HR, the resonance is singular and related to
the lumped air mass and air spring exchanging kinetic and
potential acoustic energy. For the CMR, hybrid resonances
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of the wall, the inner pressure field, and the air mass
in the opening result in an energy exchange among the
structural strain and kinetic energy and the acoustic poten-
tial and kinetic energy that results in multiple-frequency
absorption. These evaluations confirm the efficacy of the
CMR for achieving low- and broadband-frequency sound
absorption without relying on the addition of heavy masses
or a complex material assembly. The results also reveal
that impedance-magnitude minimization is the origin of
the local maxima in sound absorption. Yet, the work-
ing mechanisms underlying these behaviors remain to be
uncovered.

IV. MECHANISMS FOR NEAR-TOTAL
ABSORPTION AT ARBITRARY FREQUENCY

Leveraging the analytical formulation derived to investi-
gate the CMR, we explore the mechanisms that give rise to
the near-total sound-absorption phenomenon. For a CMR
having an inner side length of 5 cm, an opening radius of
3.1 mm, and a neck length of 1.7 cm, the absorption coef-
ficients at 179 Hz are shown in Fig. 4(a) as a function of
wall-material Young’s modulus and wall thickness. For a
rigid HR of the same physical dimensions, the Helmholtz
resonance is at 180 Hz. Therefore Fig. 4(a) suggests a
threshold of material and structural compliance for the
CMR to respond similarly to a traditional rigid HR. It is
observed that for smaller wall thicknesses such as 1 mm,
the Young’s modulus must increase substantially, e.g., to
around 100 GPa, to cause near-total absorption. Yet for
thicker walls, e.g., 10 mm, a smaller Young’s modulus
such as 100 MPa yields almost perfect sound absorp-
tion. This trend is due to the bending stiffness D of the
compliant walls, where D = ER*/[12(1 — v?)]. Assuming
Poisson’s ratio v remains the same, then the bending stiff-
ness increases proportionally to Young’s modulus £ and
increases according to the cube of the wall thickness 4.
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These findings reveal that the structural dynamics of the
compliant walls of the CMR introduce a coupling among
the wall deflection, inner pressure field, and air motion in
the opening. With less coupling among the components
of the CMR caused by stiff and inflexible walls, the sys-
tem responds similarly to a traditional rigid HR. A greater
coupling among the degrees of freedom of the CMR cre-
ates subwavelength, broadband, and near-total absorption
of sound.

A way to tailor the mechanical properties of the CMR
walls so as to enable robust and near-total sound absorp-
tion is investigated. Here, the CMR has an inner side length
of 11 cm, an opening radius of 9 mm, and a neck length
of 1.7 cm. The results for sound absorption at 179 Hz are
shown by the contour color shading in Fig. 4(b). With the
same cavity and opening dimensions, the rigid HR exhibits
a Helmbholtz resonance at 133 Hz. Yet, by strategic selec-
tion of the wall-material modulus and thickness, the CMR
achieves near-total absorption at the target frequency of
179 Hz, shown by the darker red color in Fig. 4(b) for
the larger wall thickness and smaller Young’s modulus.
This is enabled despite the fact that the counterpart rigid
HR provides nearly no sound absorption at this frequency,
since 179 Hz is well off the resonance at 133 Hz. As
uncovered through additional studies presented in Appen-
dices C and D, the wall thickness and Young’s modulus
can individually be used to tune the sound-absorption
characteristics of the CMR in still more nuanced ways.

To contrast the use of a rigid HR and a CMR for near-
total absorption at 179 Hz, Fig. 4(c) provides an analytical
and experimental examination. To construct the rigid HR,
acrylic PMMA [thickness 6.35 mm and Young’s modulus
3.2 GPa, highlighted by the star marker in Fig. 4(a)] is used
to fabricate the cavity walls. Since the same Helmholtz
resonance would be achieved by another rigid HR with a
larger volume and a larger opening, the size of the HR is
not an influencing factor in this comparison. In addition,
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FIG.4. Analytical absorption coefficients at 179 Hz for a CMR of (a) inner side length 5 cm, opening radius 3.1 mm, and neck length
1.7 cm, and (b) inner side length 11 cm, opening radius 9 mm, and neck length 1.7 cm, as a function of wall-material Young’s modulus
and wall thickness. (c¢) Absorption coefficients of the two CMRs selected in (a) and (b), marked by a star and a circle, respectively, as a
function of frequency from 50 to 300 Hz. Results for (a) are denoted by a red dashed line (analytical) and red squares (experimental),
and results for (b) are denoted by a green solid line (analytical) and green circles (experimental).
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the absorption capabilities of a rigid HR and a CMR of
the same net size are compared and discussed in Sec. II1.
Here, the CMR has a wall thickness of 10 mm and a
Young’s modulus of 0.5 MPa, highlighted by the circle
in Fig. 4(b). The analytical (red dashed and green solid
lines) and experimental (red squares and green circles)
results for the absorption coefficient of the rigid HR and
the CMR are presented in Fig. 4(c). The rigid HR has
one frequency of near-total sound absorption at 179 Hz
and nearly no sound absorption off resonance. Yet, for the
CMR, near-total sound absorption is achieved at 179 Hz
as well as at 90 Hz, a far more subwavelength response
than that delivered by the rigid HR. In fact, the hybrid res-
onances provided by the CMR are both more broadband in
sound absorption than that of the rigid HR. With the CMR,
hybrid resonances can be achieved at desired frequen-
cies, with the design parameters acquired from the model
created here. The rich multiphysics coupling among mate-
rials science, structural dynamics, and acoustics enables a
simple monolithic-material design to substantially control
acoustic-energy transfer and dissipation using lightweight
soft materials.

V. CONCLUSIONS

The hybrid resonances manifested in the compliant-
material resonator enable multiple-frequency absorption,
while the material compliance of the cavity walls increases
the frequency bandwidth of the sound absorption. The
subwavelength dimensions of the compliant-material res-
onator and its straightforward structure enable simple
fabrication and tuning strategies for versatile implementa-
tion. The compliant-material resonator can be applied for
extremely low-frequency sound attenuation [4], and may
be integrated into existing barriers for greater energy con-
trol [40]. The concept of utilizing multiphysics coupling
to introduce hybrid resonances may be leveraged to design
classes of acoustic-energy-transfer and energy-harvesting
devices [41,42], and may potentially inspire designs of
active sound absorbers [43—45].
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APPENDIX A: ANALYTICAL MODELING OF THE
COMPLIANT-MATERIAL RESONATOR

Because of the low frequency range of interest in this
study and the relatively small dimensions of the CMR, a
long-wavelength approximation is used in the modeling.
The walls of the CMR are modeled as simply supported
thin plates [46]. The air in the neck is assumed to be a
lumped mass moving uniformly across the opening area
[29]. The behavior of the CMR is the outcome of the effect

of coupling of the deflection of the compliant walls w, the
inner pressure field p, and the displacement of the lumped
air mass in the opening &. The coupling between the inner
pressure field and the compliant walls is developed refer-
encing the analysis conducted by Dowell et al. [47]. The
inner pressure field satisfies the classical wave equation

1 3%
Vi — —— =0, Al
P 2% (A1)
where ¢y is the sound speed in air, and ¢ denotes the
time. The coupling between the pressure field and the wall

deflection on a flexible wall of area 4y is expressed as

op 9w
— = —pp—, A2
™ PO s (A2)
where 7 is the normal direction (positive outward) and pg
is the air density. The absorbing influence of the mate-
rial for an absorbent wall of area 4, is also taken into
consideration by

ap p
— =—po—, (A3)
on Zy

where z4 is the material impedance and the overdot denotes
the derivative with respect to time. The coupling between
the pressure field and the motion of the lumped air in the

opening (of area Ayg) is achieved as follows:
d d?
P _ § (A4)
on

For the inner pressure field, we assume that the rigid-wall
normal modes F), have the following properties:

2 WDpn
V2F, = ——2F,, (AS)
=]
dF,
=0, (A6)
on
1
- / F2dv = M2, (A7)
vy

where wy, are the natural frequencies associated with

the rigid-wall normal modes F,. The following terms are
defined:

: /
P, = pF,dv, (A8)
poctV Jy
1
W, = — / wF, dA, (A9)
Ar Jap
| [ F,F,
C,=— —— dA, (A10)
A4 Ju, Zz4
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where V'is the total volume of the cavity. Then the pressure
field p is expressed as the summation of all modes:

P =poch Y (Pu/M}F,. (AL1)

To obtain the ordinary differential equation (ODE) for the
acoustic modes, Green’s theorem is applied in the form

OF, 9
/(szFn—FnVZp)dU:/ 2P aa.
v 4 on on
(A12)

By substituting Egs. (A1)~+(A11l) into Eq. (A12), the ODE
set for the pressure field is arrived at:

. P cn, .
P, + P, 44 poco Z = W,,

F,dA.

1.
— =£ (A13)
V" Jaw
Similarly, the wall deflection w is also expressed as the

summation of all modes:
w= Z Qm\pma
m

where W, is the mth mode shape and ¢, is the generalized
coordinate associated with it. By substituting Eq. (A14)
into Eq. (A9), the term W, is then expressed by the wall
modes as

(Al4)

(A15)

1
Wo=3"— | qu¥nF,dd.
Sl

To relate the wall modes and the acoustic modes, a cou-
pling term is derived as follows:

1
an -

Fn\pm dA.
Ar

(A16)
Then W, is expressed as
W, = Zanqm-

By substituting Eq. (A17) into Eq. (A13), one gets the
governing equation for the inner pressure field,

P. C Ap .
P +wAnP + 100 OZ - = _Z7anqm

(A17)

F,dA.

AnR

l.
_I_/g

After obtaining the governing equation for the acoustic
pressure inside the cavity, the wall deflection is analyzed.

Considering the wall as a thin plate that is excited by the
inner pressure field, the governing equation for the wall
deflection w is achieved as

92w

DV W+mw82

=p. (A18)
Here D = (Eh*/12(1 — v?)) is the bending stiffness deter-
mined by the material Young’s modulus E, Poisson’s ratio
v, and the wall thickness 4, and m,, is the density per unit
area. The mode shapes W,, of the wall are orthogonal, and
satisfy the equation

DV*W,, — m,w: ¥, = 0. (A19)
Because of the infinitesimal acoustic pressures involved
that couple to the walls, the boundary conditions on the
walls are assumed to be simple support on all edges, and
then the natural frequency w,, is

2 )
_ o T | D
om = 7 (bﬁbz) 12,

where the numbers of the nodal lines for the mth mode
are i — 1 and j — 1, respectively, in two directions on the
square wall.

By substituting Eqs. (A14) and (A19) into Eq. (A18),
the governing equation for the generalized coordinates is
obtained as

(A20)

D mulim + Ongm)Wn =p (A21)

To simplify Eq. (A21), the orthogonality condition on the
mode shapes is applied. We multiply Eq. (A21) by another
mode shape and integrate over the area of the flexible
wall, and then the governing equation for ¢, is achieved
as follows:

(Gm + @2 qm)

m, W2 d4 = / U, pdAd.  (A22)
Af A

To simplify the governing equation Eq. (A22), the orthog-
onality condition is expressed as

/ m,W2 dA = D,,. (A23)
Afp

Equations (A11) and (A16) are then substituted into Eq.
(A21) to get the governing equation

P,L
W(an + wQO) - pOcoAF Z nm-

Then, for the lumped mass in the opening, a force balance
is applied to characterize the air-mass motion. By balanc-
ing the forces on both sides of the opening, the governing
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equation for the air motion is obtained as follows:

mé + RE = Ayrp + AurPe' ™. (A24)

In Eq. (A24), m = ppAurL’ is the equivalent air mass in the
opening, L' = L + 1.7a is the end-corrected neck length
for a neck of length L and opening radius a [47], R is the
sum of the radiation resistance and thermoviscous resis-
tance for the opening [29], and Pe/“! is the harmonic plane
wave excitation. By substituting the expression for the
inner pressure field, Eq. (A11), into Eq. (A24), the gov-
erning equation for the air-mass motion in the opening is
expressed as

mé + RE = Aurpocy Z "+ AurPe .

}’l

The governing equations for the compliant-material res-
onator are given all together by Egs. (1)~3). In order to
study the behavior of the CMR compared with a traditional
rigid HR, the specific acoustic impedance and absorption
coefficient are determined by solving the governing equa-
tions derived above. The specific acoustic impedance is the
ratio of acoustic pressure to fluid particle velocity. In this
paper, due to the low frequency range of interest, we con-
sider only the zeroth-order mode of the inner pressure field,
where w49 = 0 and M()“ = 1 [48]. In addition, only the odd
modes of the wall are considered, because the even modes
do not appreciably contribute to changes in the acoustic
pressure in the cavity [49]. In this study, the 1-1, 1-3, 3-1,
and 3-3 modes are considered, where the numbers of nodal
lines for the mode shapes are 0 and 0, 0 and 2, 2 and 0, and
2 and 2, respectively. The 1-3 and 3-1 modes have the same
natural frequencies and generalized-coordinate responses
owing to the square shape of the wall. Therefore, only the
response of the 1-3 mode is calculated, and the influence is
doubled in the coupling term with the inner pressure. Tak-
ing these strategies into account, the governing equations
are Eqs. (A25)«(A29):

2
. PoCyArLon

bty = Pocdrte p A27
413 + 013913 MiD, 0 (A27)

2

. pPocoArLos

+ 033 = — 2Py, A28
433 + w33933 MiD, 0 (A28)

. . A 2 .
mé + RE = %Po + AyrPe“". (A29)
0

Further simplification of the governing equations is
achieved by defining the following coefficients:

_ Poco Aaco Ar 24r Ar
——, 01 = —Lo1, 8 = — Ly, 85 = —Lo3,
z2 VM Lot &2 = == Lo, 83 = - Los
_ Aur
V 9
_ pocArLor | pocgArLoy | pocgArLos
1 M64DW 5 62 M(‘;IDW 5 63 M64DW 5
_ Anrpocy
Mg

By substituting the above constants and recalling that
w40 = 0, the governing Eqgs. (A25)«(A29) are expressed
as

Py + 0Py = —8141 — 8232 — 83443 — KE, (A30)
qn + ohqi = 4P, (A31)
13 + w313 = P, (A32)
{33 + 33933 = &3P, (A33)
mé + RE = Py + AurPe . (A34)

In order to obtain the absorption coefficient of the CMR,
the specific acoustic impedance of the CMR is first
derived. The specific acoustic impedance at the opening of
the CMR is the ratio of the excitation pressure amplitude
to the particle velocity of the lumped air in the opening.
Harmonic responses are assumed, and Eqs. (A30)«(A34)
are expressed in terms of Py, g;;, and £. Then, by substi-
tuting Egs. (A30)+A33) into Eq. (A34), the impedance at
the opening is obtained as

Jwkg

poco Agco Ar 24F
P P, L py=——1L — —L
o+on o+ — B VMA 0 % 0141 % 0242
A A
— Lo — —HRS (A25)
14
. pocgArLor
+(l)2 == P s A26
qn 11911 MiD, 0 (A26)
P
Zopening = g
wm—+ R+
(’ —? )00 — [@8181/(— + )]

A 9
— [028,00/(—? + 0%5)] — (28383 /(—? + w§3>)) A

(A35)
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where £ is the complex amplitude of &, and w is the
harmonic plane wave excitation frequency. The total nor-
malized specific acoustic impedance of the CMR is then
found to be

Z _ Awbe Zopening (A36)
Zy  Aur poco

where Aype 1S the cross-section area of the impedance
tube, and Zy = pgcy is the specific acoustic impedance
of air. Then the absorption coefficient of the CMR, «, is
expressed as presented in the text in Eq. (4), repeated here
for completeness:

2

_ U5
N Z]Zy+1

APPENDIX B: EXPERIMENTAL FABRICATION
AND METHODS

The compliant-material resonator is fabricated by cast-
ing silicone rubber (Smooth-on, Inc., Mold Star 15s) into
a mold that is the negative of the CMR. The necks for
tuning the opening radius are fabricated by 3D printing
of ABS plastic (FlashForge Creator Pro). The measure-
ments of the absorption coefficients and impedances in
Figs. 3 and 4(c) are conducted in an impedance tube with
a 76.2 mm interior diameter in accordance with ASTM
E1050-12. Instead of the specimen being mounted inside
the end of the impedance tube, the CMR is mounted on
the side of the tube, at the end of the tube. The CMR is
connected to the tube by a 3D printed neck. A speaker is
mounted on one end of the impedance tube, and a rigid ter-
mination of the impedance tube at the CMR end is applied.
Two microphones (PCB 130E20) are mounted on the tube
to measure the complex acoustic pressure. White noise is
generated by the data-processing computer and fed through
a power amplifier (AudioSource AMP 100) to the speaker.
A signal conditioner (PCB 482C05) and a National Instru-
ments data acquisition system (NI 6341) are applied to
send the measured data to MATLAB for postprocessing. The
absorption coefficient and the normalized specific acoustic
impedance can then be obtained from the complex transfer

CMR
Source Microphones
Plane waves /
/ ;o I Rigid termination
! \

I \.\.\ \\\_4_._, Neck
\| \l /
I’ I‘

FIG. 5. Experimental setup for impedance tube.

function measured by the two microphones. The experi-
mental setup for the impedance-tube tests is presented in
Fig. 5.

APPENDIX C: WALL THICKNESS FOR TUNING
STRUCTURAL COMPLIANCE OF THE CMR

In the main text, the parameter selection of the combi-
nation of Young’s modulus and wall thickness to achieve
near-total absorption in a CMR is investigated. Here the
significance of the Young’s modulus and the wall thickness
individually is illuminated. First a CMR with a thinner wall
is investigated. The thinner CMR has an inner side length
of 10 cm and a wall thickness of 5 mm, and is fabricated
from the same material as that in Fig. 3 with proper-
ties Young’s modulus 0.5 MPa, Poisson’s ratio 0.49, and
density 1145 kg/m?. Figure 6 presents the experimental
(markers) and analytical (lines) results for the absorption
coefficient of thinner CMRs with opening radii 5, 4, and
3 mm from 50 to 300 Hz.

In Fig. 6, at frequencies around 60 Hz and around
200 Hz, absorption-coefficient peaks are observed. In addi-
tion, increasing the opening radius enables sound absorp-
tion closer to near-total absorption, and causes a slight shift
to higher frequency in the peak around 200 Hz, which is
evident from comparing the results for increased open-
ing radius in Fig. 6. Although the overall trends in the
absorption coefficient for the thinner CMR are analogous
to those for the 10-mm-thick CMR presented in Fig. 3(a),
the near-total absorptions occur at distinct frequencies. The
absorption peaks in Fig. 6 occur at around 60 and 200 Hz,
and the near-total absorptions in Fig. 3(a) are at around 90
and 160 Hz. The difference in absorption-peak frequencies
between the CMRs with thinner and thicker walls indicates

09+ Analysis

""" a=5mm
+— 0.8 a=4mm
g —--i @ =3 mm
5 0.7 Experiments

o a=5mm
§0.6’ a=4mm
2 0.5k A a=3mm

0 ;;1':‘1':‘»/" . ‘*—~,‘;;
50 100 150 200 250 300
Excitation frequency (Hz)

FIG. 6. Analytical and experimental results for absorption
coefficients of CMRs of opening radii 5 mm (red dashed line
and red circles), 4 mm (green solid line and green squares), and
3 mm (blue dotted-dashed line and blue triangles). The CMR has
a cubic cavity of side length 10 cm, a wall thickness of 5 mm,
and a neck length of 1.7 cm.
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that the wall thickness has an influence on the absorption
characteristics of a CMR.

To compare the influence of the wall thickness on the
absorption characteristics of a rigid HR and a CMR, an
analytical study is conducted. Figure 7 presents the absorp-
tion coefficients of a rigid HR [Fig. 7(a)] and a CMR [Fig.
7(b)] for wall thicknesses of 3, 5, 7, and 9 mm. For both the
rigid HR and the CMR, the inner side length of the cubic
cavity is 11 c¢m, the opening radius is 5 mm, and the neck
length is the same as the wall thickness. As presented in
Fig. 7(a), the rigid HR has one absorption-coefficient peak
for each wall thickness, and the peak amplitudes are less
than 0.5. For the CMR as shown in Fig. 7(b), there are two
major absorption peaks (with absorption coefficient greater
than 0.5) for all four wall thicknesses. With an increase
in wall thickness, the two major peaks shift towards the
middle frequency. Yet the two major peaks for each wall
thickness presented in Fig. 7(b) are associated with dis-
tinct modes of the wall. The natural frequencies of the 1-3
and 3-1 modes are 30.2, 50.3, 70.4, and 90.5 Hz for the 3,
5, 7, and 9 mm walls, respectively, which correspond to
the absorption-peak frequencies in Fig. 7(b) for each wall
thickness. The near-total absorption around 175, 190, 220,
and 270 Hz for the four wall thicknesses is the outcome of
the hybrid effect of the wall compliance and the zero mode
of the pressure field (Helmholtz mode). For smaller wall
thicknesses, the wall compliance softens the rigid HR sig-
nificantly and thus decreases the equivalent stiffness of the
HR. With decreased stiffness and unchanged mass in the
open neck, the resonant frequency is increased, as can be
seen by comparing the near-total absorption of the CMR
in Fig. 7(b) with the peak for the same wall thickness for
the rigid HR in Fig. 7(a). By contrasting the four near-
total absorptions (from 150 to 300 Hz) in Fig. 7(b), it
is observed that increasing the wall thickness lessens the
softening effect, and thus lowers the resonant frequency.

(@) 1 :
09| Rigid HR
"""" =3 mm
- L h=5
g ogr h=7mm
§ 0.7 + h=9mm
% 06|
c 05"
S
£04 ¢
203"
<o2}
01+ ,
0 7_,,«,:‘.’»'” ) ) ) ) .
1 50 100 150 200 250 300

Excitation frequency (Hz)

By adjusting the wall thickness, tuning of the structural
compliance of the CMR and multiple-frequency near-total
absorption are achieved, compared with the rigid HR.

APPENDIX D: MATERIAL COMPLIANCE FOR
MULTIPLE-FREQUENCY AND NEAR-TOTAL
ABSORPTION

An investigation of the influence of the Young’s
modulus on the absorption characteristics of a CMR is
conducted. Figure 8 presents the analytical absorption
coefficients of a CMR for 1-300 Hz and a Young’s modu-
lus from 10 kPa to 10 GPa. The inner-cavity side length
of the CMR is 11 cm, the opening radius is 5 mm, the
wall thickness is 10 mm, and the neck length is 2 cm.
Shown at the top of Fig. 8 are absorption coefficients for
a rigid HR with the same geometric parameters, with a
Helmbholtz resonance at 79 Hz. As presented in Fig. 8, for
the CMR, for a large Young’s modulus such as one greater
than 1 GPa, the absorption coefficients are nearly the same
as those of the rigid HR. When the Young’s modulus is
smaller, such as around 1 MPa, multiple-frequency absorp-
tion occurs, and near-total absorption is also achieved
as indicated by the dark red color. In addition, by tun-
ing the Young’s modulus of the wall material, absorption
at either a lower or a higher frequency compared with
the rigid HR can be realized. Traditionally, in order to
achieve low-frequency sound absorption, a rigid HR needs
to have large geometric dimensions, even for coiled-up res-
onators. Yet, by decreasing the Young’s modulus of the
wall material, in other words by utilizing softer materials,
greater sound absorption at subwavelength frequency can
be achieved. The multiple-low-frequency and near-total
absorption is realized by strong coupling of the structural
response, acoustic-pressure field, and air motion in the

b :
(b) 1o
0.9 - h=3mm h=7mm
h=5mm h=9mm
450.8* i
5 0.7 ¢

50 100 150 200 250
Excitation frequency (Hz)

N

300

FIG. 7. Analytical absorption coefficients of (a) a rigid HR and (b) a CMR as a function of frequency from 1 to 300 Hz and wall
thicknesses 3 mm (red dashed line), 5 mm (green solid line), 7 mm (blue dotted-dashed line), and 9 mm (thick cyan solid line). Both the
CMR and the HR have a cubic cavity of side length 11 cm and opening radius 5 mm. The neck length is the same as the corresponding

wall thickness.
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108§
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—
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Excitation frequency (Hz)

FIG. 8. Analytical absorption coefficients of a CMR as a func-
tion of frequency from 1 to 300 Hz and for a Young’s modulus
from 10 kPa to 10 GPa. The side length of the cubic cavity of the
CMR is 11 cm, the opening radius is 5 mm, the wall thickness
is 10 mm, and the neck length is 2 cm. The analytical absorption
coefficients of a rigid HR with the same geometric parameters
are presented at the top of the contour plot.

opening through the material compliance. The compliant-
material resonator enables multiphysics coupling, hybrid
resonances, and impedance tuning for greater control of
acoustic energy. Such discoveries greatly contribute to
the study of techniques for acoustic-energy attenuation
and may inspire future investigations of sound-absorption
devices.
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