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Summary

Preparation for oxidative stress (POS), i.e., the upregulation of endogenous antioxidants, is a
widespread response of animals exposed to extreme conditions. This response has been described for
more than 80 animal species belonging to eight phyla during hypometabolism or situations that limit
oxygen availability. The pattern of the typical POS-response, in which a mild redox imbalance triggers
antioxidant adjustments that results in increased tolerance to subsequent oxidative insults, roughly
follows the curve of hormetic phenomena. A similar pattern has been reported for various animal
species exposed to ultraviolet (UV) radiation — these studies, on animals from six phyla, are discussed
herein. In the light of the similarities in the redox-response of animals exposed to either oxygen
restriction or UV radiation, we argue in this essay that UV radiation elicits a type of response that fits
the POS theory. Exposure to UV radiation induces both reactive species formation and antioxidant
adaptation, which is the essence of typical POS-responses. Thus, antioxidant response to UV in animals
can be considered a POS-type mechanism. Moreover, considering that animals are exposed to multiple
stressors simultaneously in nature, this would represent an ecologically relevant process, by which one
stressor (e.g., UV or ionizing radiation) may enhance the tolerance to other. We also discuss a possible

role of low doses of ionizing radiation as inductor of POS-like responses in animals.

Keywords: free radicals, hormesis, electromagnetic wavelength, terrestrial and aquatic animals.
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1. Introduction

The light from the sun brings an enormous amount of energy to Earth. Although this energy is
the ultimate fuel for most of the life on this planet, it can also be life’s foe. Within the range of
electromagnetic wavelengths, ultraviolet (UV) radiation is the one that causes most harm to animals in
nature (Cockell and Blaustein, 2001). Exposure to both UV-A and UV-B is an important factor not
only for terrestrial environments but also for aquatic ecosystems, where organisms are exposed to solar
UV radiation in the upper photic zone or when exposed to air during low tides. In the context of aquatic
environments, UV-B has received great attention in the past years, especially in regions with a thinner
ozone layer (Misra et al., 2002; Héder et al., 2007); although UV-A is also likely to be important as it
can penetrate deeply into the water.

Exposure to UV radiation can damage major biomolecules and cellular structures, either through
direct action of UV or, indirectly, through the formation of reactive oxygen species (ROS) (Cadet et
al., 2005; Agnez-Lima et al., 2012; Schuch et al., 2017). In that regard, DNA is a main target of UV
radiation, generating pyrimidine dimers, strand breaks, modified bases, photo-adducts, and DNA—
protein cross-links (Karentz et al., 2004; Yagura et al., 2017). Several reports indicate that UV-effects
on organisms are dose and time-dependent (Chuang and Chen, 2013; Won et al., 2014; Singh et al.,
2015), eliciting adaptive responses in most life forms at low doses (Dahms and Lee, 2010; Hader et al.,
2015; Cadet and Davies, 2017). Therefore, our essay concentrates on the biological effects, both
adaptive and deleterious, of UV exposure, with a focus on the indirect effects mediated by ROS.
Furthermore, the emphasis herein will be on the “classical” antioxidant response in animals, leaving

out sunscreen molecules and DNA repair systems.

2. Redox-adaptive animal response to UV radiation

Many invertebrate and vertebrate species can improve their endogenous antioxidant systems
upon exposure to low doses of UV radiation. On the other hand, under high UV doses, a rampant
oxidative stress condition frequently occurs. In addition to dosage, other variables might influence the
outcome of UV exposure, such as the individual size, mode of life (diurnal, nocturnal, etc.) and
skin/exoskeleton characteristics. Therefore, the effects of UV exposure may differ greatly between
different species and how the animal’s body is exposed. For example, Kim et al. (2011) reported a
dose-dependent effect of UV in which low doses (0.1-0.4 J/cm?) prompted increases in ROS formation
and both glutathione (GSH) and antioxidant enzymes in rotifers Brachionus sp. Increased activities of

several antioxidant enzymes, as well as ROS levels, were also observed for the benthic copepod
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Tigriopus japonicus after exposure to UVB (1.2 and 2.4 J/cm?) (Kim et al., 2015). Increased ROS
production was accompanied by a rise in SOD activity for the copepod Paracyclopina nana after
exposure to low UV-B dose (0.1 J/cm?) (Won et al., 2014) (Figure 1). Considering the effect of the
water column on the intensity of UV that actually reaches animals, some studies have analyzed UV-
effects with that perspective. For instance, an overall activation of endogenous antioxidant enzymes,
as well as protein carbonyls, happened in the sea urchin larvae Tripneustes gratilla upon exposure to
natural UV in shallow (1 m), but not in deeper water (4 m) (Lister et al., 2010). For the colonies of the
coral Acropora microphthalma (host and zooxantella), a high antioxidant status was observed in
individuals collected at shallow water, whereas antioxidant levels decreased as depth increased (Shick
et al., 1995). Furthermore, the effect of depth on the redox metabolism is evident in Strongylocentrotus
droembrachiensis larvae. Sea urchin larvae exposed to UV at a 1 m depth have higher levels of SOD
and DNA damage than those exposed to UV at deeper depths (Lesser et al., 2010).

The modulation of endogenous antioxidant in response to UV might be especially important for
animals restricted to environments under direct solar exposition where no microhabitats with solar
protection are available. This is the case of many water bodies where a number of aquatic vertebrates
cannot shelter from sunlight. Indeed, tadpoles and fish (larval and adults) inhabiting shallow waters
activate their endogenous antioxidants when exposed to UV. For example, Bufo arenarum tadpoles
increase their SOD activity when exposed to UV-B sublethal doses (0.02- 0.2 J/cm?), followed by a
return to basal levels after 5 h (Herkovits et al., 2006) (Figure 1). A similar response — regarding SOD
and catalase activities - was reported for adult zebrafish (Brachydanio rerio) exposed to two UV-B
doses (0.32 and 4.2 J/cm?) (Charron et al., 2000). Likewise, embryos of the salamander Ambystoma
maculatum enhanced their SOD levels at both the protein and activity when exposed to low doses of
UV radiation (0.02-3.96 J/cm?) (Lesser et al., 2001b). Moreover, larvae of Atlantic cod (Gadus
morhua) exposed to UV (2.3 J/cm?) exhibited higher levels of SOD and DNA damage than control
animals (Lesser et al., 2001a). Intertidal juvenile fish Girella laevifrons exposed to UV-B (1.04 J/cm?)
presented increases in hepatic SOD and catalase activities after 2 h (Carrasco-Malio et al., 2014).
However, a longer exposure (5 h) elicited a decrease in catalase activity as well as increased
lipoperoxidation and DNA damage. For Catla catla fish larvae, Singh et al. (2015) reported increased
SOD activity and oxidative stress after UV-B exposure (0.5-2.0 J/cm?) for 21 days. The interplay
between temperature and UV has also been explored. Mosquitofish (Gambusia holbrooki) specimens
that had been acclimatized at low temperatures are more susceptible to oxidative damage than those
acclimated at high temperatures when exposed to UV radiation (Kazerouni et al., 2016). The effect of

UV is expected to be more intense in small-bodied slim animals with thin teguments, such as the
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examples presented above. In these cases, both invertebrates and vertebrates discussed herein presents
an adaptive strategy to manage redox imbalances through activation of antioxidants. There are cases,
however, where UV induces only oxidative stress, without an adaptive antioxidant response, such as
in catfish Clarias gariepinus (Ibrahim, 2015). Much further study is needed to understand the UV
action on the redox metabolism of aquatic vertebrates.

Several of the aforementioned examples on the response of endogenous antioxidants in aquatic
animals exposed to UV radiation highlight the occurrence of hormetic biphasic response (i.e., low
doses stimulate antioxidants and potentially increase fitness, whereas high doses inhibit antioxidants
and have deleterious effects). This biphasic-pattern has also works for land animals. For example,
mRNA expression of many antioxidant enzymes is stimulated by UV-A exposure (1.1 J/cm?) in the
moth Helicoverpa armigera. Longer irradiation times decreases GSH:GSSG ratio, indicating that UV-
A induces redox imbalance (Wang et al., 2012). In a study with the ear-cutting caterpillar Mythimna
separata, low UV-A dose (1.2 J/cm?) increased the activity of several antioxidant enzymes after 60
min. On the other hand, longer exposures (90—120 min) reduced the activity of antioxidant enzymes,
leading to high levels of oxidative stress markers (Ali et al., 2016). Similarly, Spodoptera litura moths
exposed to UV-B (1.08 J/cm?) for 1 h increased the activities of several antioxidant enzymes. When
UV exposure was extended to 2 h (2.16 J/cm?), the antioxidant enzymes returned to basal levels or
decreased (Karthi et al., 2014). In the case of earthworms Amynthas gracilis, a low UV-B dose (0.05
J/em?) prompted an increase in catalase activity. At a higher dose (0.3 J/cm?), however, there was a
decrease in glutathione peroxidase and catalase activities and an increase in lipid peroxidation (Singh
et al., 2015). (Figure 1). Thus, these studies with terrestrial and aquatic animals indicate that the
response of endogenous antioxidants, as well as the degree of oxidative stress, presents an overall dose-
dependent response within a limited range, leading to UV radiation adaptive responses under low doses

and deleterious outcomes in higher doses.

3. The POS adaptive theory

The pattern observed in the response of endogenous antioxidants to UV radiation exposure is
reminiscent of the biochemical adaptations reported for many animal species challenged by extreme
environments. These challenges include freezing-cold, oxygen depletion, and recovery from these
conditions. Such conditions may change cyclically or abruptly in natural habitats (Welker et al., 2013).
The activation of endogenous antioxidants under these situations was first reported in 1993 in garter
snakes (Hermes-Lima and Storey 1993) and named “‘Preparation for Oxidative Stress” (POS) (Hermes-

Lima et al., 1998), whereby a small-scale redox imbalance induces a physiological antioxidant
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response, setting the animal to deal with subsequent, more severe, oxidative stress (Hermes-Lima et
al., 2015; Giraud-Billoud et al., 2019). More than a hundred studies confirmed that POS occurs in many
animal species in the following stress-situations: hypoxia/anoxia, severe dehydration, freezing,
estivation, hyposaline stress and air-exposure of water-breathing animals (Giraud-Billoud et al., 2019).
In total, such a POS-response was identified in 83 species from 8 different animal phyla, including
vertebrates and invertebrates (Moreira et al., 2016, 2017). In animals under hypoxia, where POS has
been most studied, it is one component of a set of physiological/biochemical adaptive responses that
allows organisms to cope with low oxygen levels. These include: (i) the arrest of most transcriptional
and translational activity, (i) depression of metabolic rate, (iii) re-wiring of energy metabolism
pathways toward fermentative routes, (iv) activation of mechanisms involved in both macromolecular
repair and detoxification of cellular-derived oxidants (Krivoruchko ans Storey, 2015; Storey, 2015;
Biggar and Storey, 2018). Importantly, the transient upregulation of the antioxidant defense system is
a hallmark of many organisms that tolerate hypoxic stresses, as it is crucial to deal with reoxygenation.
Elucidating the exact molecular mechanisms that trigger POS is an active topic of research, but, only
recently, it was proposed that the biochemical patterns we call POS are brought about by an increase
in ROS levels (Hermes-Lima et al., 2015). Such increase in ROS levels (which may happen during
hypoxia, for example) may activate redox-sensitive transcription factors, such as FoxOs, NF-kB, and
Nrf2, promoting the expression of antioxidants (Figure 2). In addition, posttranslational modifications
on antioxidant enzymes by kinases and phosphatases may also contribute to the expression of the POS
phenotype (Rashkov et al., 2016; Oliveira et al., 2018). It seems certain that many organisms exposed
to mild sublethal stress conditions trigger a response that is protective against stronger subsequent
challenges, typical of hormetic outputs (Costantini, 2014a). In fact, POS has strong similarities with

the hormetic responses (Oliveira et al., 2018).

4. Redox-adaptive response to UV radiation as POS

In the present article, we argue that the antioxidant adaptation in response to UV radiation should
be considered a new type of POS-response. Considering the discussion above, it is possible to draw
some parallels between the response of animals’ endogenous antioxidant systems to low oxygen
stresses and to UV radiation exposure. These parallels come from the observations that exposure to
low doses of UV radiation can increase ROS production and stimulate the antioxidant system, which
is the essence of the typical POS response (for example, POS response in hypoxia) (Figure 2). Such

up regulation of antioxidants should increase the animals’ capacity to deal with subsequent exposures
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to higher dosages of UV radiation. Although the patterns of antioxidant response to hypoxia and UV
exposure are alike, whether they share the same molecular mechanisms is still an open question.

The currently proposed biochemical mechanism for POS in animals exposed to hypoxic stress
relies on the increase in ROS production during oxygen deprivation (Hermes-Lima et al., 2015). It is
well known that ROS activate redox-sensitive transcription factors, as well as protein kinase pathways
(Oliveira et al., 2018). Some of these transcription factors, notably Nrf2, can stimulate the expression
of endogenous antioxidants (Espinosa-Diez et al., 2015; Klotz et al., 2015). Like hypoxia, UV radiation
also increases both ROS production (Liu et al., 2016; Jeayeng et al., 2017; Schuch et al., 2017), and
the levels of endogenous antioxidants (Liu et al., 2011). Hence, the evidence strongly suggests the
involvement of redox-sensitive transcription factors, such as Nrf2, in the UV adaptive-response
(Figure 2). Indeed, the role of Nrf2 and its related genes has been demonstrated in vitro by studies
using dermal cells and fibroblasts (Schafer et al., 2010; Schafer and Werner 2015), but not in the animal
cases reported herein (Section 2). Thus, the pathways underlying the redox-response to UV and
hypoxia seem to converge to the same set of cellular responses, both showing the POS pattern.

There are, however, some differences between the antioxidant response to UV radiation exposure
and, for exampl e, hypoxia. One of the most relevant difference is the fact that the POS response to UV
radiation is not necessarily accompanied by metabolic depression — a highly relevant adaptive factor
for hypoxia tolerance, which also happens under estivation, severe dehydration and freezing exposure
(Hermes-Lima et al., 2015). Despite their differences, there are striking parallels in the pattern of redox-
response the animals show under those conditions. One of these is the involvement of transcription
factor Nrf2 as a key molecular component of the antioxidant adaptive response (Figure 2). In the
currently accepted cases of POS, we can identify typical hormetic patterns (Oliveira et al., 2018), in
which an earlier and mild oxidative stress increases the animals’ capacity to deal with a subsequent
and more severe stress. This same POS/hormetic pattern is described herein in 17 animal species from
six phyla (Section 2).

Although an adaptive redox-response to UV radiation can be induced in the laboratory, it is a
challenge to identify ecological scenarios in which this POS-response may be important. For example,
in tropical marine environments, the diversity of invertebrates exposed to direct UV is immense and
totally depend on the ecophysiological mechanisms to respond to the UV excess. In this sense, the
work by Lister et al. (2010) with 7. gratilla larvae in the Cook Islands could be viewed as ecologically
relevant for POS response in nature. These larvae are routinely exposed to varying levels of UV
radiation in marine environments. There was an upregulation of antioxidant systems in shallow depth;

such process in larval states constitutes an important investment for the animal fitness because
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minimize long-term effects such as oxidative DNA damage (Lister et al., 2010). Moreover, the range
of tolerance to direct solar UV radiation is one of the limiting factors defining which habitats a species
can inhabit, especially for sessile animals or those that do not present behavioral adaptations associated
with differential use of microenvironments (Zagarese & Williamson, 1994). Within communities, both
the UV radiation dose and the exposure time are important factors whose differential effects on each
species shape the structure of the communities (Williamson et al., 2001; Yang et al., 2017). In that
regard, the role of UV on animal homeostasis and adaptation can be more complex than its isolated
direct effect on organisms; UV might have transgenerational effects and synergistic interactions with
other environmental stressors. For example, UV radiation not only cause a POS-type adaptive response
in individuals directly exposed to it (Kazerouni et al., 2016) but also in their offspring (Kazerouni et
al., 2017). Moreover, under natural conditions, the exposure to both solar UV radiation and aerial
exposure induced the activation of antioxidant systems in intertidal mussels Brachidontes solisianus

(Moreira et al. 2017).

5. Ionizing radiation and POS

Gamma and X rays are forms of ionizing radiation characterized by their smaller wavelengths,
and higher frequency and energy than UV. We expect them to also elicit a protective response that may
fit into the POS theory. Such response was first shown over a century ago, when low dose X-ray
radiation increased lifespan in flour beetles (Davey, 1917). Additionally, this protection allowed the
beetles to tolerate lethal amounts of radiation when given as smaller doses daily (Davey, 1919).
Predating the concepts of oxidative stress and hormesis, it is clear that Davey was aware of the
protective nature of low dose ionizing radiation (Calabrese, 2013). The bulk of the work on the
protective effects of X-ray radiation has been carried out in insects because of their importance as
agricultural pests and medical research models. Lifespan extensions related to low dose gamma or X-
ray exposure have been recorded in flies, mosquitoes, moths, crickets, wasps, and beetles (Calabrese,
2013). Beyond reporting longer-lived animals, longevity increases in flies only occur when associated
with starvation conditions (Lamb, 1964), suggesting that the mechanism behind this benefit is
connected to mitochondrial function and energetics.

Mechanistically, little is known about how gamma and X-rays increase lifespan. However,
performance improvements following low dose and high dose exposures seem to work differently.
Higher doses of ionizing radiation lead to increased longevity in insects, especially in females, mostly
due to a decreased in reproductive output or sterility (Lopez-Martinez and Hahn 2014; Lopez-Martinez

et al., 2014). Sterility triggers a life history trade-off where energy normally allocated for reproduction
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now goes towards immunity and defense (Stearns, 1989). Conversely, low dose radiation and its
protective phenomena are in line with our POS expectations; an adaptive protective antioxidant
response. Mechanistic work with Drosophila melanogaster shows that activity and lifespan were
shortened in flies with mutations to apoptosis, DNA repair, antioxidant defense, and heat shock protein
genes (Moskalev et al., 2006; Moskalev et al., 2009). Mutants for apoptosis and antioxidant genes were
the most affected, indicating that the benefit conferred by low-dose gamma rays is connected to a
decreased in oxidative stress with the strongest benefit seen in early life exposure (Moskalev, 2007).
Antioxidant enzymes and genes involved in oxidative stress responses were expressed in response to
low-dose gamma irradiation connected with lifespan extension and the authors propose that the
mechanism for low-dose ionizing radiation protection is the activation of oxidative stress defense
mechanisms (Seong et al., 2011), which goes to the heart of the POS theory (Giraud-Billoud et al.,
2019). In vitro and in vivo evidence in mammalian cells show lower levels of DNA damage following
low dose radiation treatment (Vijayalaxmi et al., 2014). All this work suggests that hormetic effects
associated with low-dose gamma and X rays are likely rooted in the POS theory, as some of the
mechanism known indicates a key role for antioxidant protection and heat shock proteins - two sets of

genes that are crucial in the POS framework.

6. Conclusions

Finally, the molecular similarity between the responses to UV radiation (and ionizing radiation)
and other POS conditions may also expand the ecological relevance of POS phenotypes. It implies a
possible interaction between, for example, UV radiation and hypoxia — where UV radiation pre-
exposure could set up preparation for hypoxic stress (or vice-versa). This would be similar to what has
been reported for other hormetic phenomena, where “stress X sets up animals for tolerance to “stress
Y” (Costantini, 2014b; Lopez-Martinez and Hahn, 2014; Espinosa-Diez et al., 2015). This has been
verified in the case of pre-exposure of multiple species of fruit flies and moths to hypoxia causing
beneficial outcomes for ionizing radiation exposure (Robinson 1975, Nestel et al. 2007, Lopez-
Martinez and Hahn, 2012; Lopez-Martinez and Hahn, 2014; Lopez-Martinez et al., 2014). Considering
that animals may be subjected to multiple stressors simultaneously, the interplay between UV/ionizing

radiation and hypoxia, for instance, should affect and modulate the POS-response in nature.
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Figure Captions.

Figure 1. Schematic alterations in the redox metabolism in various animal species in response to UV
radiation. It depicts 12 animal species, from 6 different phyla, responding to UV according the
following variables: (i) levels/activity of endogenous antioxidants (GSH and antioxidant enzymes),
(i) ROS formation and (iii) and markers of oxidative stress (lipid peroxidation, protein carbonyl or
DNA damage) (see Section 2 in the main text). The figure shows only variables that increased under

UV radiation.

Figure 2. Animals’ redox-response to UV irradiation shares many similarities with responses to other
POS-inducing conditions. The scheme shows an illustration of the convergence of redox-responses to
low doses of UV irradiation and hypoxia exposure, a classical POS-inducing condition. There is
accumulating evidence that hypoxia changes the redox state of mitochondria, increasing
mitochondrial ROS production. This may trigger, in hypoxic-tolerant animals, a series of
biochemical responses that increase the activity of the endogenous antioxidant system, either by
acting upon existing enzymes through post-translational modifications (such as phosphorylation; or
by inducing the synthesis of new antioxidant enzymes via activation of redox-sensitive transcription
factors, such as Nrf2 (Hermes-Lima et al., 2015; Giraud-Billoud et al., 2019). This increase in
antioxidant defenses helps the animal to cope with the subsequent, more severe redox stress of
reoxygenation, thus creating the POS pattern (Moreira et al., 2017). UV irradiation induces ROS
formation by completely different mechanisms than the ones in hypoxia, such as generation of singlet
oxygen by DNA and other chromophores excited by UV-A (Yagura et al., 2017) or by UV-B-
induced activation of ROS-generating enzymes, such as NADPH oxidase and cyclooxygenases (Beak
et al., 2004; Masaki et al., 2009; Schuch et al., 2017). Thus, low doses of UV radiation can boost

antioxidant defenses and help animals to cope with subsequent exposures to higher doses of UV.
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