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ABSTRACT 18 

 The adaptive response characterized by a biphasic curve is known as hormesis. In a 19 

hormesis framework, exposure to low doses leads to protective and beneficial responses while 20 

exposures to high doses are damaging and detrimental. Comparative physiologists have studied 21 

hormesis for over a century, but our understanding of hormesis is fragmented due to rifts in 22 

consensus and taxonomic-specific terminology. Hormesis has been and is currently known by 23 

multiple names; preconditioning, conditioning, pretreatment, cross tolerance, adaptive 24 

homeostasis, and rapid stress hardening (mostly low temperature: rapid cold hardening). These 25 

are the most common names used to describe adaptive stress responses in animals. These 26 

responses are mechanistically similar, while having stress-specific responses, but they all can fall 27 

under the umbrella of hormesis. Here we review how hormesis studies have revealed animal 28 

performance benefits in response to changes in oxygen, temperature, ionizing radiation, heavy 29 

metals, pesticides, dehydration, gravity, and crowding. And how almost universally, hormetic 30 

responses are characterized by increases in performance that include either increases in 31 

reproduction, longevity, or both. And while the field can benefit from additional mechanistic 32 

work, we know that many of these responses are rooted in increases of antioxidants and 33 

oxidative stress protective mechanisms; including heat shock proteins. There is a clear, yet not 34 

fully elucidated, overlap between hormesis and the preparation for oxidative stress theory; which 35 

predicts part of the responses associated with hormesis. We discuss this, and the need for 36 

additional work into animal hormetic effects particularly focusing on the cost of hormesis. 37 

 38 

Keywords: dose response, antioxidants, life history, trade-offs, POS hypothesis. 39 
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INTRODUCTION 40 

The notion in the field of toxicology that the dose makes the poison, referencing dose 41 

responses and lethal effects, dates back to Paracelsus more than 500 years ago (Mattson and 42 

Calabrese 2010), and it is at the heart of the concept known as hormesis. The idea behind the 43 

term hormesis dates back to the 1800s when Hugo Schulz first described a low dose stimulatory 44 

response associated with a toxic agent; sodium hypochlorite (Calabrese and Baldwin 2000). But 45 

the term itself was first used to describe a low dose excitatory response of fungi to red cedar tree 46 

extracts (Southam and Ehrlich 1943, Calabrese 2014). As we use the term today, hormesis is 47 

defined as an adaptive biphasic dose response where low doses result in protective effects that 48 

can lead to improved organismal performance while high doses result in detrimental effects that 49 

lead to negative performance and fitness consequences (Calabrese and Baldwin 2001, Calabrese 50 

et al. 2007, Mattson 2008, Calabrese 2016a,b). In this framework, mild exposure to chemical, 51 

biotic, or abiotic stressors elicits an adaptive response that elevates cellular defenses and protects 52 

the organism. This protection is accompanied by a boost in performance that goes beyond that 53 

seen in untreated individuals as seen in our own hormetic dose response curve of Drosophila 54 

melanogaster exposed to x-ray irradiation (Fig. 1). Beyond toxicology and stress physiology, 55 

interest in this protective mechanism is growing in regard to human aging, the treatment of 56 

disease (Calabrese and Blain 2005, Calabrese et al. 2012), and exercise physiology (Ji et al. 57 

2010, Ji et al. 2016). In this review, we will focus on how comparative animal physiologists have 58 

studied hormesis in non-human animals, and why there is additional need for mechanistic work 59 

elucidating how hormesis affects animal performance, as well as, the cost associated with this 60 

adaptive protective response.  61 
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In the comparative physiology literature, hormesis is known by different names and one 62 

of the biggest disconnects in stress physiology is the challenge that biological stress response 63 

terminology represents (Calabrese et al. 2007). Different subdisciplines focus on their own 64 

terminology to the disadvantage of an overall and universal term such as hormesis. Adaptive 65 

response and cross tolerance are the most common terms that displace hormesis in the literature. 66 

The term adaptive response refers to a plastic response, that occurs after exposure to mild doses 67 

of a toxic agent, aimed at the restoration of homeostasis (Samson and Cairns 1977). Similarly, 68 

adaptive homeostasis is used to explain the increased or decreased seen in the homeostatic range 69 

of an animal exposed to sub-lethal conditions (Davies 2016). While the term cross tolerance 70 

refers to the animal’s ability to defend against damage caused by stressor B after a brief exposure 71 

to stressor A (Gruber and Keyser 1945). All four terms fall under the banner of hormesis, as 72 

hormesis is an adaptive response to stress that elevates cellular defenses targeting the restoration 73 

of homeostasis; those elevated defenses can then provide additional protection from a second, 74 

often more challenging stressor (Mattson 2008). The terms preconditioning or pretreatment are 75 

also occasionally encountered in the comparative physiology literature. Under pretreatment, 76 

preconditioning, or conditioning a mild/brief stressor is applied to the animal followed by a 77 

stronger stressor or cellular damaging event. The pretreatment is meant to elevate the cellular 78 

defenses to offer protection from the stronger stressor. The way we define and use pretreatment 79 

and preconditioning is functionally no different than the usage of cross tolerance. Catfish 80 

pretreated with hypoxia (low oxygen) being able to survive higher temperatures (Burleson and 81 

Silva 2011) and anoxia protecting flies from gamma radiation (Fig. 2; López-Martínez and Hahn 82 

2012, 2014) are just a couple of examples of this type of hormesis. What clusters these 83 

approaches together is that they rely on the adaptive response to low doses that is hormesis. 84 
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One of the central tenets of hormesis is that it allows for cellular protection to build up 85 

during the mild dose exposure, and these defenses are present for some time following the end of 86 

the exposure (López-Martínez and Hahn 2012). It is these defenses that prevent the accumulation 87 

of stress-induced damage and therefore improve organismal performance over time. At the core 88 

of this mechanism of cellular protection is the mitochondria. It is hypothesized that reactive 89 

oxygen species (ROS) are disproportionately generated during bouts of stress (Halliwell and 90 

Gutteridge 1993), and during mild stress, these ROS serve as signaling molecules that promote 91 

normal functioning (Ristow and Schmeisser 2014, Sies 2017). In fact, it may be small amounts 92 

of ROS production that are a crucial part of the adaptive response we call hormesis (Huang et al. 93 

2019). These ROS are thought to signal that the resumption of normal metabolism will be 94 

accompanied by higher and damaging levels of ROS production, and the ensuing oxidative 95 

damage, thus activating cellular defenses. It is this mechanism that is described as the 96 

Preparation for Oxidative Stress (POS) hypothesis (Hermes-Lima et al. 1998, Hermes-Lima and 97 

Zenteno-Savin 2002, Giraud-Billoud et al. 2019). And because there is ample evidence that 98 

animals prepare for oxidative stress when exposed to mild stress (Storey 1996, Giraud-Billoud et 99 

al. 2019), there is an overlap between the POS hypothesis and hormesis that is not yet currently 100 

fully understood. 101 

 102 

OXYGEN HORMESIS 103 

Low oxygen has been one of the leading stressors known to confer hormetic effects 104 

dating back at least 45 years (Robinson 1975). The benefits of low oxygen are mechanistically 105 

rooted in the POS hypothesis (Giraud-Billoud et al. 2019), where the mitochondria upon 106 

experiencing a decrease in oxygen, prepares for the ensuing oxygen reperfusion by elevating 107 
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cellular defenses; primarily oxidative stress defenses (Hermes-Lima et al. 1998, 2001). These 108 

defenses often exceed what is required to compensate for oxygen reperfusion damage and the 109 

animal benefits from the additional protective boost. In addition to the multiple scenarios where 110 

an animal may encounter hypoxia in their habitat (under water, underground, inside hosts, high 111 

altitudes, etc.), many animals possess varying degrees of tolerance to a total lack of oxygen; 112 

anoxia (Storey 1996). The bulk of the low oxygen hormesis work has focused in anoxia and it is 113 

connected to the remarkable tolerance that some animals have to an oxygen free environment. 114 

Vertebrates do not have the robust tolerance for long periods in anoxia at physiological-relevant 115 

temperatures (above 20ºC) that invertebrates have (Storey 1996), still we find that poikilothermic 116 

vertebrates are able to survive prolonged periods of anoxia (i.e. more than 24hrs), if the exposure 117 

occurs at low temperatures normally associated with overwintering responses. When 118 

temperatures range from 3 to 5ºC, red-sided garter snakes, Thamnophis sirtalis parietalis, and  119 

leopard frogs, Rana pipiens, can survive several days of anoxia (Churchill and Storey 1992, 120 

Pinder et al., 1992), while red-eared slider turtles, Trachemys scripta elegans, experience anoxia 121 

for three to four months during their overwintering period (Hermes-Lima and Zenteno-Savín 122 

2002). This tolerance to an oxygen free environment for such a long period is connected to 123 

increased activities of various antioxidant enzymes (Hermes-Lima and Zenteno-Savín 2002). An 124 

impressive anoxic response is seen in the goldfish, Carassius auratus, where individuals can 125 

survive an eight-hour exposure at physiologically relevant temperatures (20ºC; Lushchak et al. 126 

2001). On the other hand, invertebrates encounter anoxia at higher degrees due to their soil-127 

dwelling stages and their semi-aquatic ecologies, and they have evolved adaptations to prevent 128 

damage from oxygen deprivation (Storey 1996, Harrison et al. 2006). Because of this, 129 

invertebrates can tolerate longer periods of anoxia at physiological temperatures. The Caribbean 130 
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fruit fly, Anastrepha suspensa, can survive upwards of 50 hours at 25ºC without negatively 131 

impacting flight performance (López-Martínez and Hahn 2012). On the more extreme side, 132 

larvae tiger beetles in the genus Cicindela can survive more than six days in anoxia, which is 133 

usually accompanied by being submerged in water (Hoback et al. 1998). For both invertebrates 134 

and vertebrates, survival of prolonged periods of anoxia is a remarkable physiological feat, 135 

nevertheless, most of this work has focused on extended anoxia tolerance and not on hormesis. 136 

While these animals may gain survival, longevity, and/or higher reproductive outputs from their 137 

anoxia exposure; whether these exposures lead to hormesis remains largely unexplored. In a 138 

hormetic framework, it is short bouts of anoxia exposure (minutes to a few hours) that will 139 

trigger protective mechanisms that confer defense and boost performance.   140 

Most of what we know about anoxia hormesis comes from cross tolerance experiments 141 

where anoxia is used as a preconditioning treatment prior to exposure to sub-lethal or lethal 142 

doses of stress. In the locust, Locusta migratoria, thermotolerance increases after a short (1 hr.) 143 

exposure to anoxia (Wu et al. 2002). Locust that experienced anoxia can survive up to 1.5 hours 144 

at 53ºC; a benefit that is connected to the long flights experienced during migration that are 145 

accompanied by increased oxygen demand and high temperatures. On the other temperature 146 

extreme we have house flies, Musca domestica, that are able to survive at -7ºC after a short 147 

exposure (40 minutes) to anoxia (Coulson and Bale 1992). In this context, anoxia acts as the mild 148 

temperature pretreatment that triggers the adaptive hormetic response known as rapid stress 149 

hardening (RSH; described in the next section). Anoxia hormesis can also protect from 150 

additional exposure to anoxia. In Anastrepha suspensa, anoxia experienced during development 151 

triggers the reallocation of stored lipids and changes the dynamics of recovery by reducing the 152 

oxygen debt, without decreasing adult fecundity and longevity (Visser et al. 2018). 153 
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 When it comes to anoxia hormesis, the most understood protective effects that boost 154 

animal performance come from work that examines the effects of anoxia when combined with a 155 

strong oxidizing event; ionizing radiation. Whether using gamma radiation or X-rays, short 156 

exposure (1 hr.) of anoxia prior to irradiation leads to significant improvements in organismal 157 

performance. The first recorded evidence of this was in codling moths, Cydia pomonella, where 158 

an oxygen free environment led to survival of normally lethal gamma radiation doses (Robinson 159 

1975). This prompted an interest in exploring whether hypoxia could have similar protective 160 

effects and in fact low oxygen is results in improved treatment survivorship, flight performance, 161 

and mating competitiveness in Mediterranean fruit flies, Ceratitis capitata (Hooper 1971, 162 

Ohinata et al. 1977, Nestel 2007). In another fruit fly, A. suspensa, the mechanism of anoxia 163 

hormesis involves the upregulation of various antioxidant enzymes (mitochondrial and cytosolic 164 

SODs and glutathione peroxidase), which help lower radiation-induced oxidative stress and 165 

increase flight ability, starvation resistance, mating success, and longevity (López-Martínez and 166 

Hahn 2012, 2014). The increases in longevity were significant, allowing flies that would die in a 167 

matter of hours to live for weeks (Fig. 2). This mechanistic finding of how anoxia confers its 168 

hormetic benefits also provides additional support to the preparation for oxygen stress hypothesis 169 

as the same mitochondrial protection mechanisms are involved in both responses, providing 170 

further evidence for the link between hormesis and the POS hypothesis (Giraud-Billoud et al. 171 

2019, Geihs et al. 2020). While most of these anoxia hormetic effects are male-specific, females 172 

survive higher doses of gamma radiation when combined with anoxia conditioning (López-173 

Martínez and Hahn 2012). The benefits extend into mating, where male mating success is higher 174 

in anoxia-irradiated males at the peak of sexual maturity (10 days after treatment), but the males 175 

remain sexually competitive into old age (30 days); mating at a higher rate (19:1 at 30 days vs 176 
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3:1 at 10 days) than there non-hormetic counterparts (López-Martínez and Hahn 2014). Similar 177 

effects were recorded in the cactus moth, Cactoblastis cactorum, where anoxia prior to X-ray 178 

irradiation improves flight performance (López-Martínez et al. 2014). These male moths were 179 

more likely to fly, flew for longer periods of time, and for further distances. Additionally, the 180 

male moths had increased antioxidant capacity, which was linked with increased mating success, 181 

living longer, and higher F1 progeny hatching. In Trichoplusia ni moths, anoxia hormesis rescues 182 

gamma radiation induced mortality (López-Martínez et al. 2016b).  183 

Most of these anoxia hormetic effects were male-specific and the likely reason is that 184 

females bear a strong cost of hormesis that has been harder to quantify in males. Dating back to 185 

Robinson’s work, he found that the anoxia-mediated survival of lethal gamma radiation doses 186 

experienced by the moths came with a reduction of F1 offspring (~10% less; Robinson 1975). 187 

Even though he did not present his findings in a hormesis context, this represents the first 188 

recorded cost of anoxia hormesis and one of the first ever recorded costs associated with any 189 

type of hormesis. Since then, other groups have found that the cost of anoxia hormesis is 190 

connected to reproduction. In the cabbage looper moth T. ni, females receiving anoxia hormesis 191 

(in the absence of cross tolerance), experienced a significant decreased in the number of eggs 192 

laid (~60%), and an additional decrease in the number of laid eggs that hatched (~70%; López-193 

Martínez et al. 2016b). This reduction in fecundity and fertility associated with anoxia hormesis 194 

was also recently found in the mealworm beetle, Tenebrio molitor. Female beetles that lived 195 

longer and were more active during old age as a result of anoxia hormesis, experience a total 196 

reproduction output decline of 40% (De La Torre and López-Martínez unpublished). This 197 

suggests that the anoxia hormesis protective response operates under a classic life history trade-198 

off response (Stearns 1989). Quantifying the costs of hormesis is crucial given the increased 199 
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performance experienced by the animals that received it, and these benefits extend beyond the 200 

parental generation and provide transgenerational protection. In cactus moths, there was higher 201 

pupation and adult emergence of F1 offspring (López-Martínez et al. 2014). And the offspring 202 

that experienced higher rates of survival were more readily able to build protective webs upon 203 

hatching, in the absence of food (López-Martínez et al. 2016a). An additional and usual 204 

protective effect of anoxia was the rescue of X-ray and gamma radiation-induced sterility in 205 

cactus and cabbage looper moths (López-Martínez et al. 2016a,b); indicating that at least a 206 

fraction of the radiation-induced sterility normally associated with ionizing radiation sterilization 207 

is related to oxidative damage to DNA that can be prevented with anoxia hormesis.  208 

 209 

TEMPERATURE HORMESIS 210 

Given the connection between seasonality and temperature, we find a lot of the work on 211 

temperature hormesis primarily focusing on low temperature as it relates to overwintering 212 

survival strategies (Storey and Storey 1988, Denlinger and Lee 2010). A common type of animal 213 

temperature hormesis is rapid cold hardening (RCH). First studied in flies (Lee et al. 1987), 214 

under RCH a brief (1 to 2hr) exposure to non-freezing low temperatures (2 to 5ºC) triggers an 215 

adaptive response that provides protection from lower temperatures and freezing injury (Chen et 216 

al. 1987). The literature on RCH is extensive with at least 120 papers that carry rapid cold 217 

hardening in the title and at least an additional 100 that deal, in part, with the phenomena. The 218 

known short-term effects of RCH include increased survival of sub-zero exposures (Denlinger 219 

and Lee 2010), decreased chill-coma inducing temperature (Kelty and Lee 1999), decreased 220 

lower freeze tolerance limit (Lee et al. 2006), decreased water loss rates (Yoder et al. 2006, 221 

Wada and Matsukura 2011), and increased cell viability protecting against apoptosis (Yi et al. 222 
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2007). Investigations into RCH have mostly focused on the short-term survival benefits of this 223 

type of hormesis, but studies into the long-term benefits have revealed that this type of hormesis 224 

is not just about short-term stress survival. Some of the long-term effects are connected to fitness 225 

as RCH preserves courtship and mating performance in flies (Shreve et al. 2004), increases 226 

fecundity and longevity in aphids (Powell and Bale 2005), prevents the disruption of 227 

learning/conditioning in flies (Kim et al. 2005), and preserves flight ability in butterflies (Larsen 228 

and Lee 1994). Mechanistically, sugar alcohols and trehalose are involved in this type of 229 

hormesis, alongside heat shock proteins and membrane restructuring genes. Transcriptomic 230 

analysis have revealed that redox signaling is also a part of this type of hormesis response 231 

(MacMillan et al. 2016).  232 

As in most types of hormesis, very little work exists quantifying the cost of RCH. It has 233 

been found that in certain species, like Musca domestica, the increased cold tolerance associated 234 

with RCH can lead to shorter lifespan, reduced oviposition, and lower F1 emergence rates 235 

(Coulson and Bale 1992), but this was not the case in Drosophila melanogaster (Kelty and Lee 236 

1999) or Sarcophaga crassipalpis were RCH rescues cold-shock induced losses in fecundity in 237 

both sexes (Rinehart et al. 2000). It is conceivable that the reduction in reproduction could be 238 

masked by the increased performance in the short term, but it would be made apparent in the 239 

long-term. It stands to reason that a certain tradeoff between performance and reproduction must 240 

be present in this hormetic scenario (Stearns 1989), and previous studies have focused more on 241 

the strong and broad short-term response than the less visible long-term effects, including the 242 

cost of RCH. Rapid stress hardening (RSH) responses are mostly studied in low temperature 243 

(RCH), but there is some work indicating that rapid heat hardening (RHH) also confers 244 

protection from lethal high temperatures. A brief (1 hr.) pretreatment at 37ºC showed improved 245 
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survival at 43ºC in the codling moth, Cydia pomonella (Chidawanyika and Terblanche 2011) but 246 

this was not the case in hematophagous bed bugs, Cimex lectularius (Benoit et al. 2009a). In 247 

other systems, like the channel catfish Ictalurus punctatus, a preconditioning low oxygen 248 

treatment triggers an RHH response that increases their CTmax (Burleson and Silva 2011). This 249 

indicates that hormetic responses to temperature, just like those to anoxia, are widespread among 250 

animals and may be triggered by short/sublethal temperature exposures or other stressors such as 251 

variations in oxygen concentration. 252 

 253 

IONIZING RADIATION HORMESIS 254 

Ionizing radiation (ultraviolet, gamma rays, and X-rays) may be one of the first non-255 

chemical stressors used to investigate low dose protective effects. This work dates back over one 256 

hundred years when low dose X-ray experiments first showed lifespan extension in animals 257 

(Davey 1917, 1919). At a time that predates much of our understanding of oxidative stress, 258 

antioxidant biology, and hormesis; it was clear that X-rays had a protective effect in flour 259 

beetles, Tribolium confusum, with potential to stimulate cell proliferation and immune function 260 

(Calabrese 2013). Much of what we know about X-ray hormesis comes from insects, and a large 261 

proportion of the work relates to radiation-based control strategies like the sterile insect 262 

technique (SIT; Klassen and Curtis 2005) and phytosanitary irradiation (IPT; Hallman 2011); 263 

where high doses are used to achieve pest control through sterility or death. However, in a 264 

hormesis context, we are interested in the effect that low doses have at providing protection and 265 

ionizing radiation-induced lifespan extensions have been observed in flies, mosquitoes, moths, 266 

crickets, beetles, and wasps (Calabrese 2013). In addition to finding the appropriate hormetic 267 

dose that can induce protection and boost performance, the age of the individual at the time of 268 
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treatment can have dramatic effects on hormesis. A few days can strongly influence response 269 

outcomes between a treatment being hormetic, and extending lifespan, or becoming lethal in 270 

beetles (Ducoff 1975) and caterpillars (López-Martínez et al. 2016b). Exposure to low dose 271 

gamma radiation shortened embryogenesis time and led to heavier larvae that produced more silk 272 

in their pupal cocoons in the silkworm, Bombyx mori (Yusifov et al. 1990, Shibamoto et al. 273 

2017). This represents a strong hormetic effect that improved multiple life history traits in these 274 

animals, but without lifespan information we do not know the full extent of the benefit to the 275 

silkworms. These hormetic effects of low dose ionizing radiation are not limited to invertebrates, 276 

and low dose gamma radiation is known to extend the lifespan of laboratory mice by about 20% 277 

(Caratero et al. 1998). 278 

While the mechanism behind low dose X-rays life extension has not been completely 279 

elucidated (see Table 1), there seems to be a connection to the mitochondria and energetics as 280 

seen in Drosophila where starvation plays a role in their increase in longevity (Lamb 1964). 281 

These flies live longer when low dose radiation is combined with starvation. The redox signaling 282 

connection is deepened when Drosophila mutants for antioxidant genes, heat shock proteins, and 283 

DNA repair genes had reduced activity and shorter lifespans when exposed to low dose X-rays 284 

(Moskalev et al. 2006, Moskalev et al. 2009). Whether looking at males or females, low dose 285 

gamma radiation extends lifespan in Drosophila, and that hormetic effect is connected with the 286 

elevated expression of stress genes including heat shock proteins (Zhikrevetskaya et al. 2015). 287 

Additionally, expression of antioxidant enzymes and oxidative stress response genes seem to be 288 

a crucial component of a proposed mechanism for lifespan extension in response to X-ray 289 

hormesis (Seong et al. 2011).  This mechanistic explanation has gathered support from a 290 

vertebrate model where low-dose X-rays trigger increases in glutathione, catalase, and 291 
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glutathione-S-transferase in the tissues and blood of female Wistar rats (Sharma et al. 2019). 292 

This increase in antioxidants led to a decrease of oxidative damage to the liver, kidney, and brain 293 

in these animals. And while oxidative damage in the blood was not decreased as it was in tissues, 294 

there was an increase of immune cells (lymphocytes and eosinophils) in response to low dose 295 

radiation indicating a level of protection being activated in the blood (Sharma et al. 2019). 296 

Another type of ionizing radiation, ultraviolet radiation (UVR), is more pervasive across 297 

animal taxa because it reaches the earth’s surface and penetrates deeply into the waters (UVA-298 

320-400nm; Misra et al. 2002), some of it penetrates through regions with thinner ozone layers 299 

(UVB-(290-320nm; McKenzie et al. 2011), but fortunately its most energetic and damaging form 300 

is absorbed by the atmosphere (UVC-200 -290nm; Schuch et al. 2017). UVA incidence is 301 

naturally much higher than UVB in any given latitude in the northern and southern hemispheres 302 

(Schuch et al. 2017), but UVB represents a challenge for polar animals (López-Martínez et al. 303 

2008). Increases in ROS production and the ensuing oxidative stress are associated with 304 

increases in the activity of various antioxidant enzymes (Hermes-Lima et al. 1998, Agnez-Lima 305 

et al. 2012, Won et al. 2014). This response is mediated in part by transcription factors that 306 

stimulate antioxidant gene expression (Cadet et al. 2005, Agnez-Lima et al. 2012). The 307 

combination of the production of ROS and the increase in antioxidant enzymes suggests that 308 

UVR hormesis would likely occur given the appropriate level of exposure, nonetheless, little 309 

experimental data exists. Most data on UVR hormesis comes from plants, where UVR promotes 310 

growth (Tezuka et al. 1993). There is recent data showing that marine copepods exposed to non-311 

lethal UVR doses, will have larger first clutches of eggs (Heine et al. 2019) and we have data 312 

indicating that UVR exposure in Drosophila flies improves performance (Berry III and López-313 

Martínez unpublished data). These are the first steps in trying to quantify UVR hormetic effects, 314 
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and if these effects follow the same pattern as other types of ionizing radiation then they would 315 

also be rooted in redox signaling and the POS hypothesis. 316 

 317 

CHEMICAL HORMESIS 318 

 Although comparative physiology hormesis work largely focuses on environmental 319 

abiotic factors and how they lead to hormetic effects on animals, studies featuring environmental 320 

toxins and pesticides continue to increase in prevalence because of the potential exposure of 321 

animals to low doses of these chemicals and the effect of those exposures can have on their 322 

performance and survival. Heavy metals like arsenic and cadmium are dangerous soil 323 

contaminants but low doses of arsenite prolongs lifespan in nematodes (Schmeisser et al. 2013). 324 

Arsenite triggers the production of ROS which in turn activates antioxidant defenses. These 325 

defenses are linked to the longer life experienced by the worms, similarly to other types of 326 

hormesis (Fig. 3).  Low doses of cadmium increase growth rate in American toads (Bufo 327 

americanus, James and Little 2003) and leopard frogs (Rana pipiens, Gross et al. 2007), and 328 

result in body size gains and faster metamorphic rates in Chinese toads (Bufo gargarizans, Ya et 329 

al. 2019). Additionally, low doses of cadmium elicit a protective heat shock protein response in 330 

mouse cells (Damelin 2000).  331 

Another big class of environmental contaminants where hormesis has been found is 332 

pesticides. At low doses, pesticides can increase fecundity and reproductive output by increasing 333 

the net reproductive rate (NRR); a measure of how well females are being replaced in subsequent 334 

generations. Neonicotinoids, like clothianidin, increase fecundity and NRR in black cutworm 335 

moths (Agrotis ipsilon, Ding et al. 2018). Imidacloprid, another neonicotinoid, leads to faster 336 

development and higher NRR in thrips (Frankliniella occidentalis, Cao et al. 2019), increased 337 
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fecundity in Paederus fuscipes beetles (Feng et al. 2019), increased reproductive output and 338 

survival under stress in green peach aphids (Myzus persicae, Rix et al. 2016), and increased 339 

survival when challenged with higher doses in M. persicae (Rix and Cutler 2018).  The 340 

pyrethroid Lambda-cyhalothrin increases fecundity and NRR in Mythimna separata moths (Li et 341 

at. 2019), and the pyrethroid deltamethrin increases NRR in maize weevils (Sitophilus zeamais, 342 

Guedes et al. 2010), while cyantraniliprole, a ryanoid insecticide, increases fecundity in 343 

Drosophila suzukii (Shaw et al. 2019). Even glyphosate, known to have hormetic effects in 344 

plants (Brito et al. 2018), was found to make earthworms grow heavier and live longer when 345 

exposure was combined with warmer soil temperatures; possibly a type of cross tolerance 346 

hormesis (Pochron et al. 2019). Because of concerns over off-target effects of insecticides and 347 

colony collapse disorder, Cutler and Rix (2015) reviewed whether pesticide hormesis was 348 

recorded in honeybees. Caffeine and nicotine were shown to positively impact long-term 349 

memory and retention (Wright et al. 2013), and improved olfactory learning (Thany and 350 

Gauthier 2005). The effects of chemical hormesis in honeybees were not originally reported as 351 

hormesis but it was the efforts of additional investigation that revealed them as such (Cutler and 352 

Rix 2015). It is likely that there are more pesticide hormetic effects in the literature, as these 353 

effects are not reported as hormetic but rather as failures of pesticide efficacy. Pesticide hormesis 354 

is not just limited to invertebrates, wood frogs survive exposure from certain insecticides after 355 

experiencing prior exposure to different insecticides (Hua et al. 2013). Thus, it is foreseeable that 356 

pesticides trigger a type of rapid stress hardening hormetic response that allows for additional 357 

protection. 358 

 359 

OTHER TYPES OF HORMESIS 360 
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Hormesis has also been investigated in a variety of systems and in response to stressors 361 

that are far less understood than oxygen, temperature, and chemicals. Mild (small amounts of 362 

water loss) or slow (water loss over a longer period) dehydration is associated with hormetic 363 

effects in a cross-tolerance framework. Dehydration (mild or slow) leads to increased 364 

pupariation, increased cell viability, and faster recovery from low temperature exposure in flesh 365 

flies, Sarcophaga bullata (Yi et al. 2017). In a polar insect, Belgica antarctica, slow mild 366 

dehydration leads to greater survival when exposed to -14ºC (Benoit et al. 2009b, Kawarasaki et 367 

al. 2019); and that slow rate of dehydration also increases survival to lethal high temperatures 368 

(30 ºC; Benoit et al. 2009b). There seems to be a type of pathway cross talk between low doses 369 

of anoxia, temperature, and dehydration which allows these stressors to induce rapid stress 370 

hardening responses and protect against lethal temperatures. Additionally, these three stressors 371 

are linked through shared metabolomic profile responses (Michaud et al. 2008). Slow 372 

dehydration is associated with increased expression of heat shock proteins, antioxidant enzymes, 373 

and membrane remodeling genes (López-Martínez et al. 2009). Even when that dehydration 374 

comes about from exposure to hyperosmotic sea water, it results in higher freezing tolerance 375 

survival in B. antarctica (Elnitsky et al. 2009). This effect of dehydration extends to D. 376 

melanogaster flies that can recover faster from chill coma if they were previously selected for 377 

dehydration resistance, although there is evidence that this hormetic effect might not be entirely 378 

related to the selection event (Sinclair et al. 2007). 379 

A stressor that is far less understood than most is gravity and there is strong evidence that 380 

hypergravity (3 or 5 g) has hormetic effects in Drosophila flies (Le Bourg et al. 2004). Two 381 

weeks at hypergravity at a young age increased longevity in males (Le Bourg et al. 2004). 382 

Hypergravity also had additional protective effects as it triggered a rapid stress hardening 383 
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response that increased survival time at 37ºC. But these improvements in longevity and survival 384 

are not related to the antioxidants enzymes (Le Bourg and Fournier 2004), which indicates that 385 

this type of hormesis does not align with the POS hypothesis and likely results from a completely 386 

different mechanism. Hypergravity also has an effect in cichlid fish, Oreochromis mossambicus, 387 

were otoliths growth was decreased but overall size was not (Anken et al. 2001). It is unclear 388 

whether this otolith growth response represents a hormetic effect and if so what the magnitude of 389 

that effect might be, but responses to hypergravity are not restricted to invertebrates and lower 390 

vertebrates and have also been recorded in pregnant Sprague-Dawley rats (Plaut et al. 2003). In 391 

the mammary tissues of these rats, the metabolic rate was decreased as a response of gravity 392 

manipulation as gravitational load increased; an effect similar to the response of flies to repeated 393 

anoxia (Visser et al. 2018).  394 

A recent hormetic effect has been associated with crowding during development. In the 395 

larvae of Drosophila, crowding increases survival time at low (-3ºC) and high (38ºC) 396 

temperatures (Youn et al. 2018). Higher density crowded larvae emerged as adults faster and 397 

lived longer (Lushchak et al. 2019). It is clear from these two studies that certain stress genes 398 

(i.e. HSP70) are involved in this adaptive stress response but the role of antioxidant enzymes and 399 

oxidative stress protection genes is not as clear. Larval crowing leads to competition and the 400 

reduction of high-quality food, and in addition to the stresses associated from a larger group of 401 

animals present (i.e. temperature and water balance), starvation leads to mitochondrial efficiency 402 

differences. These mitochondrial differences are linked to ROS production and likely play a role 403 

in this rather unique type of hormesis.  404 

 405 

THE MECHANISM OF HORMESIS 406 
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 In the last ten years, we have seen nearly a doubling in the number of hormesis 407 

publications that aim at understanding the mechanisms of these adaptive responses (Calabrese et 408 

al. 2016A). The mechanistic underpinnings for the extensive performance effects seen in animals 409 

as a result of hormesis range from the quantification of specific polyols to genome-wide analysis 410 

highlighting specific pathways (Table 1). There are specific key players that are consistently 411 

linked to hormetic responses throughout the animal kingdom. Genes related to redox signaling, 412 

such as antioxidant enzymes and non-enzymatic antioxidants, whose role is the 413 

prevention/reduction of oxidative damage are involved nearly everywhere they are investigated 414 

(Table 1). Whether it is gene expression (Moskalev et al. 2009, Seong et al. 2012), protein 415 

expression (Yi et al. 2007), or enzyme activity (Hermes-Lima et al. 1998, Hermes-Lima and 416 

Zenteno-Savı́n 2002, López-Martínez and Hahn 2012), antioxidant mechanisms that reduce 417 

oxidative damage play a pervasive role in hormesis. Stress genes, like heat shock proteins, are 418 

also involved along with genes involved in DNA repair and apoptosis. To date, the data 419 

published indicates that redox and stress signaling play a central role in most hormetic responses, 420 

indicating a potential universal mechanism for hormesis. However, given the wide array of 421 

stressors that animals endure, there are stress-specific responses that widen the mechanistic 422 

targets of hormesis. Such are the cases of RCH and hypergravity. Under rapid cold hardening, 423 

multiple low temperature mechanisms (homeoviscous adaptation, increase polyol concentration, 424 

and freezing resistance) are activated in this response; in addition to the expected hormesis 425 

genes. Hypergravity exposure seems to be independent of the involvement of the main 426 

antioxidant enzymes, which challenges the notion of a universal hormetic mechanism. Our own 427 

ongoing Drosophila transcriptomic work comparing different hormesis treatments (low oxygen, 428 

low temperature, x-ray irradiation, UV irradiation) points toward general and unique responses 429 
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for each condition. We are emboldened by recent research in this area and we encourage more 430 

mechanism studies that compare contextual factors in stress response to further our 431 

understanding of the role hormesis plays in animals. 432 

 433 

FUTURE DIRECTIONS 434 

 We highlighted studies that show some of the remarkable protective effects that hormesis 435 

can have in animals across the spectrum from tiny invertebrates to mammals. These effects can 436 

be short and long-term, and whenever a broad time scale is used, hormesis is found to even have 437 

protective transgenerational effects. Short-term effects include treatment survival, improved 438 

performance, and increased mating success while long-term effects range from increasing 439 

longevity and performance at old age to improved offspring performance and starvation 440 

resistance. While we are hopeful and encouraged by the recent uptake in the study of hormesis in 441 

animals, we want to highlight the need for studies that deal with the mechanism of different 442 

types of hormesis, as well as, the cost of this adaptive response. Hormesis is rooted in the 443 

preparation for oxygen stress hypothesis, but there is evidence that hormetic benefits extend 444 

beyond antioxidant and oxidative stress, and into membrane remodeling and other aspects of 445 

animal physiology. The cost of hormesis to the parental and subsequent generations remains 446 

elusive with just a handful of studies aiming to quantify it. Understanding the cost of hormesis 447 

will allow us to elucidate how hormetic mechanisms evolved, which selection pressures drove 448 

and continue to drive these responses, and what might be the full range of these adaptive 449 

responses. There is a strong link between hormetic effects and the age of application, and a clear 450 

connection exists when these hormetic treatments are applied early in life leading to long-lasting 451 

effects present at advanced age (Le Bourg 2005, López-Martínez and Hahn 2014, López-452 
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Martínez et al. 2014, López-Martínez et al. 2016a,b, Visser et al. 2018). The studies outlined in 453 

this review reinforce the need for additional hormesis investigation into how small doses of 454 

chemical, biotic, and abiotic stressors can dramatically improve organismal performance in non-455 

human animals. 456 
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FIGURE CAPTIONS 466 

 467 

Figure 1. X-ray irradiation dose response curve showing the effect of increasing doses on the 468 

flight ability of Drosophila melanogaster. The increased performance as a result of hormesis is 469 

seen at the lowest doses as a hormesis model would predict. Three quantitative effects of 470 

hormesis (zero equivalent point, maximum response, and no observed adverse effect level) are 471 

labelled based on Calabrese et al. 2012, and show the control effect, the hormetic effect, and the 472 

point where negative effects being, respectively.  473 

 474 
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Figure 2. Anoxia hormesis protects from irradiation-induced oxidative damage in a cross 475 

tolerance hormetic framework. The strong protective effect of anoxia was evident at all doses (B, 476 

C, & D) tested but was more dramatic at 400 Gy (D), where the irradiated control flies die within 477 

24 hrs. but anoxia hormesis flies live more than two months. Sex differences can be seen at all 478 

doses and females tend to live longer at higher doses (F; Figure 2 from López-Martínez and 479 

Hahn 2014). 480 

 481 

Figure 3. Chemical hormesis (arsenite) triggers an increase in the production of reactive oxygen 482 

species (ROS; A & B). The presence of ROS triggers an increase in antioxidants, both enzymes  483 

(D & E) and non-enzymatic ones (F). That strong protective response leads to an increase in 484 

longevity (I & J) for the arsenite treated worms (Figure 3 from Schmeisser et al. 2013). 485 

 486 
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