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Abstract. In this paper we present and analyze a general framework for constructing high
order explicit local time stepping (LTS) methods for hyperbolic conservation laws. In particular, we
consider the model problem discretized by Runge-Kutta discontinuous Galerkin (RKDG) methods
and design LTS algorithms based on strong stability preserving Runge-Kutta (SSP-RK) schemes,
that allow spatially variable time step sizes to be used for time integrations in different regions.
The proposed algorithms are of predictor-corrector type, in which the interface information along
the time direction is first predicted based on the SSP-RK approximations and Taylor expansions,
and then the fluxes over the region of interface are corrected to conserve mass exactly at each time
step. Following the proposed framework, we detail the corresponding LTS schemes with accuracy
up to the fourth order, and prove their conservation property and nonlinear stability for the scalar
conservation laws. Numerical experiments are also presented to demonstrate excellent performance
of the proposed LTS algorithms.
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1. Introduction. Numerical methods for hyperbolic conservation laws are a
subject of great interest and importance as these laws are extensively used for mod-
eling a wide range of physical phenomena such as gas dynamics, shallow water flow,
advection of contaminants, traffic flows, etc. It is well known that these problems
are often highly nonlinear and may have discontinuous solutions with sharp and mov-
ing fronts/shocks. To obtain accurate and stable numerical solutions to hyperbolic
conservation laws, it is popular to use conservative high resolution methods in space
together with explicit time stepping. Examples of such spatial discretization include
the MUSCL (monotonic upwind scheme for conservation laws) [50], the ENO (essen-
tially nonoscillatory) and WENO (weighted ENO) schemes [22, 23, 32, 27], and the
RK-DG (Runge-Kutta discontinuous Galerkin) methods [6, 7, 8, 9]. Note that to
guarantee numerical stability, the time step size needs to satisfy the CFL condition,
which is determined by the spatial mesh size and wave speed. The use of local spatial
refinements is efficient in resolving the sharp, moving fronts. However, as the CFL
condition needs to hold everywhere, the step size for time integration would be con-
trolled by the smallest cell size, or by the highest wave speed, which certainly increases
the computational cost as a small time step size has to be used globally. Thus, to
improve computational efficiency, the global CFL condition could be replaced by a
local one so that the different time step sizes can be used in different regions: smaller
time step sizes where the mesh is fine or the wave speed is high, and larger time step
sizes where the mesh is coarse or the wave speed is low.
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Explicit local time-stepping (LTS) algorithms have a long tradition. To the best
of our knowledge, the first LTS algorithm for hyperbolic conservation laws was intro-
duced in [36] for one-dimensional scalar case based on the forward Euler method in
time. It is of predictor-corrector type and is first order accurate in both space and
time. Extension to high resolution schemes with slope limiters for advection equa-
tions was presented in [12], and to second order in time for hyperbolic conservation
laws in [13]. The numerical results on two-dimensional test problems confirm that
these LTS schemes are very competitive to the global time-stepping with respect to
the accuracy in time. The application of LTS schemes to the shallow water equations
was investigated in [39] with a Godunov-type finite volume discretization in space
and later in [49] using the RK-DG finite element methods. Note that the LTS scheme
in [39] is only first order accurate in time, while the one in [49] is second order accu-
rate in time on regions away from the LTS interface but its accuracy degrades to first
order at the interface. The LTS scheme in [49] is based on the second-order strong
stability preserving Runge-Kutta (SSP-RK) method, which is also known as a total
variation diminishing (TVD) method introduced in [41, 45]. Higher order RK-based
explicit LTS methods were introduced for conservation laws in [29, 1] and for wave
propagation in [18]. In [14], a space-time fully adaptive multi-resolution method based
on natural continuous extensions for RK methods was proposed, whose accuracy is
of second order in both space and time. Other works related to LTS include the
adaptive mesh refinement (AMR) method [2, 3], the multirate time-stepping method
[11, 40] and the Implicit-Explicit (IMEX) based LTS methods [24, 19]. Among them,
the AMR method involves the refinement in both space and time, i.e., small time step
sizes are taken on the refined mesh and large time step sizes on the coarse mesh. It
is different from our approach in the way that refined grids are placed over regions of
the coarse grid and information is exchanged between the grids by means of injection
and interpolation. The multirate time-stepping method allows different time step
sizes in different regions but it requires buffer regions to accommodate the time scale
transition between regions. An overview of LTS techniques over the last two decades
can be found in [16].

In [25], inspired by the first order predictor-corrector scheme in [36], we have
designed conservative second and third order explicit LTS algorithms, incorporating
with SSP-RK, for the rotating shallow water equations. The model is discretized in
space by a C-grid staggering finite volume method, namely the TRiSK scheme [48, 38],
on orthogonal primal and dual meshes. Numerical results with parallel implementa-
tion show excellent performance of the LTS algorithms in terms of stability, accuracy,
efficiency and scalability. In this work, we extend the approach to construct, in a sys-
tematic way, a framework of high order LTS algorithms for hyperbolic conservative
laws. In order to derive high order LTS algorithms, the key idea is to find high order
approximations on the interface at intermediate time levels to handle the coupling
between coarse and fine time steppings. Our proposed schemes are also of predictor-
corrector type: we derive the predictors based on Taylor series expansions of the
solution at the current time level and the SSP-RK stepping algorithms at each inter-
mediate time level. Our approach thus is different from the one proposed in [29, 1]
where the predictors are based on RK time-stepping and interpolating polynomials.
We present up to fourth order predictors within this framework, and show that the
proposed LTS schemes preserve the accuracy in time over the entire domain. Con-
cerning the corrector, it is designed to balance the fluxes from the regions with small
time step sizes to the ones with large time step sizes. As high order SSP-RK methods
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consist of multiple stages, the fluxes at the same stage are accumulated over all the
intermediate time levels to update the interface solution associated with that stage.
As a consequence, the total mass is well conserved, though the corrector is no longer
convex combinations of forward Euler steps as in the global SSP-RK methods. Nev-
ertheless, we rigorously prove that the proposed LTS schemes for scalar conservation
laws are total variation bounded (TVB). Such nonlinear stability is a crucial feature
of any effective numerical method for hyperbolic conservation laws because it guar-
antees that the schemes can capture moving shocks without introducing nonphysical
oscillations. Various numerical experiments are carried out to validate the accuracy,
conservation and stability of our LTS schemes. Since time advancement of the simu-
lations in the fine regions and in the coarse ones can be implemented in parallel (this
will be discussed further in Section 3), the proposed LTS schemes preserve the natural
parallelism of explicit stepping schemes.

Consider the initial value problem for hyperbolic conservation laws:

∂uuu

∂t
+

d∑

i=1

∂fff i

∂xi
(uuu)= 000, on R

d × (0, T ),

uuu(xxx, 0)= uuu0(xxx), in R
d,

(1.1)

where uuu(xxx) := (u1(xxx), . . . , um(xxx)) is an m−dimensional vector of unknowns and each
flux function fff i : R

m −→ R
m defined by

uuu 7→ fff i(uuu) := (fi1(uuu), . . . , fim(uuu)) ,

is vector-valued and is of m components. Since we focus on the time discretization
techniques in this paper, we shall only consider the one-dimensional case, d = 1. In
particular, our model problem is the following scalar hyperbolic conservation law,
resulting from the system (1.1) with d = m = 1:

∂u

∂t
+

∂

∂x
f(u)= 0, on R× (0, T ),

u(x, 0) = u0, in R.
(1.2)

We shall construct and analyze high order Runge-Kutta discontinuous Galerkin al-
gorithms with local time-stepping for (1.2). The proposed LTS algorithms can be
straightforwardly extended to the case of one-dimensional systems of conservation
laws (m > 1), which will be presented in the numerical results, as well as to the
higher dimensional problems (d > 1).

The rest of this paper is structured as follows. In Section 2 we briefly introduce
the RK-DG methods for scalar conservation laws (1.2). High order LTS algorithms are
carefully derived in Section 3, and their conservation and stability properties are then
proved in Section 4. Numerical results for various test cases are given in Section 5 to
demonstrate the performance of the proposed LTS schemes. Additionally, coefficients
of the SSP-RK methods used in the paper are given in Appendix A, and detailed
derivation of the predictors for the proposed LTS schemes is presented in Appendix B.

2. Runge-Kutta discontinuous Galerkin methods. We first introduce the
RK-DG methods and refer to [7] for a complete presentation of the methods. Within
the framework of RK-DG, we first discretize equation (1.2) in space by the discon-
tinuous Galerkin method, then integrate it in time by SSP-RK schemes, and finally
apply a slope limiter to achieve stable and high order accurate numerical solutions.
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2.1. Spatial discretization by the discontinuous Galerkin. Assume a par-
tition of the real line R to have the j-th intervals as Ij =

(
xj−1/2, xj+1/2

)
and define

∆j = xj+1/2−xj−1/2 and h = max
j

∆j . Let Vh be the finite dimensional space consisting

of discontinuous, piecewise polynomial functions:

Vh = V k
h =

{
v ∈ L1(R) : v |Ij∈ Pk(Ij), ∀ j

}
6⊂ H1(R),

where Pk(Ij) is the space of polynomials of degree at most k on Ij . Consider a weak
formulation of (1.2) obtained from testing it by any function vh ∈ Vh over Ij :
For a.e. t ∈ (0, T ), find uh(t) ∈ Vh such that: ∀ j and ∀ vh ∈ Vh

∫

Ij

∂tuh(x, t) vh(x) dx−

∫

Ij

f(uh(x, t)) ∂xvh(x) dx

+h(uh)j+1/2(t) vh(x
−
j+1/2)− h(uh)j−1/2(t) vh(x

+
j−1/2) = 0,

∫

Ij

uh(x, 0)vh(x) dx =

∫

Ij

u0(x)vh(x) dx.

(2.1)

Note that we have replaced the nonlinear flux f(u(xj+1/2, t)) in (2.1) by a Lipschitz,
consistent, monotone numerical flux h(u)j+1/2(t) which depends on the two values
of u at xj+1/2:

h(u)j+1/2(t) = h
(
u(x−

j+1/2, t), u(x
+
j+1/2, t)

)
.

The numerical flux h(·, ·) is required to satisfy the following properties: i) locally
Lipschitz continuous; ii) consistent with the flux f , that is, h(u, u) = f(u); and
iii) nondecreasing in the first argument and nonincreasing in the second argument.
Examples of such a flux include the Godunov flux, Engquist-Osher flux, Lax-Friedrichs
flux and Roe flux.

A local orthogonal basis of Vh consists of functions ϕ
(l)
j defined as, for any j,

ϕ
(l)
j := Pl

(
2(x− xj)

∆j

)
, for l = 0, 1, . . . , k,

in which Pl is the Legendre polynomial of degree l and xj is the middle point of Ij .
Consequently, the approximate solution uh is expressed uniquely as

uh(x, t) =

k∑

l=0

u
(l)
j (t)ϕ

(l)
j (x), for x ∈ Ij , (2.2)

where the degrees of freedom u
(l)
j (t) are determined by

u
(l)
j (t) :=

2l + 1

∆j

∫

Ij

u(x, t)ϕ
(l)
j (x) dx, for l = 0, 1, . . . , k.

Note that u
(0)
j is the cell average of u in Ij . By taking vh = ϕ

(l)
j in (2.1), we obtain

the following ODE for u
(l)
j for any j:

(
1

2l + 1

)
du

(l)
j (t)

dt
−

1

∆j

∫

Ij

f(uh(x, t)) ∂xϕ
(l)
j dx

+
1

∆j

[
h(uh)j+1/2(t)− (−1)lh(uh)j−1/2(t)

]
= 0, ∀ l = 0, 1, . . . , k,

(2.3)
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with the initial condition

u
(l)
j (0) =

2l + 1

∆j

∫

Ij

u0(x)ϕ
(l)
j (x) dx.

Note that in (2.3) we have used the following properties of Legendre polynomials:

ϕ
(l)
j (x−

j+1/2) = Pl(1) = 1, ϕ
(l)
j (x+

j−1/2) = Pl(−1) = (−1)l.

The numerical flux h is computed by h(uh)j+1/2(t) = h
(
u−
j+1/2(t), u

+
j+1/2(t)

)
, where

u±
j+1/2(t) = uh(x

±
j+1/2, t) are defined by

u−
j+1/2(t) =

k∑

l=0

u
(l)
j , u+

j−1/2(t) =

k∑

l=0

(−1)lu
(l)
j .

Approximating the integral in (2.3) by Gauss-Lobatto quadrature rules that involve
the two endpoints of the interval yields (using the definition of uh in (2.2)):

∫

Ij

f(uh) ∂xϕ
(l)
j dx =

∫

Ij

f
(
u+
j−1/2, (u

(l)
j )0≤l≤k, u

−
j+1/2

)
∂xϕ

(l)
j dx.

The system of ODEs (2.3) can be recast in an autonomous form as follows:

dUUUh

dt
= LLLh(UUUh), UUUh(0) = UUUh0, (2.4)

where UUUh = (uuuj)∀ j with uuuj = (u
(l)
j )l=0,...,k, the right hand side

LLLh(UUUh) =
(
L
(l)
h,j(u

±
j−1/2,uuuj , u

±
j+1/2)

)
∀ j, l=0,1,...,k

,

with

L
(l)
h,j(u

±
j−1/2,uuuj , u

±
j+1/2) =

2l + 1

∆j

{∫

Ij

f
(
u+
j−1/2,uuuj , u

−
j+1/2

)
∂xϕ

(l)
j dx

−
[
h(u−

j+1/2, u
+
j+1/2)− (−1)lh(u−

j−1/2, u
+
j−1/2)

]}
,

(2.5)

and the initial data UUUh0 =
[
(2l + 1)/∆j

∫

Ij

u0(x)ϕ
(l)
j (x) dx

]
∀ j, l=0,1,...,k

. Next, we solve

(2.4) explicitly in time by the SSP-RK methods [44, 17].

2.2. Strong stability preserving Runge-Kutta time discretization. The
SSP-RK methods have been proved to be effective for solving hyperbolic conservation
laws with discontinuous solutions. Given a uniform partition of (0, T ), 0 = t0 < t1 <
. . . < tN−1 < tN = T , with the time step size ∆t = T/N. The s-stage, rth-order SSP-
RK methods, referred to as SSP-RK(s, r), for solving the autonomous system (2.4)
read as follows: for n = 0, . . . , N − 1, compute

UUU
n,(i)
h =

i−1∑

ν=0

αiνUUU
n,(ν)
h + βiν∆tLLLh(UUU

n,(ν)
h ), ∀ i = 1, . . . , s, (2.6)
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whereUUU
n,(0)
h = UUUn

h and setUUUn+1
h = UUU

n,(s)
h . It is required that all the weights αiν , βiν ≥

0. To measure stability of RK-DG methods, we denote by uuu(l),n = (u
(l),n
j )∀j and define

the total variation of numerical solutions by

TV (uuu(l),n) =
∑

j

∣∣∣u(l),n
j+1 − u

(l),n
j

∣∣∣ , ∀ l = 0, . . . , k, and n = 0, . . . , N − 1.

A numerical method is total variation diminishing (TVD) if

TV (uuu(l),n+1) ≤ TV (uuu(l),n), ∀ l = 0, . . . , k and n = 0, . . . , N − 1,

and is total variation bounded (TVB) if

TV (uuu(l),n+1) ≤ TV (uuu(l),0) +BT, ∀ l = 0, . . . , k and n = 0, . . . , N − 1,

for some constant B independent of the time step size. The stability of the SSP-RK
schemes is given by the following lemma.

Lemma 2.1 ([17]). If the forward Euler method UUUn+1
h = UUUn

h+∆tLLLh(UUU
n
h) is TVD

under the CFL condition ∆t ≤ ∆tFE, then the SSP-RK(s, r) scheme (2.6) is TVD

under the modified CFL condition: ∆t ≤ C∆tFE , where C := min
i,ν

αiν

βiν
is the SSP

coefficient. We present some commonly used SSP-RK schemes such as SSP-RK(2,2),
SSP-RK(3,3) and SSP-RK(5,4) in detail in Appendix A.

2.3. TVB corrected slope limiter. In order to handle moving shocks while
preserving high order accuracy in smooth regions, we follow [41] and define the TVB
corrected minmod function m̃:

m̃(a1, . . . , aν) =

{
a1, if |a1| ≤ CMh2,
m(a1, . . . , aν), otherwise.

where CM > 0 is a constant and m is the usual minmod function [20]:

m(a1, . . . , aν) = s min
1≤i≤ν

|ai|, with s =

{
sign(a1), if sign(a1) = . . . = sign(aν),
0, otherwise.

(2.7)
The corrected limiter leads to high order accuracy in any region where the solution is
smooth, even at local extrema. The resulting scheme is no longer TVD, instead it is
TVB. Next, we define the (k+1)th-order limiter ΛΠk

h as in [5]. When k = 1, we have

ΛΠ1
h(uh)|Ij = u

(0)
j + m̃(u

(1)
j , u

(0)
j+1 − u

(0)
j , u

(0)
j − u

(0)
j−1)ϕ

(1)
j (x).

For k > 1, we first compute

u
−(mod)
j+1/2 = u

(0)
j + m̃(u−

j+1/2 − u
(0)
j , u

(0)
j+1 − u

(0)
j , u

(0)
j − u

(0)
j−1),

u
+(mod)
j−1/2 = u

(0)
j − m̃(u

(0)
j − u+

j−1/2, u
(0)
j+1 − u

(0)
j , u

(0)
j − u

(0)
j−1),

then define

ΛΠk
h(uh)|Ij =





uh|Ij , if u
−(mod)
j+1/2 = u−

j+1/2 and u
+(mod)
j−1/2 = u+

j−1/2,

ΛΠ1
h(uh)|Ij , otherwise.

We finally make the following notation
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u
(mod)
h |Ij := ΛΠk

h(uh)|Ij =

k∑

l=0

u
(l)(mod)
j ϕl,

and

ΛΠk
h(UUUh) := UUU

(mod)
h =

[
u
(l)(mod)
j

]
∀ j, l=0,1,...,k

.

The complete RK-DG method with the TVB minmod limiter is given in Algorithm 1,
in which r = (k + 1) to match the accuracy in space and in time, and s ≥ r is the
number of stages in SSP-RK.

Algorithm 1 Runge-Kutta local projection discontinuous Galerkin method

1: Compute UUU
0(mod)
h = ΛΠk

h(UUUh0).
2: For each n = 0, 1, . . . , N − 1,

1. Set UUU
n,(0)(mod)
h = UUU

n(mod)
h .

2. For i = 1, . . . , s, compute the solution at stage i:

UUU
n,(i)(mod)
h = ΛΠk

h

(
i−1∑

ν=0

αiνUUU
n,(ν)(mod)
h + βiν∆tLLLh

(
UUU

n,(ν)(mod)
h

))

.

3. Set UUU
n+1(mod)
h = UUU

n,(s)(mod)
h .

3. Local time stepping algorithms. In this section, we present high order
LTS algorithms incorporated with the RK-DG methods for conservation laws. Given

the solution UUU
n(mod)
h at tn, possibly with moving shocks, we approximate the solution

at tn+1. To this end, we divide the domain into coarse and fine regions, and assume
shocks only appear in the fine regions. This could be made possible by varying the
LTS interfaces with time. Consequently, we can use spatially variable time steps:
large step sizes in the coarse regions and small step sizes in the fine regions.

For simplicity of presentation, we decompose the domain into a coarse region
Ωn

c and a fine region Ωn
f . Extension to more complicated configurations with mul-

tiple subdomains is straightforward. Denoted by xjn
0
+1/2 the interface point at tn,

Ωn
c = {Ij : j ≤ jn0 } the coarse region, and Ωn

f = {Ij : j ≥ jn0 + 1} the fine region. As
depicted in Figure 3.1, we enforce a larger time step ∆tcoarse = ∆t in Ωn

c and a smaller
time step ∆tfine = ∆t/M in Ωn

f . We remark that the coarse time increment must be a
union of fine time increments:

[
tn, tn+1

)
=

M−1⋃

p=0

[
tn,p, tn,p+1

)
.

To proceed in time in the fine region, one needs to find (k + 1)th-order in time
approximation of the flux at the interface at intermediate time levels tn,p for p =
1, . . . ,M − 1. This is obtained via a predictor based on kth-order Taylor expansions
and the (k + 1)th-order SSP-RK algorithm, assuming that the solution is smooth
enough near the LTS interface. After advancing in the fine region to tn+1, we will
correct the flux at the interface in order to conserve mass exactly. The derivation of
the predictors up to fourth order accuracy are presented in Appendix B. The proposed
LTS algorithm of order (k + 1) consists of the following three steps:
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Figure 3.1: Partition in time with local time-stepping.

Step 1: Predicting the interface values. We first compute the solution of
the first (s− 1) stages of the SSP-RK(s, k + 1) scheme on the interface cell Ijn

0
with

a coarse time step:

uuu
n,(i)
jn
0

=
(
u
(l),n,(i)
jn
0

)
∀ j, l=0,...,k

, ∀ i = 1, . . . , s− 1.

It is important to note that we compute uuu
n,(i)
jn
0

locally on Ij0 by enforcing u
n,(i),−
jn
0
−1/2 =

u
n,(i),+
jn
0
−1/2 and u

n,(i),+
jn
0
+1/2 = u

n,(i),−
jn
0
+1/2 in (2.5). This is obtained under the assumption that

the solution near the LTS interface is continuous (for k ≤ 1) or sufficiently smooth (for

k > 1). Thus, limiter is not necessary in this case and we have uuu
n,(i)(mod)
jn
0

= uuu
n,(i)
jn
0

. We
then use these values to predict the solution on the interface xjn

0
+1/2 at intermediate

time levels tn,p:

u
n,p,(i),−(mod)
jn
0
+1/2 = u

n,p,(i),−
jn
0
+1/2 =

k∑

l=0

u
(l),n,p,(i)
jn
0

, ∀ p = 0, 1, . . . ,M − 1, (3.1)

where u
(l),n,p,(i)
jn
0

are computed by the formulas in Appendix B. In particular:

For second order SSP-RK(2,2):

u
(l),n,p,(0)
jn
0

= (1− θp)u
(l),n,(0)
jn
0

+ θpu
(l),n,(1)
jn
0

,

u
(l),n,p,(1)
jn
0

= (1− ηp)u
(l),n,(0)
jn
0

+ ηpu
(l),n,(1)
jn
0

,
(3.2)

for l = 0, 1, where θp = p
M and ηp = p+1

M for p = 0, 1, . . . ,M − 1.

For third order SSP-RK(3,3):

u
(l),n,p,(0)
jn
0

= (1− θp − θ̂p)u
(l),n,(0)
jn
0

+ (θp − θ̂p)u
(l),n,(1)
jn
0

+ 2θ̂pu
(l),n,(2)
jn
0

,

u
(l),n,p,(1)
jn
0

= (1− ηp − η̂p)u
(l),n,(0)
jn
0

+ (ηp − η̂p)u
(l),n,(1)
jn
0

+ 2η̂pu
(l),n,(2)
jn
0

,

u
(l),n,p,(2)
jn
0

= (1− γp − γ̂p)u
(l),n,(0)
jn
0

+ (γp − γ̂p)u
(l),n,(1)
jn
0

+ 2γ̂pu
(l),n,(2)
jn
0

,

(3.3)

for l = 0, 1, 2, with θp and ηp as above, and θ̂p = p2

M2 , η̂p = p(p+2)
M2 , γp = 2p+1

2M and

γ̂p = 2p2+2p+1
2M2 for p = 0, 1, . . . ,M − 1.
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For fourth order SSP-RK(5,4): we approximate u
(l),n,p,(i)
jn
0

, for p = 0, 1, . . . ,M −1

as linear combinations of u
(l),n,(i)
jn
0

for l, i = 0, . . . , 4, as presented in Appendix B.3.

Step 2: Advancing in the coarse and fine regions in parallel.

Step 2a). Advancing the coarse region excluding the interface cell: with the solution
at the current time level, we advance solution to the next time level by running the
SSP-RK with a coarse time step.

For all the cells Ij with j < jn0 , we perform:
1. For i = 1, . . . , s,

u
(l),n,(i)
j =

i−1∑

ν=0

αiνu
(l),n,(ν)
j + βiν∆t L

(l)
h,j

(
u
n,(ν),±
j−1/2 ,uuu

n,(ν)
j , u

n,(ν),±
j+1/2

)
. (3.4)

2. Set uuun+1
j = uuu

n,(s)
j for all j < jn0 .

Step 2b). Advancing in the fine region: with the predicted values on the interface,
we evaluate the interface flux h(un,p,−

jn
0
+1/2, u

n,p,+
jn
0
+1/2) at the intermediate time levels, and

consequently obtain the solution un,p
j for all the cells Ij with j > jn0 in the fine region.

The TVB limiter is performed to obtain u
n,p(mod)
j for j > jn0 and the predicted values

are updated on the interface after limiting.

For all the cells Ij with j ≥ jn0 + 1, we perform:

For p = 0, . . . ,M − 1,

1. Set u
(l),n,p,(0)(mod)
j = u

(l),n,p(mod)
j , for l = 0, . . . , k.

2. For i = 1, . . . , s, we compute the solution at stage i:

u
(l),n,p,(i)
j =

i−1∑

ν=0

αiνu
(l),n,p,(ν)(mod)
j

+βiν

(
∆t

M

)
L
(l)
h,j

(
u
n,p,(ν),±(mod)
j−1/2 ,uuu

n,p,(ν)(mod)
j , u

n,p,(ν),±(mod)
j+1/2

)
,

for l = 0, . . . , k. If p < M − 1, limit the solution in the fine region

uuu
n,p,(i)(mod)
j = ΛΠk

h

(
uuu
n,p,(i)
j′≥jn

0

)
|Ij ,

and update the predicted interface value u
n,p,(i),−(mod)
jn
0
+1/2 (cf. (3.1)) after lim-

iting:

u
n,p,(i),−(mod)
jn
0
+1/2 = u

(0),n,p,(i)
jn
0

+ m̃
(
u
n,p,(i),−(mod)
jn
0
+1/2 − u

(0),n,p,(i)
jn
0

,

u
(0),n,p,(i)
jn
0
+1 − u

(0),n,p,(i)
jn
0

, u
(0),n,p,(i)
jn
0

− u
(0),n,(i)
jn
0
−1

)
.

3. For all j > jn0 , set:

{
u
(l),n,p+1(mod)
j = u

(l),n,p,(s)(mod)
j , if p < M − 1,

u
(l),n+1
j = u

(l),n,p,(s)
j , if p = M − 1.

Step 3: Correcting the interface solution and limiting the global solu-

tion at tn+1 locally. With the predicted interface value u
n,p,(ν),−
jn
0
+1/2 , we calculate the
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flux at the interface x = xjn
0
+1/2. Together with the flux at x = xjn

0
−1/2, which is

frozen over [tn, tn+1), we correct the solution of the interface cell Ijn
0
. Finally, a TVB

limiter is applied, which can be implemented in parallel as [10], to limit the solution
on Ij , ∀j in which only information on elements sharing edges with Ij is necessary.

1. For i = 1, . . . , s, we compute the solution at stage i at the interface:

û
(l),n,(i)
jn
0

=

i−1∑

ν=0

αiν û
(l),n,(ν)
jn
0

+βiν
∆t

M

M−1∑

p=0

L
(l)
h,jn

0

(
u
n,(ν),±(mod)
jn
0
−1/2 ,uuu

n,(ν)(mod)
jn
0

, u
n,p,(ν),±(mod)
jn
0
+1/2

)
,

(3.5)

where û
(l),n,(0)
jn
0

= u
(l),n,(0)(mod)
jn
0

.

2. Set u
(l),n+1
jn
0

= û
(l),n,(s)
jn
0

and perform the limiter: UUU
n+1(mod)
h = ΛΠk

h(UUU
n+1
h ).

4. Properties of LTS schemes. First, we notice that the proposed LTS schemes
preserve the accuracy in time of the corresponding global SSP-RK methods due to
the construction of the predictor and the corrector (see also Remark B.1). In the fol-
lowing, we prove that the LTS schemes conserve mass exactly and importantly, they
satisfy the TVB stability.

4.1. Conservation. Mass conservation of the proposed LTS schemes is obtained
via the construction of the corrector. For simplicity, we assume that the solutions are

obtained after performing the limiter defined in Subsection 2.3 and write u
(l),n
j for

u
(l),n(mod)
j .

Theorem 4.1. The LTS schemes exhibit exact conservation of mass:
∫

R

un+1
h =

∫

R

un
h, ∀n = 0, . . . , N − 1.

Proof. We only need to show that mass is conserved in the region of the LTS
interface x = xjn

0
+1/2, Ijn0 ∪ Ijn

0
+1, under the assumption that no flux is imposed at

xjn
0
−1/2 and xjn

0
+3/2:

∫

Ijn
0
∪Ijn

0
+1

un+1
h =

∫

Ijn
0
∪Ijn

0
+1

un
h. (4.1)

Next, we prove (4.1) for the second order LTS scheme based on SSP-RK(2, 2) (cf.
Equations (A.1)). The proof for the third and fourth order LTS schemes can be done
in a similar manner; in fact, the result holds for any high order LTS schemes with the
corrector defined by (3.5).

For the fine cell Ijn
0
+1, the second order LTS algorithm reads:

u
(l),n+1
jn
0
+1 =

1

2
u
(l),n,M−1
jn
0
+1 +

1

2

[
u
(l),n,M−1,(1)
jn
0
+1

+

(
∆t

M

)
L
(l)
h,jn

0
+1

(
u
n,M−1,(1),±
jn
0
+1/2 ,uuu

n,M−1,(1)
jn
0
+1 , u

n,M−1,(1),±
jn
0
+3/2

)]

= u
(l),n,M−1
jn
0
+1 +

1

2

∆t

M

1∑

ν=0

L
(l)
h,jn

0
+1

(
u
n,M−1,(ν),±
jn
0
+1/2 ,uuu

n,M−1,(ν)
jn
0
+1 , u

n,M−1,(ν),±
jn
0
+3/2

)
.
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Thus, by recursion, we obtain:

u
(l),n+1
jn
0
+1 = u

(l),n
jn
0
+1 +

1

2

∆t

M

M−1∑

p=0

1∑

ν=0

L
(l)
h,jn

0
+1

(
u
n,p,(ν),±
jn
0
+1/2 ,uuu

n,p,(ν)
jn
0
+1 , u

n,p,(ν),±
jn
0
+3/2

)
. (4.2)

Taking vh = 1 in (2.1), using (4.2) and the definition of L
(l)
h,j in (2.5), we have

∫

Ijn
0

+1

un+1
h =

∫

Ijn
0

+1

un
h +

1

2

∆t

M

M−1∑

p=0

(
−h(un,p,−

jn
0
+1/2, u

n,p,+
jn
0
+1/2)− h(u

n,p,(1),−
jn
0
+1/2 , u

n,p,(1),+
jn
0
+1/2 )

)
.

(4.3)
as no flux is imposed at xjn

0
+3/2.

For the interface cell Ijn
0
, the corrector (3.5) associated with SSP-RK(2, 2) is given

by

û
(l),n,(1)
jn
0

= u
(l),n
jn
0

+
∆t

M

M−1∑

p=0

L
(l)
h,jn

0

(
un,±
jn
0
−1/2,uuu

n
jn
0
, un,p,±

jn
0
+1/2

)
,

u
(l),n+1
jn
0

=
1

2
u
(l),n
jn
0

+
1

2

[
û
(l),n,(1)
jn
0

+
∆t

M

M−1∑

p=0

L
(l)
h,jn

0

(
u
n,(1),±
jn
0
−1/2 ,uuu

n,(1)
jn
0

, u
n,p,(1),±
jn
0
+1/2

)]
,

from which we deduce that

u
(l),n+1
jn
0

= u
(l),n
jn
0

+
1

2

∆t

M

M−1∑

p=0

1∑

ν=0

L
(l)
h,jn

0

(
u
n,(ν),±
jn
0
−1/2 ,uuu

n,(ν)
jn
0

, u
n,p,(ν),±
jn
0
+1/2

)
. (4.4)

As for the fine cell j = jn0 + 1, we choose vh = 1 in (2.1) and use (4.4) to obtain

∫

Ijn
0

un+1
h =

∫

Ijn
0

un
h +

1

2

∆t

M

M−1∑

p=0

(
h(un,p,−

jn
0
+1/2, u

n,p,+
jn
0
+1/2) + h(u

n,p,(1),−
jn
0
+1/2 , u

n,p,(1),+
jn
0
+1/2 )

)
,

(4.5)
noting that no flux at xjn

0
−1/2 is assumed. Thus, the proof is completed by adding

(4.3) and (4.5) together.

4.2. Stability. Numerical methods for conservation laws need to satisfy certain
nonlinear stability requirements in order to prevent spurious oscillations when the
solution is discontinuous. In [36], the first order LTS scheme based on forward Euler
is proved to be TVD with the predictor obtained by freezing the value at tn:

un,p
jn
0
+1/2 = un

jn
0
+1/2, ∀p = 0, . . . ,M − 1.

For higher order LTS schemes as proposed in Section 3, multiple stage time-stepping
algorithms are employed and the predictors are obtained by taking linear combinations
of the interface solution at different stages with a coarse time step size. Therefore, the
proof of nonlinear stability for high order LTS schemes is not an obvious generalization
from the first order one. Additionally, the corrector designed to conserve mass is not
a convex combination of forward Euler steps as in the case of the global SSP-RK. As
a consequence, the high order LTS schemes are not TVD anymore, instead they are
TVB.
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We next prove the stability of the second order LTS scheme by first showing that
it is TVBM (total variation bounded in the means). The generalization to higher
order LTS schemes can be done in a similar manner. We introduce some notation
to be used in the proof. Denoted by ∆+ and ∆− the forward and backward finite
difference operators, respectively:

∆+uj = uj+1 − uj , and ∆−uj = uj − uj−1.

Following [7], we decompose the interface values u±
j+1/2 as

u−
j+1/2 = uj + ũj , u+

j−1/2 = uj − ˜̃uj ,

where uj := u
(0)
j is the mean value of u on the cell Ij . As in [6], we denote:

Cj+1/2 = −h2 ·

(
1−

∆+
˜̃uj

∆+uj

)
, and Dj−1/2 = h1 ·

(
1 +

∆−ũj

∆−uj

)
, (4.6)

where

h1 =
h(u−

j+1/2, u
+
j−1/2)− h(u−

j−1/2, u
+
j−1/2)

u−
j+1/2 − u−

j−1/2

, h2 =
h(u−

j+1/2, u
+
j+1/2)− h(u−

j+1/2, u
+
j−1/2)

u+
j+1/2 − u+

j−1/2

.

Note that h1 and −h2 are nonnegative due to the monotonicity of h(·, ·). Then the
flux associated with the mean value uj (cf. Equation (2.5) with l = 0) can be rewritten
equivalently as

−
(
h(u−

j+1/2, u
+
j+1/2)− h(u−

j−1/2, u
+
j−1/2)

)
= Cj+1/2 ∆+uj −Dj−1/2 ∆−uj .

Using the above notation, the second order LTS scheme as presented in Section 3 for
the mean value uj reads as follows: for n = 0, . . . , N − 1,
1. Compute the predicted mean on the interface cell at the intermediate time levels

from the solutions with a coarse time step: for p = 0, . . . ,M − 1,

un,p
jn
0

=
(
1−

p

M

)
un
jn
0
+

p

M
u
n,(1)
jn
0
+1/2,

u
n,p,(1)
jn
0

=

(
1−

p+ 1

M

)
un
jn
0
+

p+ 1

M
u
n,(1)
jn
0
+1/2.

(4.7)

2. Advance in the coarse region, for all j < jn0 :

u
n,(1)
j = un

j +
∆t

∆xj

(
Cn

j+1/2∆+u
n
j −Dn

j−1/2∆−u
n
j

)
,

un+1
j =

1

2
un
j +

1

2

[
u
n,(1)
j +

∆t

∆xj

(
C

n,(1)
j+1/2∆+u

n,(1)
j −D

n,(1)
j−1/2∆−u

n,(1)
j

)]
,

(4.8)

and in the fine region, for all j > jn0 : for p = 0, . . . ,M − 1,

u
n,p,(1)
j = un,p

j +
∆t

M∆xj

(
Cn,p

j+1/2∆+u
n,p
j −Dn,p

j−1/2∆−u
n,p
j

)
,

un,p+1
j =

1

2
un,p
j +

1

2

[
u
n,p,(1)
j +

∆t

M∆xj

(
C

n,p,(1)
j+1/2 ∆+u

n,p,(1)
j −D

n,p,(1)
j−1/2 ∆−u

n,p,(1)
j

)]
.

(4.9)

Note that the interface u
n,p,(i),−
jn
0
+1/2 , for i = 1, 2, and p = 0, . . . ,M − 1 are computed

by using the second order predictor (4.7) and (3.1).
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3. Correcting the interface values for which the flux at x = xjn
0
−1/2 is frozen over

[tn, tn+1):

û
n,(1)

jn
0

= un
jn
0
−

∆t

M∆xjn
0

M−1∑

p=0

(
h(un,p,−

jn
0
+1/2, u

n,p,+
jn
0
+1/2)− h(un,−

jn
0
−1/2, u

n,+
jn
0
−1/2)

)
,

un+1
jn
0

=
1

2
un
jn
0
+

1

2

[
û
n,(1)

jn
0

−

∆t

M∆xjn
0

M−1∑

p=0

(
h(u

n,p,(1),−

jn
0
+1/2 , u

n,p,(1),+

jn
0
+1/2 )− h(u

n,(1),−

jn
0
−1/2 , u

n,(1),+

jn
0
−1/2 )

)]
.

(4.10)

The flux term in the right-hand side of (4.10) can be rewritten as

−
(
h(un,p,−

jn
0
+1/2, u

n,p,+
jn
0
+1/2)− h(un,−

jn
0
−1/2, u

n,+
jn
0
−1/2)

)
= Cn,p

jn
0
+1/2∆+u

n,p
jn
0

−Dn
jn
0
−1/2∆−u

n
jn
0
−
(
h(un,p,−

jn
0
+1/2, u

n,p,+
jn
0
−1/2)− h(un,−

jn
0
+1/2, u

n,+
jn
0
−1/2)

)
,

where un,p,+
jn
0
−1/2 is computed by the same predictor as un,p,−

jn
0
+1/2. In addition, we write

−
(
h(un,p,−

jn
0
+1/2, u

n,p,+
jn
0
−1/2)− h(un,−

jn
0
+1/2, u

n,+
jn
0
−1/2)

)

= −h
n,p
2,jn

0
−1/2 ·

(
un,p,+
jn
0
−1/2 − un,+

jn
0
−1/2

)
− h

n,p
1,jn

0
+1/2 ·

(
un,p,−
jn
0
+1/2 − un,−

jn
0
+1/2

)

where

h
n,p
1,jn

0
+1/2 :=

h(un,p,−
jn
0
+1/2, u

n,+
jn
0
−1/2)− h(un,−

jn
0
+1/2, u

n,+
jn
0
−1/2)

un,p,−
jn
0
+1/2 − un,−

jn
0
+1/2

≥ 0,

−h
n,p
2,jn

0
−1/2 := −

h(un,p,−
jn
0
+1/2, u

n,p,+
jn
0
−1/2)− h(un,p,−

jn
0
+1/2, u

n,+
jn
0
−1/2)

un,p,+
jn
0
−1/2 − un,+

jn
0
−1/2

≥ 0.

(4.11)

Moreover, using the second order predictor (3.2), we deduce that

un,p,+
jn
0
−1/2−un,+

jn
0
−1/2 =

p

M

(
u
n,(1),+
jn
0
−1/2 − un,+

jn
0
−1/2

)
, un,p,−

jn
0
+1/2−un,−

jn
0
+1/2 =

p

M

(
u
n,(1),−
jn
0
+1/2 − un,−

jn
0
+1/2

)
.

Therefore, we can rewrite the correction (4.10) as follows:

û
n,(1)

jn
0

= un
jn
0
+

∆t

M∆xjn
0

M−1∑

p=0

(
Cn,p

jn
0
+1/2∆+u

n,p
jn
0

−Dn
jn
0
−1/2∆−u

n
jn
0

+
p

M
(−h

n,p
2,jn

0
−1/2)

(
u
n,(1),+
jn
0
−1/2 − un,+

jn
0
−1/2

)
−

p

M
h
n,p
1,jn

0
+1/2

(
u
n,(1),+
jn
0
+1/2 − un,+

jn
0
+1/2

))
.

(4.12)
Similarly,

un+1
jn
0

=
1

2
un
jn
0
+

1

2

[
û
n,(1)

jn
0

+
∆t

M∆xjn
0

M−1∑

p=0

(
C

n,p,(1)
jn
0
+1/2∆+u

n,p,(1)
jn
0

−D
n,(1)
jn
0
−1/2∆−u

n,(1)
jn
0

+
p+ 1

M
(−h

n,p,(1)
2,jn

0
−1/2)

(
u
n,(1),+
jn
0
−1/2 − un,+

jn
0
−1/2

)
−

p+ 1

M
h
n,p,(1)
1,jn

0
+1/2

(
u
n,(1),+
jn
0
+1/2 − un,+

jn
0
+1/2

))]
,

(4.13)



14

in which h
n,p,(1)
1,jn

0
+1/2 and h

n,p,(1)
2,jn

0
−1/2 are defined in a similar way as in (4.11) but with the

solutions of the first stage u
n,p,(1),±
jn
0
±1/2 and u

n,(1),±
jn
0
±1/2 . The TVBM property of the second

order LTS scheme is guaranteed by the following theorem.

Theorem 4.2 (TVBM). Assume that there exists some θ > 0 such that

−θ ≤
∆+
˜̃u
n,(i)

j

∆+u
n,(i)
j

≤ 1, ∀ j < jn0 , −θ ≤
∆+
˜̃u
n,p,(i)

j

∆+u
n,p,(i)
j

≤ 1, ∀ j ≥ jn0 ,

−θ ≤ −
∆+ũ

n,(i)
j

∆+u
n,(i)
j

≤ 1, ∀ j < jn0 , −θ ≤ −
∆+ũ

n,p,(i)
j

∆+u
n,p,(i)
j

≤ 1, ∀ j ≥ jn0 ,

(4.14)

for n = 0, . . . , N − 1, p = 0, . . . ,M − 1 and i = 0, 1. In addition, if a local CFL
condition is satisfied:

λn,p
j (h1 − h2) ≤

1

1 + θ
, (4.15)

where h1 and −h2 are the Lipschitz coefficients of h(·, ·) with respect to the first and
second arguments respectively, and λn,p

j is defined by

λn,p
j =





∆t

∆xj
, if j ≤ jn0 + 1,

∆t

M∆xj
, if j > jn0 + 1,

for n = 0, . . . , N − 1,

and p = 0, . . . ,M − 1.

Then the second order LTS scheme is TVBM.
Proof. Following the techniques in [36], we first introduce some important facts

that will be used later in the proof. From the monotonicity of h(·, ·) and (4.14), we
deduce that, in (4.6):

C
n,(i)
j+1/2, D

n,(i)
j+1/2 ≥ 0, ∀j < j0, and C

n,p,(i)
j+1/2 , D

n,p,(i)
j+1/2 ≥ 0, ∀j ≥ j0. (4.16)

We may omit the superscripts for the ease of presentation. Given any two nonnegative
numbers α, β and suppose λn,p

j = max(α, β) that satisfies (4.15), we have

αCj+1/2 + βDj+1/2 ≤ 1,

and consequently,

∣∣uj+1 − uj − αDj+1/2∆−uj+1 − βCj+1/2∆+uj

∣∣ = |∆+uj |
∣∣1− αDj+1/2 − βCj+1/2

∣∣
= |uj+1 − uj | − αDj+1/2 |∆−uj+1| − βCj+1/2 |∆+uj |,

in which the functions must be evaluated at the same time level. Then, together with
(4.16), we deduce that

∣∣uj+1 − uj + α
(
Cj+3/2∆+uj+1 −Dj+1/2∆−uj+1

)
− β

(
Cj+1/2∆+uj −Dj−1/2∆−uj

)∣∣
≤
∣∣uj+1 − uj − αDj+1/2∆−uj+1 − βCj+1/2∆+uj

∣∣+ αCj+3/2 |∆+uj+1|+ βDj−1/2 |∆−uj |

≤ |uj+1 − uj |+ α
(
Cj+3/2 |∆+uj+1| −Dj+1/2 |∆−uj+1|

)

− β
(
Cj+1/2 |∆+uj | −Dj−1/2 |∆−uj |

)
. (4.17)
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In the following, we compute the variation |uj+1 − uj | for all j. Particularly, we
consider four cases:

i) If j < (jn0 − 1): from (4.8), we find that

u
n,(1)
j+1 − u

n,(1)
j =

(
un
j+1 − un

j

)
+

∆t

∆xj+1

(
Cn

j+3/2∆+u
n
j+1 −Dn

j+1/2∆−u
n
j+1

)

−
∆t

∆xj

(
Cn

j+1/2∆+u
n
j −Dn

j−1/2∆−u
n
j

)]
.

(4.18)

Applying (4.17) with α =
∆t

∆xj+1
and β =

∆t

∆xj
, we deduce from (4.18) that

∣∣∣un,(1)
j+1 − u

n,(1)
j

∣∣∣ ≤
∣∣un

j+1 − un
j

∣∣+∆+

[
∆t

∆xj

(
Cn

j+1/2

∣∣∆+u
n
j

∣∣−Dn
j−1/2

∣∣∆−u
n
j

∣∣
)]

.

From this we obtain

∣∣un+1
j+1 − un+1

j

∣∣ ≤ 1

2

∣∣un
j+1 − un

j

∣∣+ 1

2

∣∣∣un,(1)
j+1 − u

n,(1)
j

∣∣∣

+
1

2
∆+

[
∆t

∆xj

(
C

n,(1)
j+1/2

∣∣∣∆+u
n,(1)
j

∣∣∣−D
n,(1)
j−1/2

∣∣∣∆−u
n,(1)
j

∣∣∣
)]

≤
∣∣un

j+1 − un
j

∣∣+ 1

2

1∑

ν=0

∆+

[
∆t

∆xj

(
C

n,(ν)
j+1/2

∣∣∣∆+u
n,(ν)
j

∣∣∣−D
n,(ν)
j−1/2

∣∣∣∆−u
n,(ν)
j

∣∣∣
)]

.

or equivalently

∣∣un+1
j+1 − un+1

j

∣∣ ≤
∣∣un

j+1 − un
j

∣∣+ 1

2

M−1∑

p=0

1∑

ν=0

∆+

[
∆t

M∆xj

(
C

n,(ν)
j+1/2

∣∣∣∆+u
n,(ν)
j

∣∣∣

−D
n,(ν)
j−1/2

∣∣∣∆−u
n,(ν)
j

∣∣∣
)]
, ∀ j < jn0 − 1. (4.19)

ii) If j > jn0 : By the same argument applied to (4.9) with a fine time step, we find
that

∣∣un+1
j+1 − un+1

j

∣∣ ≤
∣∣∣un,M−1

j+1 − un,M−1
j

∣∣∣

+
1

2

1∑

ν=0

∆+

[
∆t

M∆xj

(
C

n,M−1,(ν)
j+1/2

∣∣∣∆+u
n,M−1,(ν)
j

∣∣∣−D
n,M−1,(ν)
j−1/2

∣∣∣∆−u
n,M−1,(ν)
j

∣∣∣
)]

.

Repeating this argument inductively, we obtain a similar bound as (4.19):

∣∣un+1
j+1 − un+1

j

∣∣ ≤
∣∣un

j+1 − un
j

∣∣+ 1

2

M−1∑

p=0

1∑

ν=0

∆+

[
∆t

M∆xj

(
C

n,p,(ν)
j+1/2

∣∣∣∆+u
n,p,(ν)
j

∣∣∣

−D
n,p,(ν)
j−1/2

∣∣∣∆−u
n,p,(ν)
j

∣∣∣
)]
, ∀ j > jn0 .

(4.20)
iii) If j = jn0 (the interface cell)

We aim to show that (4.20) again holds for j = jn0 , which is the main part of the
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proof. Using the formulation for the corrector (4.12)-(4.13), as well as the time-
stepping scheme in the fine region, we obtain

un+1
jn
0
+1 − un+1

jn
0

= un
jn
0
+1 − un

jn
0

+
1

2

M−1∑

p=0

1∑

ν=0

[
∆t

M∆xjn
0
+1

(
C

n,p,(ν)
jn
0
+3/2 ∆+u

n,p,(ν)
jn
0
+1 −D

n,p,(ν)
jn
0
+1/2 ∆−u

n,p,(ν)
jn
0
+1

)

−
∆t

M∆xjn
0

(
C

n,p,(ν)
jn
0
+1/2∆+u

n,p,(ν)
jn
0

−D
n,(ν)
jn
0
−1/2∆−u

n,(ν)
jn
0

)]

−
1

2

M−1∑

p=0

∆t

M∆xjn
0

[(
p

M
(−h

n,p
2,jn

0
−1/2) +

p+ 1

M
(−h

n,p,(1)
2,jn

0
−1/2)

)(
u
n,(1),+
jn
0
−1/2 − un,+

jn
0
−1/2

)

−

(
p

M
h
n,p
1,jn

0
+1/2 +

p+ 1

M
h
n,p,(1)
1,jn

0
+1/2

)(
u
n,(1),−
jn
0
+1/2 − un,−

jn
0
+1/2

))]
.

Since u
n,(1),±
jn
0
−1/2 − un,±

jn
0
−1/2 = O(∆t), and by the CFL condition, we can bound

∣∣∣un+1
jn
0
+1 − un+1

jn
0

∣∣∣ ≤
∣∣∣∣u

n
jn
0
+1 − un

jn
0
+

1

2

M−1∑

p=0

1∑

ν=0

[
∆t

M∆xjn
0
+1

(
C

n,p,(ν)
jn
0
+3/2 ∆+u

n,p,(ν)
jn
0
+1

−D
n,p,(ν)
jn
0
+1/2 ∆−u

n,p,(ν)
jn
0
+1

)
−

∆t

M∆xjn
0

(
C

n,p,(ν)
jn
0
+1/2∆+u

n,p,(ν)
jn
0

−D
n,(ν)
jn
0
−1/2∆−u

n,(ν)
jn
0

)]∣∣∣∣

+
M

1 + θ
O(∆t). (4.21)

We have

un
jn
0
+1 − un

jn
0
=

1

2M

M−1∑

p=0

{[(
un
jn
0
+1 − un

jn
0

)
−
(
un,p
jn
0
+1 − un,p

jn
0

)]

+
[(

un
jn
0
+1 − un

jn
0

)
−
(
u
n,p,(1)
jn
0
+1 − u

n,p,(1)
jn
0

)]
+
(
un,p
jn
0
+1 − un,p

jn
0

)
+
(
u
n,p,(1)
jn
0
+1 − u

n,p,(1)
jn
0

)}
.

(4.22)

Regarding the first two terms, let us write

1

2

[(
un
jn
0
+1 − un

jn
0

)
−
(
un,p
jn
0
+1 − un,p

jn
0

)]
+

1

2

[(
un
jn
0
+1 − un

jn
0

)
−
(
u
n,p,(1)
jn
0
+1 − u

n,p,(1)
jn
0

)]

=
(
un
jn
0
+1 − un,p

jn
0
+1

)
+

1

2

(
un,p
jn
0
+1 − u

n,p,(1)
jn
0
+1

)
+

1

2

[(
un,p
jn
0

− un
jn
0

)
+
(
u
n,p,(1)
jn
0

− un
jn
0

)]
.

(4.23)

By definition of the second order predictor (3.2), the last term in (4.23) is given by

1

2

[(
un,p
jn
0

− un
jn
0

)
+
(
u
n,p,(1)
jn
0

− un
jn
0

)]
=

2p+ 1

2M

(
u
n,(1)
jn
0

− un
jn
0

)
= O(∆t). (4.24)

On the other hand, the first and second terms in (4.23) can be computed by using
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the time-stepping in the fine region (4.9):

(
un
jn
0
+1 − un,p

jn
0
+1

)
+

1

2

(
un,p
jn
0
+1 − u

n,p,(1)
jn
0
+1

)

= −
1

2

p∑

q=0

∆t

M∆xjn
0
+1

(
Cn,q

jn
0
+3/2 ∆+u

n,q
jn
0
+1 −Dn,q

jn
0
+1/2 ∆−u

n,q
jn
0
+1

)

−
1

2

p−1∑

q=0

∆t

M∆xjn
0
+1

(
C

n,q,(1)
jn
0
+3/2 ∆+u

n,q,(1)
jn
0
+1 −D

n,q,(1)
jn
0
+1/2 ∆−u

n,q,(1)
jn
0
+1

)
.

(4.25)

Summing (4.25) over p = 0, . . . ,M − 1 yields

M−1∑

p=0

{(
un
jn
0
+1 − un,p

jn
0
+1

)
+

1

2

(
un,p
jn
0
+1 − u

n,p,(1)
jn
0
+1

)}

= −
1

2

M−1∑

p=0

(
1−

p

M

) ∆t

∆xjn
0
+1

(
Cn,p

jn
0
+3/2 ∆+u

n,p
jn
0
+1 −Dn,p

jn
0
+1/2 ∆−u

n,p
jn
0
+1

)

−
1

2

M−1∑

p=0

(
1−

p+ 1

M

)
∆t

∆xjn
0
+1

(
C

n,p,(1)
jn
0
+3/2 ∆+u

n,p,(1)
jn
0
+1 −D

n,p,(1)
jn
0
+1/2 ∆−u

n,p,(1)
jn
0
+1

)
.

(4.26)

Substituting (4.24) and (4.26) into (4.22) and then (4.21), and using (4.17) with

α = p
M

(
∆t

∆xjn
0

+1

)
or α = p+1

M

(
∆t

∆xjn
0

+1

)
and β = ∆t

∆xjn
0

, we obtain:

∣∣∣un+1
jn
0
+1 − un+1

jn
0

∣∣∣ ≤ 1

2M

M−1∑

p=0

{ ∣∣∣un,p
jn
0
+1 − un,p

jn
0

∣∣∣+
∣∣∣un,p,(1)

jn
0
+1 − u

n,p,(1)
jn
0

∣∣∣

+
p

M

∆t

∆xjn
0
+1

(
Cn,p

jn
0
+3/2

∣∣∣∆+u
n,p
jn
0
+1

∣∣∣−Dn,p
jn
0
+1/2

∣∣∣∆−u
n,p
jn
0
+1

∣∣∣
)

+
p+ 1

M

∆t

∆xjn
0
+1

(
C

n,p,(1)
jn
0
+3/2

∣∣∣∆+u
n,p,(1)
jn
0
+1

∣∣∣−D
n,p,(1)
jn
0
+1/2

∣∣∣∆−u
n,p,(1)
jn
0
+1

∣∣∣
)

−
∆t

∆xjn
0

1∑

ν=0

(
C

n,p,(ν)
jn
0
+1/2

∣∣∣∆+u
n,p,(ν)
jn
0

∣∣∣−D
n,(ν)
jn
0
−1/2

∣∣∣∆−u
n,(ν)
jn
0

∣∣∣
)}

+O(∆t).

(4.27)

Furthermore, by the definition of the second order predictor, we have u
n,p,(1)
jn
0

= un,p
jn
0
+

1
M

(
u
n,(1)
jn
0

− un
jn
0

)
= un,p

jn
0

+O(∆t). This together with using (4.17) for α = ∆t
M∆xjn

0
+1

and β = 0, we have that

∣∣∣un,p,(1)
jn
0
+1 − u

n,p,(1)
jn
0

∣∣∣ =
∣∣∣∣u

n,p
jn
0
+1 − un,p

jn
0

+
∆t

M∆xjn
0
+1

(
Cn,p

jn
0
+3/2 ∆+u

n,p
jn
0
+1 −Dn,p

jn
0
+1/2 ∆−u

n,p
jn
0
+1

) ∣∣∣∣+O(∆t)

≤
∣∣∣un,p

jn
0
+1 − un,p

jn
0

∣∣∣+ ∆t

M∆xjn
0
+1

(
Cn,p

jn
0
+3/2

∣∣∣∆+u
n,p
jn
0
+1

∣∣∣−Dn,p
jn
0
+1/2

∣∣∣∆−u
n,p
jn
0
+1

∣∣∣
)
+O(∆t).

(4.28)
Plugging this into (4.27) yields:
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∣∣∣un+1
jn
0
+1 − un+1

jn
0

∣∣∣ ≤ 1

M

M−1∑

p=0

{ ∣∣∣un,p
jn
0
+1 − un,p

jn
0

∣∣∣

+
p+ 1

2M

∆t

∆xjn
0
+1

(
Cn,p

jn
0
+3/2

∣∣∣∆+u
n,p
jn
0
+1

∣∣∣−Dn,p
jn
0
+1/2

∣∣∣∆−u
n,p
jn
0
+1

∣∣∣
)

+
p+ 1

2M

∆t

∆xjn
0
+1

(
C

n,p,(1)
jn
0
+3/2

∣∣∣∆+u
n,p,(1)
jn
0
+1

∣∣∣−D
n,p,(1)
jn
0
+1/2

∣∣∣∆−u
n,p,(1)
jn
0
+1

∣∣∣
)

−
1

2

1∑

ν=0

∆t

∆xjn
0

(
C

n,p,(ν)
jn
0
+1/2

∣∣∣∆+u
n,p,(ν)
jn
0

∣∣∣−D
n,(ν)
jn
0
−1/2

∣∣∣∆−u
n,(ν)
jn
0

∣∣∣
)}

+O(∆t).

(4.29)

On the other hand, by the SSP-RK(2, 2) time-stepping in the fine cell (jn0 + 1) and
using (4.28), we deduce that

∣∣∣un,p
jn
0
+1 − un,p

jn
0

∣∣∣ =
∣∣∣∣
1

2

(
un,p−1
jn
0
+1 − un,p−1

jn
0

)
+

1

2

(
u
n,p−1,(1)
jn
0
+1 − u

n,p−1,(1)
jn
0

)

+
1

2

∆t

M∆xjn
0
+1

(
C

n,p−1,(1)
jn
0
+3/2 ∆+u

n,p−1,(1)
jn
0
+1 −D

n,p−1,(1)
jn
0
+1/2 ∆−u

n,p−1,(1)
jn
0
+1

)

+
1

2

(
un,p−1
jn
0

+ u
n,p−1,(1)
jn
0

− 2un,p
jn
0

) ∣∣∣∣ ≤
∣∣∣un,p−1

jn
0
+1 − un,p−1

jn
0

∣∣∣

+
1

2

∆t

M∆xjn
0
+1

1∑

ν=0

(
C

n,p−1,(ν)
jn
0
+3/2

∣∣∣∆+u
n,p−1,(ν)
jn
0
+1

∣∣∣−D
n,p−1,(ν)
jn
0
+1/2

∣∣∣∆−u
n,p−1,(ν)
jn
0
+1

∣∣∣
)
+O(∆t),

in which we have used definition of the second order predictor to obtain

1

2

(
un,p−1
jn
0

+ u
n,p−1,(1)
jn
0

− 2un,p
jn
0

)
=

1

2

(
un,p−1
jn
0

− un,p
jn
0

)
=

1

2M

(
un
jn
0
− u

n,(1)
jn
0

)
= O(∆t).

Repeat the above argument inductively, we arrive at

∣∣∣un,p
jn
0
+1 − un,p

jn
0

∣∣∣ ≤
∣∣∣un

jn
0
+1 − un

jn
0

∣∣∣

+
1

2

∆t

M∆xjn
0
+1

p−1∑

q=0

1∑

ν=0

(
C

n,q,(ν)
jn
0
+3/2

∣∣∣∆+u
n,q,(ν)
jn
0
+1

∣∣∣−D
n,q,(ν)
jn
0
+1/2

∣∣∣∆−u
n,q,(ν)
jn
0
+1

∣∣∣
)
+O(∆t).

Consequently,

M−1∑

p=0

∣∣∣un,p
jn
0
+1 − un,p

jn
0

∣∣∣ ≤ M
∣∣∣un

jn
0
+1 − un

jn
0

∣∣∣

+
1

2

∆t

M∆xjn
0
+1

M−1∑

p=0

p−1∑

q=0

1∑

ν=0

(
C

n,q,(ν)
jn
0
+3/2

∣∣∣∆+u
n,q,(ν)
jn
0
+1

∣∣∣−D
n,q,(ν)
jn
0
+1/2

∣∣∣∆−u
n,q,(ν)
jn
0
+1

∣∣∣
)
+O(∆t)

≤ M
∣∣∣un

jn
0
+1 − un

jn
0

∣∣∣+ 1

2

∆t

M∆xjn
0
+1

M−1∑

p=0

1∑

ν=0

(
1−

p+ 1

M

)(
C

n,p,(ν)
jn
0
+3/2

∣∣∣∆+u
n,p,(ν)
jn
0
+1

∣∣∣

−D
n,p,(ν)
jn
0
+1/2

∣∣∣∆−u
n,p,(ν)
jn
0
+1

∣∣∣
)
+O(∆t),

where the last inequality is obtained by reversing the order of summation. Plug this
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into (4.29), we find that

∣∣∣un+1
jn
0
+1 − un+1

jn
0

∣∣∣ ≤
∣∣∣un

jn
0
+1 − un

jn
0

∣∣∣

+
1

2

M−1∑

p=0

1∑

ν=0

[
∆t

M∆xjn
0
+1

(
C

n,p,(ν)
jn
0
+3/2

∣∣∣∆+u
n,p,(ν)
jn
0
+1

∣∣∣−D
n,p,(ν)
jn
0
+1/2

∣∣∣∆−u
n,p,(ν)
jn
0
+1

∣∣∣
)

+
∆t

M∆xjn
0

(
C

n,p,(ν)
jn
0
+1/2

∣∣∣∆+u
n,p,(ν)
jn
0

∣∣∣−D
n,(ν)
jn
0
−1/2

∣∣∣∆−u
n,(ν)
jn
0

∣∣∣
) ]

+O(∆t).

(4.30)

iv) If j = jn0 −1: It remains to investigate the case of the interface cell and its neighbor
in Ωn

c . Similarly to (4.21), we have

∣∣∣un+1
jn
0

− un+1
jn
0
−1

∣∣∣ ≤
∣∣∣∣u

n
jn
0
− un

jn
0
−1 +

1

2

M−1∑

p=0

1∑

ν=0

∆t

M∆xjn
0

(
C

n,p,(ν)
jn
0
+1/2 ∆+u

n,p,(ν)
jn
0

−D
n,(ν)
jn
0
−1/2 ∆−u

n,(ν)
jn
0

)
−

∆t

M∆xjn
0
−1

(
C

n,(ν)
jn
0
−1/2∆+u

n,(ν)
jn
0
−1 −D

n,(ν)
jn
0
−3/2∆−u

n,(ν)
jn
0
−1

) ∣∣∣∣

+
M

1 + θ
O(∆t).

By performing similar manipulations as for the case j = jn0 , one arrives at

∣∣∣un+1
jn
0

− un+1
jn
0
−1

∣∣∣ ≤
∣∣∣un

jn
0
− un

jn
0
−1

∣∣∣

+
1

2

M−1∑

p=0

1∑

ν=0

[
∆t

M∆xjn
0

(
C

n,p,(ν)
jn
0
+1/2

∣∣∣∆+u
n,p,(ν)
jn
0

∣∣∣−D
n,(ν)
jn
0
−1/2

∣∣∣∆−u
n,(ν)
jn
0

∣∣∣
)

+
∆t

M∆xjn
0
−1

(
C

n,(ν)
jn
0
−1/2

∣∣∣∆+u
n,(ν)
jn
0
−1

∣∣∣−D
n,(ν)
jn
0
−3/2

∣∣∣∆−u
n,(ν)
jn
0
−1

∣∣∣
) ]

+O(∆t).

(4.31)

Finally, we combine (4.19), (4.20), (4.30) and (4.31) and obtain:

TV (un+1) ≤ TV (un) +O(∆t), or TV (un) ≤ TV (u0) + CT.

Hence, the second order LTS scheme is TVBM. The condition (4.14) is fulfilled if the
solution is limited by the minmod function m defined in (2.7) (see [7]). The scheme
remains TVB when the modified minmod function m̃ is used, which is achieved by
Theorem 2.2 in [41] (see also [7, Lemma 2.3]). Finally, the TVB property of the means
uj can be passed to whole solution uh in the same manner as the RK-DG method [7,
Propositition 2.11]. We remark that it is assumed that the solution near the time-
dependent LTS interface is sufficiently smooth so that the condition (4.14) is satisfied
in the region of the LTS interface without limiting. In practice, local time-stepping
should be coupled with adaptive spatial meshing to achieve computational efficiency
and accuracy when dealing with hyperbolic conservation laws.

5. Numerical experiments. We consider several standard test cases of one di-
mensional scalar conservation laws (Subsection 5.1) and system of conservation laws
(Subsection 5.2). We aim to verify the accuracy, mass conservation and stability of
the LTS schemes as predicted theoretically and compare with those by the global
time-stepping (GTS) schemes. As a first step towards study the behavior of proposed
schemes, we use a fixed LTS interface (i.e., jn0 = j0 for all n ) in all the tests, instead of
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a time-varying LTS interface as discussed in Section 3, and leave the investigation on
parallel performance of the proposed methods with space-time adaptive multiresolu-
tion meshes in two and three dimensions to future work. Note that for the prediction
step, if the solution is discontinuous at the fixed LTS interface, then it is necessary to

limit the solution on the interface with a coarse time step uuu
n,(i)(mod)
j0

for i = 1, . . . , s−1
before calculating the predicted interface values (3.1) at intermediate time levels.

5.1. Scalar conservation laws. We first consider two model problems that
obey the scalar conservation laws: the linear advection equation and Burgers’ equa-
tion. For problems with a smooth solution, we confirm the convergence order in
time of our LTS algorithms. The effectiveness of LTS algorithms is demonstrated by
comparing with the GTS schemes in terms of accuracy and CFL conditions.

Example 1: Linear problem. We solve the linear advection problem with a
smooth initial condition

ut + ux = 0, u(x, 0) = sinπx, (5.1)

in −1 ≤ x ≤ 1 with periodic boundary conditions. The exact solution is given by
u(x, t) = sinπ(x−t). The spatial domain is divided into two subdomains, Ω1 = [−1, 0]
and Ω2 = [0, 1]. The mesh size and time step size in Ωi are respectively ∆xi and ∆ti,
which are fine when i = 1 and are coarse when i = 2:

∆x1 =
∆xcoarse

M
, ∆x2 = ∆xcoarse, ∆t1 =

C

2k + 1
∆x1 =

∆tcoarse
M

, ∆t2 = ∆tcoarse,

for M = 1, 2, 4, 8, and for k = 1, 2, 3 corresponding to second, third and fourth order
LTS methods. The L1 relative errors at T = 2 of the three LTS algorithms are listed
in Table 5.1. We observe that for all schemes, the errors decrease as M increases; and
the LTS schemes (with M = 2, 4, 8) preserve the order of convergence as in the GTS
case (M = 1), regardless of how large M is.

Now to show that the LTS algorithms are stable with a local CFL condition, we
still consider the linear problem (5.1) but with a discontinuous initial condition

u(x, 0) =

{
2, x ≤ −1,
−1, x > −1.

We are interested in the behavior of the approximate solution near the discontinuity
x = −0.5 at T = 0.5 and x = 0 (the LTS interface) at T = 1. Again, the fine region is
Ω1 = [−1, 0] and the coarse one is Ω2 = [0, 1]. We use second order RK-DG method
and consider three schemes as follows:
1. Coarse GTS scheme with a coarse global time step ∆t = ∆tcoarse.

2. Fine GTS scheme with a fine global time step ∆t = ∆tcoarse/M.

3. LTS scheme with spatial variable time step ∆t1 = ∆tcoarse/M and ∆t2 = ∆tcoarse.

Note that the spatial mesh is refined in Ω1 by a factor of M . Table 5.2 shows the L1

relative errors of the three schemes at T = 0.5 and T = 1 respectively. It is seen that
the coarse GTS becomes unstable as the spatial mesh is refined due to the violation
of the CFL condition, while the LTS scheme, with a valid local CFL condition, gives
stable solution with the same accuracy as the fine GTS scheme.

Example 2: Burger’s equation. Next, we test the proposed algorithms on the
Burgers’ equation with a smooth initial condition:

ut +

(
u2

2

)

x

= 0, u(x, 0) =
1

4
+

1

2
sinπx, (5.2)
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Linear advection

∆xcoarse M RK-DG2 RK-DG3 RK-DG4

Rel. L1 error [CR] Rel. L1 error [CR] Rel. L1 error [CR]

1/5

1 5.70e-02 – 1.39e-03 – 4.43e-05 –

2 3.59e-02 – 8.09e-04 – 2.40e-05 –

4 3.13e-02 – 7.65e-04 – 2.32e-05 –

8 3.04e-02 – 7.62e-04 – 2.33e-05 –

1/10

1 1.36e-02 [2.07] 1.66e-04 [3.07] 2.73e-06 [4.02]

2 8.71e-03 [2.04] 9.76e-05 [3.05] 1.46e-06 [4.04]

4 7.60e-03 [2.04] 9.20e-05 [3.06] 1.39e-06 [4.06]

8 3.91e-03 [2.04] 9.17e-05 [3.06] 1.41e-06 [4.05]

1/20

1 3.30e-03 [2.04] 2.04e-05 [3.03] 1.71e-07 [4.00]

2 2.14e-03 [2.03] 1.20e-05 [3.02] 9.07e-08 [4.01]

4 1.87e-03 [2.02] 1.14e-05 [3.01] 8.66e-08 [4.01]

8 1.81e-03 [2.03] 1.13e-05 [3.02] 8.83e-08 [4.00]

1/40

1 8.11e-04 [2.03] 2.54e-06 [3.01] 1.07e-08 [4.00]

2 5.31e-04 [2.01] 1.49e-06 [3.01] 5.67e-09 [4.00]

4 4.64e-04 [2.01] 1.41e-06 [3.02] 5.42e-09 [4.00]

8 4.50e-04 [2.01] 1.41e-06 [3.00] 5.53e-09 [4.00]

Table 5.1: [Linear advection with a smooth initial condition] L1 relative errors at
T = 2 for different M . The rates of convergence “CR” for fixed M are shown in
square brackets.

Linear advection, RK-DG2

∆xcoarse M
At T = 0.5 At T = 1

coarse GTS fine GTS LTS coarse GTS fine GTS LTS

1/40

1 2.58e-02 2.53e-02

2 3.46e-02 1.52e-02 3.46e-02 1.50e-02

4 – 9.00e-03 – 8.99e-03

8 – 5.40e-03 – 5.46e-03

Table 5.2: [Linear advection with a discontinuous initial condition] L1 relative errors
at T = 0.5 and T = 1 of RK-DG2 global time-stepping (GTS) and local time-stepping
(LTS) schemes.

in −1 ≤ x ≤ 1. The exact solution of the problem is given by [23]:

w(x, t) = 1/4 + 1/2 v(x− t, t/2), (5.3)

in which v(x, t) is the solution of the Burgers’ equation with v(x, 0) = sinπx. We
compute v by Newton iterations to solve the characteristic relation:

v = sin(πx− vt), 0 ≤ x < 1.

The solution v in (−1, 0) is computed from v in (0, 1) via: v(−x, t) = −v(x, t). The
solution of (5.2) is smooth up to t = 2/π then it develops a moving shock. For details,
see [23].

We divide the spatial domain into two zones and use the same discretization in
space and in time as in Example 1. In Figure 5.1, we show the exact solution and the
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approximate solution by the fourth order LTS algorithm with ∆xcoarse = 1/40 and
M = 4. We see that LTS scheme clearly captures the shock with local refinement in
space and in time. In Figure 5.2, mass evolution as a function of time of different LTS
schemes with ∆xcoarse = 1/40 and M = 4 is displayed. The LTS schemes conserve the
mass in the region of the LTS interface, and thus in the whole domain. The relative
L1 errors at T = 0.3 when the solution is still smooth are shown in Table 5.3. Again,
the LTS schemes converge at the same order as the associated GTS schemes and the
errors are improved as M increases. At T = 1.1, the errors in the smooth regions (0.1
away from the shock) are as the same magnitude as in the smooth case as displayed
in Table 5.4.
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Figure 5.1: [Burger’s equation] Snapshots of the solution by the fourth order LTS
scheme with 2 subdomains, ∆x1 = ∆x2/4 and ∆x2 = 1/40,
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Figure 5.2: [Burger’s equation] Time evolution of mass for second, third and fourth
order LTS schemes at ∆xcoarse = 1/40 and M = 4. Note that the third and fourth
order approximations coincide with each other.

5.2. Euler equations of gas dynamics. We next apply the proposed LTS
algorithms to solve a system of one dimensional conservation laws. For the spatial
discretization, we employ the DG methods for systems of equations presented in [8]
with the local projection limiting in the characteristic fields. The time-stepping is
still SSP-RK and thus it is straightforward to apply the proposed LTS algorithms for
such a system. We consider the Euler equations of gas dynamics for a polytropic gas:

uuut + fff(uuu)x = 000, uuu = (ρ,m,E)T , fff(uuu) = quuu+ (0, P, qP )T , (5.4)

with P = (γ − 1)
(
E − 1/2ρq2

)
. Here ρ, q, P and E are the density, velocity, pressure

and total energy, respectively; m = ρ q is the momentum and γ is the ratio of specific
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∆xcoarse M RK-DG2 RK-DG3 RK-DG4

Rel. L1 error [CR] Rel. L1 error [CR] Rel. L1 error [CR]

1/10

1 6.49e-03 [1.97] 3.27e-04 [3.18] 2.26e-05 –

2 3.97e-03 [2.07] 1.10e-04 [3.12] 6.75e-06 –

4 3.37e-03 [2.09] 8.97e-05 [3.26] 5.97e-06 –

8 3.22e-03 [2.09] 8.73e-05 [3.28] 5.93e-06 –

1/20

1 1.62e-03 [2.00] 4.10e-05 [3.00] 1.31e-06 [4.11]

2 9.63e-04 [2.04] 1.45e-05 [2.92] 4.19e-07 [4.01]

4 8.11e-04 [2.06] 1.17e-05 [2.94] 3.60e-07 [4.05]

8 7.74e-04 [2.06] 1.14e-05 [2.94] 3.57e-07 [4.05]

1/40

1 4.03e-04 [2.01] 5.01e-06 [3.03] 8.68e-08 [3.92]

2 2.38e-04 [2.02] 1.81e-06 [3.00] 2.63e-08 [3.99]

4 1.99e-04 [2.03] 1.43e-06 [3.03] 2.30e-08 [3.97]

8 1.89e-04 [2.03] 1.40e-06 [3.03] 2.28e-08 [3.97]

1/80

1 1.00e-04 [2.01] 6.18e-07 [3.02] 5.44e-09 [4.00]

2 5.95e-05 [2.00] 2.25e-07 [3.01] 1.75e-09 [3.91]

4 4.95e-05 [2.01] 1.78e-07 [3.01] 1.56e-09 [3.88]

8 4.71e-05 [2.01] 1.74e-07 [3.01] 1.55e-09 [3.88]

Table 5.3: [Burger’s equation] L1 relative errors at T = 0.3 for different M . The rates
of convergence “CR” for fixed M are shown in square brackets.

At T = 1.1, errors in smooth region ‖x− shock‖ >= 0.1

∆xcoarse M 2nd order LTS 3rd order LTS 4th order LTS

1/40

1 6.16e-05 4.25e-07 4.31e-09

2 4.67e-05 1.73e-07 1.71e-09

4 4.37e-05 1.53e-07 1.59e-09

8 4.35e-05 1.52e-07 1.60e-09

Table 5.4: [Burger’s equation] L1 relative errors in smooth regions at T = 1.1 of
different local time-stepping schemes.

heats. In the following computation, we use γ = 1.4 and present numerical results
of applying the second order LTS algorithm to solve Riemann problems of Euler
equations and the problem of interaction of blast waves. Note that for these test
cases, there is no advantage of using higher order schemes as investigated in [8].

Example 3: Shock tube problem. Consider the Riemann problem

uuu(x, 0) =

{
uuuL, x < 0,
uuuR, x > 0,

(5.5)

with two sets of initial conditions:

a) The Sod problem [46]: (ρL, qL, PL) = (1, 0, 1) and (ρR, qR, PR) = (0.125, 0, 0.10);
b) The Lax problem [31]: (ρL, qL, PL) = (0.445, 0.698, 3.528) and (ρR, qR, PR) =

(0.5, 0, 0.571).
The Sod problem has become a standard test problem of Euler equations with

a monotone decreasing density profile. For this problem, we consider two settings of
the decomposition into fine and coarse regions:
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1. two subdomains with the coarse region [−4.9,−0.5) and fine region [−0.5, 5.1);
2. three subdomains with the coarse regions [−4.9,−2.9) and [4, 5.1], and the

fine region [−2.9, 4).

The exact solution and approximation solution by the second order LTS algorithm
at T = 2.0 with ∆xcoarse = 1/5 and M = 4 are shown in Figure 5.3 for the case of
two subdomains and in Figure 5.4 for the case of three subdomains. The L1 relative
errors are displayed in Table 5.5 in which we observe that for both settings, the
errors decrease as M increases, especially for the three subdomain case, and the order
of convergence is first order as the solution is discontinuous. The three subdomain
setting, as expected, has a better performance since the fine region includes the contact
discontinuities and the corners of rarefaction waves.
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Figure 5.3: [Sod shock tube problem] Snapshots of the density, velocity and pressure
at T = 2.0 by the second order LTS scheme with 2 subdomains, ∆xcoarse = 1/5 and
M = 4.
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Figure 5.4: [Sod shock tube problem] Snapshots of the density, velocity and pressure
at T = 2.0 by the second order LTS scheme with 3 subdomains, ∆xcoarse = 1/5 and
M = 4.

For the Lax problem, the density profile has a “built-up” intermediate state, thus
we divide the domain into two subdomains with the coarse region [−4.9, 0) and the
fine region [0, 5.1). The second order LTS approximate solution at T = 1.3 with
∆xcoarse = 1/5 and M = 4 is shown in Figure 5.5 together with the exact solution.
We observe that the LTS scheme captures very well the “built-up” density profile with
local refinement in space and in time. The L1 relative errors are presented in Table 5.6
that match our expectation.
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∆xcoarse M
Density Velocity Pressure

2 domains 3 domains 2 domains 3 domains 2 domains 3 domains

1/5

1 1.79e-02 3.88e-02 1.76e-02

2 8.96e-03 8.28e-03 2.03e-02 1.75e-02 8.46e-03 7.22e-03

4 6.35e-03 4.25e-03 1.39e-02 8.82e-03 6.82e-03 3.62e-03

8 6.06e-03 2.22e-03 1.27e-02 4.46e-03 7.34e-03 1.81e-03

1/10

1 8.28e-03 1.78e-02 7.24e-03

2 4.41e-03 4.23e-03 9.79e-03 8.83e-03 3.89e-03 3.61e-03

4 2.88e-03 2.21e-03 6.11e-03 4.46e-03 2.76e-03 1.80e-03

8 2.50e-03 1.16e-03 5.19e-03 2.30e-03 2.80e-03 9.03e-04

Table 5.5: [Sod shock tube problem] L1 relative errors at T = 2.0 of the second order
LTS algorithm for the Sod shock tube problem.
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Figure 5.5: [Lax shock tube problem] Snapshots of the density, velocity and pressure
at T = 1.3 by the second order LTS scheme with two subdomains, ∆xcoarse = 1/5
and M = 4.

∆xcoarse M Density Velocity Pressure

1/5

1 4.74e-02 2.15e-02 1.44e-02

2 2.94e-02 1.69e-02 1.07e-02

4 2.11e-02 1.73e-02 9.12e-03

8 1.18e-02 1.37e-02 7.63e-03

1/10

1 2.52e-02 1.20e-02 6.55e-03

2 1.51e-02 9.07e-03 4.74e-03

4 8.88e-03 7.13e-03 3.91e-03

8 5.70e-03 7.41e-03 4.19e-03

Table 5.6: [Lax shock tube problem] L1 relative errors at T = 1.3 of the second order
LTS algorithm.

Example 4: Interaction of blast waves. We finally consider the problem of
two interacting blast waves:

uuu(x, 0) =





uuuL, 0 ≤ x < 0.1,
uuuM , 0.1 ≤ x < 0.9,
uuuR, 0.9 ≤ x < 1,

(5.6)
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with (ρL, qL, PL) = (1, 0, 103), (ρM , qM , PM ) = (1, 0, 10−2) and (ρR, qR, PR) = (1, 0, 100).
Reflection boundary conditions are applied at x = 0 and x = 1. For details, see
[51, 23].

We divide Ω = [0, 1] into 3 subdomains Ω1 = [0, 0.2), Ω2 = [0.2, 0.9) and Ω3 =
[0.9, 1]. The mesh and time step sizes in Ω2 are M times smaller than those in Ω1 and
Ω3. The solutions at T = 0.038 with the second order global time-stepping (M = 1)
and local time-stepping (M = 2) are shown in Figure 5.6. We see that the LTS scheme
with a local refinement in space and time gives a much better resolution, especially
for the density profile.
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Figure 5.6: [Blast waves’ interaction problem] Snapshots of the density, velocity and
pressure at T = 0.038 by the second order GTS (M = 1) and LTS (M = 2) schemes
with ∆xcoarse = 1/200.

6. Conclusion. In this work, high order explicit local time-stepping algorithms
have been proposed and analyzed for hyperbolic conservation laws. The approaches
are of predictor-corrector type, and algorithms of up to fourth order accuracy are con-
structed in a general setting of Runge-Kutta discontinuous Galerkin methods with the
modified minmod limiter. With our LTS schemes, different time-step sizes can be used
based on a local CFL condition instead of the more restrictive global CFL condition.
Thus, they outperform the global time-stepping for simulations on multi-resolution
meshes or of multiple scales. In addition, we rigorously prove the conservation prop-
erty and nonlinear stability of these schemes. Numerical results confirm their accuracy
and efficiency. Future work includes the coupling of adaptive multi-resolution meshes
with our local time-stepping to carry out simulations in parallel and further inves-
tigations on the numerical performance of the proposed approaches for large scale
simulations on modern supercomputer systems.
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Appendices.

A. SSP-RK time stepping schemes. We first present the SSP-RK(2,2) and
SSP-RK(3,3) schemes for solution of the system (2.4), which are optimal in the sense
that the number of stages equals the order of accuracy and the coefficients βi,ν are
nonnegative [17]. In both cases, the schemes possess the SSP coefficient C = 1.

Second order SSP-RK(2,2): α10 = β10 = 1, α20 = α21 = β21 = 1/2 and β20 = 0,
which is equivalent to the Heun’s method:

UUU
n,(1)
h = UUUn

h +∆tLLLh(UUU
n
h),

UUUn+1
h = 1/2UUUn

h + 1/2
(
UUU

n,(1)
h +∆tLLLh(UUU

n,(1)
h )

)
.

(A.1)
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Third order SSP-RK(3,3): α10 = β10 = 1, α20 = 3/4, α21 = β21 = 1/4, α30 =
1/3, α32 = β32 = 2/3 and β20 = β30 = α31 = β31 = 0, or explicitly:

UUU
n,(1)
h = UUUn

h +∆tLLLh(UUU
n
h),

UUU
n,(2)
h = 3/4UUUn

h + 1/4
(
UUU

n,(1)
h +∆tLLLh(UUU

n,(1)
h )

)
,

UUUn+1
h = 1/3UUUn

h + 2/3
(
UUU

n,(2)
h +∆tLLLh(UUU

n,(2)
h )

)
.

(A.2)

For higher order schemes r ≥ 4, we can not avoid negative βiν without using
additional stages. We shall use the SSP-RK(5,4) proposed in [30] with the SSP
coefficient C = 1.652, and the coefficients of the scheme are listed in Table A.1.

αiν

1 0 0 0 0

0.261216512493821 0.738783487506179 0 0 0

0.623613752757655 0 0.376386247242345 0 0

0.444745181201454 0.120932584902288 0 0.434322233896258 0

0.213357715199957 0.209928473023448 0.063353148180384 0 0.513360663596212

βiν

0.605491839566400 0 0 0 0

0 0.447327372891397 0 0 0

0.000000844149769 0 0.227898801230261 0 0

0.002856233144485 0.073223693296006 0 0.262978568366434 0

0.002362549760441 0.127109977308333 0.038359814234063 0 0.310835692561898

Table A.1: [30] Coefficients of the SSP-RK (5,4) scheme with C = 1.652.

B. Derivation of the predictors. We derive the predictors up to fourth order
accuracy (k = 1, 2, 3) in the DG-RK setting. To simplify the notation, in the following,
we consider an arbitrary equation in the system (2.4) and write it in the form:

∂twj = Lj(www), (B.1)

where www = (wj(t))∀ j (wj represents u
(l)
j and we have dropped the superscript (l) for

simplicity) and Lj is a multivariable, real-valued function.
Given the time partition with coarse and fine time steps as defined in Section 3

and assume that the solution wwwn at tn is known, we shall construct the approximation
of www at the interface xj+1/2 at the intermediate time levels tn,p for p = 1, . . . ,M − 1.
Performing Taylor expansion of wj at tn yields:

wj(t) = wj(t
n)+ (t− tn)

dwj

dt
(tn)+ . . .+

1

k!
(t− tn)k

d(k)wj

dt
(tn)+O

(
(∆t)k+1

)
. (B.2)

The time derivatives of wj up to order k are approximated by the SSP-RK solution

of the first (s − 1) stages with a coarse time step, w
n,(i)
j for i = 1, . . . , s − 1. These

approximations are detailed in the following for second, third and fourth order schemes
respectively.

B.1. Predictor for the SSP-RK(2,2) scheme. We obtain the approximation

for wn,p
j = w

n,p,(0)
j by truncating (B.2) to the second term:

w
n,p,(0)
j = w

n,(0)
j +

p∆t

M
∂tw

n,(0)
j +O(∆t2p), p = 0, 1, . . . ,M − 1, (B.3)
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where ∆tp = p∆t/M. To compute the first time derivative, we first notice that

∂tw
n,(0)
j = Lj(www

n,(0)) according to (B.1). Thus, by using the solution at stage 1
of SSP-RK(2,2) with a coarse time step

w
n,(1)
j = w

n,(0)
j +∆tLj(www

n,(0)),

we deduce that

∂tw
n,(0)
j = Lj(www

n,(0)) =
w

n,(1)
j − w

n,(0)
j

∆t
+O (∆t) . (B.4)

Substituting this into (B.3) yields:

w
n,p,(0)
j = w

n,(0)
j +

p

M

(
w

n,(1)
j − w

n,(0)
j

)
+O(∆t2). (B.5)

We also need to predict w
n,p,(1)
j , the solution at stage 1 at intermediate time levels,

for p = 0, . . . ,M − 1. By definition of the SSP-RK(2,2) scheme, we have:

w
n,p,(1)
j = w

n,p,(0)
j +

∆t

M
Lj(www

n,p,(0)),

As Lj(www
n,p,(0)) = Lj(www

n,(0)) +O(∆t), we deduce from (B.6) that

w
n,p,(1)
j = w

n,p,(0)
j +

∆t

M
Lj(www

n,(0)) +O(∆t2),

or equivalently via (B.5)

w
n,p,(1)
j = w

n,p,(0)
j +

p+ 1

M

(
w

n,(1)
j − w

n,(0)
j

)
+O(∆t2). (B.6)

It is clear from (B.5) and (B.6) that the proposed predictor gives second order accurate
approximations of the solutions at intermediate time levels tn,p, for p = 0, . . . ,M − 1.

B.2. Predictor for the SSP-RK(3,3) scheme. As in the second order case,

we approximate w
n,p,(0)
j by truncating (B.2), but now to the third term:

w
n,p,(0)
j = w

n,(0)
j +

p∆t

M
∂tw

n,(0)
j +

1

2

(
p∆t

M

)2

∂ttw
n,(0)
j +O(∆t3p), p = 0, 1, . . . ,M−1.

(B.7)
The time derivatives are computed from the solutions at stage 1 and stage 2 of SSP-
RK(3,3) with a coarse time step:

w
n,(1)
j = w

n,(0)
j +∆tLj(www

n,(0)), (B.8)

w
n,(2)
j =

3

4
w

n,(0)
j +

1

4
w

n,(1)
j +

1

4
∆tLj(www

n,(1)). (B.9)

The first time derivative can be obtained as in (B.4), for the second time derivative,
by the chain rule we deduce from (B.1) that

∂ttwj = ∇Lj(www) · ∂twww,
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and we will compute the right-hand side by using (B.9). In particular, by performing
first order Taylor expansion, we obtain:

Lj(www
n,(1)) = Lj(www

n,(0)) +∇Lj(www
n,(0)) · (wwwn,(1) −wwwn,(0)) +O(∆t2).

Substituting this into (B.9) yields

w
n,(2)
j =

3

4
w

n,(0)
j +

1

4
w

n,(1)
j +

1

4
∆tLj(www

n,(0))+
1

4
∆t2 ∇Lj(www

n,(0)) ·∂t(www
n,(0))+O(∆t3),

from which we deduce that

∆t2∇Lj(www
n,(0)) · ∂t(www

n,(0)) = 4w
n,(2)
j − 3w

n,(0)
j − w

n,(1)
j −∆tLj(www

n,(0)) +O(∆t3)

= 4w
n,(2)
j − 2w

n,(0)
j − 2w

n,(1)
j +O(∆t3),

where the last equality is obtained by (B.4). Inserting this and (B.4) into (B.7), we
arrive at

w
n,p,(0)
j = w

n,(0)
j +

p

M
(w

n,(1)
j − w

n,(0)
j ) +

p2

M2

(
2w

n,(2)
j − w

n,(0)
j − w

n,(1)
j )

)
+O(∆t3),

for p = 0, 1, . . . ,M − 1. Similarly, we can approximate w
n,p,(1)
j and w

n,p,(2)
j , the

solutions at stage 1 and stage 2 of SSP-RK(3,3) as follows:

w
n,p,(1)
j = w

n,p,(0)
j +

∆t

M
Lj(www

n,p,(0)
j )

= w
n,p,(0)
j +

∆t

M

(
Lj(www

n,(0)) +∇Lj(www
n,(0)) · (wwwn,p,(0) −wwwn,(0)) +O(∆t2)

)

= w
n,p,(0)
j +

∆t

M
Lj(www

n,(0)
j ) +

∆t

M
∇Lj(www

n,(0)) ·
p∆t

M
∂twww

n,(0) +O(∆t3)

= w
n,(0)
j +

p+ 1

M
(w

n,(1)
j − w

n,(0)
j ) +

p(p+ 2)

M2

(
2w

n,(2)
j − w

n,(0)
j − w

n,(1)
j )

)
+O(∆t3),

and

w
n,p,(2)
j =

3

4
w

n,p,(0)
j +

1

4
w

n,p,(1)
j +

1

4

∆t

M
Lj(www

n,p,(1))

=
3

4
w

n,p,(0)
j +

1

4
w

n,p,(1)
j +

1

4

∆t

M

(
Lj(www

n,(0)) +∇Lj(www
n,(0)) · (wwwn,p,(1) −wwwn,(0)) +O(∆t2)

)

= w
n,p,(0)
j +

∆t

M
Lj(www

n,(0)) +
∆t

M
∇Lj(www

n,(0)) ·
(p+ 1)∆t

M
∂twww

n,(0) +O(∆t3)

= w
n,(0)
j +

2p+ 1

2M
(w

n,(1)
j − w

n,(0)
j ) +

2p2 + 2p+ 1

2M2

(
2w

n,(2)
j − w

n,(0)
j − w

n,(1)
j )

)
+O(∆t3).

B.3. Predictor for the SSP-RK(5,4) scheme. Again, we approximate w
n,p,(0)
j

by truncating (B.2), now to the fourth term:

w
n,p,(0)
j = w

n,(0)
j +

p∆t

M
∂tw

n,(0)
j +

1

2

(
p∆t

M

)2

∂ttw
n,(0)
j +

1

6

(
p∆t

M

)3

∂tttw
n,(0)
j +O(∆t4p),

(B.10)
for p = 0, 1, . . . ,M − 1. As for the second and third order cases, we approximate the
time derivatives

∂tw
n,(0)
j = Lj(www

n,(0)), ∂ttw
n,(0)
j = ∇Lj(www

n,(0)) · ∂twww
n,(0), (B.11)

∂tttw
n,(0)
j = (∂twww

n,(0))T HHHLj
(wwwn,(0)) ∂twww

n,(0) +∇Lj(www
n,(0)) · ∂ttwww

n,(0), (B.12)
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by using the solution the first four stages of SSP-RK(5,4) with a coarse time step:

w
n,(1)
j = α10w

n,(0)
j + β10∆tLj(www

n,(0)), (B.13)

w
n,(2)
j = α20w

n,(0)
j + α21w

n,(1)
j + β21∆tLj(www

n,(1)), (B.14)

w
n,(3)
j = α30w

n,(0)
j + β30∆tLj(www

n,(0)) + α32w
n,(2)
j + β32∆tLj(www

n,(2)), (B.15)

w
n,(4)
j = α40w

n,(0)
j + β40∆tLj(www

n,(0)) + α41w
n,(1)
j + β41∆tLj(www

n,(1))

+ α43w
n,(3)
j + β43∆tLj(www

n,(3)). (B.16)

Denote by

∆tn,(i) = γ(i)∆t, i = 0, 1, 2, 3, (B.17)

with

γ(0) = 0, γ(1) = β10, γ(2) = α21γ
(1) + β21, γ(3) = α32γ

(2) + β32 + β30. (B.18)

From (B.13) we have

∆t ∂tw
n,(0)
j = ∆t Lj(www

n,(0)) =
1

β10

(
w

n,(1)
j − α10w

n,(0)
j

)
.

Next, we approximate the flux by Taylor expansion with O(∆t3) truncated error:

Lj(www
n,(1)) = Lj(www

n,(0)) +∇Lj(www
n,(0)) · (wwwn,(1) −wwwn,(0))

+
1

2
(wwwn,(1) −wwwn,(0))HHHLj

(wwwn,(0)) (wwwn,(1) −wwwn,(0)) +O(∆t3)

= Lj(www
n,(0)) +∇Lj(www

n,(0)) ·

(
∆tn,(1) ∂twww

n,(0) +
(∆tn,(1))2

2
∂ttwww

n,(0)

)

+
(∆tn,(1))2

2
(∂twww

n,(0))T HHHLj
(wwwn,(0)) ∂twww

n,(0) +O(∆t3),

= Lj(www
n,(0)) + ∆tn,(1) ∂ttw

n,(0)
j +

(∆tn,(1))2

2
∂tttw

n,(0)
j +O(∆t3), (B.19)

in which ∆tn,(1) is defined in (B.17) and the last equality is obtained by substituting
the derivatives in time (B.11)-(B.12). Similarly,

Lj(www
n,(2)) = Lj(www

n,(0)) + ∆tn,(2) ∂ttw
n,(0)
j +

(
∆tn,(2)

)2

2
∂tttw

n,(0)
j +O(∆t3), (B.20)

and

Lj(www
n,(3)) = Lj(www

n,(0)) + ∆tn,(3) ∂ttw
n,(0)
j +

(
∆tn,(3)

)2

2
∂tttw

n,(0)
j +O(∆t3). (B.21)

For the fourth order SSP-RK scheme, the number of stages is larger than the order
of the scheme. Consequently, we can compute different approximations of the time

derivatives ∂ttw
n,(0)
j and ∂tttw

n,(0)
j using either equations (B.19)-(B.20) or (B.20)-

(B.21). In particular, if we substitute the equations (B.19)-(B.20) into (B.14)-(B.15),

we obtain the following system for ∂ttw
n,(0)
j and ∂tttw

n,(0)
j :

w
n,(2)
j = Aj + β21β10∆t2∂ttw

n,(0)
j + β21β

2
10

∆t3

2
∂tttw

n,(0)
j +O(∆t4), (B.22)

w
n,(3)
j = Bj + β32(α21β10 + β21)∆t2∂ttw

n,(0)
j + β32(α21β10 + β21)

2∆t3

2
∂tttw

n,(0)
j

+O(∆t4), (B.23)
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where

Aj = α20w
n,(0)
j + α21w

n,(1)
j +

β21

β10

(
w

n,(1)
j − α10w

n,(0)
j

)
,

Bj = α30w
n,(0)
j + α32w

n,(2)
j +

(β30 + β32)

β10

(
w

n,(1)
j − α10w

n,(0)
j

)
.

By solving (B.22)-(B.23), we can compute fourth order approximations of ∂ttw
n,(0)
j

and ∂tttw
n,(0)
j , denoted by ∂ttw

n,(0)
j and ∂tttw

n,(0)
j , as linear combinations of the so-

lutions at different stages with a coarse time step w
n,(0)
j , w

n,(1)
j , w

n,(2)
j and w

n,(3)
j :

∂ttw
n,(0)
j = ∂ttw

n,(0)
j (w

n,(0)
j , w

n,(1)
j , w

n,(2)
j , w

n,(3)
j ),

∂tttw
n,(0)
j = ∂tttw

n,(0)
j (w

n,(0)
j , w

n,(1)
j , w

n,(2)
j , w

n,(3)
j ).

(B.24)

Similarly, we can substitute the equations (B.20)-(B.21) into (B.15)-(B.16) to ob-

tain alternative approximations of ∂ttw
n,(0)
j and ∂tttw

n,(0)
j , denoted by ∂ttw

n,(0)
j and

∂tttw
n,(0)
j , as linear combinations of the solutions w

n,(0)
j , w

n,(1)
j , w

n,(3)
j and w

n,(4)
j :

∂ttw
n,(0)
j = ∂ttw

n,(0)
j (w

n,(0)
j , w

n,(1)
j , w

n,(3)
j , w

n,(4)
j ),

∂tttw
n,(0)
j = ∂tttw

n,(0)
j (w

n,(0)
j , w

n,(1)
j , w

n,(3)
j , w

n,(4)
j ).

(B.25)

To take into account values at all four stages, we choose the average of (B.24) and

(B.25) as approximations of ∂ttw
n,(0)
j and ∂tttw

n,(0)
j respectively and insert them into

(B.10) to obtain a fourth order approximation of w
n,p,(0)
j .

Next, we approximate w
n,p,(i)
j , i = 1, 2, 3, 4 based on the definition of the SSP-

RK(5,4) scheme:

w
n,p,(i)
j =

i−1∑

ν=0

αiνw
n,p,(ν)
j + βiν

∆t

M
Lj(www

n,p,(ν)), ∀ i = 1, 2, 3, 4.

Denote by

∆tn,p,(i) = (p+ γ(i))
∆t

M
, i = 0, 1, 2, 3,

with γ(i) defined in (B.18). We approximate Lj(www
n,p,(i)), i = 0, 1, 2, 3, as in (B.19)-

(B.21) and use (B.24) and (B.25) to approximate the time derivatives:

Lj(www
n,p,(i)) = Lj(www

n,(0)) + ∆tn,p,(i)∂ttw
n,(0)
j +

1

2
(∆tn,p,(i))2∂tttw

n,(0)
j +O

(
∆t3

)
.

Using this we can compute w
n,p,(i)
j , i = 1, 2, 3, 4 with fourth order accuracy in time.

Remark B.1. By construction, the predictors for SSP-RK(2, 2), SSP-RK(3, 3)
and SSP-RK(5, 4) are respectively second, third and fourth order accurate in time.


