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Uncovering the mechanisms and implications of natural behavior is a goal that unites many fields of biology.
Yet, the diversity, flexibility, and multi-scale nature of these behaviors often make understanding elusive.
Here, we review studies of animal pursuit and evasion — two special classes of behavior where theory-driven
experiments and new modeling techniques are beginning to uncover the general control principles underly-
ing natural behavior. A key finding of these studies is that intricate sequences of pursuit and evasion behavior
can often be constructed through simple, repeatable rules that link sensory input to motor output: we refer to
these rules as behavioral algorithms. Identifying and mathematically characterizing these algorithms has led
to important insights, including the discovery of guidance rules that attacking predators use to intercept mo-
bile prey, and coordinated neural and biomechanical mechanisms that animals use to avoid impending col-
lisions. Here, we argue that algorithms provide a good starting point for studies of natural behavior more
generally. Rather than beginning at the neural or ecological levels of organization, we advocate starting in
the middle, where the algorithms that link sensory input to behavioral output can provide a solid foundation
from which to explore both the implementation and the ecological outcomes of behavior. We review insights
that have been gained through such an algorithmic approach to pursuit and evasion behaviors. From these,
we synthesize theoretical principles and lay out key modeling tools needed to apply an algorithmic approach

to the study of other complex natural behaviors.

Introduction

Natural behaviors often seem unapproachably complex. Even
routine behavioral sequences — for example, the maneuvers
of a dragonfly as it takes flight, pursues and captures a passing
fly, then returns to its perch [1] — involve rich streams of
incoming sensory data and intricate cascades of responses
that appear delicately tuned to the situation at hand. Among
the many challenges involved in decoding such behavior is the
difficulty of understanding how processes at different levels of
brain organization interact to transform dynamic, high-dimen-
sional sensory data into maneuvers that are both flexible and
precise. While this complexity can be daunting, some of the
most exciting and most pressing problems in biology and med-
icine demand that we better grasp the mechanisms and function
of natural behavior [2].

Natural behaviors are difficult to study, in part, because gener-
ating effective behavior in a dynamic world is inherently a multi-
scale problem [3]. An animal’s actions result from sensory stim-
ulation, neural processing, and muscle contractions. Yet, these
processes occur on timescales far shorter than those of the
most conspicuous behavioral goals: for example, capturing a
passing prey or evading an attacking predator. The problem of
understanding how animals generate effective natural behavior
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thus requires that we link the neural and biomechanical mecha-
nisms that control an animal’s elementary behavioral actions to
fitness-relevant goals that are achieved over much longer time-
scales. We are unlikely to fully solve this problem by reducing
natural behaviors to more tractable behavioral tasks [4,5].
Rather, if we are to shed light on the mysteries of how extended,
flexible sequences of natural behavior are generated, and how
such behaviors operate and evolve, we need methods that can
reveal how subcomponents of behavior are integrated to form
a functional whole.

In this review, we explore insights gained through studies of
animal pursuit and evasion: two ubiquitous behaviors that are
beginning to serve as models of natural behavior [6,7]. A key
finding of these studies is that flexible, responsive sequences
of pursuit and evasion behavior appear to be constructed
through relatively simple behavioral rules that transform sensory
input to motor output. We refer to these rules as behavioral algo-
rithms [3,8]. More specifically, we define a behavioral algorithm
as a repeatable, quantitative mapping from sensory input to mo-
tor output. Examples include guidance algorithms that relate the
relative motion of visual targets to steering during pursuit maneu-
vers [6,9-11] and obstacle avoidance [12,13], collision-detection
algorithms that translate tactile, visual, or acoustic stimuli into
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escape responses [14-18], optomotor algorithms that translate
wide-field visual motion into turning behavior [19,20], and plume
tracking algorithms that translate measurements of wind direc-
tion and odor detections into flight patterns [21,22].

An intriguing characteristic of many behavioral algorithms is
that they can be described with high fidelity by simple, low-
dimensional mathematical models. Researchers have exploited
this agreement between behavioral data and tractable models
to better grasp the logic of natural behavior. By identifying
behavioral algorithms and building mathematical models to
describe them — for example, using control equations [6,23] or
stochastic processes [24] — studies have proceeded to explore
the mechanisms behind pursuit and evasion behaviors, using
algorithmic models to find clues about which elements of the
nervous system might implement a given behavior
[11,15,18,25]. Another branch of research is using algorithms
to move in the opposite direction — toward the ecological and
evolutionary implications of natural behavior — using algorithmic
models to guide ecological analyses and computational
modeling [23,26-29].

In the following sections, we review insights that have come
from applying this algorithmic approach to the study of pursuit
and evasion behavior. We synthesize theoretical principles,
experimental findings, and modeling tools that have been central
to the success of this approach. Finally, we discuss emerging
methods that could help researchers apply algorithmic models
both more systematically and more broadly to probe the mech-
anisms and implications of natural behavior.

Pursuit and Evasion as Models of Natural Behavior

Whether feeding, fighting, fleeing, or mating, animals have
been chasing one another since at least the Cambrian. Pursuit
and evasion behaviors are often extraordinarily conspicuous
and clearly goal-driven [6,7], but these behaviors also involve
some of the best understood of all neurons and neural cir-
cuits: from elementary motion detectors and optic-flow sensi-
tive interneurons [30], to Mauthner cells and squid giant axons
[31]. Importantly, the ultimate outcomes of pursuit and
evasion influence fitness in very direct ways; these behaviors
are ecologically and evolutionarily relevant, and at the same
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Figure 1. A hierarchical view of pursuit and
evasion behavior.

Pursuit, evasion, and other natural behaviors
involve processes that span levels of organization
and occur on many different timescales. At a
coarse level, the Outcome (for example, escape or
capture) depends on how the behavior is
executed. This execution depends on the behav-
joral Algorithms used to construct a behavioral
sequence from incoming sensory input. Algo-
rithms are executed through neural and biome-
chanical processes at the Implementation level.
For example, one algorithm (described by the
function F(X(t])) may describe how looming visual
input, X[t], determines whether an escape ma-
neuver is initiated (for example, the acceleratory
‘C-start’ response of fish). Another algorithm
(G(Y]t])) may determine the initial direction of the
escape maneuver as a function of the stimulus
sequence received prior to initiation. A third
(H(Z[t])) may describe how incoming sensory
data drives trajectory control during movement
toward a safe shelter [38].

Action selection
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time well-defined and tractable enough to study with the
high degree of precision offered by modern neuroscience
and biomechanics. All these attributes make the pursuit-
evasion problem a strong model through which to study nat-
ural behavior.

Like many natural behaviors, pursuit and evasion involve pro-
cesses that occur at different levels of organization, on different
timescales, and at different degrees of removal from ultimate
fitness consequences. To organize these scales, a hierarchical
view of these behaviors is particularly useful (Figure 1) [5,8,32].
The coarsest level of the hierarchy, the Outcome, describes
whether a particular pursuit or evasion behavior is successful
or not. Ecologists have long studied interactions between pred-
ators and prey by focusing on this level alone. One could ask, for
example, how the speed of flowing water influences the ability of
afish to capture prey suspended in the water column [33], or how
mortality of songbirds from attacking predators depends on the
level of acoustic noise in urban environments [34]. Studying
behavior at this level alone, however, limits one to a descriptive
understanding of behavioral outcomes. Patterns can be
described but rarely predicted in any precise way. To move
beyond this, the Outcome must be connected to the manner in
which the behavior is executed (Figure 1). The behavior is
composed of a collection of behavioral Algorithms as well as
the rules that govern transitions between these algorithms. Algo-
rithms are executed through a physical Implementation involving
the animal’s sensory organs, musculoskeletal system, and ner-
vous system (Figure 1).

While the definition of an algorithm used here is more
restricted than that used in past work (for example [8,35,36]),
the hierarchical view of natural behavior shown in Figure 1 has
much in common with schema developed in the past to help
organize questions about behavior, most notably Marr’s levels
of analysis [8], Tinbergen’s four questions [32], and recent elab-
orations of these frameworks [5,36]. The essential point of such
hierarchical schemes is to emphasize that behavior seldom in-
volves processes occurring on a single timescale or at a single
level of organization. Rather, natural behavior almost always in-
volves coordination between actions and goals that span arange
of scales.
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The Importance of Algorithms

In the hierarchy shown in Figure 1, Algorithms occupy a special
position: they are poised between the neural and biomechanical
implementation and the ecological outcome of behavior. Algo-
rithms thus provide the connection between success or failure
of a particular behavior, and the physical attributes of the ani-
mal — the structure of sensory receptors, the geometry of limbs
and fins, the organization of circuits in the brain — that evolve
through natural selection. From the perspective of a researcher,
algorithms are also useful because they connect actions and
goals that occur on different timescales. For example, the
guidance algorithms that predators employ during pursuit
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maneuvers involve turning to stabilize the visual location or
line-of-sight angle of a moving target [6,9-11], but this near-
term goal of stabilizing apparent target motion ultimately allows
the animal to achieve a longer-term goal that is more directly
related to fitness: intercepting the target. By building mathemat-
ical models of algorithms and analyzing them, the relationship
between these goals often becomes clear [12,37,38].

In Box 1, we describe a general approach for identifying,
modeling, and comparing candidate algorithms. This algorithmic
approach to behavior is based on a hypothesis, which states,
first, that there exist low-dimensional features of sensory inputs
that produce consistent, repeatable motor outputs, and second,

Box 1. Identifying and modeling behavioral algorithms.

The process of identifying, comparing, and testing candidate algorithms can be broken down into a sequence of four steps.
Step (1): identify the problem. Identify a fitness-relevant objective the animal is attempting to satisfy. In the case of pursuit and
evasion behaviors, objectives are often clear, which is one benefit of using these behaviors as models. For other types of natural
behavior, determining the objective may start with a review of the ecology of the animal, or new studies that characterize when and
how the behavior is used in nature. Once an objective is identified, one can lay out the initial conditions of the problem as well as the
conditions for success or failure. For example, in the case of a predatory hawk or falcon pursuing prey (Box figure) [6,28] the initial
conditions are the bird’s position and velocity as well as the initial position and velocity of its prey. To succeed, the predator must
capture its prey before the prey escapes to a refuge.

Step (2): identify the constraints. In complex behavioral tasks, a given objective can often be achieved in many different ways
[39]. Which of the many possible solutions ends up being implemented often depends on constraints. Two crucial constraints
are what the animal can measure — constraints on the ‘inputs’ that inform a behavioral decision — and how the animal can respond
to measurements — constraints on motor capabilities or behavioral ‘outputs’. Relevant constraints on sensory inputs include
things like the accuracy with which measurements can be made by each sensory modality, and processing delays that occur
when integrating signals from each modality [23, 94]. On the output side, constraints may include things like the maximum angular
acceleration an animal can achieve, or the biomechanical delays associated with responding to different kinds of motor commands
[104]. For example, during high-speed attacks by diving falcons [26], limits on visual precision, response delay, wing loading, and
roll acceleration are key constraints.

Step (3): identify candidate algorithms and build mathematical models to describe them. The next step is to identify candi-
date algorithms that satisfy the objective and obey the constraints. In some cases, it may be possible to deduce candidate algo-
rithms just by writing down the key parameters of the problem as Yuan [43] did when deriving strategies for intercepting a moving
target. In other cases, the connection between the ultimate objective and near-term goals may be less clear. In such cases, careful
measurements of the behavior may be the best way to proceed (for example [11-13]). The candidate algorithm (the input-to-output
mapping) should then be described using a mathematical relationship between sensory input and motor output, for example in the
form of a differential, difference, or state equation, or a stochastic process. The steering of hawks and falcons during pursuit ma-
neuvers is consistent with a proportional navigation guidance algorithm (Box figure) [6,28]) that links changes in the angle of the
animal’s velocity vector, v, to changes in perceived line-of-sight angle to a target, 1, according to the relationship: (dy /dt) =
N(d2 /dt). The navigation constant, N, determines how strongly the animal changes its direction of motion in response to a change
in the line-of-sight angle.

Step (4): compare and test algorithms. Before using the algorithm to explore implementation or outcomes, it is important to
determine whether the input-to-output mapping embodied in a particular algorithm is sufficient to accurately describe behavior.
In many cases, more than one algorithm could potentially solve the problem. Step 4 therefore involves designing experiments that
test predictions of candidate algorithms. Returning to the example of a predatory bird pursuing fleeing prey suppose the bird must
chase its prey through clutter. The pursuer has at least two goals: capture the prey and avoid injury. The second goal requires not
colliding with the surrounding clutter. Studies of vision-guided obstacle avoidance have identified two primary algorithms animals
use to avoid obstacles. The first, found in honeybees [105] and parakeets [106], is to balance the velocity of optic flow on the left
and right sides of the body. The second, found in hummingbirds [13], is to balance the rate of image expansion on the two sides. An
experiment to distinguish the two algorithms would be to fly trained hawks through a passage with static and moving patterns while
tracking how the animal moves in response [13]. Mathematical models of the two competing algorithms can be used to make quan-
titative predictions, and the predictions can be compared to data. Often, none of the originally proposed algorithms will adequately
predict the animal’s behavior. In such cases, algorithm development (step 3) and algorithm testing (step 4) really represent a cycle,
where the researcher hypothesizes algorithms, tests them with experiments, quantifies discrepancies that lead to new hypothe-
sized algorithms, and so on [6,28].

(Continued on next page)
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Behavioral algorithms guide interactions among organisms. Left panel: a hawk measuring the line-of-sight angle to a mouse, and turning to counteract
changes in that angle using a proportional navigation guidance algorithm [28]. Right panel: an approaching snake from the perspective of the mouse. The visual
angle — the angular region of the mouse’s visual field taken up by the snake — and its expansion rate encode information about the predator’s approach [14],
and the probability that the mouse will initiate a high-speed escape maneuver depends on this angle, its expansion rate, and other parameters of the visual
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that these input-to-output mappings can be well approximated
by simple mathematical relationships. Why such low-dimen-
sional mappings should exist when the apparent degrees of
freedom of biological systems are so numerous is a deep ques-
tion [39,40], and one that we expect will attract considerable
attention in the coming years. At present, however, the algo-
rithmic hypothesis is largely motivated by empirical findings:
although patterns of behavioral output can be intricate and highly
dynamic [41,42], these patterns can often be predicted with sur-
prising accuracy by simple mathematical models [12,37,38]. For
example (Box 1), during pursuit maneuvers, hawks and falcons
follow trajectories that are often tortuous and seemingly idiosyn-
cratic, but the relationships between incoming visual input and
turning behavior can be explained by variants of a simple guid-
ance algorithm known as proportional navigation [6,26,28].

In the cases where algorithms have been used most effec-
tively, the key to identifying the algorithm has been to determine
which low-dimensional outputs are essential, and which inputs
are predictive of those outputs (Box 1). Perhaps surprisingly,
successful efforts to identify the relevant inputs, outputs, and
the mapping between them have often been guided, at least
initially, by theory (for example [14,43]) rather than by data.

Algorithm to Implementation

Identifying and modeling behavioral algorithms can be extremely
useful when studying how the nervous system generates
behavior. Knowledge of algorithms can drastically narrow the
range of possible measurements the animal could be using to
guide its actions. This knowledge can also provide clues about
how sensory measurements are stored, compressed, and trans-
duced. An instructive case comes from the study of how animals
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detect and respond to impending collisions. The ability to antic-
ipate a collision is, of course, crucial both for predators and prey
[24,44]. The groundwork for the modern understanding of how
animals detect impending collisions was largely laid by two psy-
chologists, Gibson [45] and Lee [14], in work that was primarily
theoretical in nature. This work emphasized that apparent
expansion or ‘looming’ of a visual object could indicate when
the object was on a collision course with the viewer, and in
some cases, even encode the time to collision [14]. Predictions
of this early theory were borne out in psychophysical experi-
ments in which subjects were presented with expanding visual
objects ([44] and references therein).

Motivated by these results, researchers began to search for
neurons in the visual system that respond selectively to loom-
ing stimuli, and found them in the descending contralateral
movement detector (DCMD) and lobula giant movement de-
tector (LGMD) of locusts [15,46], and in specialized neurons
within the nucleus rotundus of pigeons [16]. Research into
the mechanistic underpinnings of collision detection continues
to bear fruit. For example, the circuit-level mechanisms that
allow animals to measure looming visual objects are now
becoming clearer, at least in genetically tractable model or-
ganisms [24,47]. At the same time, we are learning more about
how animals produce flexible responses to looming objects
with different properties [18,24,48] and in different natural
contexts [38].

The lesson from studies of collision detection is that a few key
visual features of an approaching object — the object’s apparent
size and expansion rate — are sufficient to indicate an imminent
collision, and to convey information about the time course of that
collision [14]. Neurons in the visual system measure and encode
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these variables [15,49]. Moreover, the mapping from visual input
to behavioral response — in the form of initiation of rapid escape
maneuvers — is low-dimensional, and the form of this mapping
appears to be shared across distantly related species [37]. A
mechanistic understanding of collision detection has also led
to new questions about how animals control other elements of
evasion behavior, including action selection early in an escape
maneuver [18,48], and trajectory control during egress [38].

Thus, insights derived from collision avoidance algorithms
have continued to open doors to the understanding of how ani-
mals generate complex behaviors to avoid being captured.
Although these algorithms appear simple, escape behaviors
are not rigid. Recent analyses have shown how gain control,
multimodal sensory integration, and internal state dependencies
— for example, dependence on hunger state [50] — modulate
the basic rules of escape behavior [7]. These studies are partic-
ularly exciting because they have the potential to uncover the
neural mechanisms behind patterns of behavior such as hun-
ger-dependent risk-taking [51] that have long been observed in
wild animals.

When generating pursuit and evasion maneuvers, animals
must respond to incoming sensory cues in ways that are very
rapid but also very precise [26]. Achieving speed and precision
is difficult, in part, because there is a vast stream of sensory
data entering the brain, only some of which is relevant to a given
behavioral task. Moreover, different tasks may require using the
same sensory data in different ways, creating conflicts that must
be resolved quickly. As an example of this, many visual animals
exhibit a behavioral reaction known as an optomotor response,
during which the animal responds to perceived whole field visual
motion on the retina by turning in a way that counteracts that mo-
tion [52]. This response stabilizes the animal’s orientation relative
to external landmarks.

After the discovery of this algorithm, researchers realized
that the optomotor response could be problematic for maneu-
vering animals because it would counteract volitional turns.
This problem could be solved if an ‘efference copy’ of the mo-
tor command related to turning were sent to the visual system
to suppress the optomotor response during volitional turns
[19,20]. A compelling example of such efference copy modu-
lation was found in flies, which make rapid changes in walking
or flying trajectory to evade threat stimuli [53]. These changes
in trajectory involve a change in both body yaw and roll. In the
roll direction, the optomotor response is beneficial because it
allows the fly to keep its head aligned with the horizontal
plane. In the yaw direction, however, an optomotor correction
would cause a fly to turn back in the direction from which it
began the turn. Turning flies appear to maintain optomotor re-
sponses to roll but suppress them to yaw. These behavioral
observations led to the discovery of neural mechanisms that
differentially suppress the optomotor response along different
body axes: Kim et al. [54] experimentally demonstrated sup-
pression of optic flow signals in fly lobula plate tangential cells
that encode optic flow in the yaw direction. This work illus-
trates how identifying a behavioral algorithm and evaluating
its consequences in different contexts can help reveal how
the brain resolves conflicts to produce flexible responses
that are suited to the challenges animals face when producing
natural behavior.
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Algorithm to Outcome

Behavioral algorithms have been central in theory-guided inves-
tigations of the neural and biomechanical mechanisms behind
pursuit and evasion maneuvers, but they have also helped reveal
how long sequences of pursuit and evasion behavior are con-
structed, and how the outcome of such behaviors depend on
features of the environment. One area where algorithmic models
have been particularly important is in the study of how predators
guide motion when chasing prey. As in the case of collision
avoidance behavior, theoretical studies were behind many early
insights about the relevant sensory features for pursuit behav-
iors. Theoretical treatment of pursuit algorithms was motivated
by military applications, where the United States’ Navy sought
to develop self-guided missiles to intercept fighter planes [55].
One of the earliest algorithms proposed to guide such missiles
was referred to as a ‘pure pursuit’ strategy because, at each
point in time, the purser attempts to move toward the current
location of the target by guiding its steering to null the difference
between its velocity vector and the vector pointing to its target.
This algorithm was simple to implement, but mathematical anal-
ysis revealed that, to intercept targets, it would often require
angular accelerations that far exceeded performance capabil-
ities of existing missiles [43,55].

This problem could be overcome, however, if rather than
steering toward the current location of the target, the pursuer
instead attempted to intercept the target at a predicted location
some time in the future. While such a strategy would appear to
require forecasting the future location of a target, Yuan [43]
and others showed that this strategy could be effectively imple-
mented using a simple reactive feedback control rule now
referred to as ‘proportional navigation’, where the pursuer turns
at a rate proportional to the rate of change in the line-of-sight
angle to the target (Box 1). The strength of this algorithm is
that by reacting to a readily measurable feature of relative target
motion, the algorithm effectively predicts the future location of
the target and executes a least-distance trajectory to intercept
it, so long as the target velocity remains stable and target
maneuvering is minimal.

Proportional navigation, pure pursuit, and related interception
algorithms have provided starting points for identifying the sen-
sory-motor transformations animals use to intercept their prey.
For example, a surge of recent studies show that many predator
species use proportional navigation, deviated pursuit, or similar
reactive guidance laws for prey interception (for example
[6,23,28,56,57]). Other studies use these algorithms as null
models from which to build more complex descriptions of guid-
ance behavior [11,58]. Studies of pursuit illustrate the impor-
tance of using models of candidate algorithms as quantitative
hypotheses of how organisms transform sensory inputs into
behavior. Without considering the theory behind pursuit algo-
rithms [55], it is not at all clear why predators as diverse as flies
[58], falcons [6] and beetles [56] should employ similar strategies
when chasing down their prey. In the absence of algorithmic
models and the theoretical principles derived from them, our un-
derstanding of animal interception behavior would look very
different.

Interception algorithms have also been used to understand
variation in behavior and to anticipate how behavioral outcome
will vary with features of the environment. For example, when
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targeting small perches, Egyptian fruit bats steer in a way that is
consistent with a proportional-derivative guidance rule: the bat
turns at a rate that is governed by both the deviation angle —
the angle between the bat’s velocity vector and its line-of-sight
to target — and the rate of change in that angle [23]. Two key pa-
rameters govern the animal’s ability to steer to target using this
algorithm: the precision of measurements of the line-of-sight
angle, and the delay associated with making and reacting to
these measurements.

The bat visual system and biosonar system operate with
different levels of precision and are associated with different de-
lays; vision is more precise than biosonar, and the delays asso-
ciated with visual responses are shorter. This leads to the predic-
tion that the bat can apply higher steering forces when flying in
the light, where vision can be used to measure angles, than
when flying in the dark, where the animal must rely on sonar
alone. These predictions were confirmed [23], revealing that
the flight paths these animals use to approach targets may be
fundamentally constrained by noise and delays in their sensory
systems. The key point is that knowledge of the algorithm — in
this case inferred through a combination of existing control theo-
retic results and patterns in data — can lead to precise, testable
predictions about how performance should change in different
sensory landscapes.

Interactions between Pursuers and Evaders: Games
between Algorithms

Among the most challenging aspects of pursuit and evasion, and
of many other natural behaviors, is the fact these behaviors are
employed during interactions with other organisms; in nature,
pursuers and evaders interact with one another in a feedback
loop, with pursuer and evader each adjusting its behavior to ac-
count for the actions of its adversary. In the past, most studies of
pursuit and evasion have avoided the difficulties of pursuer—
evader feedbacks by ignoring or experimentally eliminating
responsive control of either the pursuer or evader. For instance,
studies of evasion behavior often assume pursuers use simple,
open-loop attack maneuvers [59], whereas the studies of these
same attack maneuvers show that predators often use some
form of feedback control to pursue prey [6,56,57]. Likewise,
much of the theory used to study interception strategies are
based on ‘non-maneuvering’ targets [55] rather than being
based on targets that are, themselves, actively seeking to evade
their pursuer.

Reconciling these inconsistencies, either through theory or ex-
periments, requires that we more carefully consider how animals
interact with one another. Again, building models of algorithms
that guide pursuit and evasion maneuvers could help lead to a
solution. Armed with candidate algorithms (Box 1), game theory
[60] could offer a particularly potent tool for studying the dynamic
interactions among organisms that react to one another. The
goal of game theoretic analyses as they have been applied to
pursuit and evasion behavior is typically to identify the best
possible algorithm or set of algorithms both the pursuer and
evader could use to combat one another [61,62], or to determine
the performance properties of a given algorithm when it plays
against a broad class of opposing algorithms [63]. Game theory
adds an element that is missing from more traditional analyses: it
explicitly considers the fact that the value of a particular behavior
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depends on the behaviors it is playing against. Concepts like
‘evolutionary arms races’ [64] and ‘optimal’ ecological strategies
[61] hinge on this feedback between behaviors of interacting an-
imals, which is why game theory has much potential to add rigor
to these oft-cited biological concepts.

Game theoretic analyses of guidance algorithms help illustrate
the kind of insights to be gained by applying game theory to
study pursuit and evasion more broadly. Using the theory of dif-
ferential games, Ho et al. [63] showed that proportional naviga-
tion is an optimal strategy for intercepting moving targets,
assuming a set of conditions on pursuer and target motion are
met. The performance of this algorithm as well as the simplicity
of the computations it involves may help explain why it appears
to have evolved across diverse animal lineages with vastly
different brains [28,65].

But the optimality of proportional navigation requires strong
assumptions. Among these are the requirements that the tar-
get’s velocity is stable and maneuvering is minimal, and that
there are no appreciable time delays between sensory input
and responses of the pursuer. When a pursuer steers using pro-
portional navigation with delays, steering can become unstable
and the pursuer can lose control completely [66]. Animals appear
to execute proportional navigation despite having sensory-mo-
tor delays of tens or even hundreds of milliseconds, raising the
question of how they can implement this algorithm without losing
control. The risk of losing control is greatest if the pursuer at-
tempts to apply large correcting forces in response to perceived
changes in line-of-sight angle [66,67], which may help explain
both why animals tend to use turning gains lower than the theo-
retically-predicted optimal gains in delay-free systems [6,28],
and why animals appear to adjust the steering forces they apply
as a function of the delay associated with the sensory modality
they are using (for example, biosonar versus vision [23]).

Future game theoretic analyses could address the question of
how prey maneuvering [68] affects the success of proportional
navigation and other pursuit algorithms. Certain types of target
maneuver can destroy the optimality of proportional navigation
and reduce the probability that the pursuer will intercept the
target at all [69]. This raises questions about whether prey might
evolve evasion behaviors that are particularly good at combating
proportional navigation. A combination of differential games and
stochastic control could be used to understand how evader
behavior can disrupt pursuit algorithms (for example [70]), and
to more rigorously address longstanding questions about
whether producing random or ‘protean’ maneuvers when fleeing
from predators [59,68] can be optimal.

Another emerging method for studying interactions between
pursuers and evaders uses computational models of pursuit
and evasion behavior built around data from pursuer-evader in-
teractions in the field [26]. For example, Cade et al. [71] com-
bined empirically measured attack maneuvers of humpback
whales with experimental studies of the escape algorithms of
their anchovy prey to understand how whales are able to capture
thousands of anchovies in a single lunge [72], despite their
limited maneuverability. By fitting an algorithmic model to an-
chovy escape responses, the authors of this study found that
fish escape maneuvers are triggered by the strong visual stim-
ulus produced when an approaching humpback opens its mouth
to begin engulfment, revealing why humpbacks delay mouth
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opening when attacking anchovy schools, but not when attack-
ing slower, less responsive prey.

Wilson et al. [64] applied a similar approach motivated by the
classic ‘turning gambit’ theory of Howland [73] to understand the
biomechanics and behavior of interactions between lions and
zebras, and cheetahs and impalas. They used a computational
model of the terminal phase of predator-prey chases to reveal
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how both predator and prey could maximize success (capturing
and avoiding capture, respectively), and to show that predators
must come close to their absolute performance limits to reliably
capture prey.

As we continue to advance our understanding of natural
behavior, it will be crucial to consider the fact that many of the
behaviors an animal executes are really responses to other

Box 2. Coarse-graining and refinement of behavioral algorithms.

Model coarse-graining and refinement are used to understand how processes at one scale emerge from, or influence processes at,
another scale [80,108]. Both procedures begin with a mathematical model of a phenomenon of interest at a single scale, for
example, a mathematical model of the behavioral algorithm that predicts whether an animal will exhibit a high-performance escape
maneuver as a function of the sequence of visual stimuli it has experienced (Box figure) [18,24,48]). Refinement of this model might
involve expressing model parameters as functions of a finer-scale process: for example, a more detailed model of the retina, or a
model of the activity of neurons involved in the Mauthner cell circuit and related circuits [48]. Coarse-graining of the algorithmic
model could involve averaging over possible sequences of sensory stimuli or conditions an animal might experience to calculate
expected long-run performance (Box figure).

Refinement. In a recent biological example of refinement, Bahl and Engert [78] developed a model to study how larval zebra fish
discriminate the direction of whole-field visual motion from a field of projected dots that move with high or low coherence. The
behavioral algorithm describing how sensory input drives an animal’s turning behavior was well-described by a leaky integrator
model of the form:

ab(t) _
=g = ¢) = D(t)+N(0,0),

where D(t) is a latent decision variable (the animal makes a decision to turn left or right when this variable crosses a positive or
negative threshold, respectively), c(t) is the coherence of the visual motion presented to the animal (a measure of the salience
of the direction of dot motion), 7 is the timescale of sensory integration, and N is Gaussian noise with zero mean and standard de-
viation, ¢. This algorithmic model states that the animal integrates past visual stimuli it has seen through a noisy integration pro-
cess, with memory timescale 7, and uses this information to decide when to turn. Fitting this model to behavioral data revealed that
the memory timescale is on the order of seconds, far longer than the millisecond timescale most relevant to individual neurons [78].
To explain this long timescale, the authors used measurements from neural populations in the zebra fish hindbrain to motivate a
network model of activity within populations of neurons that encode evidence for left versus right visual motion, and the corre-
sponding evidence thresholds. This fine-scale model reproduced neural firing patterns, and was consistent with predictions of
the algorithmic leaky integrator model, suggesting that the memory timescale is a property of neural populations rather than indi-
vidual neurons. A final step in refining this model would be to mathematically derive the form and structure of the algorithmic model
from the network model of neural activity so that quantitative properties at the algorithmic level could be predicted in terms of the
properties of interlinked neural populations.

Coarse-graining. Coarse-graining is used to move from more detailed to less detailed descriptions of a system by taking averages
over some of the state variables [80,108]. Applying this method to behavior could involve starting with models of behavioral algo-
rithms and successively averaging over details to retain only a few statistics of the typical dynamics (Box figure; for example [109]).
Particularly instructive examples of coarse-graining are given by Flierl et al. [110] in the context of collective behavior, and Meshu-
lam et al. [81] in the context of neural ensembles. Importantly, by averaging over dynamics that occur at short temporal and spatial
scales, one sacrifices detailed predictions that can be made with a fine-grained model in exchange for a tractable description of the
outcome and implications of behavior over longer timescales. In a recent example of this, Gil and Hein [27] studied the escape and
foraging behavior of coral reef fish feeding in dangerous habitats in a coral reef. Fish make decisions to cease feeding and to flee
based on visual cues about predatory threats and on visual cues produced by the actions and locations of neighboring fish.
Although escape decisions depend on detailed sequences of sensory stimuli [38] (Figure 1), the average behavior of fish over mi-
nutes to hours can be captured by a stochastic process model that incorporates the way fish respond to a typical sequence of
sensory stimuli. This coarse-grained model of behavior accurately predicted the long-run outcome of the many escape and feeding
decisions animals make over the course of a day [27]. Importantly, because fine- and coarse-grained models describe the same
processes, each model can be used to make predictions about the other [110]. This mathematical connection between coarse and
fine scales allows for interesting scientific exercises that are impossible without it. For example, one can ask the question: “what
would happen to long-run performance if behavior were performed differently?” In some cases, average performance might be
unchanged, whereas in others, seemingly small changes in behavior — for example, changes in the way individual fish react to
sensory stimuli produced by their neighbors — can have tremendous effects on performance [27]. Such counterfactual analyses
have much to teach us about why behaviors operate as they do [32].

(Continued on next page)
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animals that are, themselves, behaving. Game theory and
computational models are likely to become increasingly impor-
tant tools for studying the feedbacks that occur when algorithms
play against one another.

Using Algorithms to Bridge Levels of Organization
and Analysis
A major advantage of building mathematical models of behav-
ioral algorithms is that defining behavior mathematically raises
the possibility of using mathematical analysis to connect pro-
cesses that occur at different scales (Figure 1): at least in
principle, algorithmic models can be derived from mechanisms
at lower levels of organization, and used to derive models of
phenomena at higher levels of organization. Of course, linking
processes at different levels of organization is a stated goal of
almost all integrative biological sciences. But, achieving this
integration in practice can be exceedingly hard [74]. Indeed,
moving rigorously from algorithm to implementation, or from al-
gorithm to outcome (Figure 1) has been perhaps the most diffi-
cult step in past studies of pursuit and evasion. The most intuitive
way to connect finer and coarser scales is to use construction:
take all the details one knows about a system at the finest scale,
and continue to include new details that appear when moving to
higher levels of organization [75]. The problem with this strategy
is that models become intractable almost immediately if all de-
tails are retained. If details are to be discarded, the question of
which to discard must often be answered without knowing which
are important for producing phenomena at higher levels of orga-
nization.

Several recent studies of pursuit and evasion have followed a
different route. Researchers have bridged levels of organization
using multi-scale models that add complexity judiciously, often
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capturing details at finer scales using statistical or phenomeno-
logical models that accurately represent known patterns (for
example [23,24,26,47]). The hierarchy shown in Figure 1 helps
to explain why such a modeling strategy can work: details that
are crucial for understanding processes at one level of analysis
or organization collapse into relatively few key state variables
that matter at the next level. For example, at the implementation
level, detecting a predator and initiating a turning maneuver may
require several classes of motion detectors in the retina, a tight
connection between retinal input and control of body bending
and limb rotations, and a host of other coordinated mechanisms
[18,47,76].

Yet in moving to the algorithmic level, such details are not
necessary to understand that an animal nonlinearly integrates
the size and expansion rate of a looming object to decide
whether to flee [15,38]. Likewise, the algorithm the animal
uses to select the initial direction of egress [77] and the algo-
rithm used to convert visual input about the environment
into an evasion trajectory [38] (Figure 1) collapse to a single
number — the escape success rate — when one calculates
how a given escape behavior affects the animal’s ecological
performance. The fact that details at one level collapse into
a small set of core variables at the next is what makes it
possible to move from one level of the hierarchy to another
in a tractable way.

This philosophy of multi-scale modeling has much in common
with formal techniques of coarse-graining and refinement used in
mathematical physics (Box 2). The goal of both coarse-graining
and refinement is to identify mathematical relationships between
processes that operate at different scales. Doing this allows one
to make detailed predictions about how processes at a finer
scale (for example, the activity of populations of neurons) result
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in properties at some coarser scale of description (for example,
memory of past sensory stimulation [78]) and vice versa.

In perhaps the most famous application of such methods, Ein-
stein used coarse-graining to show how the forces on a small ob-
ject suspended in water depend on innumerable collisions with
invisible molecules of water [79]. Not only did Einstein’s mathe-
matical formulation lead to incontrovertible evidence for the
existence of atoms (a fact that was still not fully accepted at
the time), it revealed a deep connection between an object’s
friction constant and its diffusion coefficient, two widely-studied
properties of solid objects in fluids [80]. By explaining both
friction and diffusion in terms of the micro-scale properties of
molecular collisions, Einstein’s analysis showed that a broad
range of empirical phenomena emerged from the same micro-
scale process. These discoveries enabled a tremendous leap
in the theoretical physics of fluids, but also in the formal mathe-
matical analysis of multi-scale phenomena [80].

As in physics, using coarse-graining and refinement to move
from one level of description of behavior to another hinges on
having well-defined mathematical models. In Box 2, we discuss
coarse-graining and refinement and how they could provide a
formal set of tools for bridging scales in the study of natural
behavior. Similar approaches from statistical physics have
been proposed and are currently being used to understand rela-
tionships between the properties of individual neurons and activ-
ity states of large neural sub-populations [81], traveling waves,
and whole-brain states [82].

As Einstein’s analysis showed, one benefit of having models
that link processes across levels of organization is that such
models can sometimes unify phenomena that initially appear
unrelated. A biological example of this comes from studies of
the neural basis of decision-making in multi-choice tasks,
where an animal is tasked with choosing between alternative
options and the temporal dynamics and outcome of the choice
are recorded. One class of models used to analyze such
behavioral choices, known as recurrent network models [83],
describes firing patterns of populations of interconnected neu-
rons as decisions are being made. By relating the activity state
of neural populations to the outcome of a behavioral choice,
these models relate neural and behavioral levels of organization
to one another; model predictions can be tested using both
measurements of neural activity and measurements of the
timing and nature of behavioral choices. Recurrent network
models have helped to explain several widely observed pat-
terns in behavioral data, including how evidence for one choice
versus another is weighted over time [84], speed-accuracy
tradeoffs [85], and deviations from rational choice behavior
[83]. These phenomena emerge from a combination of neural
inhibition among populations of neurons and the manner in
which population activity is read out and propagated through
the decision circuit.

Multi-scale models that quantitatively link behavioral out-
comes to the activity of neural populations have not yet been
applied widely in the study of pursuit and evasion. However,
neuroethological evidence suggests that such models could be
extremely valuable. For example, Evans et al. [24] recently iden-
tified an algorithmic model that accurately described escape de-
cisions of mice. The authors also showed that distinct neural
populations in the mouse midbrain appear to encode decisions
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about whether to mount an escape response, and the vigor
with which to flee. This study provided clues about how informa-
tion relevant to escape decisions is encoded at the neural level. A
future modeling step could be to develop a fully multi-scale neu-
ral-algorithmic model that derives properties of the decision-
making algorithm from dynamics of neural ensembles.

In addition to providing a strong, quantitative connection be-
tween behavioral decisions and neural dynamics, refinement
and coarse-graining may also allow us to use insights about
behavioral algorithms to gain traction on biological processes
that play out over much longer timescales. For instance, the
rate of interactions between predators and prey is a fundamental
rate parameter that governs dynamics of predator and prey
populations. But predicting this rate is notoriously difficult. By
incorporating realistic constraints gleaned from mechanistic
studies of animal search behavior, it was recently shown that
these interaction rates can be derived from behavioral models,
in a way that relates them to animal sensory capabilities and
decision-making [29,86]. Deriving ecological rates from mecha-
nistic, data-driven models of behavior represents a fundamen-
tally new way of building models of ecological populations and
communities [87]. In the future, such analyses could provide a
conduit through which findings in biomechanics and neurosci-
ence could inform ecological and evolutionary analyses.

Open Questions about Pursuit and Evasion Algorithms
The preceding sections might give the impression that many of
the algorithms involved in pursuit and evasion have already
been identified. In truth, the discovery of one algorithm for pur-
suit or evasion has often suggested the existence of others
that have yet to be discovered. For example, we are beginning
to understand the algorithms that govern the initiation of escape
responses [7,37] and the initial choice of escape direction
[77,88], but to evade a determined predator, an animal must
have some way of guiding its trajectory beyond this initial ma-
neuver. The algorithms involved in these later stages of evasion
are not well understood. One intriguing idea is that simple, yet
still undiscovered feedback control algorithms may guide
evasion trajectories. Because a fleeing animal must not only ma-
neuver out of the path of its attacker, but must also move in a way
that allows it to reach shelter, such an algorithm must be able to
balance multiple, potentially competing objectives.

An emerging hypothesis is that animals solve such multi-
objective control problems by dynamically weighting the priority
given to individual objectives. At one extreme, an animal may
simply turn multi-objective control to a single-objective control
by focusing only on the most immediate task [12] or that which
can be achieved with the least disruption to some longer-term
goal [89]. An alternative is to represent objectives in some form
of common currency and to choose between them using heuris-
tics [90] or time-varying weights [38]. The extent to which algo-
rithms for evasion trajectory control resemble these alternatives
and how such algorithms are implemented in the brain remain to
be discovered.

Implicit in many algorithmic models of prey pursuit and colli-
sion avoidance is the assumption that an animal can isolate sen-
sory stimuli from a particular target (for example, in the form of a
change in the line-of-sight angle to a particular target) or a partic-
ular object that may be an approaching attacker (for example, in
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the form of object size and expansion rate [15]). Yet in many nat-
ural settings, noise, clutter, and the presence of multiple prey or
predators means that isolating stimuli from a specific source is
not trivial. A key step forward in our understanding of pursuit
and evasion algorithms will, therefore, be to understand how
processes such as sensory filtration and selective attention
might allow the animal to isolate an individual prey or predator.
Neural mechanisms for filtration and selective attention have
been identified (for example, [91,92]), but it is not known how er-
ror and noise introduced through these mechanisms affect pur-
suit and evasion behavior.

Most of the trajectory control algorithms discussed in this
review have been modeled using simple, reactive feedback
control that assumes steering behaviors are driven by contin-
uous reactions to dynamic streams of incoming stimuli. How-
ever, growing evidence suggests that forecasting and motor
planning are also critical in at least some pursuit and evasion
behaviors (for example [11,93,94]). For example, Borghuis and
Leonardo [94] found evidence that salamanders direct tongue
strikes at the future location of moving prey rather than the
prey’s current location. By using a linear extrapolation of the
prey’s motion, the salamander is able to effectively forecast
prey location, allowing it to strike fast-moving prey despite
significant sensory-motor delays. This type of simple fore-
casting may prove common during the terminal phases of
predator-prey interactions, where interactions take place at
or below the timescale of typical sensory-motor delays.
Known mechanisms for predictive coding (for example [95])
could facilitate such short-term forecasting.

A more challenging issue is determining whether feedback
control, forecasting or state-estimation, and feed-forward plan-
ning are combined during pursuit and evasion behaviors [11].
The human motor control literature has grappled with related is-
sues for many years and could provide a template for how
research in this area could progress [96,97]. For example, the
Optimal Feedback Control paradigm (OFC) [39,98], which has
been central to the theory of human motor control, may also
prove useful as a mathematical formalism for studying how ani-
mals combine planning, forecasting, and feedback control. In
the past, OFC has primarily been used to understand how hu-
mans compensate for sensory-motor noise and external pertur-
bations during simple motor control tasks, but future extensions
of this framework could be used to better understand how ani-
mals might integrate feedforward and feedback mechanisms
to achieve the more dynamic goals they face when interacting
with predators and prey.

The issues raised in this section represent just a small sample
of the open questions about pursuit and evasion algorithms.
While resolutions to these questions would help us better under-
stand pursuit and evasion specifically, they are also deeply rele-
vant to challenges faced during many other natural behaviors.
Thus, we expect that studies of pursuit and evasion algorithms
will continue to deliver lessons about the general principles
that structure natural behaviors.

Conclusions

Using pursuit and evasion as models, we have shown how an
algorithmic approach to the study of natural behavior can shed
light on how animals produce flexible, goal-driven behavior in
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nature. This approach addresses the challenge of integrating
processes that occur at different levels of organization, on
different timescales, and at different distances from ecological
and evolutionary implications (Figure 1; Box 1; Box 2). Rather
than beginning at the bottom or the top of the organizational hi-
erarchy, we advocate starting in the middle, where study of the
behavioral algorithms that link sensory input to behavioral output
can provide a solid theoretical and empirical foundation from
which to explore both the implementation and the outcome of
behavior. As should be evident from the examples discussed,
this approach has already led to important insights. But there
is an opportunity and perhaps even a pressing need to apply it
more broadly, particularly in light of the revolution in methods
for automated collection of behavioral data occurring in compu-
tational ethology [41,42,99,100].

There is understandable excitement around new tools for
automatically measuring and classifying animal behavior.
Yet, whether these methods fulfill their promise of revolution-
izing the study of behavior [99,101,102] will depend on
whether the massive data streams produced by new compu-
tational methods reveal new principles of animal behavior
[103]. It is crucial that we remember the importance of theory
in general, and algorithms in particular, when attempting to
interpret the behavioral patterns these new methods can
quantify. An algorithmic approach could provide a way to
harness these new tools and use them to develop truly inte-
grative, data-driven theories of behavior.

Gaining a full understanding of the complex, multi-scale pro-
cesses involved in natural behavior is likely to require that we
bridge levels of analysis and levels of organization [5]. If the
goal of studying pursuit, evasion, or any other complex behavior
is to understand how the brain generates sequences of goal-
directed movements, how behavioral strategies play against
one another, or how evolution feeds back on the structures
that implement neural computations related to behavior, then
we must link the implementation, algorithms, and outcome of
behavior. Achieving these goals will require an invigorated focus
on behavioral algorithms. We believe that the widespread adop-
tion of an algorithmic approach to natural behavior is poised to
change the way we study and understand animal behavior.
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