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Abstract—The high energy cost of processing deep convolutional neural networks impedes their ubiquitous deployment in

energy-constrained platforms such as embedded systems and IoT devices. This article introduces convolutional layers with pre-defined

sparse 2D kernels that have support sets that repeat periodically within and across filters. Due to the efficient storage of our periodic

sparse kernels, the parameter savings can translate into considerable improvements in energy efficiency due to reduced DRAM

accesses, thus promising significant improvements in the trade-off between energy consumption and accuracy for both training and

inference. To evaluate this approach, we performed experimentswith twowidely accepted datasets, CIFAR-10 and Tiny ImageNet in

sparse variants of the ResNet18 and VGG16 architectures. Compared to baselinemodels, our proposed sparse variants require up to

�82% fewer model parameterswith 5:6� fewer FLOPswith negligible loss in accuracy for ResNet18 on CIFAR-10. For VGG16 trained on

Tiny ImageNet, our approach requires 5:8� fewer FLOPs and up to�83:3% fewer model parameterswith a drop in top-5 (top-1) accuracy

of only 1.2% (�2:1%). We also compared the performance of our proposed architectureswith that of ShuffleNet andMobileNetV2. Using

similar hyperparameters and FLOPs, our ResNet18 variants yield an average accuracy improvement of�2:8%.

Index Terms—Convolutional neural network (CNN), pre-defined sparsity, parameter reduction, complexity reduction, energy-efficient CNN,

storage aware sparsity

Ç

1 INTRODUCTION

IN RECENT years, deep convolutional neural networks
(CNNs) have become critical components in many real

world vision applications ranging from object recognition [2],
[3], [4], [5] and detection [6], [7], [8] to image segmentation
[9]. With the demand for high classification accuracy, current
state-of-the-art CNNs have evolved to have hundreds of
layers [2], [3], [4], [10], [11], requiring millions of weights and
billions of FLOPs. However, because a wide variety of neural
network applications are heavily resource constrained, such
as those for embedded and IoT devices, there is increasing
interest in CNN architectures that balance implementation
efficiency with accuracy and associated hardware accelera-
tors that target CNNs [12], [13], [14]. In particular, because
energy is often the primary limited resource, researchers
have focused on minimizing the number of non-zero model
parameters and the accelerator’s access to off-chip DRAM,
which consumes around 200� more energy than access to
on-chip SRAM [15].

Previous work has focused on accelerating inference and
proposed model pruning [16], [17], [18], [19], [20] and quantiza-
tion [21], [22], [23], [24], [25], [26] to reduce the number of non-
zero parameters. Recently, a more detailed analysis showed
that such unstructured pruning may not reduce energy

consumption because of the overhead required to manage
sparse matrix representations [18]. This motivates structured
pruning [18] which favors structure in the sparsity patterns
that canmore efficiently bemanaged in inference hardware.

Other work focused on the efficiency of both inference
and training acceleration by defining notions of pre-defined
sparsity [27], [28] in which a subset of the weights are fixed
at zero before training and remain zero through inference.
For example, a recent work [27] showed that neural net-
works can be trained with pre-defined hardware-friendly
sparse connectivity in the fully connected multilayer per-
ceptrons layers that avoids costly sparse matrix representa-
tions and thus can both speed-up and reduce the energy
consumption of both inference and training. Other research-
ers have tried to address convolution (CONV) layers’ com-
putation complexity issue, which contribute the largest
number of FLOPs for deep networks, exemplified by the
CONV layer in ResNet18 [5] which accounts for �98% of
the total FLOPs for Tiny ImageNet classification. In particu-
lar many investigations have focused on efficient pre-defined
computationally-limited filter designs to reduce complexity of
training and inference at the cost of accuracy, including
MobileNet [29], MobileNetV2 [30], and ShuffleNet [31].

This paper proposes pre-defined sparse convolutions to
improve energy and storage efficiency during both training
and inference. We refer to this approach as pSConv and pre-
sented initial simulation results that show negligible perfor-
mance degradation compared to fully-connected baseline
models in [1]. However, as mentioned earlier, unstructured
forms of pSConvmay not lead to energy reductions due to the
overhead ofmanaging their sparsematrix representations.
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Motivated by this fact, we extend pSConv by proposing a
form of periodicity, repeating a relatively small pattern of
pre-defined sparse kernels within a 3D filter such that fixed
zero-weights occur repeatedly with a constant interval
across the 3D filter. This periodicity can greatly reduce the over-
head associated with managing sparsity, allowing the proposed
CNN architecture to exhibit significant reductions in energy con-
sumption compared to baseline CNNs with dense filters.

Finally, we present a convolutional channel modification
to boost the accuracy of pSConv-based CNNs. In particular,
the accuracy loss incurred due to the added periodicity con-
straint may be non-negligible in some cases. To combat this
phenomenon, we introduce fully-connected (FC) 2D kernels
at fixed intervals within a 3D filter. In particular, extending
the periodic pattern of pre-defined sparse kernels with a fully con-
nected kernel boosts accuracy while maintaining relatively low
storage overhead.

To evaluate the effectiveness of our proposed sparsity
based CONVs, we run image classification tasks on variants
of VGG [3] and ResNet [5] with CIFAR-10 [32] and Tiny
ImageNet [33] datasets. We also show that we achieve
higher test accuracy than MobileNetV2 [30] with similar
network hyperparameter settings on these datasets. Finally,
we analytically quantify the benefits of our algorithm com-
pared to traditional approaches in terms of both FLOPs and
storage, the latter assuming a variety of well-known sparse
matrix representations.

The remainder of this paper is structured as follows.
Section 2 provides notable related work in the domain of
CNN architectures and efficient sparse matrix representa-
tions. Section 3 describes our proposed architecture in detail
and is followed by our analytical evaluation of FLOPs and
storage requirements in Section 4. We present our simula-
tion results in Section 5 and conclude in Section 6.

2 PRELIMINARIES AND RELATED WORK

CONV layers in neural network architectures transform the
input images into abstract representations known as feature
maps. To generate the output feature maps (OFMs) the
filters of a layer are convolved with input feature maps
(IFMs) which is comprised of the element wise product of

filter and IFMs and the accumulation of partial sums.
In particular, the following equation shows the computation
of each OFM element in a standard fully-connected convo-
lution (SFCC) layer.

O½z�½v�½x�½y� ¼ ReLU

�
B½v� þ

XCi�1

k¼0

XHf�1

i¼0

XWf�1

j¼0

I½z�½k�½Sxþ i�½Syþ j�W ½v�½k�½i�½j�
�

0 � z < N; 0 � v < Co;

0 � x < Ho; 0 � y < Wo:

(1)

Here, O, I, W are the 4D OFM, IFM, and filter weight ten-
sors, respectively and B is the 1D bias tensor added to each
3D filter result. Also, O½z�½v�½x�½y� represents the ðx; yÞth
OFM element in the vth output channel corresponding to
the input batch z. Note the extensive data reuse both in IFM
and weights, for which optimized dataflow is needed to
ensure energy efficiency [15], [34], [35]. The number of
FLOPs necessary to generate the OFM for a SFCC layer can
be estimated as

FLSFCC ¼ k2HoWoCoCi; (2)

where, k represents both height (Hf ) and width (Wf ) of
the 2D kernel and the meaning of the other variables are
defined in Table 1. Also, in this paper we assumed stride
size of 1 and consider a FLOP and a multiply-accumulate
operation to be equivalent.

TABLE 1
Descriptions of Tensor Dimensions in a Convolutional Layer

Variable Description

N batch-size of a 3D feature map
Hi,Wi height, width of IFM to a layer
Hf ,Wf height, width of a 2D kernel in a layer
Ho,Wo height, width of OFM from a layer
Ci # of IFM channels/# of 3D filter channels
Co # of OFM channels/# of 3D filters
Cg # of channels in a group from GWC
n # of parameters per kernel not pre-defined to be zero

Fig. 1. Four major variants of convolutions: (a) standard fully connected convolution (SFCC), (b) depth-wise convolution (DWC), (c) group-wise
convolution (GWC), and (d) point-wise convolution (PWC).
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2.1 Pre-defined Computationally Limited Filters

Because the SFCC [36], shown in Fig. 1a, is computationally
intensive, several pre-defined computationally-limited fil-
ters have been proposed to reduce the complexity of convo-
lution. These filters can be broadly classified into three
different categories, as shown in Fig. 1. The first category is
depth-wise convolution (DWC) [37], shown in Fig. 1b. Here,
each 2D kernel of size Hf �Wf is convolved with a single
channel of the IFM to produce the corresponding OFM;
thus Ci 2D kernels will produce an OFM of dimension
Ho �Wo � Ci. This requires Ci times less computations
compared to SFCC, but the output features capture no infor-
mation across channels.

The second category is group-wise convolution (GWC)
[2], shown in Fig. 1c, which provides a compromise between
SFCC and DWC. Here, a single channel of the OFM is com-
puted by convolving groups of CG channels from the IFM
with partitions of the 3D filters, each of size Hf �Wf � CG.
Thus, with a total number of groups G ¼ Ci=CG, a 3D filter
of dimension Hf �Wf � Ci provides an OFM of size
Ho �Wo �G. Interestingly, SFCC can be viewed as GWC
with CG ¼ 1 and DWC can be viewed as GWC with
CG ¼ Ci. Typically, the number of groups G is chosen to be
a small power of 2, but the choice is highly network archi-
tecture dependent [38].

Finally, Fig. 1d illustrates PWC in which the 2D kernel
dimension has size 1� 1, thus generating a single OFM
channel with low complexity. In particular, compared to a
3� 3 2D kernel dimension, the PWC has 9� lower computa-
tional complexity. However, OFMs generated through this
approach do not contain any embedded information within
a channel.

Many well known network architectures have taken
advantage of the benefits of pre-defined computationally-
limited filters. For example, a combination of GWC and
PWC was used in [38] and in the Inception modules [11],
[39]. The ResNext architecture [40] also uses a combination
of GWC and PWC to replace each CONV layer of ResNet
[5]. A class of scaled-down, reduced parameter architec-
tures that replace most of the 3 � 3 filters with PWC filters
was dubbed SqueezeNet in [41]. MobileNet and Mobile-
NetV2, two popular variants of low complexity architec-
tures designed to be implemented in mobile devices,
replace the SFCC layer with a DWC followed by a PWC
layer to gather information across channels. ShuffleNet [31]
uses a combination of GWC, a channel shuffling for infor-
mation sharing across channels, followed by a DWC layer.

2.2 Sparse Matrix Storage Formats

Most hardware platforms that process deep neural net-
works can benefit from sparse weight matrices only when
such weights are represented through sparse matrix storage
formats. These formats typically store non-zero elements of
a given matrix in a vector while auxiliary vectors describe
the locations of non-zero elements. This section explains
three such methods commonly employed.

2.2.1 Coordinate List (COO)

The COO format [42] uses three vectors to represent a
sparse matrix: a data vector which keeps the values of non-

zero elements, a row vector which stores the row indices of
non-zero elements, and finally, a column vector which keeps
track of column indices of non-zero elements. For example,
consider the sparse matrixM shown below.

M ¼
0 1 0 0 2 0 3
4 0 0 5 6 0 7
0 0 0 8 9 0 0

2
4

3
5:

The data, row, and column vectors for this matrix are as
follows:

data ¼ 1 2 3 4 5 6 7 8 9½ �

row ¼ 0 0 0 1 1 1 1 2 2½ �

column ¼ 1 4 6 0 3 4 6 3 4½ �:
In this representation, the size of all three vectors are the

same and equal to the number of non-zero elements in the
original sparse matrix.

2.2.2 Compressed Sparse Row (CSR)

Similar to the COO format, the CSR format [42] uses three
vectors to represent a sparse matrix. The data vector stores
values of non-zero elements in the order they are encoun-
tered when traversing the elements of the original matrix
from left to right and top to bottom. The column vector keeps
track of the column indices of non-zero elements, and the
index vector stores additional information used to identify
the indices of the elements of each row of the matrix within
the data vector. In fact, the column vector is the same as the
one in the COO while the index vector stores the row vector
in the COO format in a compressed manner, hence the
name CSR. As an example, the data vector and the auxiliary
vectors for the sparse matrixM are as follows:

data ¼ 1 2 3 4 5 6 7 8 9½ �
column ¼ 1 4 6 0 3 4 6 3 4½ �

index ¼ 0 3 7 9½ �:
Here, the bold entries in the data vector indicate the first
nonzero elements of a new row of M and occur at indices 0,
3, and 7 in the data vector. Thus, storing these indices in the
index vector, along with the column vector, determine both
the row and column for each element of the data vector. The
index vector always begins with zero and ends with the
length of the data vector. If a row of M has no nonzero ele-
ments, the corresponding element in the index vector is
repeated.

2.2.3 Compressed Sparse Column (CSC)

The CSC format [42] is very similar to the CSR and, in fact, is
equivalent to CSR storage of the transpose of M. The col-
umn vector for CSR storage of MT is the row vector for CSC
storage ofM as follows

data ¼ 4 1 5 8 2 6 9 3 7½ �
row ¼ 1 0 1 2 0 1 2 0 1½ �

index ¼ 0 1 2 2 4 7 7 9½ �:
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Similar to the CSR format, in the CSC format, the size of the
data and row vectors are the same and equal to the number of
non-zero elements. However, the size of the index vector is
equal to the number of columns in the sparsematrix plus one.

Some of the existing deep neural network (inference)
accelerators such as Cambricon-X [43], Eyeriss [13],1 and
Eyeriss v2 [14] have hardware support for processing values
represented using sparse storage formats. The periodic
sparsity introduced in this work allows us to further
compress sparse representations such as the CSR and CSC
formats by reusing the auxiliary vectors. This not only
decreases the storage required for keeping model parame-
ters in memory but also reduces the energy associated with
transferring them from the main memory to processing ele-
ments (PEs). Furthermore, the proposed optimized sparse
storage formats can be integrated into some of the existing
accelerators such as Eyeriss v2 with minor modifications to
the controller logic or PEs. Section 4 details the storage
and energy savings achieved through deployment of the
proposed formats.

3 PRE-DEFINED SPARSITY

This section first describes pSConv, a form of pre-defined
sparse kernel based convolution that we initially proposed
in [1]. It then describe how we introduce periodicity to
this framework to reduce the overhead of managing sparse
matrix representations. Finally, the section presents a
method to boost accuracy by periodically introducing
a fully connected kernel into the 3D filters.

We define the kernel support as the set of entries in a k� k
2D kernel that are not constrained to be zero. The size of
this set is defined as kernel support size (KSS). The kernel
variant size (KVS) is defined as the number of kernels with
unique kernel support in a 3D filter.

3.1 Pre-Defined Sparse Kernels

We say a 3D filter of size k� k� Ci has pre-defined sparsity
if some of the k2 � Ci parameters are fixed to be zero before
training and held fixed throughout training and inference.
A regular pre-defined sparse 3D filter has the same KSS
for each kernel that comprises the 3D filter.2 This regularity
can help reduce the workload imbalance across different
PEs performing multiply-accumulates and thus can help
improve throughput of CNN accelerators [14]. Fig. 2 shows
an example of kernel variants. Here, k ¼ 3, meaning
KSS ¼ 9 denotes the standard kernel without any pre-
defined sparsity and KSS ¼ 2 signifies that seven of the
nine kernel entries are fixed at zero. The choice of kernel
variants can be viewed as a model search problem, how-
ever, in this paper we adopted a lower complexity approach
of choosing them in a constrained pseudo-random manner
which ensures every possible locations in k2 2D kernel space
(9 in this case) has at-least one entry in a 3D filter which is
not pre-defined to be zero. As an example, Fig. 3 illustrates

how an OFM of size Ho �Wo � Co is generated through
convolution of Ci � Co pre-defined sparse kernels of size k2

with an IFM of sizeHi �Wi � Ci.
The challenge with efficiently implementing this scheme

is how to avoid processing the weight entries that are fixed
at zero. Because the kernel variants are chosen randomly

from a potential set of k2

KSS

� �
options and KVS could be as

large as Ci for each 3D filter, the non-zero weight index
memories can represent considerable overhead. We propose
to address this problem by introducing periodicity within a
3D filter, as described below.

3.2 Periodic Sparse Kernel Patterns

In order to reduce the overhead of storing the sparsity pat-
terns, we propose to repeat the sparsity patterns, using only
a small number of kernel variants across all filters. This is
particularly beneficial in the compressed sparse weight for-
mats because the same index values can be used for multi-
ple filters.

Fig. 4 shows an example of periodically repeating kernel
patterns, with a periodicity P ¼ KVS ¼ 4. Notice to retain
periodicity across different 3D filters and while still provid-
ing some diversity, we rotate the sequence of kernel variants,
starting each filter (of P consecutive filters) with a different
kernel variant. For instance, if the first 3D filter starts with
KV1 followed by KV2, KV3, and KV4, and then repeats
the order, we start the second 3D filter with KV2 to create a

Fig. 2. An example of pre-defined sparse kernels with eight different
kernel variants each having KSS of two. The colored locations in each
2D kernel are allowed to have non-zero weight values.

Fig. 3. An example of proposed pre-defined sparse kernel based
convolution with KSS of 4.

1. Note that Eyeriss [13] uses run-length coding (RLC) to represent
sparse vectors, in particular sparse activations, whereas CSR and CSC
are better suited to represent sparse matrices.

2. We only consider the convolutional weights when defining spar-
sity. Bias and other variables associated with batchnorm are not consid-
ered because they add negligible complexity.
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repeating sequence of [KV2, KV3, KV4, KV1]. Thus, we
maintain the sequence of repeating kernelsmodulo rotation.

Our specific choice of sparse KVs in our experiments are
obtained by sequentially picking non-zero 2D entries ran-
domly constrained such that no non-zero 2D entry is chosen
twice until all entries of the kernel are chosen at least once. Fur-
thermore, we ensure that every pixel in the input frame has an
opportunity to affect the outcome of our sparse-periodic net-
work which constrains the minimum value of periodicity P .
For example, for a 3� 3 kernel, with KSS of 1, the minimum
value of P necessary to ensure every entry of the kernel is cho-
sen is 9. More specifically, the nine sparse 3� 3 2D kernels in
this example each must have a different single non-zero entry
such that together they cover all entries.

3.3 Boosting Accuracy With FC Kernels

Although the periodicity in sparse patterns is beneficial for
overhead management of the sparsity, the choice of KSS
and the simplistic way of choosing kernel variantsmay some-
times cost significant classification performance. Methods to
find suitable sparse patterns and KVS values through pat-
tern pruning, inspired by image smoothing filters, were
recently considered in [44]. However, here, we propose a
complementary approach in which we periodically intro-
duce fully connected kernels, i.e., kernels with KSS = k2,
within each 3D filter. We use h to denote the number of
dense or FC kernels in a period P and, in principle, it can

have any value between 0 and P . In the case of standard
(dense) convolution filter based models, h ¼ P . In contrast,
h ¼ 0 implies no boosting. Fig. 5 illustrates the idea where
one fully connected kernel (h = 1) is introduced every P ker-
nels and with other P � 1 sparse kernels, repeating this P
pattern throughout the 3D filter.

Note that our selection of the period P is premised on the
fact that balancing the computational requirements across
3D filters is preferred for hardware implementations
because it enables more efficient scheduling across parallel
computational units. It is therefore desirable to have a fixed
number of non-zero weights per filter which implies having
an equal number of FC kernels per filter. Given the
approach illustrated in Fig. 4 it is therefore preferred to
have Ci be divisible by P . In our experiments, detailed in
Section 5, the layers where boosting is applied have Ci

2 f64; 128; 256; 512g. Thus our preferred values of P are {2,
4, 8, 16, 32, 64}.

To choose the sparse kernel variants we follow the same
principle as described in Section 3.2 before adding the h FC
kernels. However, in the presence of an FC kernel, P can, in
principle, be lower than the minimum P without boosting
because the FC kernel covers all entries. Moreover, when
KVS < P , we propose to randomly reuse some of the
sparse kernel variants to maintain periodicity.

4 FLOPS AND ENERGY EFFICIENCY ANALYSIS

4.1 Complexity Analysis

The total FLOPs for MobileNet-like and ShuffleNet-like
CONV layers can be estimated as shown in Table 2. The
total FLOPs for sparse (both periodic and aperiodic var-
iants) kernel based CONV layers with KSS of n can be esti-
mated as

FLS ¼ HoWoCiCon: (3)

To estimate the FLOPs of sparse kernel based CONVs with
boosting,3 we start with the number of elements in a period
(P ) that are allowed to be non zero which can be computed
as (shown in Fig. 5),

WP ¼ ðP � 1Þnþ k2: (4)

Now, with total number of ðCi=P Þ dense, and ðCi � Ci=P Þ
sparse kernels in each 3D filter of a layer the FLOPs can be
computed as,

FLPSD ¼ Ci

P

� �
k2 þ Ci � Ci

P

� �� �
n

� �
HoWoCo: (5)

Fig. 4. Regular sparse kernel based 4D weight tensor. In the figure the
4D weight tensor has four different types of 2D kernel i.e., four different
KVs (colored differently).

Fig. 5. Periodic insertion of FC 2D kernels between sparse kernels.

TABLE 2
Expression of FLOPs Count for Inference Operation With

Various Pre-Defined Computationally-Limited Filters

Approach FLOP count (forward, ideal)

MobileNet-like [29] HoWoCiðk2 þ CoÞ
(DWC+PWC)

ShuffleNet-like [31] HoWoCoCiðk2G þ 1Þ
(GWC+PWC)

3. Here each period is assumed to have only one FC kernel.
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The ratio of the FLOP counts for MobileNet-like and
ShuffleNet-like layers to that of sparse kernel based CONVs
with boosting is

Rmob ¼ FLOPs for MobileNet-like

FLOPS for periodic-sparse with boosting

¼ P ðk2 þ CoÞ
½k2 þ ðP � 1Þn�Co

(6)

Rshuf ¼ FLOPs for ShuffleNet-like

FLOPS for periodic-sparse with boosting

¼ P ðk2G þ 1Þ
½k2 þ ðP � 1Þn� :

(7)

It is clear that we will have computational saving when
the values of Rmob and Rshuf are greater than 1. When Co is
large and P >> k2

n , (6) and (7) can be approximated as

Rmob ’ 1

n
(8)

Rshuf ’
ðk2G þ 1Þ

n
; (9)

which shows the complexity increment due to periodic
insertion of FC kernels is negligible for relatively wide net-
works with large periods. Fig. 6 shows a 3D illustration of
the per layer FLOP ratios (Rmob and Rshuf) as a function of
Co and P . Note that even though the per layer ratio can be
less than 1, the total parameter count for MobileNet or
ShuffleNet-like networks can be larger due to the presence
of more layers.

4.2 The Impact of Periodicity on Storage and Energy

Sparsity leads to savings in storage only when the overhead
of storing the auxiliary vectors to manage sparsity is negligi-
ble. This section presents a new sparse representation spe-
cifically tailored to periodic sparse kernels and compares it
with existing formats. It also analyzes storage requirements
of different sparse representations analytically, allowing the
study of the effectiveness of such formats at different levels
of density. Furthermore, it explains how the proposed
representation can be exploited in CNN accelerators.

4.2.1 CSR/CSC With a Periodic Column/Row Vector

The periodic pattern of kernels introduced in Section 3.2
allows reusing the column/row vector in the CSR/CSC
format. For example, assume a convolutional layer with
3� 3 kernels, 128 input channels, 128 output channels, and

a period of four. The 4D weight tensor corresponding to this
convolutional layer can be represented by a flattened weight
matrixwhere each row corresponds to a flattened filter. As a
result, the number of rows in the flattened weight matrix
is equal to 128 while the number of columns is 3� 3�
128 ¼ 1152. Because of the periodicity across filters, the
structure of the rows of the flattened weight matrix will also
repeat with a period of four. Therefore, one can simply store
the column vector of the CSR format for the first four rows
and reuse them for the subsequent rows. We refer to this
new sparse storage format as CSR with a periodic column
vector and denote it with CSRP, where P denotes the period
of repetition of the column vector.

Similarly, because of the periodicity of kernels within a
filter, the columns of the flattened matrix also repeat with a
period of 4� ð3� 3Þ ¼ 36. As a result, one can choose to use
the CSC format to represent the flattened sparse matrix and
reuse the row vector for groups of 36 columns. We refer to
this new format as CSC with a periodic row vector and
denote it with CSCP, where the P here denotes the period
of repetition of the row vector.

Table 3 summarizes the notation used for comparing the
storage cost of different storage formats. Using the notation
introduced here, Table 4 explains storage requirements of
different storage formats.

Based on Table 4, the COO format is expected to have
higher overhead than that of the CSR and CSC formats,
which have similar storage overhead. Furthermore, it is
evident that the introduction of periodicity to the CSR and
CSC formats can significantly decrease the storage overhead.

4.2.2 Application to Weight Sub-Matrices

As noted above, a convolutional layer with periodic sparse
kernels induces a flattened weight matrix that also has peri-
odically repeating columns and rows. In a CNN accelerator,
the processing of a convolutional layer is often broken down
into smaller operations where subsets of the flattenedweight

Fig. 6. A 3D illustration of the change in Rmob and Rshuf as a function of
the Co and P . Here we assumed G, k, and n to be 16, 3, and 1,
respectively.

TABLE 3
Summary of Notation for Matrix Storage Formats

Variable Description

HF ,WF height, width of a flattened weight matrix
r density (0 � r � 1)
bv number of bits for representing data values
br; bc number of bits for representing row, column values
bi number of bits for representing index values
bP number of bits for representing the period

TABLE 4
Storage Requirement of Storing a Matrix Using

Dense and Sparse Storage Formats

Format Storage Requirement (bits)

Dense HFWFbv
COO rHFWF ðbv þ br þ bcÞ
CSR rHFWF ðbv þ bcÞ þ ðHF þ 1Þbi
CSC rHFWF ðbv þ brÞ þ ðWF þ 1Þbi
CSRP rHFWFbv þ rPWFbc þ ðHF þ 1Þbi þ bP
CSCP rHFWFbv þ rPHFbr þ ðWF þ 1Þbi þ bP
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matrix are processed across multiple PEs. This processing
requires accessing a sub-matrix of the flattened weight
matrix. If this sub-matrix is large enough, it will also have
row or column vectors that are repeated periodically. For
example, Fig. 7 demonstrates a subset of a flattened weight
matrix that is used in a single processing element of an archi-
tecture like Eyeriss v2 [14] (the original flattened weight
matrix is built using the first four kernel variants shown in
Fig. 2). This sub-matrix corresponds to processing the first
(top) row of four kernels of 16 filters. Specifically, the sub-
matrix consists of 16 rows corresponding to 16 filters and 12
columns corresponding to the top row of four kernels per fil-
ter. Note in Fig. 7, the four kernels have been rotated as
described in Section 3.2. Based on the periodic pattern across
filters, the sub-matrix shown in Fig. 7 has repeating rows
with a period of four and can be represented usingCSR4.

Because each PE in a CNN accelerator processes a small
portion of the flattened weight matrix, bc, br, and bi have
small ranges and therefore can be represented using a small
number of bits. For example, assuming bv ¼ 8, bc ¼ br ¼ 4,
and bi ¼ 7, Fig. 8a compares storage requirements of various
existing storage formats at different levels of filter density. It
is observed that the CSR and CSC formats yield lower total
storagewhen the originalmatrix is atmost 62 and 65%dense,
respectively.

Fig. 8b compares storage requirement of dense, CSR, and
CSRP formats for the same matrix that was shown in Fig. 8a,
for different values of P , and bP ¼ 6. It is observed that the
CSR8 and CSR16 yield lower total storage when the original
matrix is at most 82 and 73% dense, respectively.
Furthermore, at 62% density, CSR8 and CSR16 yield lower
total storage compared to CSR by 23 and 16%, respectively.4

This is equivalent to 60.04 and 39.86% reduction in the over-
head of storing auxiliary vectors for theCSR8 andCSR16 com-
pared to theCSR format, respectively.

Because the energy cost associated with transferring
from the DRAMs is well-modeled as proportional to the
number of bits read [45], the reduced storage requirements
ofCSRP/CSCP lead to a proportional reduction in the energy
cost associated with DRAM access. For example, a 50% sav-
ings in storage will result in a �2� reduction in energy con-
sumption related to DRAM access. For this reason, in the

remainder of this paper, we focus on savings in storage
requirementswith the energy savings being implicit.

4.2.3 Hardware Support for Periodic Sparsity

The low-complexity storage formats introduced in Section 4.2.1,
i.e., CSRP/CSCP, cannot be integrated into existing accelera-
tors without ensuring they can support the proposed periodic
sparse format. For example, in Eyeriss v2, each weight value
(i.e., data) is coupled with its corresponding index and they
are read as a whole from the main memory. On the other
hand, theCSRP/CSCP store the column/rowvector separately
from the data vector and read the auxiliary vectors once for
all data values. This not only requires proper adjustment of
the bus that transfers data from the DRAM to the chip but
also may require a minor modification in either the control
logic or PEs.

One approach to make an accelerator like Eyeriss v2 com-
patible with periodic sparsity is to store the weights in
DRAM using the proposed sparse periodic format and mod-
ify the system-level control logic to expand the column/row
vector before storing them in the PE’s scratchpad memory.
In other words, the sparse column/row vector is read from
the DRAM only once, but replicated before being written
into the scratchpad memory corresponding the the column/
row vector so that they adhere to the CSR/CSC format. In
this manner, the scratchpadmemorywithin each PE remains
the same and stores bundled (data, index) pairs. Because
DRAM accesses consume two orders of magnitude more
energy than on-chip communication, we can thus achieve
close to the optimal energy savings without requiring any
change in the PE array or its associated control structures.

A more comprehensive approach to supporting periodic
sparsity involves ensuring the PEs can use the column/row
scratchpad memory as a configurable circular buffer, which,
to support periodicity, will be configured to have length P .
This type of support may already exist because in many
cases, the size of the weight matrix processed within each
PE is smaller than the size of the corresponding scratchpad
memory and therefore, only a portion of the scratchpad
memory is used. In this approach, the periodic column/row
vector is read from the DRAM once, written into the scratch-
pad memory, and accessed multiple times for different rows
of the weight matrix. This reduces the required on-chip
communication and thus may save more memory com-
pared to storing the expanded column/row vectors in the
scratchpad memory.

While the presented approaches enable compression of
the column/row vectors, one may be able to compress the
index vector as well, as suggested by the row periodicity
illustrated in Fig. 7. However, this may require more com-
plex hardware support to expand the index vector before
storing them in the PEs or adding support for the com-
pressed index vectors within the PE.

5 EXPERIMENTAL RESULTS

This section describes our simulation results and analysis.
We first detail the datasets, architecture, and important
hyperparameters used for our experiments, followed by our
experimental results of our proposed pSConv approach, the
introduction of periodicity, and our performance boosting

Fig. 7. Illustration of how periodicity in a filter leads to repeating rows of
sub-matrices of the filter’s flattened weight matrix.

4. Interestingly, CSR has similar storage requirements as RLC. In
particular, as implemented in Eyeriss [13], at 62% density, RLC would
lead to 0.14% more storage than CSR.
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technique. Finally, we compare our modified network archi-
tectures with MobileNetV2 [30], a popular low-complexity
CNN variant for image classification, in terms of FLOPs,
model parameters, and accuracy. We used Pytorch [46]
to design the models and trained/tested the models on

AWS EC2 P3.2x large instances that have an NVIDIA Tesla
V100GPU.

5.1 Datasets, Architectures, and Hyperparameters

To evaluate our models we used CIFAR-10 [32] and Tiny
ImageNet [33], two widely popular image classification
datasets. The input image dimensions of CIFAR-10 and
Tiny ImageNet are (32� 32� 3) and (64� 64� 3), respec-
tively. The number of different output classes for these two
datasets are 10 and 200, respectively. We chose variants of
VGG16 [3] and ResNet18 [5] as the base network models to
apply our architectural modifications. The VGG16 architec-
ture has thirteen 3� 3 kernel based convolutional layers.
The flattened output of final CONV layer is fed to the fully
connected part having three fully connected (FC) layers.5

The CONVs of ResNet18 architecture consists of four layers
each containing two basic blocks, where each basic block
has two convolutional layers along with a skip connection
path. We used pre-defined sparse kernels on all k� k
CONV layers where k > 1 but excluded the first layer, as it
is connected to the primary inputs and is thus more sensi-
tive to zero weights. Training was performed for 120 and
100 epochs for CIFAR-10 and Tiny ImageNet, respectively.
The initial learning rate was set to 0.1 with momentum of
0.9 and weight decay value to 5� 10�4. The image datasets
were augmented through random cropping and horizontal
flips before being fed into the network in batches of 128 and
100 for CIFAR-10 and Tiny ImageNet, respectively. All
results reported are the average over two training experi-
ments. Table 5 provides the names of each variant of net-
work model and corresponding architecture descriptions.

5.2 Results for pSConv Based CNN

We analyzed three different variants of regular sparse ker-
nel based CONVs with KSS values of 4, 2 and 1 along side
the baseline standard convolution based network. As stated
earlier, in our choice of kernel patterns we ensure each
of the k2 possible kernel entries are covered by at least
one sparse kernel variant. Table 6 provides the results in
terms of accuracy and parameter count6 with the KSS
variants applied in VGG16 and ResNet18 architectures. The
ResNet18-based results show that even with KSS of only 4,

Fig. 8. Comparison of storage requirements of (a) various existing storage formats and (b) dense, CSR, and CSRP formats at different levels of
density for a matrix of size 32� 12 (bv ¼ 8, bc ¼ br ¼ 4, bi ¼ 7, and bP ¼ 6).

TABLE 5
Nomenclature of the Network Architectures Used in Simulation

Name Description of the network architecture

aaa_pSC<n> aaa network with pre-defined sparse kernel
based convolution where each 2D kernel has
n weights not pre-defined to be zero.

aaa_pSC<n>_P<m> aaa network with everymth kernel is FC and
rest are pre-defined sparse kernels having n
weights not pre-defined to be zero.

aaa_PS<n>_P<m> aaa network with both periodicity and kernel
variant values of m, and each 2D kernel has n
weights not pre-defined to be zero.

aaa_PSD<n>_P<m> aaa network with periodic kernel variants
having periodicity m, where each period has
m� 1 sparse kernel variants each with n
weights not pre-defined to be zero and 1 FC
k� k kernel.

TABLE 6
Test Accuracy of pSConv Based VGG16, and ResNet18

on CIFAR-10 and Tiny ImageNet

Data

set

Model Top 1

acc ð%Þ
Top 5

acc ð%Þ
Parameters Parameters

(%) reduction

VGG16 pSC9 92.8 – 14.73 M —

C VGG16 pSC4 92.0 – 6.55 M 55.56

I VGG16 pSC2 91.2 – 3.27 M 77.78

F VGG16 pSC1 89.5 – 1.64 M 88.89

A ResNet18 pSC9 92.9 – 11.17 M —

R ResNet18 pSC4 92.5 – 5.06 M 54.65

10 ResNet18 pSC2 91.1 – 2.62 M 76.56

ResNet18 pSC1 89.4 – 1.39 M 87.50

VGG16 pSC9 57.2 78.9 14.73 M —

VGG16 pSC4 56.1 79.1 6.55 M 55.56

Tiny VGG16 pSC2 54.2 78.2 3.27 M 77.78

Image VGG16 pSC1 52.5 76.7 1.64 M 88.89

Net ResNet18 pSC9 62.4 83.2 11.17 M —

ResNet18 pSC4 61.7 83 5.06 M 54.65

ResNet18 pSC2 60.2 82.7 2.62 M 76.56

ResNet18 pSC1 59.0 82.2 1.39 M 87.50

Here we use KSS of 9, 4, 2, and 1, respectively. Also, KSS of 9 means SFCC
based CONVs and thus they are used as baseline to compare accuracy, and
parameters.

5. In VGG16 for CIFAR-10 dataset, we used only one FC layer
because the input image dimension is 4� smaller than Tiny ImageNet
and multiple FC layers are not needed to achieve high accuracy.

6. We considered the convolution layer parameters only to report in
the tables of this section without considering the overhead of indexing.
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the test accuracy degradation is within �0:4% for CIFAR-10
dataset, and within �0:6% for Tiny ImageNet. The same
results for VGG16 show a test accuracy degradation is
within �0:7% for CIFAR-10 dataset, and within �1:1% for
Tiny ImageNet.

5.3 Results for pSConv With Periodicity

The storage and energy advantage associated with periodi-
cally repeating kernels with some specific set of kernel var-
iants, analysed in Section 4.2, motivated us to evaluate its
performance in terms of test accuracy.We leveraged the obser-
vation provided by [44] and kept the KVS¼ P small for differ-
ent KSS based architectures. In particular, as KSS of 4 covers
more kernel entries per variant, we chose a corresponding P =
KVS = 4 and covered all possible kernel entries of the 3� 3

kernels. For similar reasons, we chose larger KVS for KSS of 2
and 1, respectively (6 and 9, respectively). We selected kernel
variants as described in Section 5.2. Fig. 9 shows the learning
curves for CIFAR-10 and Tiny ImageNet datasets with differ-
ent variants of VGG16 and ResNet18models with KSS of 1.7 It
is clear that the sparse variants learn at similar rates as the cor-
responding baselines.

Table 7 shows the impact of an added periodicity con-
straint on test accuracy with our proposed variants. Note
that because of the overhead of storing auxiliary vectors,
the overall storage reduction is smaller than the ones
reported in Table 7. For example, for VGG16_PS4_P4, the
reduction in the number of parameters is 55.6%, but includ-
ing the storage of the auxiliary vectors in CSR4 format, the
reduction is approximately 44.6%. If CSR format is used,
the reduction in overall storage requirements, relative to the
baseline is approximately 25%.

5.4 Results for Boosting

The results without and with periodically repeating sparse
kernel patterns discussed in Sections 5.2 and 5.3, respectively,
show considerable performance degradation at low KSS val-
ues such as 1. This section presents the performance of the net-
workmodelswith the proposed boostingmethod inwhichwe
periodically incorporate FC kernels (k� k) in the 3Dfilter.8

To evaluate the value of boosting, we measure its impact
when periodicity P is set to 8 and 16 as well as when applied

Fig. 9. (a), and (b) shows the test accuracy versus epochs for CIFAR-10 dataset in different variants of VGG16 and ResNet18 models, respectively;
(c), and (d) are plots of top 5 error rate versus epochs for Tiny ImageNet dataset in different variants of VGG16 and ResNet18 models, respectively.
The KSS for all the variants is 1.

TABLE 7
Test Accuracy of Different Variants of Periodic Sparse Kernel
Based VGG16 and ResNet18 on CIFAR-10 and Tiny ImageNet

Data set Model (KVS, P ) Top 1

acc ð%Þ
Top 5

acc ð%Þ
Parameters Parameter

reduction (%)

C VGG16 PS4_P4 (4, 4) 91.7 – 6.55 M 55.56

I VGG16 PS2_P6 (6, 6) 90.6 – 3.27 M 77.78

F VGG16 PS1_P9 (9, 9) 87.9 – 1.64 M 88.89

A ResNet18 PS4_P4 (4, 4) 92.9 – 5.06 M 54.65

R ResNet18 PS2_P6 (6, 6) 91.5 – 2.62 M 76.56

10 ResNet18 PS1_P9 (9, 9) 89.6 – 1.39 M 87.50

VGG16 PS4_P4 (4, 4) 56.9 79.9 6.55 M 55.56

Tiny VGG16 PS2_P6 (6, 6) 53.9 77.8 3.27 M 77.78

Image VGG16 PS1_P9 (9, 9) 51.8 76.7 1.64 M 88.89

Net ResNet18 PS4_P4 (4, 4) 61.9 83 5.06 M 54.65

ResNet18 PS2_P6 (6, 6) 60.7 82.9 2.62 M 76.56

ResNet18 PS1_P9 (9, 9) 58.9 81.8 1.39 M 87.50

The baseline architectures of Table 6 are used as the reference for calculating
the reduction in parameters.

7. We saw similar trends with KSS of 2 and 4 in VGG16 and
ResNet18, and so did not show in separate plots for brevity’s sake.

8. In this paper, we focus on results with one FC kernel per period,
i.e., h = 1. However, we also evaluated performance with larger values
of h. For example, h = 2 for P = 16, yields similar accuracy as h = 1 for P
= 8. Both models have similar parameter counts but the latter has signif-
icantly lower storage costs, suggesting restricting our model space to
have h ¼ 1 is reasonable.
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to the non-boosting configurations used in Table 7. We tested
the same sparse kernel variants as those used in Section 5.3.
Thus, when the number of unique variants are less thanP , we
randomly chose some of the sparse kernel variants to repeat
before placing the FC kernels. However, for simulation of
aaa_PSD1_P8 models we randomly choose 7 of 9 unique
sparse kernel variants. Note that because each period will
now contain one FC kernel, the proposed criteria of covering
all kernel entries within a period is automatically satisfied.

Tables 8 and 9 show the classification accuracy improve-
ment compared to their sparse periodic counterparts and
parameter count reduction compared to the corresponding
baseline models. The results show that boosting yields an
improvement of up to 3.2% (3.6%) in classification accuracy
for CIFAR-10 (Tiny ImageNet). With sparse KSS of 4, the
average performance improvement compared to periodic
sparse models is �0:3%. This is quite intuitive as the poten-
tial improvement is lower when KSS is high. However, for
low KSS the average improvement is �2:3%. For example,
ResNet18 with KSS of 1 and repeating FC kernels with a
period of 8 on CIFAR-10 provides an accuracy degradation
of only �0:4% compared to the baseline, which was earlier
�3:3% without the FC kernels inserted. This motivates the
use of boosted pre-defined kernels that are very sparse. We
observed similar trends with Tiny ImageNet as well. The rel-
ative cost of the increase in parameters due to boosting is low
and, as the periodicity of the fully connected kernel place-
ment increases, it becomes negligible. Fig. 10 shows the accu-
racy versus FLOPs9 relation for different architecture
variants. Models whose points lie towards the top-left have
better accuracy with fewer FLOPs. In particular, for VGG16
and ResNet18 variants on CIFAR-10 and VGG16 variants on
Tiny ImageNet, boosting performs consistently well,
whereas, as we can see from Fig. 10d, boosting is not as

beneficial for Tiny ImageNet on ResNet18. In general, we see
that, with modest computation overhead, boosting consis-
tently improves accuracy for models with extremely low
KSS andmaintains high accuracy otherwise.

It is important to emphasize that the overall parameter
overhead is a function of both periodicity and KSS, as exem-
plified by the four sparse models described in Table 10 ana-
lyzed using the storage requirement formulas in Table 4.
Comparing models 1 and 2, which have the same sparse KSS,
shows the impact of periodicity; as does comparing models 3
and 4. In contrast, comparing models 1 and 3 shows the
impact of KSS for fixed periodicity; as does comparingmodels
2 and 4. The last two columns of the table represent the param-
eter counts normalized with respect to the baseline model.
Averaging across the four examples, the table shows that
CSRP reduces the overall parameter count compared toCSR,
including the sparse matrix representation, by 22%. Perhaps
more importantly, the results show that the CSRP format can
reduce the overall parameter count by as much as 70% com-
pared to the baselinemodel.

To better evaluate the space and choice of KVs, we gener-
ated model variants with six different random seeds. We
tested VGG16 and ResNet18 models with KSS of 4 and 2 to
classify CIFAR-10 and Tiny ImageNet. We observed differ-
ences of less than 1% between the minimum and maximum
classification accuracy across the different seeds. In particu-
lar, for ResNet18_PSD2_P8 and ResNet18_PSD4_P8 the
gaps between minimum and maximum accuracy are 0.55
and 0.44%, respectively, averaged over the two datasets. For
VGG16_PSD2_P8 and VGG16_PSD4_P8 these values are
0.65 and 0.65%, respectively.

Lastly, to demonstrate boosting has general benefits,
Table 11 shows the results of boosting with Tiny ImageNet10

TABLE 8
Test Accuracy of Different Variants of VGG16, and ResNet18

on CIFAR-10 With Periodic Sparse Kernels Boosted
Through Insertion of Periodic FC Kernels

Model (KVS, P ) Test

acc ð%Þ
Improvement

over periodic

Parameters Parameter

reduction (%)

VGG16 PSD4_P8 (5, 8) 92.5 +0.87 7.57 M 48.61

VGG16 PSD4_P16 (5, 16) 92.0 +0.39 7.06 M 52.1

VGG16 PSD2_P8 (7, 8) 91.9 +1.32 4.71 M 68.1

VGG16 PSD2_P16 (7, 16) 91.3 +0.74 3.99 M 72.92

VGG16 PSD1_P8 (8, 8) 91 +3.14 3.27 M 77.78

VGG16 PSD1_P16 (10, 16) 89.8 +1.97 2.46 M 83.33

VGG16 PSD4_P4 (4, 4) 92.4 +0.77 8.59 M 41.67

VGG16 PSD2_P6 (6, 6) 92 +1.42 5.18 M 64.81

VGG16 PSD1_P9 (9, 9) 91.05 +3.22 3.09 M 79

ResNet18 PSD4_P8 (5, 8) 92.9 +0.00 5.82 M 47.83

ResNet18 PSD4_P16 (5, 16) 92.8 -0.15 5.43 M 51.26

ResNet18 PSD2_P8 (7, 8) 92.5 +1.09 3.68 M 67

ResNet18 PSD2_P16 (7, 16) 92.3 +0.81 3.15 M 71.78

ResNet18 PSD1_P8 (8, 8) 92.5 +2.84 2.62 M 76.56

ResNet18 PSD1_P16 (10, 16) 92.0 +2.4 2.01 M 82.02

ResNet18 PSD4_P4 (4, 4) 93.0 +0.1 6.58 M 41

ResNet18 PSD2_P6 (6, 6) 92.4 +0.9 4.04 M 63.8

ResNet18 PSD1_P9 (9, 9) 92.2 +2.6 2.48 M 77.77

TABLE 9
Test Accuracy of Different Variants of VGG16, and ResNet18

on Tiny ImageNet With Periodic Sparse Kernels
Boosted With Periodic FC Kernels

Model (KVS, P ) Top 1

acc ð%Þ
Improvement

over periodic

Parameters Parameter

reduction (%)

VGG16 PSD4_P8 (5, 8) 57.3 +0.35 7.57 M 48.61

VGG16 PSD4_P16 (5, 16) 56.9 +0.0 7.06 M 52.1

VGG16 PSD2_P8 (7, 8) 55.9 +1.95 4.71 M 68.1

VGG16 PSD2_P16 (7, 16) 55.5 +1.55 3.99 M 72.92

VGG16 PSD1_P8 (8, 8) 55.3 +3.55 3.27 M 77.78

VGG16 PSD1_P16 (10, 16) 55.1 +3.3 2.46 M 83.33

VGG16 PSD4_P4 (4, 4) 57.3 +0.35 8.6 M 41.67

VGG16 PSD2_P6 (6, 6) 56.3 +2.35 5.18 M 64.81

VGG16 PSD1_P9 (9, 9) 55 +3.2 3.09 M 79

ResNet18 PSD4_P8 (5, 8) 61.8 -0.09 5.82 M 47.83

ResNet18 PSD4_P16 (5, 16) 61.7 -0.23 5.43 M 51.26

ResNet18 PSD2_P8 (7, 8) 60.6 -0.13 3.68 M 67

ResNet18 PSD2_P16 (7, 16) 60.2 -0.48 3.15 M 71.78

ResNet18 PSD1_P8 (8, 8) 60.0 +1.15 2.62 M 76.56

ResNet18 PSD1_P16 (10, 16) 59.0 +0.15 2.01 M 82.02

ResNet18 PSD4_P4 (4, 4) 62.9 +1.0 6.58 M 41

ResNet18 PSD2_P6 (6, 6) 60.5 -0.23 4.04 M 63.8

ResNet18 PSD1_P9 (9, 9) 59.6 +0.75 2.48 M 77.77

9. We consider FLOPs associated with only the convolution layers
because they generally represent the vast majority of FLOPs.

10. For the CIFAR-10 dataset we obtained similar results, with
ResNet18_pSC4_P8 exceeding the baseline performance with an aver-
age test accuracy of 92.95%.
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when the FC kernels are placed periodically, with period
PD, in between sparse kernels with no pre-defined KVS or ker-
nel variants (as described in Section 5.2). Note, as with the
networks described in Section 5.2, the lack of structure

makes these models have higher indexing overhead com-
pared to the periodic models analyzed above.

5.5 Performance Comparison With ShuffleNet
and MobileNetV2

Because ShuffleNet [31] and MobileNetV2 [30] are two
widely-accepted low-complexity CNNarchitectures, we com-
pared them with our proposed pre-defined periodic sparse
models that have similar or fewer FLOPs.11 In particular,
Fig. 11a shows that for CIFAR-10 the ResNet18_PSD1_P16
increases accuracy to 92% compared to the baseline Mobile-
NetV2 (ShuffleNet) accuracy of 90.3% (�89%). Note that our
obtained accuracies are also superior than reported in [47]
and only around 1% less than the accuracy reported in [48]
which was trained for 180 additional epochs. The pre-defined
sparse CNN model VGG16_PSD1_P8 With 0.073 G FLOPs,
has approximately 1:24� (1:34�) fewer computation com-
plexity yet still outperforms MobileNetV2 (ShuffleNet) in
terms of accuracy. For Tiny ImageNet, as shown in Fig. 11b,
our best classifyingmodel provides an accuracy improvement
of 3.2% with only 4% (2.6%) increased complexity compared
toMobileNetV2 (ShuffleNet).

Moreover, as we can see from Figs. 12a, and 12b, with
2:42� (1:08�) fewer parameters our proposed models per-
form similar to ShuffleNet for Tiny ImageNet (CIFAR-10).
Similarly, the parameter requirement of our proposedmodels
with similar accuracy as MobileNetV2 are 1:15�, and 2:38�
lower for CIFAR-10 and Tiny ImageNet, respectively.12

Fig. 10. Test accuracy versus FLOPs count plots for different datasets on different architectures: CIFAR-10 on (a) VGG16, (b) ResNet18 variants;
Tiny ImageNet on (c) VGG16, (d) ResNet18 variants.

TABLE 10
Parameters Reduction and Corresponding Normalized
Storage Requirement Including Indexing Overhead

for Four VGG16 Variants With Both CSRP and
CSR Format of Compressed Storage

No. Model Model param.

reduction (%)

Normalized param.

count, using CSRP

Normalized param.

count, using CSR

1 VGG16_PSD4_P8 48.61 0.66 0.85

2 VGG16_PSD4_P16 52.10 0.69 0.81

3 VGG16_PSD1_P8 77.78 0.34 0.42

4 VGG16_PSD1_P16 83.33 0.30 0.35

TABLE 11
Test Accuracyn of Boosting as a General

Method to Improve Accuracy

Model (KVS, PD) Top 1

acc ð%Þ
Parameters Parameter

reduction (%)

VGG16 pSC4_P8 (–, 8) 56.6 7.57 M 48.61

VGG16 pSC4_P16 (–, 16) 56.2 7.06 M 52.1

VGG16 pSC2_P8 (–, 8) 56.6 4.71 M 68.1

VGG16 pSC2_P16 (–, 16) 56.4 3.99 M 72.92

VGG16 pSC1_P8 (–, 8) 55.5 3.27 M 77.78

VGG16 pSC1_P16 (–, 16) 54.8 2.46 M 83.33

ResNet18 pSC4_P8 (–, 8) 61.8 5.82 M 47.83

ResNet18 pSC4_P16 (–, 16) 62.3 5.43 M 51.26

ResNet18 pSC2_P8 (–, 8) 61.3 3.68 M 67

ResNet18 pSC2_P16 (–, 16) 60.5 3.15 M 71.78

ResNet18 pSC1_P8 (–, 8) 59.8 2.62 M 76.56

ResNet18 pSC1_P16 (–, 16) 59.2 2.01 M 82.02

Dataset used here is Tiny ImageNet.

11. Note that we kept the hyperparameters for MobileNetV2 train-
ing the same as ResNet18 except the weight decay which was set to 0 as
recommended by the original papers [30].

12. These values can be translated to the normalized parameter
count with the help of the formulas in Table 4.
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5.6 Performance Evaluation on Networks Models
With Scaled DownWidth

Squeezing the network layers, i.e., reducing the number of
channels per 3D filter by a factor of a (<1.0), popularly
known as the width multiplier, is another simple technique
to reduce the network’s FLOPs and storage requirement
[29], [41], [49]. To further establish the idea of the pre-
defined periodic sparsity, we apply our proposed kernels in
squeezed variant of the ResNet18 architecture with an a of
0.5. The important network model parameters of the
squeezed variants of ResNet18 and MobileNetV2 models
are described in Table 12. With the same hyperparameter
settings as stated in Section 5.1, the baseline accuracy for
ResNet18 with a = 0.5 are 91.1, and 59.1% for CIFAR-10,
and Tiny ImageNet, respectively. We trained several var-
iants of this squeezed model with KSS values of 4, 2, and 1,
each with the fully connected kernel repeating after every 8
and 16 kernels. Fig. 13 shows our proposed variants of
squeezed ResNet18 consistently outperforms both Mobile-
NetV2_0.75 and MobileNetV2 in classification accuracy,
keeping the number of FLOPs similar or lower. In particu-
lar, Fig. 13a shows that on CIFAR-10 dataset, to provide
similar accuracy the squeezed ResNet18 with KSS of 2 and
periodicity of 16 requires 2:36� fewer FLOPs compared to
MobileNetV2. Also, the ResNet18 variant that requires the
least number of FLOPs, provides �1% improved accuracy
with 2:6� fewer computations compared to MobileNetV2_
0.75. A similar trend is observed for Tiny ImageNet, as
shown in Fig. 13b. Averaged over the two datasets, the pro-
posed squeezed ResNet18 variants provides similar accu-
racy with 2:42�, and 2:37� fewer FLOPs compared to
MobileNetV2_0.75 and MobileNetV2, respectively. On the
same datasets, when we constrain the number FLOPs to
be similar, pre-defined periodic sparsity can provide an
average accuracy improvement of �3:16% and �2:48%,

compared to MobileNetV2 with a of 0.75 and 1.0, respec-
tively. The model parameter reduction factors are propor-
tional to the computation reduction and as the ResNet18_0.5
model has comparable parameters as MobileNetV2, advan-
tage in storage for the sparse versions of ResNet18_0.5
is quite clear, and thus not discussed in details for
brevity’s sake.

6 CONCLUSION

This paper showed that with pre-defined sparsity in convo-
lutional kernels the network models can achieve significant
model parameter reduction during both training and infer-
ence without significant accuracy drops. However, manag-
ing sparsity requires matrix indexing overhead in terms of
storage and energy efficiency. To address this shortcoming,
we added periodicity to the sparsity, periodically using
same sparse kernel patterns in the convolutional layers, sig-
nificantly reduce the indexing overhead.

Furthermore, to deal with the performance degradation
due to pre-defined sparsity, we introduced a low-cost net-
work architecture modification technique in which FC ker-
nels are periodically inserted in between sparse kernels.
Experimental results showed that, compared to the sparse-
periodic variants, this boosting technique improves average
classification accuracy by up to �2:3%, averaged over two
periodicity of 8, and 16 in ResNet18 and VGG16 architecture
on CIFAR-10 and Tiny ImageNet. We also demonstrated the
merits of the proposed architectures with squeezed variants
of ResNet18 (width multiplier <1.0) and have shown it to
outperform MobileNetV2 by an average accuracy of �2:8%
with similar FLOPs.

Our future work includes exploring additional forms of
compressed sparse representations and their hardware sup-
port. Lastly, we note that much of our findings are empirical
in nature. Finding a more theoretical basis that can motivate
and guide the use of periodic pre-defined sparsity in deep
learning is also an important area of future work.

Fig. 11. Performance comparison of our proposed architectures that have similar or fewer FLOPs than ShuffleNet and MobileNetV2 with comparable
or better classification accuracy on (a) CIFAR-10 and (b) Tiny ImageNet.

Fig. 12. Comparison of the number of model parameters of the network
models described in Fig 11 for (a) CIFAR-10 and (b) Tiny ImageNet
datasets.

TABLE 12
CONV Layer Channel Width Parameters With Different

a Values of the Network Models

Name a Convolution layer different channel sizes

ResNet18 1.0 [64, 128, 256, 512]
ResNet18_0.5 0.5 [32, 64, 128, 256]
MobileNetV2 1.0 [16, 24, 32, 64, 96, 160, 320]
MobileNetV2_0.75 0.75 [12, 18, 24, 48, 72, 120, 240]
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