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Two-qubit entangling gates within arbitrarily long chains of trapped ions
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Ion trap quantum computers are based on modulating the Coulomb interaction between atomic ion qubits
using external forces. However, the spectral crowding of collective motional modes could pose a challenge to
the control of such interactions for large numbers of qubits. Here, we show that high-fidelity quantum gate
operations are still possible with very large trapped ion crystals by using a small and fixed number of motional
modes, simplifying the scaling of ion trap quantum computers. We present analytical work that shows that gate
operations need not couple to the motion of distant ions, allowing parallel entangling gates with a crosstalk
error that falls off as the inverse cube of the distance between the pairs. We also experimentally demonstrate
high-fidelity entangling gates on a fully connected set of seventeen 171Yb+ qubits using simple laser pulse shapes
that primarily couple to just a few modes.
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I. INTRODUCTION

The central challenge in scaling a quantum computer is to
increase the entangling quantum gate performance while more
qubits are added to the system. Trapped ion qubits are well
known leaders in both coherence properties [1] and entangling
gate fidelity [2,3]. This allows ion trap systems to scale be-
cause their atomic clock qubits are almost perfectly replicable
and have negligible idle errors [4]. Trapped ion qubits also
have long-range interaction graphs [5,6], provided by optical
forces that modulate the Coulomb-coupled motion of a crystal
of ions [7–10]. Owing to the added complexity of the motion
of large chains of trapped ion qubits, it might be expected
that the speed or control of gates might be compromised. In
this manuscript, we show there is no fundamental difficulty
in extending high-fidelity entangling gates to arbitrarily long
chains of ions, as the interactions can take on a local character.

Quantum entangling gates between trapped ion qubits in
a single crystal or chain are mediated by the Coulomb-
collective phonon modes of motion through qubit state-
dependent forces. Each phonon mode is densely connected to
all qubits via bosonic quasiparticles [11], allowing any qubit
to be entangled with any other qubit in the crystal. However,
this requires that each phonon mode be disentangled with the
qubits after the gate operation. One way to accomplish this is
to resolve just a single mode of motion that mediates the in-
teraction [7], but this generally slows the gate speed for larger
ion crystals due to spectral crowding of the normal modes.
Alternatively, many modes can be used to maintain gate speed,
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requiring that the optical force be modulated in a particular
way to disentangle each of the modes after the gate operation
[6,12–16]. This enhances the scalability of ion trap systems,
even when considering higher-level modular scaling tech-
niques of ion shuttling [17] and photonic interconnects [18].

In the regime where many modes are excited during a
gate, the force envelope is precalculated by designing and
optimizing a pulse shape that is constrained to produce the de-
sired entanglement and decouple the qubits from the motional
modes. This approach increases the classical complexity of
the optical force pattern required to perform the gate in
the presence of n modes, ranging between O(n) and O(n2)
[14,15], although there are also methods that scale indepen-
dent of system size [16]. In addition, as ions are added to
the crystal, the transverse phonon modes become more tightly
packed around the highest frequency mode. This increases the
sensitivity of the gate fidelity to noise or drifts in the phonon
mode frequencies. Here, we show that high-fidelity parallel
gates can be performed even on an infinitely long chain by
considering only a local set of ions. We also present experi-
mental results on a 17-ion chain with small interion distances
where frequency-crowding problems are circumvented.

We create an Ising-type interaction [8–10] by off-
resonantly driving phonon modes of the ionic crystal
near sidebands of transverse motion. The qubit-phonon
Hamiltonian in general takes the form [19]

H =
∑
j,m

η j,m f j (t )(a
†
me

iωmt + ame
−iωmt )σ x

j (1)

for ion j and collective oscillation mode m along the laser’s
wave vector k (for two-photon stimulated Raman forces with
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wave vectors k1 and k2, k = k2 − k1). The Lamb-Dicke
parameter of ion j with mode m is η j,m = b j,m

√
h̄k2/(2mωm),

where b j,m is the normal mode participation eigenvector and
k = |k|. The time-dependent laser forces on ion j are charac-
terized by the Rabi frequency f j (t ), and σ x is the Pauli spin-
flip operator in the x basis. The above Hamiltonian presumes
that the ions are confined within the Lamb-Dicke limit, but
the effects of higher-order terms in η j,m can be systematically
bounded [20].

The evolution of the above Hamiltonian after time τ fol-
lows the unitary operator

U = exp

⎛
⎝∑

j

φ jσ
x
j + i

∑
i< j

�i, jσ
x
i σ x

j

⎞
⎠, (2)

where φ j = ∑
m(α j,ma†m − α∗

j,mam) and

α j,m = − i

h̄
η j,m

∫ τ

0
f j (t )e

iωmt dt, (3)

�i, j = 1

h̄2
∑
m

ηi,mη j,m

∫ τ

0
dt1

∫ t1

0
dt2 sinωm(t1 − t2)

× [ fi(t1) f j (t2) + f j (t1) fi(t2)]. (4)

For a high-fidelity realization of the entangling gate, we
drive ions i and j, set �i, j = ±π/4, and minimize the α j,m

terms by suitable amplitude, phase, or frequency modulation
[13–16,21]. The average gate infidelity intrinsic in this gate
design from residual entanglement with the phonon modes is
approximately [20]

δF = 4

5

∑
j,m

|α j,m|2(2n̄m + 1), (5)

where n̄m is the average phonon occupancy for mode m.

II. PARALLEL GATES THEORY AND SIMULATION

In this section we demonstrate how the design of the
entangling gates in a large ion crystal is insensitive to the
distant ions and how it can be parallelized, providing a new av-
enue towards connectivity and scalability. Parallel entangling
gates have been discussed in Refs. [22,23] for arbitrary ion
pairs, but designing such parallel gates may require significant
experimental resources for long ion chains. Here, we tackle
the problem through a different approach: by considering
entangling gates on only nearby ions, distant gates can be par-
allelized without any overhead in gate design compared with
that on a small crystal. Later we will show that this can still
lead to an efficient realization of a complex quantum gate if it
can be decomposed into a few layers of local entangling gates.

We first consider an infinite ion chain with uniform inte-
rion spacing d , in order to simplify the derivation, although
neither the gate design nor its parallelization relies on these
assumptions. For realistic ion crystals, the spacing is never
uniform, but a good approximation can be achieved by adding
nonquadratic terms to the electric potential along the axial
direction [13]. Note that, for an infinite chain, a continuous
spectrum of transverse modes takes the form of sinusoidal
traveling waves. The modes can be characterized by a wave
number κ and ion position coordinate z j , with the mode vector

p1 n p2

......
(a)

(b)

FIG. 1. (a) Schematic of a long ion chain with two pairs selected
to represent a simultaneous entangling gate as described in the main
body. Note that the minimal intergate distance between pairs is n,
and p is the intragate distance between ion pairs. (b) Log-log plot for
crosstalk error ‖E‖� vs gate distance n on a 100-ion chain. The gate is
designed for a nearest-neighbor pair of ions with τ = 50 μs, nseg = 6
segments, and μ = 1.016ω1. The green line is fitted from the last five
data points. More information can be found in Appendix A.

b j,κ ∝ exp(iκz j ) and the frequency

ωκ ≈ ω1{1 − ε[ζ (3) − S(κd )]}, (6)

where ω1 is the transverse center-of-mass mode frequency and
ε = e2/(4πε0d3mω2

1 ) ∼ √
(logN )/N is a small parameter due

to the anisotropy of the linear ionic crystal and describes the
narrowness of the entire transverse spectrum [24,25]. ζ (3) ≡∑∞

j=1 1/ j
3 ≈ 1.202 and S(x) ≡ ∑∞

j=1(cos jx)/ j
3. More de-

tails can be found in Appendix A.
With the motional mode spectrum well characterized,

we now consider implementing two gates between ions
i1 and j1 and between i2 and j2 with respective in-
tragate distances p1 = |i1 − j1|, p2 = |i2 − j2|, and p =
max(p1, p2) (see Fig. 1). Illuminating all four ions simul-
taneously creates the ideal evolution operator of the form
exp(±iπ/4σ x

i1σ
x
j1 ) exp(±iπ/4σ x

i2σ
x
j2 ), as well as unwanted

gate errors. The intrinsic gate errors from Eq. (5) add cu-
mulatively for each ion and mode combination, and can be
minimized by engineering high-fidelity designs for the two
entangling gates individually [6,12–16]. From Eq. (4), we can
see that the entanglement parameter �i1, j1 only depends on
the laser forces on ions i1 and j1 and is not affected by the
laser drive on ions i2 and j2, so its value can be set to ±π/4
by design; the same argument holds for �i2, j2 . However,
there are four additional crosstalk terms between the intergate
ion pairs. Because all these entangling operators commute
with each other, the nominal evolution of pairs {i1, j1} and
{i2, j2} (including the intrinsic errors from the gate design) are
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FIG. 2. Partial illustration of the scheme to parallelize gates.
(n + p) layers are needed for all possible pairs of ions at an intragate
distance of p while maintaining an intergate distance of n between
any two pairs. For all possible gates whose distance is less than or
equal to p, we need O[p(n + p)] layers in total.

accompanied by an additional unitary operator C(ρ) = VρV †

with

V = exp

⎡
⎣i

∑
r=i1, j1

∑
s=i2, j2

�r,sσ
x
r σ x

s

⎤
⎦. (7)

We characterize the net error in the parallel gates using the
diamond norm metric because it bounds the error rate [26]
and includes coherent errors [27]. The diamond norm of the
error E ≡ C − I is bounded by crosstalk terms as 1

2‖E‖� �

|�i1,i2 | + |�i1, j2 | + |� j1,i2 | + |� j1, j2 | [28], and we say that
two entangling gates can be parallelized if ‖E‖� 
 1.

We next quantify crosstalk errors in the context of two
parallel gates by considering how the entanglement parameter
�i, j scales with n, the minimal intergate distance between
ion pairs. While the derivation of Eq. (4) assumes real mode
vectors b j,k , complex mode vectors considered in this infinite
chain limit lead to a similar expression that can be shown to
decay as 1/n3 (see Appendix A for more details). Therefore,
when two gates are applied simultaneously, the error due to
the parallelization of the gates is

‖E‖� � 2π (p/n)3. (8)

This analytical result shows that simultaneous gates will
create significant crosstalk entanglement if p ∼ n, but this
unwanted entanglement falls off with the cube of the distance
between the two pairs. This is supported by our numerical
simulations on a finite length crystal presented in Fig. 1(b)
without the approximations made in the derivation. We con-
sider a finite chain of N = 100 ions with a uniform spacing
d = 8 μm and a highest transverse normal mode frequency
ω1 = 2π × 3 MHz. A gate is designed for a nearest-neighbor
ion pair with nseg = 6 amplitude segments, gate time τ =
50 μs, and detuning from qubit resonance μ = 1.016ω1. This
detuning is slightly higher than the highest (in phase) normal
mode sideband. (As we show in Appendix A, the gate design

(a)

(b)

3.046 MHz 3.022 MHz 2.998 MHz 2.969 MHz 2.894 MHz2.935 MHz

x (arb units)

p 
(a

rb
 u

ni
ts

)

FIG. 3. (a) Frequency and amplitude modulation are plotted for the experimental gate performed on a chain of 17 ions. Phase-space
trajectories are closed by changing the frequency modulation, while the amplitude modulation is designed to prevent unwanted Fourier
components in the qubit drive. (b) Trajectories of ions through phase space during the gate depicted in (a). Each phonon mode is labeled
by its frequency under its respective phase-space plot. The majority of entanglement comes from the geometric phase accumulated when
coupling with the two–five highest energy phonons. The rest of the phonons are relatively unexcited and only the highest energy six phonon
modes are plotted. The Lamb-Dicke (LD) parameter used for all these plots is based on the common-mode LD parameter.
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is not sensitive to the position of the ion pairs inside the
chain). We apply the Ising gate sequence onto ions i1 = 20
and j1 = 21 in the ion chain as well as ions i2 = 22, . . . , 71
and j2 = i2 + 1 (we use the central part of the chain to avoid
boundary effects on the scaling). At every distance between
the pairs of ions, n = |i2 − j1|, we calculate the error due to
the crosstalk terms; the 1/n3 scaling is clear for large n; see
Fig. 1(b). Note that here we assume the same gate design for
the two parallel gates only for the convenience of evaluating
�i, j [Eq. (4)] numerically. The derivation of the 1/n3 scaling
does not rely on this assumption and holds for parallelizing
two different entangling gates.

The result can directly be applied to parallelize multiple
gates. Suppose we want to build a quantum circuit with Ising
gates between all possible ion pairs whose intragate distance
is less than or equal to p. We can divide these gates into
O[p(n + p)] layers in such a way that the gates are separated
by a distance of at least n in each layer, as depicted in Fig. 2.
In this way, the error per gate in each layer will be O[(p/n)3].
Hence for a given error rate per gate ε, the number of required
layers will be independent of the size of the crystal, a criterion
for scalability. In Appendix A, we will also show that the same
scaling law holds for a 2D hexagonal lattice, which suggests
that this scalability may be universal and can be applied to
more general ion crystals.

Finally, insensitivity of an entangling gate to operations
on other distant ions suggests that we can also neglect these
ions when designing the gate. Therefore, we only need to
consider a small number of ions and their oscillation modes
in Eqs. (3) and (4). This is supported by a numerical example
in Appendix A and the experiment below, and permits a
scalable method for designing gates in a large crystal where
full connectivity may be impractical due to the falloff of the
Coulomb interaction with distance.

III. GATES ON 17-ION CHAINS

We demonstrate a component of this scalability by operat-
ing high-fidelity gates between ions in a long chain with rela-
tively simple pulse sequences that are designed while ignoring
far-detuned motional modes. We perform the Ising gates on
pairs of ions in a system of 17 tightly confined 171Yb+qubits.
Details of the atomic system and the experimental apparatus
are described in Appendix B.

Using experimentally measured transverse phonon mode
frequencies for the six highest-energy modes, amplitude and
frequency modulated gates are calculated for chains of 17
ions using the methods described in Ref. [29]. Only a small
subset of the 17 modes is used to calculate the gates, which
tests the ability of the solution generator to produce high-
fidelity solutions with limited knowledge of the system. The
modulation is graphically depicted in Fig. 3. By allowing
the drive frequency to vary with time, the several degrees
of freedom needed to satisfy the requirements for the Ising
gate are fulfilled. Therefore, the dependence on ωm in Eq. (3)
becomes time dependent, as described in detail in Ref. [29].

During the Ising gate, the lasers transfer momentum into
the Coulomb crystal. The excited phonon’s trajectory through
phase space is determined in part by the detuning of the
laser drive, as seen in Eq. (3). Since the ion spacing is much

FIG. 4. Bare gate and parity scan data are plotted for two qubit
gates on ions {5,13} and {7,9} in a 17 ion chain. The fidelities are
97(1)% and 95(1)%, respectively. The amplitude was deduced from
a least-squares fit and error bars are statistical errors based on a
binomial distribution of individual qubit states.

lower than previous experiments [6,30,31], the spectral gap
between transverse mode frequencies is nearly twice as large:
25 kHz on average. Therefore, the nominal frequency of the
calculated gate is far detuned from most of the modes even
though it sits inside the mode spectrum. This can be seen by
the phase-space plots of the motional excitation, α j,m, for one
of the selected ions as shown in Fig. 3, which are already
negligibly small for the sixth phonon mode due to the large
detuning. The lower frequency phonon modes have even more
tightly confined trajectories.

We perform Ising gates on two particular pairs of the 17
ions in two separate experiments: pairs {5,13} and {7,9}.
We observe fidelities of 97(1)% and 95(1)%, respectively,
compared with a theoretical maximum fidelity of (1–4.7) ×
10−4 (fundamental limits of spontaneous emission are much
lower) (See Fig. 4). These results are corrected for state
preparation and measurement errors of ≈1.8%. We calculate
the gate fidelity from population measurements and the parity
oscillation amplitude with the phase of a global qubit rotation
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[14,32]. The observed fidelities are consistent with estima-
tions of optical crosstalk and laser intensity noise, which
is exacerbated over typical setups given the relatively small
ion-ion spacing in the crystal.

IV. OUTLOOK

In the limit of large chains, where all ions are coupled
to all motional modes with similar strength, we theoretically
show the ability to entangle multiple short-distance ion pairs
simultaneously with minimal crosstalk entanglement. In con-
trast, when only a minority of motional modes are coupled,
it is more useful to entangle arbitrary pairs of ions over
long distances, as we have demonstrated experimentally. Both
results suggest that adding ions to a trap need not affect
gate fidelity. The gates performed on strings of 17 ions are
comparable to those obtained on the very same hardware
with few ions in the trap; with only five ions, fidelities of
roughly 98% were recorded in Ref. [6]. Similarly, the gate
used for the simulations in the Appendixes does not change
if additional ions are added into the trap. These results point
to the inherent scalability of performing entangling gates on
trapped ion qubits. Additionally, the work presented in this
manuscript suggests a useful approach to minimizing the ef-
fects of background heating on the fidelities of the entangling
gates [33]. Most of the heating occurs on the center-of-mass
(c.m.) motional mode in harmonic traps, which can be avoided
using the methods in this manuscript. If the trapping potentials
are anharmonic, the heating rates for other modes are higher
and this benefit is obfuscated but still present.
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APPENDIX A: THEORETICAL DETAILS
ON PARALLEL GATES

1. 1D uniform chain

Consider an infinite ion chain along the z axis with uniform
spacing d . The ions can be labeled by integers with ion j
located at z j = jd . Suppose the trapping potential along the
x direction is harmonic with trapping frequency ω1; then the
transverse oscillation modes in this direction can be expressed
as traveling waves

b j,κ = 1√
N
eiκz j , (A1)

where N is the number of ions and we will later take the limit
N → ∞. The mode frequencies are

ωκ = ω1

√√√√1 − e2

4πε0d3mω2
1

∑
j =0

1 − cos( jκd )

| j|3

= ω1

√
1 − e2

4πε0d3mω2
1

2[ζ (3) − S(κd )], (A2)

where m and e are the mass and the charge of the ion, ζ (3) ≡∑∞
j=1 1/ j

3 ≈ 1.202 is the Riemann zeta function, and S(x) ≡∑∞
j=1(cos jx)/ j

3.
Define ε = e2/(4πε0d3mω2

1 ), which is typically small. We
get

ωκ ≈ ω1{1 − ε[ζ (3) − S(κd )]}, (A3)

where ω1 is the transverse center-of-mass mode frequency.
As is mentioned in the main text, our expression for the
entanglement parameter Eq. (4) needs to be modified for the
complex mode vectors

�i, j = 1

N

∑
κ

g2κ

∫ τ

0
dt1

∫ t1

0
dt2{[ fi(t1) f j (t2) + f j (t1) fi(t2)]

× sinωκ (t1 − t2) cos κ (z j − zi ) + [ fi(t1) f j (t2)

− f j (t1) fi(t2)] cosωκ (t1 − t2) sin κ (z j − zi )}. (A4)

Here we separate the mode vector b j,κ from η j,κ appearing in
Eq. (4) as η j,κ = gκb j,κ with gκ =

√
h̄k2/(2mωκ ), since we

already have the analytical expression for the mode vectors.
We further replace 1

N

∑
κ with d

2π

∫
dκ and change the

order of integration. Without loss of generality we assume
j > i and define z j − zi = nd . Because we are interested in
the scaling with n, we only need to evaluate∫ π

−π

d (κd )g2κ sinωκ (t1 − t2) cos nκd (A5)

and ∫ π

−π

d (κd )g2κ cosωκ (t1 − t2) sin nκd, (A6)

while the rest of �i, j only depends on the laser sequence on
the ions but not on their distance. Here we calculate the first
term as an example; the second one can be treated similarly.

Let us define φ = ω1(t1 − t2)[1 − εζ (3)] and λ =
εω1(t1 − t2). Lamb-Dicke parameter gκ depends on κ as
g2κ = g20ω1/ωκ , where g0 is a constant independent of κ .
Hence we can approximate gκ by g0 with an error of ε. Then
we have∫ π

−π

d (κd ) sinωκ (t1 − t2) cos nκd

=
∫ π

−π

dx{sin φ cos[λS(x)] + cosφ sin[λS(x)]} cos nx.

(A7)

Again we consider the first term as an example, while the
second term can be calculated in the same way. Plugging in
the series expansion forms cos x = ∑∞

α=0(−1)αx2α/(2α)! and
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S(x) = ∑∞
β=1 cosβx/β3, we get

∫ π

−π

dx cos[λS(x)] cos nx

=
∞∑

α=0

(−1)α

(2α)!

∫ π

−π

dx

⎛
⎝λ

∞∑
β=1

cosβx

β3

⎞
⎠

2α

cos nx. (A8)

Now we argue that this expression has a scaling of 1/n3.
First, note that for a given α, the integrand can be expanded
into a series

∑
{β j}

λ2α cos nx
2α∏
j=1

cosβ jx

β3
j

, (A9)

with each term being a product of (2α + 1) cosine functions
and the integration over their common period; therefore, the
integral is nonzero only if a resonance condition n ± β1 ±
β2 ± · · · ± β2α = 0 is satisfied, and in such cases it can be
loosely bounded by∣∣∣∣∣∣

∫ π

−π

dx cos nx
2α∏
j=1

cosβ jx

∣∣∣∣∣∣ �
∫ π

−π

dx × 1 = 2π. (A10)

Furthermore, the dominant term of Eq. (A9) should con-
tain one and only one β j of the order O(n); all the other
(2α − 1) terms of β j’s must be bounded by a constant, say,
C/2; otherwise, their coefficients will decay faster than 1/n3.
Admittedly, for α of the order O(n) all the β j’s can be of
the order O(1), but then the 1/(2α)! factor in Eq. (A8) itself
decays faster than 1/n3.

There are in total 2αC2α−1 such terms in Eq. (A9): first
we choose which of the 2α terms of β j’s takes the order of
O(n); then we assign the other (2α − 1) terms of β j’s within
[1,C/2] and choose their signs in the resonance condition to
be positive or negative; once we determine these values, the
last one is automatically fixed from the resonance condition.
Therefore, finally Eq. (A8) is bounded by

2π
∞∑

α=1

2αC2α−1λ2α

(2α)!

1

n3
= 2πλ sinh λC

n3
∝ 1

n3
. (A11)

Note that λ actually depends on t1 and t2, but here we only
consider the scaling with respect to n. Nevertheless, for typical
parameters, |λ| � εω1τ is limited to the order of O(1).

A similar argument applies to the other terms in Eq. (A6)
and Eq. (A7); therefore, we conclude that the entanglement
parameter �i, j decays with the ion spacing n = |i − j| as
1/n3. We also show some numerical examples to verify this
scaling at the end of this Appendix.

2. 2D hexagonal lattice

Now we generalize our results to 2D. Due to the Coulomb
interaction between the ions, a 2D ion crystal usually ap-
proximates a hexagonal lattice. Therefore, here we consider
a hexagonal lattice with translational symmetry, although the
same analysis can also be applied to other types of 2D lattices.

Let the crystal lie on the x-y plane. It can be described by
its lattice vectors

a1 = d (1, 0, 0), a2 = d

(
1

2
,

√
3

2
, 0

)
, (A12)

with the corresponding reciprocal vectors

b1 =
(
1,− 1√

3
, 0

)
, b2 =

(
0,

2√
3
, 0

)
. (A13)

The transverse oscillation modes in the z direction can be
used for the entangling gates [34]. In this case the mode vector
for a wave vector κ = κ1b1 + κ2b2 (κ1, κ2 ∈ (−π/d, π/d]) is
given by

zκαβ ∝ exp[i(ακ1d + βκ2d )] (A14)

for the ion at position rαβ = αa1 + βa2.
The corresponding mode frequency is

ωκ = ωz

√√√√1 − e2

4πε0d3mω2
z

∑
(α,β )

′ 1 − cos κ · rαβ

|αa1 + βa2|3

= ωz

√√√√1 − e2

4πε0d3mω2
z

∑
(α,β )

′ 1 − cos(ακ1d + βκ2d )

(α2 + β2 + αβ )3/2

≈ ωz

⎡
⎣1 − e2

4πε0d3mω2
z

∑
(α,β )

′ 1 − cos(ακ1d + βκ2d )

2(α2 + β2 + αβ )3/2

⎤
⎦,

(A15)

where
∑′ means that the two indices for summation cannot

both be zero and ωz is the secular frequency in the z direction.
Following the same derivation as before, to study the

scaling of the crosstalk error versus the distance on the lattice
represented by na1 + ma2, we need to evaluate some expres-
sions like

∞∑
α=0

(−1)α

(2α)!

∫ π

−π

dx
∫ π

−π

dy

⎡
⎣λ

2

∑
β,γ

′ cos(βx + γ y)

(β2 + γ 2 + βγ )3/2

⎤
⎦

2α

× cos(nx + my). (A16)

Again for a given α we can expand the integrand into series:

∑
{β j ,γ j}

(
λ

2

)2α

cos(nx + my)
2α∏
j=1

cos(β jx + γ jy)(
β2
j + γ 2

j + β jγ j
)3/2

(A17)

and we get two resonance conditions n ± β1 ± · · · ± β2α =
0 and m ± γ1 ± · · · ± γ2α = 0, both of which need to be
satisfied for a nonzero integral.

Without loss of generality, we can assume |n| � |m|. Con-
sider two different cases: (1) only |n| goes to infinity and
|m| stays constant. Then we go back to the previous 1D
case and the coefficient decays as 1/n3. (2) Both |n| and
|m| go to infinity. Then again we argue that, for any given
α, the 2α terms of {β j, γ j} can only have one term of the
order O(|n|) and O(|m|); all the other β j’s and γ j’s need to
be bounded by constant. Otherwise, the coefficient for their
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FIG. 5. (a) Optimal gate infidelity vs laser detuning μ for n = 6
segments and a total gate time τ = 50 μs. (b) Rabi frequencies
for each segment when μ is chosen at the minimizer of (a). The
gate design is optimized through amplitude modulation [20]. There
are three curves in each plot: blue for N = 50 ions and ion pair
25 and 26, green for N = 50 ions and ion pair 10 and 11, and
red for N = 100 ions and ion pair 50 and 51. All these curves
coincide within the resolution of the figure. Here we choose an
ion spacing d = 8 μm, Lamb-Dicke parameter g0 = 0.1, transverse
trapping frequency ω1 = 2π × 3 MHz, and 0.5 phonon per mode.

product will decay faster than 1/(n2 + m2 + nm)3/2. If we
count the number of such terms and add all of them together,
we will get a scaling of 1/(n2 + m2 + nm)3/2, that is, a cubic
decay with the distance.

3. Numerical results

In this section we present some numerical results for a 1D
ion chain. We have proven that the distant ions have little
effect on the fidelity of an entangling gate, which suggests
that when designing the gate we can ignore all the ions far
away and focus on a finite number of ions. This is verified
numerically by the example shown in Fig. 5, where we
consider gate design in uniform ion chains with d = 8 μm
but varying total number of ions and the position of the ion
pair inside the chain. The optimal gate design and the intrinsic
infidelity for these cases are almost identical as they overlap
with each other in the plot.

In the main text we show the scaling of the crosstalk error,
‖E‖�, versus gate distance, n, for a gate designed for a nearest-
neighbor ion pair. Here we plot results for entangling gates
designed for ion pairs at a distance of 3 and 5 in Fig. 6 and

(a) (b)

FIG. 6. |�i, j | vs n = | j − i| for (a) a gate designed for two
ions at a spacing of three separations with τ = 60 μs, nseg = 7
segments, μ = 1.01403ω1, and (b) a gate designed for two ions at
a spacing of five separations with τ = 100 μs, nseg = 10 segments,
μ = 1.01387ω1. The green lines are fitted from the last five data
points in each figure.

observe a similar scaling of 1/n3. For simplicity we directly
plot �i, j versus n = | j − i|, while ‖E‖� can be bounded by
four such (i, j) pairs (see the main text).

APPENDIX B: EXPERIMENTAL APPARATUS

The ions are confined in an rf Paul trap with a trans-
verse trapping frequency of ω1 = 2π × 3.04 MHz. The
qubit states are defined by two hyperfine-split states in the
2S1/2 ground-level manifold as |0〉 = |F = 0,mF = 0〉, |1〉 =
|F = 1,mF = 0〉. The qubit splitting is 2π × 12.642821 GHz
and is nearly magnetic-field insensitive [35]. We implement
coherent operations on the ions using counterpropagating
optical Raman beams at 355 nm that create a beat-note
resonant with the qubit [36]. One Raman beam illuminates
the entire chain, while the other is split into individual beams
that are each controlled by unique channels of a multichannel
acousto-optic modulator (AOM) and are then focused onto
single ions [6]. In this way, we effect individual addressing
of ion numbers 5, 7, 9, 11, and 13 in the chain with full
amplitude, frequency, and phase control. For this experiment,
we designed the harmonic confinement in the axial direction
such that the ion spacing for the middle nine ions is roughly
2.5μm. This allows us to align the five individual laser beams,
which are 5 μm apart, onto the five ions. These ions are also
matched onto individual channels of a multichannel photo-
multiplier tube (PMT) to accomplish individual detection.
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