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Abstract—Biological memory structures impart enormous 

retention capacity while automatically providing vital functions 
for chronological information management and update resolution 
of domain and episodic knowledge. A crucial requirement for 
hardware realization of such cortical operations found in biology 
is to first design both Short-Term Memory (STM) and Long-Term 
Memory (LTM). Herein, these memory features are realized via a 
beyond-CMOS based learning approach derived from the 
repeated input information and retrieval of the encoded data. We 
first propose a new binary STM-LTM architecture with composite 
synapse of Spin Hall Effect-driven Magnetic Tunnel Junction 
(SHE-MTJ) and capacitive memory bit-cell to mimic the behavior 
of biological synapses. This STM-LTM platform realizes the 
memory potentiation through a continual update process using 
STM-to-LTM transfer, which is applied to Neural Networks based 
on the established capacitive crossbar.  We then propose a 
hardware-enabled and customized STM-LTM transition 
algorithm for the platform considering the real hardware 
parameters. We validate the functionality of the design using 
SPICE simulations that show the proposed synapse has the 
potential of reaching ~30.2pJ energy consumption for STM-to-
LTM transfer and 65pJ during STM programming. We further 
analyze the correlation between energy, array size, and STM-to-
LTM threshold utilizing the MNIST dataset.  

Index Terms— Long-Term Short-Term Memory, SHE-MTJ, 
Capacitive Crossbar, Beyond-CMOS devices, Compute in 
Memory. 

I. INTRODUCTION 
euromorphic computing offers potential advantages to 
various applications including high performance, robust 

learning capabilities, and a more efficient intrinsically-executed 
approach to processing. Such a computing paradigm is not 
limited to the separation of memory and processing, and has a 
high level of parallelism unlike conventional von Neumann 
architectures [1]. With the significant growth in neuromorphic 
computing research, various biologically inspired architectures 
and synaptic learning rules, such as Spike Time Dependent 
Plasticity (STDP), have been proposed [2]. However, there are 
still important but underexplored concepts motivated from 
biology, which can be emulated to improve neuromorphic 
designs in terms of performance and reliability. One vital 
example is the realization of biologically-inspired mechanisms 
of memory. Biological memory systems are extremely complex 
entities, constantly responding to a vast amount of dynamic 
multi-modal information. Collection and integration of 
temporal information is one of the fundamental parts of this 
system, which consists of two main storage mechanisms: Short-
Term memory (STM) and Long-Term Memory (LTM) [3].  

Fig. 1 shows a simplified representation of a biological 
memory, which consists of three different memory models. The 

sensory memory retains immediate information from the 
environment and is considered as the first stage of the memory, 
lasting only for a few milliseconds. This mechanism helps the 
brain to regulate the flow to avoid a flood of information. 
However, this information can be transferred to STM through 
detection and enforcement of temporal focus, once a selected 
stimulus has been cognitively perceived [4]. The STM can span 
on the order of seconds to minutes, during the interval when 
biological brains initiate memory formation via their molecular 
and cellular machinery. However, retention of information in 
STM can only be sustained by repeated stimulus. Repeated 
stimulation of synaptic structures increases the probability of 
STM to LTM transformation, a process termed consolidation 
[5]. Under requisite conditions, STM is transitioned to LTM, 
depending on the strength of molecular reactions and encoding. 
Thus, the LTM can last from months to years or become 
permanent, despite the attenuation which would occur 
otherwise without continuous stimulation [5].  

From a hardware implementation perspective, emerging 
electronic devices can offer a viable way to mimic several 
plasticity measurements observed in biological synapses as 
opposed to conventional complementary metal-oxide 
semiconductor (CMOS) circuits [6]. Memristors with resistive 
coupling have been widely exploited to implement synapses in 
addition to the integrate-and-fire capability of a McCulloch–
Pitts model neuron [7]. However, since the accessible signal 
gain and endurance in such fully-memristive networks are 
limited, other resistive paradigms such as spintronic devices 
have been taken into consideration [8]. There are a variety of 
hybrid arrangements of device technologies that can exploit 
alternative mechanisms, such as capacitive synapses used in 
place of resistive coupling, which feature an ultra-small static 
power dissipation [9-13]. In [11], a capacitive neural network 
has been proposed that utilizes a charge-based capacitor 
crossbar to perform multiply-and-accumulate (MAC) 
operation. Such designs realize the weighted summation of 
inputs through capacitive coupling and voltage division and 
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Fig. 1. The Schematic of biological multistore memory model.  
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generates the output in a read-like operation. Nevertheless, 
most of the research to realize synapse plasticity change in 
response to neuron spiking trains has been so far limited to 
long-term plasticity [14-16], while the volatility of biological 
memory has been overlooked.  

In [17] and [18] the authors show the functional resemblance 
of two different emerging devices to the short-term to long-term 
memory transition. In [18] the authors demonstrate that 
stimulating a memristor device with repeated voltage pulses can 
result in an effect analogous to memory transition in biological 
systems. A similar approach has been taken in [17] with a 
Magnetic Tunnel Junction (MTJ), where a sufficient input 
stimulus can change its magnetization. Both of these works 
have focused on implementing the memory transition process 
with a single emerging device module. Although a homogenous 
device technology approaches aim at the same behavior as 
biological memory, it does not allow data undergoing 
consolidation to be used in computation until such a transition 
has completed. Consequently, a mechanism is sought which not 
only exhibits this behavior of biological memory, but can also 
utilize the introduced data efficiently. This can be achieved by 
designing separate modules for STM and LTM in the memory 
architecture. As in [19], the researchers proposed such a design 
implemented by two separate spin Hall effect-driven Magnetic 
Tunnel Junctions (SHE-MTJs), in which the STM synapse 
potentiates the inputs with a greater probability and forgets at a 
higher rate than the LTM synapse. However, the biological 
STM-to-LTM transition process was not addressed in detail nor 
optimized for efficient processing. 

In this work, we propose an energy-efficient and 
biologically-inspired long-term and short-term memory 
architecture, to mimic both biological STM and LTM synaptic 
connections and timing dependencies of the stimuli, via volatile 
and non-volatile hybrid spin-CMOS devices with respect to the 
synaptic memory reinforcement. The key contributions of this 
work are: (1) We propose a new binary STM-LTM platform 
with composite synapse of SHE-MTJ and a capacitive memory 
bit-cell to mimic the behavior of biological synapses. Our 
design realizes the memory potentiation through continual 
update using STM-to-LTM transfer. (2) We present a hardware-
enabled STM-LTM transition algorithm for the platform 
considering the hardware parameters. (3) We explore the 
efficiency of the platform running the STM-LTM transition 
algorithm considering the correlation between energy, array 
size, and STM-to-LTM threshold. 

The remainder of the paper is organized as follows. Section 
II presents the biologically-inspired STM-LTM architecture 
and embedded memory operations. Section III delineates the 
STM-LTM transition algorithm. Section IV details the 
simulation setup and results. Section V concludes the paper. 

II. BIOLOGICALLY INSPIRED STM-LTM ARCHITECTURE  
 The proposed biologically-inspired binary STM-LTM 

memory architecture, shown in Fig. 2, consists of a 2-D array 
of memory components leveraging a pair of Volatile Memory 
(VM) and Non-volatile Memory (NVM) as the memory bit-cell 
to realize STM and LTM, respectively. The VM utilizes a 
capacitor, controlled by an access transistor, in a fashion 
analogous to a DRAM structure. The NVM is designed with a 
SHE-MTJ [20]. Each memory bit cell is connected to a Bit-Line 
(BL), Word-Line (WL), and Source-Line (SL) managed by the 
control unit’s voltage driver. The BL and WL are shared 
amongst the cells within the same row and the SL is shared 
between cells within the same column, as shown in Fig. 2, to 
allow the architecture operate in three distinct modes as 
explained in subsection II.B. 

A. Memory Units  
1) Capacitor as STM: Conventional DRAM is the most 

abundant, low-cost and simple type of memory offering 
relatively high speed and density, consisting of one access 
transistor and one capacitor as the storage element. Recently, 
several works have explored the potentials of such capacitor-
based memories in neural network applications [11, 21]. 
Training neural networks to high degrees of accuracy requires 
consecutive, small changes in weights, which NVMs are not 
ideal for them due to limited speed and endurance. Thus, 
DRAM offers a suitable mechanism for online (in situ) training 
due to its relatively high speed and symmetrical read/write with 
infinite endurance, which is a critical aspect for networks that 
necessitate constant training in an extended period such as IoT 
edge devices [12, 22]. 

In digital capacitor-based accelerators [21, 23], every 
memory bit-line can perform bitwise digital Boolean logic 
operations, where each capacitor stores a binary synaptic 
weight and so a low-bit-width and parallel computation has 
been realized. These accelerators typically do not require large 
peripheral circuits such as ADC, DAC, and router contrary to 
resistive NVM accelerators [14]. Recently, the analog 
capacitive cross-bar networks have been demonstrated greatly-
reduced static power dissipation to near-zero levels compared 
with the weighted sum of currents in a resistively coupled 
network [12, 22]. However, for such networks, the volatility of 
the capacitor can be a huge disadvantage as it will require the 
training to start over upon losing power. Thus, leakage and the 
resulting volatility will increase energy consumption while 
processing delay can be less than or equal to the total training 
time.  

Here, we aim to implement a capacitive crossbar enhanced 
with a non-volatile memory in a new fashion based on the STM-
LTM features inspired from biology. Each memory bit-cell’s 
capacitor represents a binary synaptic weight (‘1’ or ‘0’) stored 
as the “charged” or “discharged” capacitor states. The STM’s 

 
Fig. 2. The proposed STM-LTM memory architecture with VM 
and NVM components. 
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access transistor (T1 in Fig. 3(c)) is controlled by WL enabling 
selective write/read operation on the cells located within one 
row. Storing the network weights in the STM (through a write 
operation) and strengthening the memory (through STM-to- 
LTM transfer) are two crucial tasks that need to be carried out. 
For both operations, the capacitor is initially in the Precharged 
State (P.S.), i.e. the BL voltage is preset to ~ 𝑉𝑉𝑉𝑉𝑉𝑉

2
 by the voltage 

driver. To save a weight on a capacitor as tabulated in Table 1, 
the memory decoder first activates the corresponding WL and 
the BL is set to high (VDD) or low voltage (GND). This will 
provide enough bias voltage to change the capacitor data in a 
DRAM fashion. The synaptic weight representing STM will be 
then used to perform the computation or STM-to-LTM transfer.  

2) SHE-MTJ as LTM: The NVM element in the STM-LTM 
memory architecture is a spintronic device named SHE-MTJ 
that uses a stable nanomagnet (Δ>>40kT), with two CMOS 
inverters to amplify the output, as shown in Fig. 3(a). A SHE-
MTJ is a 3-terminal device, with isolated paths for write and 
read operations with lower switching energy compared to STT-
MTJs. It consists of a Heavy Metal (HM) nanowire beneath an 
MTJ with two ferromagnetic layers, called the pinned and free 
layers, separated by a thin oxide barrier [24]. The MTJ free 
layer has two different magnetization orientations, called 
parallel (P) and antiparallel (AP), that provide two different 
levels of resistance for this device. The HM can be made of β-
tungsten (β-W) or β-tantalum (β-Ta) [20] with different 
electrical characteristics. Due to the higher positive Spin Hall 
angle achieved with tungsten  [20], we modeled our device with 
this material. In order to store the data in the SHE-MTJ, the 
free-layer magnetization should be manipulated. This is 
accomplished by injecting a charge current (Ic) to HM in the +x 
(/ −x) direction as shown in Fig. 3(a). Due to spin Hall effect, Ic 
will cause an accumulation of oppositely-directed spin vectors 
on both surfaces of the HM that then generate a spin current (Is) 
and further a Spin-Orbit Torque (SOT) in +y (/ −y) direction. 
The spin current will change the magnetization configuration of 

the free layer in the ±z direction according to the direction of 
the charge current [25]. The spin Hall injection efficiency 
(PSHE) can be expressed as: 

                                         (1)                                                        

where AFM and AHM denote the adjacent free layer area and the 
cross-sectional area of HM, respectively. In equation (1), θSH 
represents the spin Hall angle, as the ratio of generated spin 
current density to the charge current density. Also, tHM and λsf 
denote the thickness of HM substrate and the spin flip length, 
respectively [26]. Fig. 3 (b) shows an equivalent read circuit of 
a SHE-MTJ. To read out the data from the SHE-MTJ, a read 
voltage is applied to sense the resistance of the device through 
realizing a resistive voltage divider. We have considered 3 
access transistors to control the functionality of the SHE-MTJ 
with respect to our volatile element as shown in Fig. 2. The T3 
and T4 transistors are devised to activate the read path and T2 
is to control NVM and VM data transfer. 

B. Circuit Architecture 
1) Computing mode using crossbar operation: In this mode, 

by activating multiple WLs simultaneously (T1 is ON in Fig. 2) 
and applying input voltages on BLs, VMs can modulate the 
input and realize the weighted summation of inputs using a 
capacitive voltage divider circuit and send it to the output 
neuron via SL, while NVM is deactivated (T2-T4 are OFF in 
Fig. 2). The control signals required for this operation are 
tabulated in Table 1. The realization of an n×m capacitive 
network inspired by [11, 12] is shown in Fig. 4. The memory 
decoder outputs are enhanced by the inverter chain (blue shaded 
area) to activate multiple WLs simultaneously. The controller 
governs the timing of the signal going through the crossbar by 
controlling the memory address and assigning suitable input 
voltages through the voltage driver. The input signals are 
encoded as voltage pulse and simultaneously charge the array 
in each capacitive node. In order to perform MAC operation, by 
applying the Vin as input signal to each row, the charges in 
capacitors will be redistributed and averaged by a reference 
capacitance and finally the output voltage can be written as 

1 sech( )s FM HM
SHE SH

c HM sf

I A tP
I A λ

θ
 

= = −  
 

Table 1: The operation modes of the STM-LTM architecture 
Operation BL WL SL wr rd 

STM Write (1 or 0) VDD or 0 VDD 0 0 0 
Computation Vneuron VDD Isum 0 0 
STM to LTM VDD /2 VDD 0 VDD 0 
LTM to STM VDD /2 VDD 0 0 VDD 

 
Fig. 3. (a) Structure of a SHE-MTJ as NVM, (b) Resistive 
equivalent read circuit of SHE-MTJ, (c) VM structure 
programming path.  

Fig. 4. Realization of the capacitive network [12] within the 
proposed LTM-STM memory architecture.  
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𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 =
∑ 𝐶𝐶𝑖𝑖,𝑗𝑗𝑉𝑉𝑖𝑖𝑖𝑖,𝑖𝑖
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑖𝑖=1

𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟
 through voltage division between the cells 

located in the same column [27]. 
2) STM to LTM transfer: One of the most significant aspects 

of memory in biological systems is STM into LTM 
consolidation after repeated use. To realize this, controller 
readily keeps the count of input voltages applied to a specific 
BL, which is implemented using a counting unit within the 
controller. Accordingly, the controller determines the 
reinforcement ratio of the synapses. As shown in Fig. 5(a), for 
STM to LTM transfer, at initial state, the BL voltage is 
precharged to ~ 𝑉𝑉𝑉𝑉𝑉𝑉

2
, while SL is grounded. Now, activating the 

WL (T1: ON), the selected cell (storing VDD or 0) shares its 
charge with the BL leading to a small deviation in the initial 
voltage of BL (𝑉𝑉𝑉𝑉𝑉𝑉

2
±δ). Then, by activating the T2 transistor by 

wr signal, the SHE-MTJ’s write circuit amplifies the δ of the 
BL voltage toward bipolar write voltage (Vwr or -Vwr) through 
voltage amplification. It is worth pointing out that wr signal is 
shared among the cells located in the same row and controlled 
by voltage driver to guarantee the simultaneous STM-to-LTM 
transfer for synapses connected to one particular neuron. Here 
the flow of write charge current through the Spin Hall Magnet 
switches the magnetization through SOT mechanism. If the 
capacitor is charged-‘1’ (/discharged-‘0’),  the SHE-MTJ write 
terminal is set to -Vwr (/Vwr) write voltage. This allows adequate 
charge current to flow from the write circuit output to the 
ground (/ground to the inverter output), changing the MTJ state 
to High-RAP (/Low-RP).  

 3) LTM to STM transfer: To retrieve the data stored in SHE-
MTJ for crossbar computation, an LTM-to-STM mode is 
considered in the architecture. As shown in Fig. 5(b), for this 
transfer, the BL voltage is first set to 𝑉𝑉𝑉𝑉𝑉𝑉

2
, while SL is grounded. 

Now, activating the WL (T1: ON), the resistance states i.e. 
High-RAP (/Low-RP) can be readout by a sensing circuit. The 
controller activates T3 and T4 transistors and a small read 
voltage is applied on the SHE-MTJ realizing a voltage divider 
between its resistance state and a fixed reference resistor. The 
amplified readout data can accordingly charge (/discharge) the 
bit-cell capacitor with regard to the control signals in Table 1.   

 

Algorithm 1: Memory Transition 
Memory Transition Based on the Time Interval: Store the high 
frequency data in the specified time interval into LTM, retrieve the 
data from LTM at the end of the refresh interval.  
input: PI: Pulse Interval, Nth: Threshold (STM to LTM) 
output: Storing data in LTM or retrieving data to STM  
1:      Initialization: PI (min), Nth 

2:      for 𝑖𝑖 ←0 to 𝑖𝑖 ≤ Wk /*Iterate over all the word lines (Wk)*/ 
3:          if (!RI)  /*  capacitive network has not reached a refresh */ 
4:                (PI (Ink), Nst) ← ctrl (Ink) /* counts the stimulations*/ 
5:                if (PI (Ink) ≤ PI (min) && Nst ≥ Nth) 
6:                  M[LTM] ← M[STM]    /*Store data in LTM */ 
7:                end if  
8:            else  
9:              M[STM] ← M[LTM]    /*Retrieve data from LTM */ 
10:          end if     
11:   end for 

 

III. STM-LTM TRANSITION 
The proposed STM-LTM architecture is optimized to 

perform two specific tasks. First, the STM-to-LTM transition is 
realized with timing constrained by the hardware parameters; 
existing capacitive networks refresh all cells at a rate 
determined by the leakiest cell in the device, which is typically 
around 64ms. Second, LTM-to-STM transition is achieved for 
computing purposes. To efficiently mimic the biological 
memory, the sub-array controller should actively keep the count 
of stimuli (inputs-Ink) received at every BL. Therefore, we 
define an STM-to-LTM threshold (Nth) that can be readily 
adjusted for energy and performance tradeoffs. Algorithm 1 
indicates the required procedure to accomplish STM-to-LTM 
transition and LTM-to-STM retrieval based on a defined time 
interval for the STM-LTM sub-array controller. The algorithm 
starts iterating on all the sub-array rows storing binary weights 
(Wk). As long as the capacitive network has not reached a 
Refresh Interval (RI), the controller counts the input data (Ink) 
applied to each row and then this data is used to analyze the 
number of stimuli (Nst) with regards to a specified Pulse Interval 
(PI). For example, Fig. 6 shows a sample PI (min) of 20ns for 
STM-LTM controller and number of stimuli recorded by it 
(Nst=3) [28]. When Nst reaches the preset Nth, the STM-to-LTM 
transition is accomplished for each synaptic weight according 
to the mechanism explained in Section II.B.2. Therefore, the 
data will be stored in LTM only when both conditions are met, 
first the pulse interval of the input is equal or less than the 
specified minimum pulse interval (PI (min)), meaning we are 
analyzing the data in a specific timeframe and second, the 
number of stimuli is equal or greater than the specified 

 
Fig. 6. A sample pulse interval (PI (min)) of 20ns and number of 
stimuli recorded by STM-LTM memory controller. When Nst 
reaches the preset Nth, STM-to-LTM transition is accomplished. 

 
Fig. 5. (a) STM to LTM transfer and (b) LTM to STM transfer 
modes. 
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threshold. On frequent stimulations, the STM-to-LTM transfer 
can be successfully accomplished according to rehearsal 
(reinforcement) shown in Fig. 1. Additionally, memory decay 
(forget) is realized by capacitor charge leakage over time. In the 
last step, upon arrival of the capacitor refresh interval, the data 
in LTM will be used to retrieve the capacitor’s data according 
to the mechanism explained in Section II.B.3. This data will be 
later used for crossbar computation. 

IV. SIMULATION RESULTS 
A. Evaluation Setup 

 We developed a bottom-up simulation framework to 
evaluate the STM-LTM architecture and estimate its energy and 
performance tradeoffs. We use STM cell parameters from the 
Rambus power model [29] with access transistor W/L = 
90nm/55nm and capacitance 22fF to evaluate the functionality 
and performance of our design. We modeled the leakage in 
SPICE considering a capacitor in parallel with a relatively 
large-value resistor (Rleakage) and an equivalent resistance in 
series (RESR).  The SHE-MTJ electrical model was developed 
in Verilog-A, which incorporates the Landau-Lifshitz-Gilbert 
(LLG) equation to model the free layer magnetization dynamics 
and Non-Equilibrium Green's Function (NEGF) to calculate the 
resistance range (RP, RAP) with the device simulation 
parameters tabulated in Table 2. To analyze the VM and NVM 
modules functionality, we co-designed them in SPICE. Thus, 
we obtain an analytical approximation to the time-averaged 
behavior of the full circuit characteristics in 45nm technology 
node. The controller unit is also simulated by Synopsis Design 
Compiler [30] with the same technology node. We then 
modified the NVSIM [31] evaluation tool to report the 
performance parameters in array-level. 

B. Results 
1) Circuit Design: Figure 7 shows the transient simulation 

results of moving data (‘0’ and ‘1’) from STM to LTM. The BL 
is initially precharged to ~𝑉𝑉𝑉𝑉𝑉𝑉

2
  prior to turning on the WL. In 

order to transfer the data into the SHE-MTJ, the controller turns 
on the corresponding WL and the wr signals, leading to charge 
sharing between the BL and STM’s capacitor. The deviation on 
the BL voltage (𝑉𝑉𝑉𝑉𝑉𝑉

2
±δ) will be then amplified using the write 

circuit with bipolar write voltage during Sense Amplification 
state (S.A.) as shown in Fig. 7, to provide the corresponding 
write voltage for the SHE-MTJ. Such voltage allows sufficient 
charge current to flow in the SHE-MTJ's write terminals and 
changes free layer magnetization in z-axis from +1 to -1 or vice 

versa, after ~30ns with our memory configuration. Therefore, 
the VM data is successfully transferred to NVM.  

We analyze the STM-to-LTM transition algorithm 
performance in Section III with the real random inputs from a 
probabilistic spin logic neuron referred to as a p-bit device [28]. 
Such activation function is connected to memory BLs. We 
investigate the transient probability from STM to LTM with 
different parameters. We first increase the Nth from 10 to 90 
under a constant PI (=40ns) plotted in Fig. 8. We observe that 
by increasing the Nth the probability of transferring data from 
STM to LTM reduces. For example, when Nth=10, the transition 
probability is ~75%. However, Nth=60 reduces transition 
probability to ~17% when a larger threshold is desired. Thus, 
the threshold can be accurately set w.r.t. the application 
requirements. We then explore the impact of different PIs on 
STM-to-LTM transition by increasing the expected time from 
40ns to 90ns. It can be observed that in a certain Nth, by 
increasing the PI, the transition probability will increase. 

2) Energy vs. Array Size: In order to compute the energy 
consumption of the design, we use four different fixed-size 
capacitive networks (32×32, 64×64, 128×128, and 256×256) 
leveraging 32, 64, 128 and 256 p-bit output neurons, 
respectively, to explore the energy consumption of the STM-
LTM platform and yield a fair estimate. We analyze the MNIST 

Table 2: SHE-MTJ simulation Parameters 
Parameter Value 
MTJ Dimension WMTJ × LMTJ × TMTJ 40 × 120 × 1.5 nm3 

SHM Dimension WSHM × LSHM× TSHM 120 × 80 × 2.8 nm3 
Demagnetization Factor Dx, Dy, Dz 0.066, 0.911, 0.022 
Gilbert Damping Factor, α 0.007 
Spin Flip Length, λsf 1.4 nm 
Saturation Magnetization, Ms 850 kA/m 
Gyromagnetic Ratio, γ 1.76 × 1011 Am2/Js 
Spin Hall Angle, θSHM 0.3 
Oxide Thickness, tox 1.3 nm 
Energy Barrier, Ea 42 kT 
RA Product, RAp / TMR 22.33 Ω · μm2 / 187.2% 
Resistivity, ρβ-w 200 μΩ · cm 
Supply Voltage 1 V 
CMOS Technology 45 nm 

 
Fig. 8. The transition probability versus STM to LTM threshold 
under different pulse intervals.  

 
Fig. 7. The transient simulation results of moving data from STM 
to LTM. Glossary: P.S., C.S., and S.A. stand for Precharged 
State, Charge Sharing state and Sense Amplification state. 
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data-set of handwritten digits with a two-layer perceptron with 
a net configuration (784×128 as layer 1 and 128×10 as layer 2) 
developed in MATLAB. To assess raw performance, we 
haven’t used any optimization algorithm to map the data into 
the sub-arrays, so the estimation is solely based on the number 
of used capacitive crossbars whose performance is given 
through a bottom-up analysis using our simulation platform. 
We calculated the average programming energy of the network 
by dividing the energy of network by total time period per 
epoch for all training images. The average programming energy 
of 65pJ is achieved per synapse for a 32×32 crossbar. Thus, the 
power dissipation of 39pW per synapse is incurred by the 
network for 1500 images over a time period of 1.1msec per 
epoch. Fig. 9 depicts the programming energy as well as STM-
to-LTM transfer energy (including controller counting unit) for 
different array sizes under three various Nth. Our first 
observation is that by increasing the array size under a fixed Nth, 
a larger programming energy is required and the STM-to-LTM 
energy increases almost linearly. The second observation is that 
by increasing Nth, the STM-to-LTM energy increases due to 
redundant counting operations. For example, by changing Nth 
from 10 to 15 in 32×32 array, the STM-to-LTM energy 
increases by ~1.8x. With Fig. 8 and Fig. 9, the designer can 
observe the trade-offs between array size, energy, STM-to-
LTM transition probability, etc. to adjust system parameters. 

3) Process Variation: We modeled the thermal effects on 
STM-to-LTM transfer by a randomly fluctuating field, Hnoise on 
LTM module, with x, y, and z components from a Gaussian 
distribution with standard deviation �2α𝐾𝐾𝐵𝐵T/γMsVΔt [32] and 
zero mean. Here, α denotes Gilbert damping factor, KB 
represents Boltzmann’s constant, V denotes the volume of free 
layer, Ms denotes the saturation magnetization, γ is the 
gyromagnetic ratio, and Δt represents the time step for solving 
LLG equation [32, 33]. We carried out the Monte-Carlo 

simulations with 1,000 iterations introducing a Gaussian spread 
(σ = 5%) in the SHE-MTJ device parameters Ms and α and 
thermal effects (300K) in the standard deviation. Under the 
effect of thermal noise, the switching behavior of the SHE-MTJ 
changes for different samples. Such change has no adverse 
impact on the transition probability of STM-LTM. Based on our 
observation, the thermal noise increases the energy budget for 
STM-to-LTM transfer. This energy consumption overhead 
after applying thermal noise and device variations is shown in 
Fig. 9. This comes from the increase in the number of 
unsuccessful STM-to-LTM transfer. 
To assess the variation tolerance of the LTM for different 
parameters specifically oxide thickness (tox), we run the Monte-
Carlo simulation with 1,000 iterations with 2% Gaussian 
variation on the Resistance-Area product (RAP) and 5% 
process variation on the Tunneling-Magnetoresistance Ratio 
(TMR) and profile the voltage margin between two different 
resistance level (RAP and RP), as shown in Fig. 10a. We then 
increased tox, from the original 1.3nm to 1.8nm to show how tox 
variation impacts the sense margin (Fig. 10b). We observe the 
same trend experimentally demonstrated in [34], where the 
increase in the tox leads to a higher voltage margin that will 
considerably enhance the reliability of LTM operation. To 
further explore the impact of tox variation, we plotted the voltage 
margin of SHE-MTJ vs. thickness of MTJ oxide from 1nm to 
1.8nm in two case studies (CSs). The CS1 is under RAP (2%)-
TMR (5%) and CS2 is under RAP (5%)-TMR (5%) variation.  
C. Energy/Delay Comparison 

Table 3 compares the STM-LTM platform herein with 
existing designs in terms of technology, applicability and 
potentials of a single synapse unit. The listed designs use 

Table 3: Comparison between STM-LTM architectures 
 Sengupta et al. [17] Srinivasan et al. [19] Chang et al. [18] Herein 

STM-LTM synapse technology MTJ SHE-MTJ/CMOS Memristor SHE-MTJ/CMOS 
Memory implementation No Yes No Yes 

Separate LTM/STM modules No Yes No Yes 
Compute with STM No Yes No Yes 

Refresh required No No No Yes 
Synapse programming energy (pJ) 110 23.7 92.4 65  

STM-to-LTM Delay (ns) ~30 on constant stimulation N/A** ~80 on constant stimulation ~30 
STM-to-LTM energy (pJ) 165* N/A** 122.7 ~30.2 

LTM endurance 1010 − 1015  1010 − 1015  105 − 1010  1010 − 1015  
*  With the 5 input stimulus magnitude of 100μA with 3ns duration 
** The STM-to-LTM transfer mechanism is not realized, so the performance cannot be reported.  

 
Fig. 9. The breakdown of energy consumption for different array 
sizes with the impact of thermal noise.  

Fig. 10. (a) Monte-Carlo simulation of sense voltage of SHE-MTJ 
with (a) tox =1.3nm (b) tox =1.8nm, (c) Voltage margin of SHE-
MTJ vs. thickness of MTJ oxide in two case studies. 
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different methods to implement the STM-LTM transition so 
different comparison metrics are appropriate. While the MTJ-
based [17] and memristor-based [18] synaptic designs 
demonstrate a single MTJ and memristor mimicking long-term 
potentiation according to the magnitude, duration, and 
frequency of input stimulus, the crucial STM state is only a 
transient state to get to LTM state and not practically useful. 
The aforementioned designs do not present any circuit 
implementation to support utilization of STM during 
computation. Srinivasan et al. [19] presents a fully-functional 
binary synaptic element that uses two separate SHE-MTJ 
driven by a relatively different read voltage to improve the 
synaptic learning efficiency. Separate modules for LTM and 
STM provides the design with faster and more reliable 
functionality. To the best of our knowledge, the SHE-MTJ 
design in [19] is the only design that proposes a practical STM. 
However, the biological STM-to-LTM transition process was 
not addressed in detail nor optimized for efficient processing. 
Our STM-LTM platform brings a solution to make the STM 
state even more like biological memory by being practically 
available in the computation phase. Table 3 compares different 
designs in terms of a single synapse programming energy and 
STM-to-LTM energy. We designed a proper write/read 
circuitry for MTJ- and memristor-based designs to make them 
comparable. All designs are implemented with 45 nm 
technology as well. Based on our evaluation, our design herein 
consumes ~30.2pJ energy for STM-to-LTM (VM-to-NVM) 
transfer and ~65pJ for programming (of VM) purposes. The 
proposed design improves the synapse programming energy 
consumption by ~29.6% and ~41% compared with memristor 
and MTJ designs, respectively. The SHE-MTJ design in [19] 
achieves the least synapse programming energy consumption 
(23.7pJ) between all designs. It should be noted that the STM 
state in our design still incurs capacitive network refresh power. 
The design herein improves the STM-to-LTM energy over 
memristor and MTJ by 75.3% and 81.6%, respectively. From 
STM-to-LTM transition delay perspective, our design requires 
~30ns as depicted in Fig. 7, while memristor and MTJ designs 
require 80ns and 30ns, respectively, on constant stimulation.  

Fig. 11 shows the breakdown of energy consumption for both 
programming and STM-to-LTM operations, where the colored 
legend indicates the contribution of each hardware component 
to the total programming energy. The synapse programming 
energy can be mainly translated to write energy for different 
platforms, as shown in Fig 11a. The SHE-MTJ intrinsically 
requires lower write energy compared to the MTJs and 
Memristors [26]. From STM-to-LTM transition perspective 

(Fig. 11b), our design utilizes distinct modules, while the 
memristor and MTJ-based designs work with consecutive 
stimulations in the same component leading to a lower STM-
to-LTM energy. The two primary influences that impact energy 
consumption of the proposed STM-LTM design are reading the 
capacitor’s voltage and writing that to the SHE-MTJ. 

V. CONCLUSION 
Intrinsic computing capabilities provided by hybrid device 

technology designs offer novel approaches for realizing 
biologically-inspired features such as consolidation 
mechanisms present in STM-LTM. The design proposed herein 
utilizes distinct modules for STM and LTM to realize a synapse 
contrary to previous designs. This follows biological principles 
wherein transfer of information to LTM is facilitated through 
repeated access while providing faster and more reliable 
functionality. We then presented a hardware-enabled STM-
LTM transition algorithm for the platform considering the real 
hardware parameters. Our simulations showed the proposed 
design has the potential of reaching pico-Joule energy level for 
STM-to-LTM transfer and STM programming.  
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