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Parallel entangling operations on a universal
ion-trap quantum computer

C. Figgatth236% A, Ostrander??, N. M. Linke"?, K. A. Landsman"?2, D. Zhu"?3, D. Maslov»?>3%7 & C. Monroe! 23>

The circuit model of a quantum computer consists of sequences
of gate operations between quantum bits (qubits), drawn from a
universal family of discrete operations'. The ability to execute
parallel entangling quantum gates offers efficiency gains in
numerous quantum circuits’>#, as well as for entire algorithms—
such as Shor’s factoring algorithm®—and quantum simulations®’.
In circuits such as full adders and multiple-control Toffoli gates,
parallelism can provide an exponential improvement in overall
execution time through the divide-and-conquer technique®. More
importantly, quantum gate parallelism is essential for fault-tolerant
error correction of qubits that suffer from idle errors®!?. However,
the implementation of parallel quantum gates is complicated
by potential crosstalk, especially between qubits that are fully
connected by a common-mode bus, such as in Coulomb-coupled
trapped atomic ions!"!2 or cavity-coupled superconducting
transmons'>. Here we present experimental results for parallel
two-qubit entangling gates in an array of fully connected trapped
171Yb* jon qubits. We perform a one-bit full-addition operation
on a quantum computer using a depth-four quantum circuit®!'%!>,
where circuit depth denotes the number of runtime steps required.
Our method exploits the power of highly connected qubit systems
using classical control techniques and will help to speed up quantum
circuits and achieve fault tolerance in trapped-ion quantum
computers.

Trapped atomic ions are among the most advanced qubit plat-
forms!12, with atomic-clock precision and the ability to perform gate
operations in a fully connected and reconfigurable qubit network!®.
The high connectivity between trapped-ion qubits'” is mediated by
optical forces applied to their collective motion'®, and can be scaled
in a modular fashion using a variety of methods!!2. Although the
all-to-all interactions provided by ion-trap systems are powerful tools
that can be used to create large global entangled states and perform
large analogue quantum simulations'®~?!, they also present substantial,
previously unaddressed challenges for implementing the full control
necessary for independent, parallel entangling operations. Additionally,
although previous efforts have demonstrated the control necessary for
individual addressing and universal gate sets'®?%, concurrent, arbi-
trary control of individual ions—which is necessary to enact parallel
operations—had not previously been demonstrated. We note that
global operations cannot perform different operations on different
ions at the same time; symmetry-breaking control is required. Within
a single large chain of ions, gates can be realized by appropriately shap-
ing the laser pulses that drive selected ions within the chain. Here,
the target qubits become entangled through their Coulomb-coupled
motion, and the laser pulse is modulated so that the motional modes
are disentangled from the qubits at the end of the operation?*-%°, The
execution of multiple parallel gates in this way requires more complex
pulse shapes, not only to disentangle the motion but also to entangle
exclusively the intended qubit pairs. We achieve this type of parallel
operation by designing appropriate optical pulses using nonlinear
optimization techniques.

We perform parallel gate operations on a chain of five atomic 7' Yb™
ions, using resonant laser radiation to laser-cool, initialize and measure
the qubits. Coherent quantum gate operations are achieved by applying
counterpropagating Raman beams from a single mode-locked laser,
which form beat notes near the qubit difference frequency. Single-
qubit gates are generated by tuning the Raman beat note to the qubit
frequency splitting, wy, and driving resonant Rabi rotations (R gates)
of defined phase and duration. Two-qubit (XX) gates are realized by
illuminating two ions with beams that have beat-note frequencies near
the motional sidebands, creating an effective Ising interaction between
the ions via transient entanglement through the modes of motion!''18,
We use an amplitude-modulated pulse-shaping scheme that provides
high-fidelity entangling gates on any ion pair!®?*?; frequency?® or
phase?” modulation of the laser pulses would also suffice. (See Methods
for additional experimental details.) A related method was developed
in parallel to ours to create multi-qubit entangled states in ion chains®.

To perform parallel entangling operations involving M independent
pairs of qubits in a chain of N > 2M ions with N motional modes at
frequencies wy, a shaped qubit-state-dependent force is applied to the
ions involved using bichromatic beat notes at wy % 4, resulting in the
evolution operator?>*4%°
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where 7 is the gate time and ¢;; is the Pauli spin matrix for qubit i. The
first operator describes state-dependent displacements of each mode k
in phase space?*%, with (f)i(T) => [ozi)k(T)d,j—a:k(T)dk] and accu-
mulated displacement value

a;  (T)= fni,kgi(t)sin(lut)eiwktdt @
0

Here, 4, and 4, are the raising and lowering operators for mode k, 7; is
the Lamb-Dicke parameter coupling qubit i to mode k, and Q(¢) is the
Rabi frequency of the ith ion, which is proportional to the amplitude-
modulated laser intensity applied on the ion. To generate independent
XX gates, we implement separate control signals for each of the M ion
pairs that we want to entangle, thereby providing enough parameters
to simultaneously entangle only the desired ion pairs. The parameter
X;j in equation (1) entangles qubits i and j and is given by

’

Xi].(T)=2fdt’fdt;ni)knj)kﬂi(t)Qj(t)sin(y,t)sin(ut’) )
0 0
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At the end of the gate operation, the 2MN accumulated displacement
values in equation (2) (for the 2M ions involved and for N modes)
should vanish so that all mode trajectories close in phase space and
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Fig. 1 | Parallel-gate pulse solutions. a-d, Laser pulse shape solutions
(a, ¢) and theoretical phase-space trajectories o for each mode

k correlated with ion i (b, d) for parallel XX gates on ions (1, 4) (a, b) and
ions (2, 5) (¢, d). The pulse shape solutions are expressed in terms of the
time-dependent Rabi frequency Q;(¢) experienced by both ions in each
pair and is broken into § = 60 segments with a total gate time of 250 ps.
Negative Rabi frequencies correspond to an inverted phase of the beat
note. The five modes of motion have frequencies wi/2w = {3.045, 3.027,

there is no residual qubit-motion entanglement. For each of the M
desired entangled pairs, we require );; = m/4 for maximal entanglement
(or other non-zero values for partial entanglement); for the other pairs
of qubits, whose interactions represent crosstalk, x;; = 0. This yields

a total of 2MN + (22” ) =2MN+ 2'(;2M7M—)|2)' constraints for designing

appropriate pulse sequences () to implement M parallel entangling
gates. To provide optimal control during the gate and fulfill these con-
straints, we divide the laser pulse at ion i into S segments of equal time
duration 7/S and vary the amplitude in each segment as an independent
variable.

Whereas the 2MN motional mode constraints (equation (2)) are lin-
ear with respect to the control parameters Qi(t), the 22’1 entanglement

constraints (equation (3)) are quadratic. Finding pulse solutions to this
non-convex quadratically constrained quadratic program is an NP-hard
problem in general. Because analytical approaches are intractable, we
use numerical optimization techniques to find solutions. Further dis-
cussion of the constraint problem setup and derivation of the fidelity
of simultaneous XX gate operations as a function of the above control
parameters is provided in Supplementary Information and ref. *°.

Parallel gates are designed for two independent ion pairs in a five-
ion chain. Pulse sequences are designed by solving an optimization
problem that takes into account the laser power and the constraints
on parameters « and x (see Supplementary Information). Sequences
are calculated for a gate time of 7gye = 250 s, which is comparable to
the standard two-qubit XX gates already used on the experiment, as
described in ref. !°, and for a range of detunings z. This generates a
selection of solutions, which are tested on the experimental setup; the
solution generating the highest-quality gate using the lowest amount
of power is chosen.

Experimental gates are found for six ion-pair combinations: {(1, 4),
(2,55 {(1,2), 3, 5 {(1,5), (2, H1 (1, 4), (2, 3)} {(1, 3), (2,5)} and
{(1, 2), (4, 5)}. Figure 1 shows the pulse sequence applied to each

Mode k =2

Mode k=3

Mode k = 4

Mode k =5

3.005, 2.978, 2.946} MHz, and with a constant laser beat-note detuning

of y1 = 2.962 MHz, the nearby modes 4 and 5 experience the largest
displacements. The phase-space trajectories in b, d begin at the blue circles
and follow continuous paths to the green stars, with the colour shading of
the trajectory corresponding to the pulse shape in time in a, ¢. The sum

of the normalized area enclosed by all five modes is set to ©/4. X and P
designate position and momentum, respectively. a.u., arbitrary units.

entangled pair to construct a set of parallel two-qubit gates on ions
(1,4) and (2, 5), as well as the trajectories of each mode—pair interaction
in phase space. The five transverse motional modes in this five-ion
chain have sideband frequencies {wy/27} = {3.045, 3.027, 3.005, 2.978,
2.946} MHz, where mode 1 is the common mode at 3.045 MHz. The
phase-space trajectories show that modes 4 and 5, which are closest
to the selected detuning of ;1 = 2.962 MHz, exhibit the greatest dis-
placement and contribute the most to the final spin—spin entanglement
by enclosing a larger area of phase space. Negative-amplitude pulses
are implemented by applying a phase shift of « to the control signal,
allowing the entangling pairs to continue accumulating entanglement
while cancelling out accumulated entanglement with crosstalk pairs.
Consequently, all of the pulse solutions feature similar patterns with
symmetric phase flips on one pair to cancel out crosstalk entanglement.
Pulse shapes and phase-space trajectories for additional solutions are
given in ref. .

We characterize the experimental gate fidelities by measuring the
selected output qubits in different bases and extracting the parity as
a witness operator’!, as described in Supplementary Information.
Fitted parity curves are shown in Fig. 2. Entangling-gate fidelities are
typically 96%-99%, with crosstalk errors of a few per cent. Crosstalk
fidelities are estimated by fitting the crosstalk-pair populations and
parity in the same way as above. A fidelity of 25% indicates a complete
statistical mixture, which all of the pairs are close to; any fidelity above
that value represents an unwanted correlation or a small amount of
entanglement, and this difference is reported here as the crosstalk error.
The uncertainties given are statistical. All data have been corrected
for state-preparation and measurement errors of 3%-5%, as described
in refs 163,

As an example application of a parallel operation that is useful for
error-correction codes®, we apply a pair of controlled NOT (CNOT)
gates in parallel on two pairs of ions. The CNOT gate sequence (a com-
piled version with R and XX gates is presented in ref. 1°) is performed
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Fig. 2 | Experimental gate fidelities for parallel two-qubit entangling
gates. a, b, Parity curves used to calculate fidelities for parallel XX gates
on two example sets of ions. Circles indicate data and matching-colour
lines represent calculated fits. The key specifies the ion pair corresponding
to each parity curve, including the two gate ion pairs (the first two ion
pairs in the key) and the four crosstalk ion pairs. Additional data are

simultaneously on the pair (1, 4), with ion 1 acting as the control and
ion 4 acting as the target, and on the pair (2, 3), with ion 2 acting as the
control and ion 3 acting as the target. The simultaneous CNOT gates
are applied for each of the 16 possible bitwise inputs, and population
data for the 16 possible bitwise outputs, with an average process fidelity
of 94.5(2)%, are shown in Fig. 3. All uncertainties correspond to one
standard deviation.

Another application that benefits from the use of parallel entangling
operations is the quantum full adder. In modern classical computing,
a full adder is a basic circuit that can be cascaded to add many-bit
numbers, which can be found in processors as a component of arith-
metic logic units or performing low-level operations such as computing
register addresses. In quantum computing, adders can be used in a
similar fashion to perform arithmetic operations over quantum regis-
ters (for example, ref. ®); some algorithms are dominated by adders—
notably, Shor’s integer factoring algorithm. The quantum full adder
requires four qubits: three for the primary inputs x, y and the carry bit
Cin, and the fourth initialized to |0). The four outputs consist of: the
first input, x, simply continuing through; ¥/, which carries x @ y (an
additional CNOT operation can be added to extract y if desired), where
@ denotes bitwise addition modulo 2, or XOR; and the sum S and
output carry bit C,y, which together comprise the two-bit result of
summing x, y and Cj,, where Cy is the most significant bit—and hence
becomes the carry bit to the next adder in a cascade—and S is the least
significant bit. We can also write the sum as S = x ® y @ Cj, and the
output carry as Coye = (x - ) @ (Cyn - (x @ y)), where - denotes bitwise
multiplication, or AND. Feynman first designed such a circuit using
CNOT and Toffoli gates'* (Fig. 4a), which would require 12 XX gates
to implement on an ion-trap quantum computer. A more efficient
circuit requires at most six two-qubit interactions* and features a gate
depth of only 4 if simultaneous two-qubit operations are available, as
shown by the dashed outlines in Fig. 4b.

The full adder is implemented using two different parallel XX gate
configurations, as well as the single-qubit rotations and additional XX
gates shown in Extended Data Fig. 4. The parallel gates, a CNOT and its
square root (see Methods), require different amounts of entanglement,
equivalent to implementing a fully entangling XX(;; = /4) gate and
a partially entangling XX(;; = m/8) gate in parallel. This is experi-
mentally implemented by adjusting the optical power supplied to each
gate independently; a discussion of the calibration independence of
these parallel gates and fidelity data for such an operation are given in
Methods. The inputs x, y, G, and 0 are mapped to the qubits 1, 2, 4 and
5, respectively. Figure 4c shows the data resulting from implementing
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given in Methods. a, Ions (1, 4) and (2, 5) yield fidelities of 96.5(4)% and
97.8(3)%, respectively, for the corresponding entangled pairs, with an
average crosstalk error of 3.6(3)%. b, Ions (1, 4) and (2, 3) yield fidelities
of 98.8(3)% and 99.0(3)%, respectively, for the corresponding entangled
pairs, with an average crosstalk error of 1.4(3)%. The quoted errors are
statistical (1 s.d.).

Tr/4 2n

this computation, with all eight possible bitwise inputs on the three
input qubits, and displays the populations in all of the 16 possible bit-
wise outputs on the four qubits used. The data yield an average process
fidelity of 83.3(3)%.

Faster serial two-qubit gates can be accomplished with more optical
power, but this speedup is limited by sideband resolution, and this
limitation gets worse as the processor size grows owing to spectral
crowding. Parallel two-qubit operations are a tool to speed up com-
putation that avoids this problem. This work presents parallel opera-
tions with gate times comparable to that of simple two-qubit gates in
the same system; tradeoffs between optical intensity and gate time are
discussed in Methods. The control scheme presented here for parallel
two-qubit entangling gates in ions also suggests a method for perform-
ing multi-qubit entanglement in a single operation, which is discussed
in Supplementary Information.

When pre-calculating optimal solutions, the number of constraints
grows polynomially with the number of ions and entangling pairs.
Two parallel XX gates in a chain of N ions require 4N + 6 = O(N)
constraints, so the problem size grows linearly with N. Entangling
more pairs in parallel enlarges the problem size quadratically:
entangling M pairs involves the interactions of 2M ions, yielding

0.8

Probability

Detected 0000

Fig. 3 | Experimental data for parallel CNOT gates. Data for
simultaneous CNOT gates on ions (1, 4) and (2, 3), with an average process
fidelity of 94.5(2)%. All possible binary input states are tested, and the
probability of detecting each possible output state is shown for each input
state. The quoted errors are 1 s.d.
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Fig. 4 | Quantum full adder. a, The original quantum full-adder circuit
proposed by Feynman in 1985, with a two-qubit gate depth of 12.

b, Optimized full adder with a two-qubit gate depth of 4 (ref. ). The two
parallel two-qubit operations are outlined in dashed boxes. The C(V) and
C(V" (where V= +/NOT) operations are the square root of the CNOT
gate and its complex conjugate, respectively (see Methods) The circuits in
a and b use standard quantum circuit notation, where each horizontal line
denotes a single qubit, labelled at the input and output, and connecting
vertical lines depict multi-qubit interactions, including CNOT gates

(224 ) = 2M?*—M = O(M?) spin-spin interactions to control and 2MN
spin-motional entanglements to close. Scaling both the number of
entangled pairs M and the number of ions N in the chain therefore gives
a total number of constraints of 2MN + 2M? — M = O(M? + MN). On
very long chains, not all ion-ion connections will be directly available®,
reducing the number of quadratic constraints on crosstalk pairs that
must be considered and thus setting an upper bound on the scaling.
Furthermore, when a set of parallel quantum gates is applied on target
ions that are m atomic positions apart in a long chain, the effective
crosstalk errors fall off* as (1/m)>. This implies an ability to perform
parallel gate operations in separate local zones in a long chain with little
pulse-complexity overhead or fidelity loss.

Several lines of future inquiry may help increase the theoretical
solution fidelity. Easing constraints on the power needed may
enable the calculation of higher-fidelity solutions, although increas-
ing the power in the experiment can exacerbate errors that arise
from noise on the Raman beam. Investigating whether the con-
straint matrices in equation (11) of Supplementary Information
can be modified to become positive or negative semidefinite may
provide improvements, as convex quadratically constrained quad-
ratic programs are readily solved using semidefinite programming
techniques, and could enable higher-fidelity solutions. However,
these are all problems of overhead. Once a high-quality gate solu-
tion is implemented in the experiment, no further calculations are
needed; only a single calibration is required to compensate for Rabi
frequency drifts.
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METHODS

Experimental setup and error sources. The experiments are performed on a lin-
ear chain of five trapped I7'Yb" ions that are laser-cooled to near their ground state.
We designate the qubit as the |0) = |[F=0,m; =0) and |[1) = |F=1,m; =0)
hyperfine-split electronic states of the ion’s 2S,/, manifold*, which are first-order
magnetic-field-insensitive clock states with a splitting of 12.642821 GHz (F and
mp are the hyperfine and magnetic quantum numbers, respectively). Coherent
operations are performed by counterpropagating Raman beams from a single 355-
nm mode-locked laser. Spontaneous photon scattering errors are very small in our
system (probability of <10~ during a gate) owing to the large detuning of the
Raman beams (33 and 67 THz) from the resonant S—P transitions. The first Raman
beam is a global beam applied to the entire chain, and the second one is split into
individual addressing beams to target each ion qubit'®. Additionally, a multi-channel
arbitrary waveform generator provides separate radiofrequency control signals to
each ion’s individual addressing beam, providing the individual phase, frequency
and amplitude controls that are necessary to execute independent two-qubit oper-
ations in parallel. Qubits are initialized to the |0) state using optical pumping and
are read out by separate channels of a multi-channel photomultiplier tube array
using state-dependent fluorescence.

Measured parallel-gate and algorithmic-process fidelities are reduced from the
theoretically calculated fidelities primarily due to engineering imperfections in the
experimental system. Beam-pointing instabilities of the individual Raman beams
cause Rabi frequency fluctuations, which produce small random coherent errors
during gates and comprise the predominant source of error in the system. Crosstalk
between individual ion-addressing Raman beams and imperfect compensation of
inhomogeneous Stark shifts across the ion chain also contribute to experimental
errors. These error sources constitute control problems that can largely be solved
through technical improvements to a few key elements of the apparatus, such as
the beam delivery and laser repetition rate.

When testing pulse solutions for parallel gates, as well as for our previously
demonstrated two-qubit XX gates, some pulse solutions show inconsistencies
between the empirically observed gate performance and the theoretical prediction,
with fidelities noticeably worse than expected, even given the experimental error
sources, whereas other gate solutions perform as expected; solutions in the latter
category are used here. This may be due to non-ideal mode couplings arising from
anharmonicities observed in our blade trap, which may be caused by imperfections
in the manufacturing and assembly process. It is possible that improvements in
trap manufacturing technology, particularly for microfabricated surface traps, may
eliminate this issue.

Additional parity curves and fidelity data for two-qubit entangling gates.
Additional parity curves and corresponding gate fidelities are shown in Extended
Data Fig. 1, with typical fidelities of 96%-99%. An exception is the {(1, 2), (4, 5)}
gate, for which the (4, 5) gate has a fidelity of 91% (Extended Data Fig. 1d); how-
ever, its phase-space closure diagram in ref. > shows that this low fidelity is due to
the pulse solution found not being ideal.

Fidelity of parallel two-qubit entangling gates with different degrees of entangle-
ment. Because the XX gates in this parallelization scheme have independent calibra-
tions (see section ‘Independence of parallel-gate calibration’), the x parameters of
the two XX gates are independent. The continuously varying parameter y is directly
related to the amount of entanglement generated between the two qubits, given by

XX(0)]00) = — [cos(1)]00) —isin(x)[11)]

7z (4)

and can be adjusted in the experiment by scaling the power of the overall gate.
Consequently, we can simultaneously implement two XX gates with different degrees
of entanglement, which may prove useful for some applications. For example,
the full-adder implementation described in the main text requires simultaneously
applying an XX (7/4) gate on one pair of qubits and an XX(7/8) gate on another
pair of qubits. To demonstrate this capability, Extended Data Fig. 2 shows parity
scan data for a simultaneous XX(w/4) gate on ions (1, 5) and an XX(m/8) gate on
ions (2, 4). The data are analysed as in Fig. 2 and Extended Data Fig. 1—but we
use equation (29) in Supplementary Information (setting x = 7/4) to calculate the
fidelity for the (1, 5) gate, and equation (28) in Supplementary Information and
X = 7/8 for the (2, 4) gate. The respective gate fidelities are therefore 96.4(3)% and
99.4(3)%, with an average crosstalk error of 2.2(3)%.

Independence of parallel-gate calibration. Parallel gates can be calibrated inde-
pendently from one another by adjusting a scaling factor that controls the overall
power on the gate without modifying the pulse shape. Furthermore, adjusting a
scaling factor that controls the power on a single ion only affects the gate in which
the ion participates by modifying the total amount of entanglement, without any
apparent ill effects on the gate quality. This is confirmed experimentally using
parallel operations on ions (1, 2) and (3, 4) by scanning over the scaling factors
associated with ions 1 and 2. Extended Data Fig. 3a, b shows two such scans over
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the scaling factors for ions 1 and 2 while keeping the (3, 4) gate ‘on, with the scaling
factor for those two ions set near a fully entangling gate. Extended Data Fig. 3a
shows a scan of the scaling factor for only ion 1 while holding the scaling factor for
ion 2 constant, and Extended Data Fig. 3b shows a scan over the scaling factor for
ions 1 and 2 together. Extended Data Fig. 3¢, d shows scans over the scaling factors
for ions 1 and 2 while keeping the interaction on (3, 4) ‘off’; the scaling factor for
the (3, 4) gate is set to 0, so the ions see no light and therefore do not interact
during the gate. Extended Data Fig. 3c scans the scaling factor for only ion 2 while
holding the scaling factor for ion 1 constant, and Extended Data Fig. 3d shows a
scan of the overall scaling factor for ions 1 and 2 together. For all of these scans, as
the scaling factors are increased, the population in |11) for ions 1 and 2 increases
(and the population in |00) decreases correspondingly), whereas the [00) and |11)
populations for the (3, 4) gate remain unchanged.

Optical-power requirements. Although the gate time 74y = 250 pis for running
two XX gates in parallel is comparable to that of a single XX gate (and consequently,
comparable to half of the time required to execute two XX gates in series), the
parallel-gate scheme requires more optical power. Here, we compare the optical
power required for parallel and sequential gates while holding the time per oper-
ation constant. The Rabi frequency (2 is proportional to the square root of the beam
intensity I, {2 \/IOT , where Iy and I, are the beam intensities for the individual
and global beams, respectively. We can therefore calculate the ratio R)| of the power

required for a gate operation executed in parallel to thg power required for a single

P 1
area and, because the beam sizes do not vary, the areas cancel out. The measured
power ratios for each experimentally implemented gate are shown in Extended
Data Table 1. The power measured is the total optical power that must be generated
to apply the gates, regardless of how efficiently that power is used.

Whereas some parallel gates require substantially more power (for example,

we had trouble finding a high-quality and low-power solution for {(1, 2), (3, 4)}),
most gate operations performed in parallel require about two to four times more
power than their single counterparts. We note that the (1, 3) half of the {(1, 3),
(2, 5)} parallel gate requires slightly less power than its sequential counterpart;
this is probably coincidental, as power minimization is taken into account dif-
ferently when solving for the sequential two-qubit gate solutions than it is for the
parallel-gate solutions. However, a full accounting of the power requirements in
this experiment must also take into account power wasted by unused beams and
the total time required to perform equivalent operations. Because the individual
addressing system has all individual beams on at all times, and these are dumped
after the acousto-optic modulator when not in use (see refs 1%°), any ion that is
not illuminated corresponds to an individual beam wasting power. Running two
XX gates in parallel takes Tgye = 250 pis and uses beams, each with power P, to
illuminate four ions, but performing the same two gate operations in series using
stand-alone XX gates requires time 27, and uses four beams, each with power P/4
to P/2, to illuminate two ions, wasting two beams. Keeping the time per operation
constant, this yields a tradeoff between using twice (or more) the power in half
the time versus half the power in twice the time; these parallel gates are then very
useful when one has more laser power than time.
Optimized adder circuit. The optimized full-adder circuit implemented in the
experiment, shown in Extended Data Fig. 4, is constructed from the circuit in
Fig. 4b by combining the CNOT, C(V) and C(V ) gates from figure 5.12 of ref. %
and further optimizing the rotations as per the method described in section 5.2.1
of ref. *. The two parallel two-qubit operations are outlined in dashed boxes.

The C(V) and C(V ") gates are the square root of the CNOT gate and its complex

conjugate, where C(V)? = C(V")?> = CNOT . Consequently, these operations
require a two-qubit gate that is the square root of the XX(n/4) gate used for the
CNOT gate, which can be achieved with a partially entangling XX(w/8) gate. The
unitary for the C(V) = +CNOT gate is

. Q o .
XX gate on the same ions as R = = [T] . Intensity is power per unit
XX

10 0 0
01 0 0
v.—lo o ta-p La+i (5)
v 2 2
1 1
00 L+ La-i
2( ) 2( )

An implementation using XX and R gates is shown in Extended Data Fig. 5.
Additional details are available in section 5.9 of ref. *’.

Data availability

All relevant data are available from the corresponding author upon request.

34. Olmschenk, S. et al. Manipulation and detection of a trapped Yb™ hyperfine
qubit. Phys. Rev. A 76,052314 (2007).
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Extended Data Fig. 1 | Additional experimental gate fidelities

for parallel two-qubit entangling gates. a-d, Parity curves used to
calculate fidelities for parallel XX gates applied on several sets of ions.
Circles indicate data, with matching-colour lines indicating calculated fits.
The key specifies the ion pair corresponding to each parity curve. The six
parity curves shown in each plot include the two gate ion pairs (the first
two ion pairs in the key) and the four crosstalk ion pairs. a, Ions (1, 2) and
(3, 4) yield fidelities of 98.4(3)% and 97.7(3)% for the respective entangled
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pairs, with an average crosstalk error of 0.6(3)%. b, Ions (1, 5) and (2, 4)
yield fidelities of 96.8(3)% and 98.1(2)% for the corresponding entangled
pairs, with an average crosstalk error of 1.7(3)%. ¢, Ions (1, 3) and (2, 5)
yield fidelities of 98.3(3)% and 97.5(2)% for the respective entangled pairs,
with an average crosstalk error of 0.8(4)%. d, Ions (1, 2) and (4, 5) yield
fidelities of 97.2(3)% and 91.9(3)% for the corresponding entangled pairs,
with an average crosstalk error of 0.9(3)%.
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Extended Data Fig. 2 | Experimental gate fidelities for parallel two-
qubit partially entangling gates. Parity curve for parallel XX(x) gates
on ions (1, 5) and (2, 4), where an XX(n/4) gate is applied on ions (1, 5)
and an XX(7/8) gate on ions (2, 4). Circles indicate data, with matching-
colour lines indicating calculated fits. The key specifies the ion pair
corresponding to each parity curve. The six parity curves shown include
the two gate ion pairs (the first two ion pairs in the key) and the four
crosstalk ion pairs. The data yield fidelities of 96.4(3)% and 99.4(3)% for

the respective entangled pairs, with an average crosstalk error of 2.2(3)%.
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Extended Data Fig. 3 | Independence of parallel-gate calibration.
Parallel gates can be calibrated independently. a-d, Data obtained by
applying a pair of entangling gates in parallel and observing the change in
population for each pair as the scaling factor for one of the ions or gates is
varied. The key specifies the ion pair state corresponding to each dataset;
for example, ‘(1, 2) 00" indicates the 00 population for ions (1, 2). The 01
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and 10 populations are very close to 0 and hence not always visible. The
error bars are statistical. a, Scan of the scaling factor on ion 1 with an
entangling gate on ions (3, 4). b, Scan of the scaling factor on ions (1, 2)
with an entangling gate on ions (3, 4). ¢, Scan of the scaling factor on ion 2
with no light on ions (3, 4). d, Scan of the scaling factor on ions (1, 2) with
no light on ions (3, 4).
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Extended Data Fig. 4 | Full-adder implementation. Application-optimized full-adder implementation using XX(x), R(f) and R,(0) gates, where 0 is
the rotation angle applied by the single-qubit R gate. The two parallel two-qubit operations are outlined in dashed boxes.
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Extended Data Fig. 5 | C(V) gate implementation. Implementation of the

C(V) = ~/CNOT gate using XX(x), R«(¢) and R,(0) gates. The gate is used
to construct the full adder used in this work.
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Extended Data Table 1 | Comparison of optical power for parallel
and single XX gates

[Parallel Gate Pairs|| Ry}, Pair 1[R), Pair 2|

1,4) and (2,5 13 13
(1,2) and (3.4 7.9 5.0
(1.5) and (2.4 21 16
(1,4) and (2,3 4.3 3.8
(1,3) and (2,5 0.9 15
(1,2) and (4,5 2.2 2.2

For each pair of parallel XX gates implemented, we compare the optical power required to
perform each component XX with its corresponding stand-alone two-qubit XX gate by calculating

the power ratio R)).
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