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ABSTRACT

The high computational complexity associated with training
deep neural networks limits online and real-time training on
edge devices. This paper proposed an end-to-end training
and inference scheme that eliminates multiplications by ap-
proximate operations in the log-domain which has the poten-
tial to significantly reduce implementation complexity. We
implement the entire training procedure in the log-domain,
with fixed-point data representations. This training proce-
dure is inspired by hardware-friendly approximations of log-
domain addition which are based on look-up tables and bit-
shifts. We show that our 16-bit log-based training can achieve
classification accuracy within approximately 1% of the equiv-
alent floating-point baselines for a number of commonly used
datasets.

Index Terms— Logarithmic Number System, Deep Neu-
ral Networks, Approximate Computation

1. INTRODUCTION

In recent years neural networks with hidden layers, or deep
neural networks (DNNs), have found widespread application
in a large number of pattern recognition problems, notably
speech recognition and computer vision [1]. This resurgence
in interest and application of neural networks has been driven
by the availability of large data sets and increased computa-
tion resources. In particular, graphic processor units (GPUs)
provide a large number of hardware multiply-accumulate
(MAC) accelerators and are therefore widely used in the
MAC-intensive process of training DNNs.

Despite these advances, custom hardware accelerators
have the potential to further improve the speed and energy
efficiency in DNN training and inference modes. In a cus-
tom implementation one can co-design the computational
circuitry, the simple control circuitry, and the memory archi-
tecture to achieve near full utilization of the hardware. This
provides a potential advantage over GPUs which are more
general purpose and may not efficiently utilize all the asso-
ciated MAC hardware units during DNN processing. Most
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researchers have focused on accelerating inference processing
with an eye towards using trained DNNs on edge computing
devices (cf., [2]) with a few more recent investigations [3, 4]
considering accelerated training. Hardware acceleration of
training has the potential to reduce energy consumption in
data centers and to provide learning directly on edge devices.

There are a wide class of DNN complexity reduction
methods based on sparsity, pruning, and quantization (cf.,
[5, 6, 7]). Complimentary to these approaches are methods of
reducing the complexity of MAC units. Motivated by the fact
that multiplier circuitry dominates the complexity of MAC
units, several researchers have studied the use of logarithmic
number system (LNS) [8, 9] wherein multiplications are re-
placed with additions. LNS methods have been proposed in
communications [10], processor design [11], re-configurable
architectures [12], and a number of signal processing appli-
cations [13]. The primary challenge of LNS-based MAC
processing is the log-domain addition operation which has
generally been addressed with functional approximation or
look-up tables LUTs. Preliminary work [14, 15] proposed an
8 bit input, 16 bit output LNS-based MAC using LUTs and
claimed a 3.2 x improvement in area-delay product compared
to an equivalent linear-domain MAC. This was investigated in
the context of back-propagation, but was prior to resurgence
of neural networks and therefore was not investigated in the
context of modern datasets, larger networks, and other mod-
ern deep learning methods and conventions. Previous work
also studied encoding weights in LNS for inference [16]
and proposed extensions to LNS MACs restricted to posi-
tive numbers [17]. A more recent paper [18] implemented
log-encoding on posits [19] but relied on conversions to and
from the linear domain to perform addition. Recent work has
demonstrated LNS circuit implementation for inference in a
recurrent neural network that was pre-trained off-line using
traditional methods.[20].

In this paper we propose end-to-end log-based training
and inference of DNNs using approximate LNS computa-
tions. We generalize the bit-shift approximation in [17] to
handle signed arithmetic and show that these bit-shift approx-
imations are special cases of a LUT. To evaluate this approach
we train a number of networks using fixed-point data repre-
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sentations in both the conventional linear domain and using
our proposed approximate LNS computations based on both
LUT and bit-shift approximations. Our results show that with
16-bit words and a 20-element LUT the degradation in train-
ing accuracy, relative to conventional floating point linear
processing, is small (i.e., < 1% loss in accuracy). Thus, this
work demonstrates the feasibility of multiply-free, approxi-
mate LNS training and inference; a detailed analysis of the
potential complexity reduction in digital circuitry is beyond
the scope of this work.

The remainder of this paper is organized as follows - A
brief description of LNS is provided in Section 2. Several
approximations for LNS operations are developed in Section
3. Section 4 contains a description of the end-to-end training
scheme of a neural network in log-domain as well as analysis
relating bit-widths for fixed-point processing in the linear and
log domains. Experimental results are summarized in Section
5 and conclusions provided in Section 6.

2. LOGARITHMIC NUMBER SYSTEM

In a LNS, a real number v is represented by the logarithm of
its absolute value and its sign. Thus,

v+— V =(V,s,) (la)
V= log, ([v]) (1b)
8, = sign(v) (1c)

where sign(v) = 1 if v > 0 and 0 otherwise. Note that the
radix of the logarithm does not change the important proper-
ties of LNS, but using radix 2 leads to bit-shift approximations
as described in Section 3. Multiplication in the linear-domain
becomes addition in log-domain

u=zy+—U=XHY (2a)
U=X+Y (2b)
Su = (82 ¥ sy) (2¢)

where Y denotes the exclusive OR operation and S denotes
the compliment of the binary variable s. We define addition
in log-domain as follows

z=zrx+y<+—Z=XHY (3a)

P max(X,Y)+ Ay (| X —Y]) sz =s, (3b)
max(X,Y)+A_(|X =Y]) s, #sy

5. = Sy X>Y (30)
sy XY

where the A terms exact representation of addition in log-
domain in the extended real numbers R*. The functional ex-
pression of A terms are

- A_
1 A
R e >
S_
S-1
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————— Bit-shifts
=300 e LT r=1
1 2 3 4 5

d

Fig. 1: Approximation to A (d) (table size is 20).

To reduce the computational complexity of calculating A, we
describe two different approximations in Section 3 that induce
approximate addition in the log-domain. One can extend the
above concepts to define log-domain subtraction as

t=zx—y+—T=XBY =XHB(,5,) (6))

Exponentiation translates to a multiplication in the log-
domain. This operation is non-commutative as in general
a’ # b®. We define log-domain exponentiation when expo-
nentiating on a positive radix x > 0,

w=z¥+— W= (yX,1) (6)

3. APPROXIMATE LOG-DOMAIN ADDITION

It is clear from (2) that LNS processing reduces the complex-
ity of multiplication, but the A terms in (3) associated with
log-domain addition are much more complex to implement
than standard addition. Motivated by the fact that the training
process is inherently noisy (e.g., gradient noise, finite pre-
cision effects, etc.) we propose low-complexity approxima-
tions of the A terms in (3). Specifically we seek the sim-
plest such approximations that do not significantly degrade
the overall accuracy of the trained networks. Look-up tables
provide a natural approach to approximating the A terms. In
this paper we consider simple LUTs for Ay (d) wherein the
dynamic range of d supported is [0, dyax] and the resolution
is r. Specifically, each unit interval within the dynamic range
has 1/r points uniformly sampled from AL (d). This concept
is shown in Fig. 1. Note that the size of the LUT is diax/7-

A Dbit-shift approximation for A, (d) was suggested in
[17]. This can be generalized using

log, (1 +2)~ +tx 0<zx1 @)
which, together with (4) implies that
Ap(d)m 274 (1427 —27%+.) (8)

A (d) = log, (1 + 2—d> d>0 (4a) whe're the term in the 'parenthesis' is the ﬁxed?poir'lt approxi-

4 mation of log,(e). This can be viewed as a bit-shift approx-

A_(d) = log, (1 -2 ) d>0 (D) imation as all operations involve multiplication by powers of
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two. In particular, the most accurate approximations of this
form are

AL (d) ~BS(1, —d) (9a)
A_(d) ~ —BS (1.5, —d) (9b)

where BS (a, b) = a2’ corresponds to a bit-shift in the binary
representation of a by b positions to the left. The bit-shift
approximations in (9) are shown in Fig. 1. Finally, note that
these bit-shift approximations are equivalent to a LUT with
r = 1 and dynamic range set by the maximum value of d
possible with the bit-width of the fixed-point representation.

4. LOG-DOMAIN DNN TRAINING

Much of the computation associated with the feedforward and
backpropagation operations are based on matrix multiplica-
tion. These can be implemented directly using the operations
in Sections 2-3

2=y wigwj b ¢ Z, = Hw, ox, @5, o
- J : :
J

In this section we describe log-domain versions of the other
significant operations in the training of a DNN. While the
general approach is applicable to all types of neural networks,
we focus on multi-layer perceptrons (MLPs) to demonstrate
the concept. Specifically, these are: (i) activation functions,
(ii) weight initialization, (iii) soft-max operations, and (iv)
dataset conversion. We also briefly discuss issues with fixed-
point representation.

Activation Functions: It is most efficient to determine
the log-domain equivalent of the desired activation function
and implement that directly in the log domain processing. In
the numerical results that follow, a leaky-ReLLU [21] activa-
tion is used. This translates to a log-leaky ReLU (11ReLU) in
the log-domain

(X, sz) sp =1
(X +08,82) $.=0

where [ is a single hyper-parameter associated with this
activation function. In back-propagation, the derivative of
the activation function is required and, in this case of leaky-
ReLU, the derivative is simple to implement directly in the
log-domain.

Weight Initialization: Weights are conventionally initial-
ized according to some specified distribution and it is most
efficient to translate this distribution to the log-domain and
initialize the log-domain weights accordingly. The probabil-
ity density function used for weight initialization is typically
symmetric around zero — i.e., f, () = f, (—z). We con-
sider such symmetric distributions for which the sign in log
domain is Bernoulli distributed, equally likely to be O or 1.
The distribution for W = log, |w/|, can be determined using
standard change of measure approaches from probability as

fw (y) =2V log (2) fu (2Y) (12)

gurery ((X,52)|B) = { (11)

Soft-max Layer: In classification tasks, it is common to
use a final soft-max layer with a cross-entropy cost [1]. The
soft-max and the associated gradient initialization are

o (13)
Pij = &SN a
Zj:l €
dij = Pij — Yij (13b)

where y;; is the one-hot encoded label. In the log-domain,
this corresponds to

N
log, pij = (ai;logy €) — E (aijlogge, 1) (14a)

(10g2 ‘5Z]| 7551‘;') = Eij B (10g2 |ylj| 7Syz‘j) (14b)

Dataset Conversion: The dataset used for training or the
inputs used during inference also need to be converted to the
log-domain. In the numerical results that follow, this was
done with off-line pre-processing using floating point opera-
tions. In a real-time application this conversion requires com-
puting log, (Zl 2i) and therefore could also be performed
using the (approximate) operations in Sections 2-3.

Fixed-Point Implementation: A fixed-point representa-
tion of x in the LNS described in Section 2 with g; integer bits
and gy faction bits will have a total of Wi, = 2 4+ ¢; + gy
bits owing to the single bit to represent s, and the bit for the
sign of X. In analysis omitted for brevity, we show that the
number of bits required in the log-domain to ensure the same
range and precision as a given fixed-point representation in
the linear-domain is

Wiog > 14 max ([log, (b; +1)7, [logy by]) + Wit (15)

where W, is the bit-width in the linear domain, comprised
of 1 sign bit along with b; and b integer and fractional bits,
respectively. For a typical value of 16-bit precision, with b; =
4 and by = 11, W,e = 21 is required to guarantee the same
precision and dynamic range. The analysis leading to (15)
is worst-case and our numerical experiments, summarized in
Section 5, suggest that Wi,, ~ Wi, suffices in practice.

5. NUMERICAL EXPERIMENTS

The neural network trained is an MLP with one input layer of
784 neurons, one hidden layer of 100 neurons, and one soft-
max layer with number of neurons equal to the number of
classes for the given dataset. Stochastic gradient descent was
used with mini-batch size of 5 and learning rate of 0.01. The
weight decay regularization constant was optimized for each
individual dataset. In general, 12-bit implementation needed
a larger regularization constant than the 16-bit implementa-
tions. The activation function used in the hidden layer for the
linear baselines is leaky-ReLLU [21] and 1IReL.U for the log
experiments. When approximating A _, its value at 0 is set to
be the most negative number the fixed point setting can rep-
resent. Our experimental results are available online at [22],
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Fig. 2: Validation accuracy learning curves comparing 12 and
16 bit log-domain training with 12 and 16-bit linear training.
Log-training was performed using a 20 element table (d,,x =
10, » = 1/2) for all operations except the soft-max which
employed a 640 element table (dyax = 10, r = 1/64).

where the log-domain core has been implemented in C with a
Python callable wrapper.

Four balanced datasets were used for experiments: MNIST
[23], Fashion-MNIST [24] (FMNIST), EMNIST-Digits (EM-
NISTD), and EMNIST-Letters (EMNISTL) [25]. All datasets
contain 8-bit encoded, gray-scale square images with 784
pixels. MNIST and FMNIST each have 10 output classes and
comprise 6,000 training images and 1,000 test images per
class. EMNISTD has 24,000 and 4, 000 images per each of
its 10 classes for training and test, respectively. EMNISTL
has 4, 800 and 800 images per each of its 26 classes for train-
ing and test, respectively. Validation data was held back from
the training datasets with a 1:5 ratio.

Learning curves are shown in Figure 2 for finite preci-
sion linear and log-domain training. In the linear-domain,
using 16-bit fixed-point representation, with 11 bits for the
fractional part, was found to provide negligible degradation
relative to floating point. In the log-domain, 16-bit repre-
sentations use 10 fractional bits (i.e., owing to the extra bit
needed for the sign). When performing experiments on 12 bit
systems, the number of fractional bits is kept at 7 and 6 for
linear and log-domain, respectively. For the LUT-based ap-
proximations in the log-domain, we first minimized the table
sizes need empirically. First, high-resolution was used and

Linear-domain | Log-domain | Log-domain

fixed-point fixed-point fixed-point
Datasets Float look-up tables bit-shifts
12b | 16b 12b [ 16b 12b | 16b

MNIST 97.4 | 97.3 96.9 96.0 | 972 955 | 96.5
FMNIST 87.1 || 82.8 88.0 80.5 | 87.1 793 | 85.7
EMNISTD || 98.6 | 98.3 98.7 969 | 975 96.2 | 974
EMNISTL || 88.1 | 79.7 88.7 76.4 | 86.7 73.7 | 82.5

Table 1: Test set accuracy (%) at 20 epochs. Fixed-point log-
domain results are for LUT and bit-shift approximations to
log-domain adds (i.e., A4 () approximations).

the minimum value of dynamic range required for good over-
all accuracy was determined to be dy.x = 10. Next, fixing
the dynamic range to 10, we varied the resolution and deter-
mined that » = 1/2 was required to achieve minimal degra-
dation relative to linear-domain results. We found that the
log-domain implementation of the soft-max was more sensi-
tive to approximation errors and the results in Figure 2 utilize
a resolution of » = 1/64 for the soft-max processing. Table
1 provides a comparison of test-set accuracy for fixed-point
linear processing and full log-domain training and inference
with various approximations.

6. CONCLUSIONS

Our results demonstrate that all training and inference pro-
cessing associated with a neural network can be performed
using logarithmic number system with approximate log-
domain additions, thus allowing a hardware implementation
without multipliers. In particular, approximating the log-
domain addition using a max(-), add, and an approximation
to the A-term based on a LUT yields only modest degrada-
tion in classification accuracy as compared to that of linear
processing. Similar to linear processing, we conclude that
16-bit fixed-point representations are sufficient to approach
the classification accuracy associated with floating point
computations. We also found that a LUT of size 20 was suf-
ficient and that a simple bit-shift approximation, which can
be viewed as equivalent to a smaller table, also provides good
classification performance in many cases.

Future areas of research include application to larger con-
volutional neural networks popular in computer vision and
co-optimization of A-term approximations considering clas-
sification accuracy and hardware complexity. While this work
demonstrates the potential of this approach, the circuit imple-
mentation complexity of the approximate log-domain adder
must be significantly lower than that of a multiplier in order
for the approach to be desirable in practice. This comparison
is a natural direction for future work.
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