
CSrram: Area-Efficient Low-Power Ex-Situ
Training Framework for Memristive Neuromorphic

Circuits Based on Clustered Sparsity
Arash Fayyazi ‡, Souvik Kundu ‡, Shahin Nazarian, Peter A. Beerel, Massoud Pedram

Ming Hsieh Department of Electrical and Computer Engineering
University of Southern California

Los Angeles, California 90089, USA
{fayyazi, souvikku, shahin.nazarian, pabeerel, pedram}@usc.edu

Abstract—Artificial Neural Networks (ANNs) play a key role
in many machine learning (ML) applications but pose arduous
challenges in terms of storage and computation of network
parameters. Memristive crossbar arrays (MCAs) are capable of
both computation and storage, making them promising for in-
memory computing enabled neural network accelerators. At the
same time, the presence of a significant amount of zero weights in
ANNs has motivated research in a variety of parameter reduction
techniques. However, for crossbar based architectures, the study
of efficient methods to take advantage of network sparsity is
still in the early stage. This paper presents CSrram, an efficient
ex-situ training framework for hybrid CMOS-memristive neuro-
morphic circuits. CSrram includes a pre-defined block diagonal
clustered (BDC) sparsity algorithm to significantly reduce area
and power consumption. The proposed framework is verified on a
wide range of datasets including MNIST handwritten recognition,
fashion MNIST, breast cancer prediction (BCW), IRIS, and
mobile health monitoring. Compared to state of the art fully
connected memristive neuromorphic circuits, our CSrram with
only 25% density of weights in the first junction, provides a
power and area efficiency of 1.5x and 2.6x (averaged over five
datasets), respectively, without any significant test accuracy loss.

Index Terms—Clustered sparsity, memristive neuromorphic
circuits, ex-situ training, Artificial neural networks (ANNs), low
power circuits

I. INTRODUCTION AND MOTIVATION

Artificial Neural Networks (ANNs) are helpful in driving
a variety of technologies including image processing, pattern
recognition, and speech recognition. LeCun et al. classified
handwritten digits with less than 1M parameters in 1998
[1], and Krizhevsky et al. won the ImageNet competition
with 60M parameters in 2012 [2]. In 2013, Coates et al.
proposed a network with 10 billion parameters enabled by high
performance computing (HPC) systems [3]. The large number
of parameters have made ANNs very power hungry and
computationally intensive. In addition, for traditional CMOS
memory hierarchies, the requirement of storing and accessing
the parameters increases the probability of a cache miss, which
further affects performance, both in terms of speed and energy.
Numerous research efforts have therefore focused on reducing

‡Authors have equal contribution.
This work is partly supported by NSF, including grant 1763747.

the computation and storage costs of ANNs and mitigating
these challenging resource demands.

In-memory computing through memristor [4] based re-
sistive random access memory (RRAM) has emerged as a
promising alternative paradigm for large scale computations,
partly because it reduces the overhead associated with data
movement. First physically realized in 2008 [5], memristors
are particularly well suited for the design of ANNs because
of their ultra low power computation of matrix multiplication
[6]. In particular, memristors can be fabricated densely [7] in
the form of memristive crossbar arrays (MCAs) which can
thus realize the synapses of an ANN, performing a weighted
sum of their inputs (i.e., the equivalent of a weight lookup and
matrix multiply in digital ANN alternatives).

Several Neural Network (NN) research efforts have at-
tempted to address the issue of (i) unnecessarily high dimen-
sional decision boundaries for image classification, known as
the overfitting problem, and (ii) getting rid of zero weights
[8], [9], [10]. However, as mentioned in [11], a naive mapping
from a pruned or compressed weight matrix to an MCA is usu-
ally wasteful and sometimes not feasible. After the emergence
of structured pruned algorithms [12], several works related to
RRAM-based structured compression [13] and sparse neural
networks [14] have been reported. However, these works incur
significant complexity associated with decoding sparse data
formats that increases training time and inference overheads
[14].

In this paper, we propose CSrram, a pre-defined clustered
sparsity (CS) based ex-situ training framework. Here, by
sparse we mean the weight matrices have a large fraction of
zero weights and by pre-defined we mean the choice of zero
weights is set before training begins, thus discarding the need
for a repetitive training approach and avoiding the complex
compression technique overhead. Recently [15], [16] showed
that pre-defined sparse networks can be trained without any
significant loss in network fidelity. However, for MCA-based
NN accelerators, the study of efficient methods to utilize
sparsity is still in its early stages. Our proposed clustering
algorithm ensures that the reduced sparsely connected network
can be area-efficiently mapped onto multiple small dense

Authorized licensed use limited to: University of Southern California. Downloaded on June 18,2020 at 20:07:03 UTC from IEEE Xplore. Restrictions apply.

MCA clusters. Our algorithm maintains a path from any input
node to any output and our framework works as a solution
to mitigate overfitting due to reduced number of parameters
during training. The major contributions of this paper are
summarized below:

• We propose a novel pre-defined block diagonal clustered
(BDC) sparsity-based ANN training algorithm. Simula-
tion results show that our trained NNs perform no worse
than the random pre-defined sparsity-based counterpart
provided we maintain the last junction as fully connected.
In fact, classification accuracy loss in our proposed
method is negligible compared to corresponding fully
connected ANNs.

• Previous research [17] proposed an ANN training algo-
rithm that included a non-linear mapping of weights to
MCA conductance values to enhance inference accuracy.
We extend the approach to support clustered sparse ANN
structures by incorporating this non-linear mapping into
the proposed training algorithm and provide an end-to-
end ex-situ training framework (Fig. 1). We evaluated this
enhanced framework using detailed HSPICE simulations
and show that our trained MCA-based ANNs yield no
significant loss in test accuracy compared to their fully
connected counterparts. Also, our intelligent clustering
technique helps providing an area efficient mapping of
weights to smaller MCAs.

• We also evaluate the performance of our proposed frame-
work under the constraints of process variation and lim-
ited write precision of memristors.

Section II presents CSrram, our proposed pre-defined sparsity-
based ex-situ memristive training framework. Section III de-
scribes our experimental setup and results on several bench-
mark datasets (IRIS [18], BCW [19], MHEALTH [20],
MNIST [1], and Fashion MNIST [21]). Lastly, the paper
concludes in Section IV.

II. CSRRAM FRAMEWORK

In Sections II-A, II-B and II-C we describe our block di-
agonal clustered (BDC) sparsity algorithm, memristor training
equations to support BDC sparsity, and the associated modified
training framework, respectively. Apart from the one we used
in this paper, it is noteworthy that our proposed training
algorithm is applicable to a variety of underlying memristive
circuits such as [22]–[24].

A. Clustered Pre-defined Sparsity Characterization

An ANN with fully connected (FC) junctions has all neu-
rons of the (k−1)th layer connected to all neurons of the kth

layer and, thus requires a large memory to store the weights
of each junction. Our CSrram framework for BDC pre-defined
sparse neural networks helps mitigate this issue. For a network
with L layers of neurons and thus, J = (L− 1) junctions, the
junction between layer k and k + 1 has Nk+1 ×Nk weights
resulting a total of

∑L−1
k=1 (Nk+1 × Nk) for an FC network;

Fig. 1. Proposed ex-situ training and validation framework for CSrram.

Fig. 2. An example of block-diagonal dense clustering with 20% connection
at junction k, giving an area saving of 5x.

Fig. 3. An example of a block-diagonal dense-sparse clustering with 40%
connection at junction k, giving an area saving of 1.5625x.

where Nk is the number of neurons in layer k. We use the
definition of connection density as [16]

Dk =
Ck

Nk ×Nk+1
(1)

Here, Ck = Nk × FOk = Nk+1 × FIk+1, is the total number
of connections in the kth junction. FOk and FIk+1 are the
fan-out (FO) and fan-in (FI) from each of the preceeding
and succeeding neurons, respectively, which we keep constant
within a junction. The number of possible options of these
integer FO and FI values depends on the greatest common
divisor of (Nk+1, Nk) [25].

For the pre-defined sparsity in our work, we remove the
edges between nodes of two successive layers using Algorithm
1 and train the network with the remaining connections. The
removed weights never appear during training or inference. To
address the issue mentioned in [11] and ensure area-efficient
sparsity, the algorithm performs block diagonal clustering of
the non-zero weights to create a notion of clustered connec-
tivity. In particular, the algorithm first formulates NC, the
required number of clusters and based on the value of (1

Dk
),

creates either (i) NC dense clusters or (ii) NC − 1 dense
clusters and one sparse cluster. Fig. 2 and 3 show scenario (i)
and (ii), respectively. Function SparseAssign in Algorithm 1
(line 14) generates the sparse cluster by assigning 1 sparsely
to elements in the submatrix [(Nk − cc × FIk+1 + 1) :
Nk, (Nk+1 − cc × FOk + 1) : Nk+1] such that sum over

Authorized licensed use limited to: University of Southern California. Downloaded on June 18,2020 at 20:07:03 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. Validation accuracy study using the MNIST dataset for the proposed
block diagonal clustered fixed fan-in fan-out network with 25% (BDC25J1),
50% (BDC50J1) connectivity at 1st junction with 2nd junction fully con-
nected, and pre-defined sparse fixed fan-in fan-out network with similar weight
density [25% (PDS25J1) and 50% (PDS50J1) at 1st junction] and their
performance compared to a fully connected (FC) network. A 784-100-10
network structure is used. No MCA mapping is considered.

each row and column are FOk and FIk+1, respectively. We
keep the bias connections outside the scope of sparsity and
hence they are not addressed in the algorithm. Also, the final
junction is kept FC (Algorithm 1 line 2) to ensure there is
a dedicated path from any input feature node to any output
node, thus guaranteeing that the decision process is aware of
every input feature. Hence, the generated mask matrices are
suitable for mapping any large ANN junction to mostly dense
smaller MCAs with no requirement for iterative training or
inference overhead for weight compression and reduction. Fig.
4 shows software simulation (without MCA weight mapping)
of validation accuracy for MNIST dataset on pre-defined
sparse (PDS) neural network with and without clustering.
For both networks with 25% and 50% density of weights at
junction 1 (2nd junction remains FC) our approach has no
significant accuracy drop compared to a fully connected NN
and provides marginally better classification accuracy (0.09%
and 0.41% respectively) than PDS neural network without
clustering.

B. Sparsity Aware MCA Circuit Equations for Training

The FC junction MCA described in [17] and illustrated in
Fig. 5 proposes to use inverters to model neurons because their
VTC (Voltage Transfer Characteristic) is similar to the scaled
tanh function. This structure leads to better performance, lower
power consumption, higher energy efficiency, and smaller
area compared to the op-amp-based memristive neuromorphic
circuits proposed in [23]. This motivated us to choose a similar
MCA structure. In particular, to provide differential inputs
for the next layer nodes (except the last layer), each current
layer output goes through a pair of inverters to generate both
inverted (Vin) and non-inverted (Vip) differential signals (Fig.
5). Fig. 6(a) shows an example of an MCA model for a
NN junction with BDC sparsity of 50% compared to its FC
counterpart. Fig. 6(b) shows an illustration of how in our
training framework, an input to output path is ensured.

The Kirchhoffs current law (KCL) at the input of the jth

Algorithm 1: Pseudocode for generating the BDC mask
matrices
Input: FOk, FIk+1, Nk+1 for k = 1, 2, ..., L− 2
Output: Mask matrices, Mk

1 Initialize Mk mask matrices each of size Nk+1 ×Nk all
with 0, where k = 1, 2, , L− 2.

2 // based on equation (1)
3 Compute Dk

4 // fill the mask matrix of the last junction with all 1
5 ML−1 = 1
6 for k from 1 to L− 2 do
7 // NC represents number of clusters.

8 NC =
⌊

1
Dk

⌋

9 for cc from 1 to NC − 1 do
10 [(cc − 1)× FIk+1 + 1 : cc × FIk+1 ,

(cc − 1)× FOk + 1 : cc × FOk] = 1

11 if 1/Dk is integer then
12 [Nk − cc × FIk+1 + 1 : Nk ,

Nk+1 − cc × FOk + 1 : Nk+1] = 1

13 else
14 SparseAssign(Mk, [(Nk − cc × FIk+1 + 1) :

Nk, (Nk+1 − cc × FOk + 1) : Nk+1], FOk,
FIk+1)

15 return Mk

Fig. 5. Circuit structure of the FC memristive neuromorphic circuit [17] used
as a baseline for this work.

inverter (Fig. 5) may be written as
L−1∑
i=1

aji((Vip − Vnetj)σjip + (Vin − Vnetj)σjin) = 0 (2)

Here, integer aji is introduced to represent the presence or
absence of a connection between the jth neuron of the current
layer to ith neuron of the previous layer and aji ∈ {0, 1}.
Also, Vnetj is the voltage of node netj (the input of the
inverter of column j), and σjip (σjin) is the conductance of the
memristor located in the non-inverted (inverted) line position

Authorized licensed use limited to: University of Southern California. Downloaded on June 18,2020 at 20:07:03 UTC from IEEE Xplore. Restrictions apply.

Fig. 6. (a) Clustered sparse version of a 10×2 MCA with 50% connectivity
and smaller MCA (2 of 6× 1) during inference. (b) An ANN structure with
a single hidden layer where the red arrow shows the presence of a path from
any input to any output node

(i, j) *. So, the input voltage of the jth inverter, Vnetj can be
obtained from

Vnetj =

∑L−1
i=1 aji(Vip × σjip + Vin × σjin)∑L−1

i=1 aji(σjip + σjin)
(3)

Also, in order to mimic the multiply accumulate (MAC) unit
of an ANN, the input to the jth neuron in terms of weights
(wjip and wjin) and Vi is defined as

zj =
L−1∑
i=1

aji(Vip × wjip + Vin × wjin) (4)

Thus for the MCA-based structure to hold its ANN function-
ality with sparse training, equations (3) and (4) must be equal.
Hence, the weights (wjip and wjin) can be modeled as

wjix =
aji × σjix∑L−1

m=1 ajm(σjmp
+ σjmn

)
; (5)

Here x can be either n or p. To ensure a non-trivial solution
we apply the following constraint [17] modified to capture
sparsity,

L−1∑
i=1

aji(wjip + wjip) = 1 (6)

Note that in equations (2)-(4) we have kept the bias terms
out of the scope of sparsity. Rather, the two bias lines for
each neuron are maintained at Vdd

2 and −Vdd

2 . Our work maps
all the weights to conductance values between [σmin, σmax],
where the specific bounds, σmin = 0.12μS and σmax = 7.9μS,
are taken from [26].

C. Training of Network with Pre-defined Sparsity

Here, we propose our enhancement to [17] to support BDC
sparsity. To keep the weights positive and meet the conditions

*Here, i and j are row and column values, respectively.

Algorithm 2: Pseudocode for proposed training algorithm
Input: Patterns, Mask matrices
Output: Trained Weights

1 Initialize all thetas with small random numbers
2 do
3 for every pattern in the training set do
4 Present the pattern to the network
5 Calculate the function mapped weights using

g1 and g2
6 Multiply it by corresponding mask matrix,

element by element Propagated the input
forward through the network

7 Calculate the Cost function C
8 Propagate the errors backward through the

network including the multiplication of
derivative of weight mapping function by its
corresponding mask matrix element by element

9 Update thetas

10 while (maximum iteration of epochs is reached) or (cost
function C is greater than specified)

11 return thetas

of equation (6), two mapping functions g1 [17] and g2 were
used,

g1(θjix) = σmin +
(σmax − σmin)

1 + e(−θjix)
(7a)

g2(σjix) =
σjix∑L−1

m=1 ajm(σjmp + σjmn)
(7b)

g1 maps unconstrained training weights (θjix) to conductance
through a scaled sigmoid function that adheres to the specified
upper and lower bounds on the conductance. g2 maps σjix

to constrained function mapped weights in order to satisfy
equation (6). Because the denominator of g2 is never zero, it
is guaranteed to be differentiable. Combining these mapping
functions, the function mapped weights can be expressed as

wjix = g2(σjix) = g2(g1(θjix)) (8)

Training for CSrram is described in Algorithm 2, where we
used the following weight update equation,

θt+1
jix

= θtjix − η × ∂C

∂θtjix
(9)

where
∂C

∂θtjix
=

∂C

∂ztj
× ∂ztj

∂wt
jix

× ∂wt
jix

∂σt
jix

× ∂σt
jix

∂θtjix
(10a)

∂ztj
∂wt

jix

= aji × Vix (10b)

In equations 9-10, current and next values of the parameters
are represented through superscript t and t+1, respectively. η
is learning rate, and C is the cross-entropy based network cost
function. Our training terminates when network reaches target
cost function for training accuracy of 98% or 500 epochs (1
epoch signifies training with one full train dataset).

Authorized licensed use limited to: University of Southern California. Downloaded on June 18,2020 at 20:07:03 UTC from IEEE Xplore. Restrictions apply.

III. RESULTS

In this section, we first describe the simulation setup before
reporting the performance of CSrram in terms of classifica-
tion accuracy (with and without the constraints of process
variation and limited write precision of memristors), area,
and power on several benchmark datasets. All the evaluations
were performed through HSPICE simulations for a TSMC
90nm technology model for transistors, using the generalized
memristor model proposed in [27] for the memristor devices
of [26].

A. Simulation Setup

The simulation setup for CSrram is shown in Fig. 1. Our
MATLAB script accepts user inputs to evaluate the cluster
structures based on FO and FI values. The script includes a
mathematical model of the neurons (i.e., fitted voltage transfer
characteristics of the inverters, extracted from SPICE simu-
lation). We assumed the memristor write threshold voltage
and supply voltage to be 4V and 0.5V, respectively, and to
ensure 99% write accuracy in presence of device variation and
stochastic write we used the scheme of [28] (the write opera-
tion is performed memristor-by-memristor). The methodology
proposed in [17] is used to map the extracted conductance
values to the corresponding state parameters of the memristor
for SPICE simulations. It is to be noted that, we trained
the networks without any data augmentation or parameter
optimization techniques useful for increasing accuracy and
speeding-up convergence. All these techniques along with
convolutional layers can be added to our proposed framework
to further improve classification performance. The important
design parameters used for SPICE simulation are mentioned
in Table I. Here, the size of the inverters was the reported Sinv

times of a minimum sized inverter.

TABLE I
DESIGN PARAMETERS

Technology TSMC 90nm - Typical
Ron 125KΩ
Roff 8.3MΩ
Sinv 5

Supply Voltage 0.5V

B. Classification Accuracy with Clustered Sparsity, Process
Variation, and Limited Write Precision

We used BCW, IRIS, MHEALTH, MNIST, and fashion
MNIST datasets (Table II) for our performance evaluation.
Training and testing datasets were split based on a 80:20 ratio.
Fig. 7(a) provides their accuracies under different levels of
pre-defined BDC sparsity. It is clear from the results that
with sparse connectivity as low as 25% in junction 1, the
network’s classification accuracy hardly degrades compared
to its FC counterpart. The terms BDC50J1 and BDC25J1
represent neural network models with 50% (NC is 2) and 25%
(NC is 4) connectivity at junction 1, respectively, keeping later

Fig. 7. (a) Test accuracy of the proposed framework compared to fully
connected networks (PHAX), (b) IRIS dataset classification accuracy in
PHAX and BDC25J1 under process variations and 4-bit quantization.

junction(s) as FC † . To evaluate performance of our proposed
method under compressed input with reduced dimensions, we
used a 14×14 input for MNIST instead of full size of 28×28.

To assess the performance of CSrram under process varia-
tion and limited write precision, a random Gaussian noise with
p% (p ∈ [5, 10, 25]) variance was added to conductance values
of memristors. Additionally, in order to examine the effect
of limited write precision of memristors, we also quantized
the conductance with 4-bit precision. For the sake of space,
we show the variance-accuracy (and limited write precision)
plots only for IRIS in Fig. 7(b). Even for model BDC25J1,
worst case accuracy loss across all datasets, due to variance
(quantization) is within 5%. Environmental variations, inter-
connect IR drop [29], impact of process variation (PV) on the
inverter (especially when it operates near threshold) as well
as other non-ideal characteristics, including the memristor’s
unstable intermediate states, may also need to be considered.
Fortunately, these non-idealities can be compensated through
heuristics for the variability of both memristor and CMOS
components [29], [30].

TABLE II
NETWORK STRUCTURE FOR DIFFERENT DATASETS AND CORRESPONDING

POWER CONSUMPTION

Dataset Network Power Consumption (μW)
Structure Fully Connected BDC25J1

BCW 10− 8− 2 13.4 8.87
IRIS 4− 4− 3 7.67 7.45

MHEALTH 23− 92− 60− 13 703.2 639
MNIST 196∗ − 100− 10 1221 527

Fashion MNIST 784− 100− 10− 10 4309 2879
∗A compressed version (14× 14) of actual 28× 28 input image is used.

C. Power Efficiency and Area Reduction

Power and area improvements of the proposed memristive
neuromorphic circuit with respect to state of the art ANN
implementation [17] are compared in Fig. 8(a) and (b), re-
spectively. Our evaluation of power consumption is based on
HSPICE simulations. Table II shows the power consumption of

†For MHEALTH, we also simulated making junction 2 sparse and
obtained similar accuracy as that with sparsity at junction 1. For fashion
MNIST we did not consider junction 2 sparsity as the number of weights in
the 2nd junction is much lower than that in the 1st junction.

Authorized licensed use limited to: University of Southern California. Downloaded on June 18,2020 at 20:07:03 UTC from IEEE Xplore. Restrictions apply.

Fig. 8. (a) Power reduction, and (b) area reduction (best case) through
reduction of MCA size for pre-defined BDC sparse neuromorphic circuits
over fully connected networks.

FC and clustered sparse (BDC25J1) networks for five datasets.
Interestingly, the inverters consume most of the reported
power. Fig. 8(a) shows that our framework provides more
power savings for larger networks. Additionally, we compared
our proposed designs with fully combinational digital ASIC
implementations (TSMC 90nm) of FC ANNs where the neu-
rons were made using 256 × 8-bit LUTs. For MNIST, the
power consumption for the digital ASIC (evaluated through
Synopsys DC) is three orders of magnitude larger compared
to our BDC25J1 model. Also, compared to FC neuromorphic
circuits, BDC sparsity offers smaller mostly dense clusters of
MCA structures to replace a large MCA, and thus improves
area. We have considered sparsity at the junction between input
and first hidden layer (J1) because it generally has much more
weights than other junctions. Fig. 8(b) shows the best case area
improvement where all MCA clusters in a junction are dense.
We used equation (11) to compute area improvement.

f = [1−
∑L−1

i=1 ArBDC
ji∑L−1

i=1 ArFC
ji

]×100 (11)

Here, for ith junction, the area corresponding to FC and BDC
sparsity are ArFC

ji
and ArBDC

ji
, respectively, and they are

computed as the number of memristors in that junction. For
our evaluations, ArBDC

ji
= ArFC

ji
if i �= 1.

IV. CONCLUSIONS

In this paper, we propose a novel pre-defined BDC sparsity-
based NN training algorithm and incorporate this into to a
sparsity-aware ex-situ training framework called CSrram. We
analyzed its impact on classification accuracy, power, area and
process variations. The results show that the added constraint
of BDC sparsity improves the average power and area by
1.5× and 2.6×, respectively, without significant accuracy
drop. These results motivate further research to efficiently
identify the minimum cluster size of the initial junctions given
a lower bound on accuracy. Lastly, incorporating convolutional
layers to this framework to boost classification accuracy and
showing it on larger datasets like CIFAR-10 and Imagenet is
also promising future work.

REFERENCES

[1] Y. LeCun, “The mnist database of handwritten digits,” http://yann. lecun.
com/exdb/mnist/, 1998.

[2] A. Krizhevsky et al., “Imagenet classification with deep convolutional
neural networks,” in Advances in neural information processing systems,
2012, pp. 1097–1105.

[3] A. Coates et al., “Deep learning with cots hpc systems,” in International
conference on machine learning, 2013, pp. 1337–1345.

[4] W. Wang et al., “Fabrication, characterization, and modeling of mem-
ristor devices,” in NAECON 2014-IEEE National Aerospace and Elec-
tronics Conference. IEEE, 2014, pp. 259–262.

[5] D. B. Strukov et al., “The missing memristor found,” nature, vol. 453,
no. 7191, p. 80, 2008.

[6] Z. Du et al., “Neuromorphic accelerators: A comparison between
neuroscience and machine-learning approaches,” in 2015 48th Annual
IEEE/ACM MICRO. IEEE, 2015, pp. 494–507.

[7] S. H. Jo et al., “Nanoscale memristor device as synapse in neuromorphic
systems,” Nano letters, vol. 10, no. 4, pp. 1297–1301, 2010.

[8] P. Molchanov et al., “Pruning convolutional neural networks for resource
efficient inference,” arXiv preprint arXiv:1611.06440, 2016.

[9] N. Srivastava et al., “Dropout: a simple way to prevent neural networks
from overfitting,” The Journal of Machine Learning Research, vol. 15,
no. 1, pp. 1929–1958, 2014.

[10] S. Han et al., “Learning both weights and connections for efficient neural
network,” in Advances in neural information processing systems, 2015,
pp. 1135–1143.

[11] J. Cui and Q. Qiu, “Towards memristor based accelerator for sparse
matrix vector multiplication,” in 2016 ISCAS. IEEE, 2016, pp. 121–
124.

[12] J. Yu et al., “Scalpel: Customizing dnn pruning to the underlying
hardware parallelism,” in ACM SIGARCH Computer Architecture News,
vol. 45, no. 2. ACM, 2017, pp. 548–560.

[13] H. Ji et al., “Recom: An efficient resistive accelerator for compressed
deep neural networks,” in 2018 IEEE DATE. IEEE, 2018, pp. 237–240.

[14] P. Wang et al., “Snrram: an efficient sparse neural network computation
architecture based on resistive random-access memory,” in Proceedings
of the 55th IEEE/ACM DAC. ACM, 2018, p. 106.

[15] S. Dey et al., “Characterizing sparse connectivity patterns in neural
networks,” in 2018 ITA. IEEE, 2018, pp. 1–9.

[16] S. Dey, D. Chen et al., “A highly parallel fpga implementation of sparse
neural network training,” arXiv preprint arXiv:1806.01087, 2018.

[17] M. Ansari et al., “Phax: Physical characteristics aware ex-situ training
framework for inverter-based memristive neuromorphic circuits,” IEEE
TCAD, vol. 37, no. 8, pp. 1602–1613, 2018.

[18] S. B. Kotsiantis, “Logitboost of simple bayesian classifier,” Informatica,
vol. 29, no. 1, 2005.

[19] O. L. Mangasarian et al., “Breast cancer diagnosis and prognosis via
linear programming,” Operations Research, vol. 43, no. 4, pp. 570–577,
1995.

[20] O. Banos et al., “mhealthdroid: a novel framework for agile development
of mobile health applications,” in International Workshop on Ambient
Assisted Living. Springer, 2014, pp. 91–98.

[21] H. Xiao et al., “Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms,” arXiv preprint arXiv:1708.07747, 2017.

[22] A. Fayyazi et al., “An ultra low-power memristive neuromorphic circuit
for internet of things smart sensors,” IEEE Internet of Things Journal,
vol. 5, no. 2, pp. 1011–1022, 2018.

[23] R. Hasan et al., “Ex-situ training of dense memristor crossbar for
neuromorphic applications,” in Proceedings of the 2015 IEEE/ACM
NANOARCH. IEEE, 2015, pp. 75–81.

[24] S. P. Adhikari et al., “A circuit-based learning architecture for multilayer
neural networks with memristor bridge synapses,” IEEE TCAS I: Regular
Papers, vol. 62, no. 1, pp. 215–223, 2015.

[25] S. Dey et al., “Pre-defined sparse neural networks with hardware
acceleration,” arXiv preprint arXiv:1812.01164, 2018.

[26] W. Lu et al., “Two-terminal resistive switches (memristors) for memory
and logic applications,” in Proceedings of the 16th ASP-DAC. IEEE
Press, 2011, pp. 217–223.

[27] C. Yakopcic et al., “Generalized memristive device spice model and its
application in circuit design,” IEEE TCAD, vol. 32, no. 8, pp. 1201–
1214, 2013.

[28] F. Alibart et al., “High precision tuning of state for memristive devices
by adaptable variation-tolerant algorithm,” Nanotechnology, vol. 23,
no. 7, p. 075201, 2012.

[29] B. Liu et al., “Vortex: variation-aware training for memristor x-bar,” in
Proceedings of the 52nd IEEE/ACM DAC. ACM, 2015, p. 15.

[30] A. BanaGozar et al., “Robust neuromorphic computing in the presence
of process variation,” in IEEE DATE. IEEE, 2017, pp. 440–445.

Authorized licensed use limited to: University of Southern California. Downloaded on June 18,2020 at 20:07:03 UTC from IEEE Xplore. Restrictions apply.

