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Abstract—In this paper, a probabilistic interpolation recoder
(PIR) circuit is developed for deep belief networks (DBNs)
with probabilistic spin logic (p-bit)-based neurons. To verify the
functionality and evaluate the performance of the PIRs, we have
implemented a 784 x 200 x 10 DBN circuit in SPICE for a
pattern recognition application using the MNIST dataset. The
PIR circuits are leveraged in the last hidden layer to interpolate
the probabilistic output of the neurons, which are representing
different output classes, through sampling the p-bit’s output val-
ues and then counting them in a defined sampling time window.
The PIR circuit is proposed as an alternative for conventional
interpolation methods which were based on using a resistor-
capacitor tank to integrate each neuron’s output, followed by
an analog-to-digital converter to generate the digital output. The
circuit simulation results of PIR circuit exhibit at least 54%, 81 %,
and 78% reductions in power, energy, and energy-error-product,
respectively, compared to previous techniques, without using any
of the area-consuming analog components in the interpolation
circuit. In addition, PIR circuits provide an inherent single stuck-
at fault tolerant feature to mitigate both transient and permanent
faults at the circuit’s output. Reliability properties of the PIR
circuits for single stuck-at faults are shown to be enhanced
relative to conventional interpolation without requiring hardware
redundancy.

Index Terms—Deep Belief Network (DBN), magnetic tunnel
junction (MT]J), probabilistic spin logic device (p-bit), analog-to-
digital converter (ADC), MRAM.

I. INTRODUCTION AND RELATED WORK

The Restricted Boltzmann machine (RBM) is one of the
well-known classes of unsupervised learning approach [1].
A set of RBMs connected hierarchically can be utilized to
create deep belief networks (DBNs) with outstanding learning
abilities such as natural language understanding for various
applications [2]. Most of the research on RBM and DBN
has focused on software implementations. Albeit the software
implementation of DBNs on current von-Neumann-based plat-
forms (e.g. CPU, GPU, FPGA) provides flexibility, it incurs
significant power dissipation and high latency due to inherent
data communication costs, a.k.a. the “memory wall” issue.
There are various hardware implementations for RBMs such
as FPGAs [3] and CMOS multi-core processors [4] aiming to
tackle existing software limitations.

Recently, processing-in-memory based solutions using
emerging non-volatile memories (NVMs) such as resistive
RAM (RRAM) [5] and phase change memory (PCM) [6]
are set forth to be used within the DBN architecture. NVMs
provide the capability of performing logic beyond data storage

by bringing an intrinsic computation parallelism alleviating the
data transfer bottleneck. NVMs are typically used as weighted
connections interconnecting building blocks in RBMs.

The existing FPGA-based acceleration solutions show 25-
145x speedup compared to software implementations [3].
However, these designs have noticeable limitations such as
constrained clock frequencies, routing congestion, and re-
source deficiencies due to the significant embedded memory
utilization for weighted connections and activation functions.
In [7] optimization methods to reduce memory requirements
for weights and biases are proposed. However, in order to
implement each of the activation functions, a random number
generator (RNG), dedicated piecewise linear approximator
(PLA), and comparators are still required which increases
area and energy consumption per neuron. As an alternative
method, the stochastic CMOS-based RBM implementation
have been set forth [8] that takes full advantage of low-
complexity of the stochastic CMOS designs to improve area-
and energy-efficiency. On the other hand, such implementation
seeks extremely-long bit-stream that could lead to more energy
consumption and longer latencies. Besides, it requires a signif-
icant amount of Linear Feedback Shift Registers (LFSRs) to
generate the uncorrelated input and weight bit-streams. Both
the FPGA and stochastic CMOS implementations leverage
parallel Boolean circuits such as pseudo-random number gen-
erators, adder, and multipliers to improve the performance.
Such designs impose significant area and energy overheads
compared with leveraging the physical behaviors of emerging
devices to perform the computation intrinsically.

Within the NVM domain, Bojnordi et al. [5] proposed
to leverage resistive RAM (RRAM) devices to implement
vector-matrix multiplication with up to 100x speedup and
10x energy savings over single-threaded cores. In the same
way, Eryilmaz et al. [6] has used resistive memories with
CMOS activation function that ultimately imposes excessive
area and power consumption overheads. Recently, spintronic
devices with low energy barrier nanomagnets such as spin orbit
torque-Magnetic Tunnel Junctions (SOT-MTJs) and embedded
magnetoresistive random access memory (MRAM) devices are
leveraged as a natural building block to provide probabilistic
sigmoidal activation functions for RBMs, as studied in [9]
and [10], respectively. These devices have realized significant
energy and area improvements compared to previous RBM
hardware implementations. Thus, we will investigate various
circuit implementations to interpolate the stochastic output
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Fig. 1: An example of DBN structure including a visible layer
and two hidden layers.

of the probabilistic spin logic devices (p-bit) proposed in
[11]. In particular, inspired by a technique that is used to
create an analog-to-digital converter [12], we will develop two
CMOS-based probabilistic interpolation recoder (PIR) circuits,
which leverage a sampling methodology to provide a digital
output corresponding to the probabilistic output of the p-
bit based neurons. The proposed circuits achieve significant
improvements in terms of resource utilization and energy
consumption compared to conventional integration followed
by analog-to-digital conversion methods.

II. BACKGROUND
A. Deep Belief Network (DBN)

DBN can be easily realized by stacking Restricted Boltz-
mann machines (RBMs), which are classes of recurrent
stochastic neural networks, in which state of the network, k,
has an energy expressed by (1), determined by the connection
weights between nodes and the node bias, where sf denotes
the state of node i in k, b; represents the bias, or intrinsic
excitability of node i, and wy is the weight of connection
between nodes i and j [13].

E(k)=— Zsfbl - Zsfs;“w”

i<j

6]

The probability of each node in a RBM to be in state one
is determined based on (2), where o denotes the sigmoid
function. RBMs can reach a Boltzmann distribution in which
the system probability to be in state v is represented by (3),
and u could be any possible system state. Therefore, given
sufficient time, the system moves towards the states with the
lowest associated energy.

P(s; = 1) = o(bi+ Y _wis;) 2
7

e—E(v)
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RBM consists of two fully-connected layers called the
visible layer and the hidden layer, as shown in Fig.1. Crossbar
architecture is a widely-explored method to implement such
networks.
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Fig. 2: The diagram of the embedded MRAM-based neuron
(p-bit) as a building block for RBMs [11].

B. Embedded MRAM-Based Neuron

In this subsection, we show how a recently-proposed build-
ing block based on embedded MRAM technology can realize
a neuron with probabilistic sigmoidal activation function [11].
The MRAM-based stochastic device (p-bit) structure is shown
in Fig. 2. It consists of a magnetic tunnel junction (MTJ),
which is a 2-terminal device with two possible resistive levels
based on the orientation of its ferromagnetic (FM) layers, i.e.
fixed layer and free layer. The fixed layer has a fixed magnetic
orientation, while the free layer’s magnetization orientation
can be switched. In conventional MRAM cells, free layer of
the MTJ is manufactured with a thermally-stable nanomagnet
with a large energy barrier with respect to the thermal energy
(kT). Accordingly, the fixed layer works as a non-volatile
storage. Recently, in search of functional spintronic paradigms,
thermally-unstable MTJs based on superparamagnetic materi-
als have been theoretically and experimentally explored [14],
[91, [15], [16], [17].

In this work, we use a thermally-unstable MRAM device
with a low energy-barrier nanomagnet (Ep < 40kT) [11].
The MT]J resistance of this device randomly fluctuates between
the two possible resistive states. This leads to a fluctuating out-
put voltage at the drain of the NMOS transistor connected to
a CMOS inverter. The inverter amplify such voltage deviation
from the threshold voltage and generate a stochastic output
modulated by the input voltage. Particularly, by reducing
the drain-source resistance (r4s) through increasing the input
voltage (V7x), the voltage at the drain of the NMOS transistor
is shorted to the ground. Alternatively, it can get to Vpp
by increasing the rgs through decreasing V;y. Such device
operation is formulated considering the MTJ conductance [11]:

TMR
(2+TMR)
where m, is the free layer magnetization, Gy denotes the aver-
age MTJ conductance, (Gp + Gap)/2, and T M R represents

the tunneling magnetoresistance ratio. The drain voltage can
be written as:

GMTJ = GO 1+m, 4)

2+TMR)+TMR m,
2+TMR)(14+a)+TMR m,
where « is the ratio of the transistor conductance (G7) to the
average MTJ conductance (G).

The p-bit device uses a circular nanomagnet with near-
zero energy barrier without shape anisotropy. The free layer

&)

Vorain/Vop = (
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Fig. 3: Output probability of MRAM-based neuron vs. its input
voltage.

magnetization for the MTJ conductance discussed in Equa-
tion 4 is given by the stochastic Landau-Lifshitz-Gilbert (LLG)
equation:

d - .
(1+a2)d—7: = — |yl x H — aly|(h x i x H) ©

+1/gN (i x Is x 1) + (a/qN(m x fs))

where « is the damping coefficient of the nanomagnet, -y is the
electron gyromagnetic ratio, g denotes the electron charge, and
I is the spin current incident to the free layer. Fig. 3 shows
the correlation between the probability of output being in state
“1” and Vn. A close observation shows that Viy = VDTD =
400mV produces an output probability of 50%.

Some of the most recent hardware implementations of
DBNs are listed in Table I. In [3], FPGAs are utilized to
achieve speedups of 25-145 in comparison with software
implementations, however they still suffer from constrained
clock frequencies and routing congestion along with substan-
tial resource deficiencies because of the significant embed-
ded memory utilization for both weighted connections and
activation functions. The design presented in [8], benefits
the low-complexity characteristics of stochastic CMOS-based
arithmetic for implementing RBMs with reduced area and
power consumption but the increased latencies in this design
significantly restrains the energy savings due to the enormous
number of linear feedback shift registers (LFSRs) that are
required to generate the long input and weight bit-streams.
In [5] and [6], the crossbar arrays have been employed with
emerging technologies such as resistive RAM (RRAM) and
phase change memory (PCM) to implement matrix multipli-
cation within RBMs. In [5], Bojnordi et al. have employed
RRAM devices as weighted connections to achieve 100-fold
and 10-fold improvement with respect to operation speed and
energy consumption, respectively, relative to single-threaded
cores. The CMOS-based circuits such as multipliers and RNGs
are employed in all the aforementioned designs to realize the
probabilistic behavior of activation functions, which results
in significant area and energy overheads. In [9], Zand et
al. have achieved substantial area and energy reductions by
employing low energy barrier spin-orbit torque (SOT) MTJs
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Fig. 4: The block diagram of PIN-Sim framework including
five main modules [10].

to implement the probabilistic sigmoidal activation function.
Nevertheless, this design requires weighted connections with
very large resistance values which results in considerable area
overhead and fabrication complexity. Moreover, the current-
mode behavior of the SOT-MT]J devices imposes considerable
power consumption to the activation functions. Voltage-driven
embedded MRAM-based neuron with low energy barrier (p-
bit) has been proposed to take advantage of intrinsic thermal
noise to generate sigmoidal probabilistic activation functions
required for RBMs [10]. As listed in Table I, the p-bit based
RBM implementation can attain approximately three orders
of magnitude energy reduction relative to the previous energy-
efficient CMOS-based implementations, as well as at least 90-
fold decrease in the CMOS device count.

C. Probabilistic Inference Network-Simulator (PIN-Sim)

Herein, we use the Probabilistic Inference Network-
Simulator (PIN-Sim) proposed in [10] to realize a circuit-
level implementation of DBNs using memristive crossbars
as weighted connections and embedded MRAM-based neu-
rons as activation functions. As shown in Fig. 4, PIN-Sim
is a hierarchical simulation framework that consists of five
main modules: (/) trainDBN: a MATLAB-based module used
for training various DBN topologies [18] (2) mapWeight:
a module developed in MATLAB that converts the trained
weights and biases to their corresponding resistance values, (3)
mapDBN: a python-based module which provides a circuit-
level implementation of the restricted Boltzmann machine
using the obtained weight and bias resistances, (4) neuron: a
SPICE model of the MRAM-based stochastic neuron [11], (5)
testDBN: the main module developed in Python that executes
test evaluations to assess the error rate and power consumption
using the other modules in PIN-Sim.

ITI. PROPOSED PROBABILISTIC INTERPOLATION RECODER

In this paper, we use a 784 x 200 x 10 DBN for MNIST
pattern recognition tasks. Fig. 5 indicates the output voltages
of the neurons for a sample digit of ”4” in the last hidden
layer whereas each neuron represents an output class. Fig.
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TABLE I: Various hardware implementations for DBN architecture.

Design (31 [8] (51 (6] 9] [10]

. . Embedded - LFSR Memristive
Weighted Connection multipliers - AND/OR gates RRAM PCM SOT-DWM Devices

-2-kB BRAM Bit_—vl;ilz' ziND _'lfsiufi:%;gzr; near-zero Embedded
Activation Function - PLA Off-chip  energy barrier MRAM-based
- RNG - tree adder Number Generator SOT-MTJ stochastic neuron
- FSM-based tanh - Comparator

Energy per neuron ~ 10 — 100nJ ~ 10 — 100nJ ~1—10nJ N/A ~1—10fJ ~ 10 — 30fJ
Normalized area per neuron ~ 3000x ~ 90x ~ 1250% N/A ~ 1.25% 1x

5(a) shows the probabilistic outputs of the p-bit devices
while the outputs of their corresponding integrator circuits
is demonstrated in Fig. 5(b). The outputs of the integrators
are connected to the proposed PIR circuits described in this
section to interpolate the probabilistic outputs of the neurons
representing each class in the MNIST dataset.

A. Sample and Count based PIR (SC-PIR)

Conventional methods for designing an interpolation circuit
for probabilistic neurons involve using an integrator circuit,
e.g. resistor-capacitor (RC) circuit, along with an analog-
digital-converter (ADC) to convert the probabilistic outputs
of the neurons to a digital output, as shown in Fig. 6a.
Interpolation circuits such as ADCs, which are required for a
completely operational network, are being investigated as an
emerging topic in computing. These are identified as useful
targets to further reduce energy and area demands [19], [20],
[21], [22], [23]. For instance in [20], significant reduction
of the ADC energy and area overhead is achieved by using
bit-slice sparsity since the power-hungry ADCs prevent the
practical deployment of Resistive Random-Access Memory
(ReRAM)-based DNN accelerators on end devices with lim-
ited chip area and power budget. In [21], they painstakingly
attempted to reduce the overhead of ADCs by partitioning the
input into several segments which are fed sequentially into the
crossbar. An alternate technique is presented in [22] to reduce
the overhead of ADCs in ReRAM neuromorphic computing
systems by normalizing and quantizing data. In [23], it is an
explicit focus to considerably decrease the overhead of the
peripheral circuit to reduce the total design area and power
consumption by quantizing the weights to fewer bits. Herein,
we propose a CMOS-based probabilistic interpolation recoder
(PIR), which is directly connected to the p-bits to generate a
discrete n-bit output for each of the neurons in the last layer
of the network. Fig. 6b shows the circuit structure of 3-bit
SC-PIRs.

In the proposed SC-PIR circuits, the probabilistic output of
the embedded MRAM-based neuron (Neuronoyr) is sam-
pled at the positive edge of each clock (clk), and the sampled
outputs are accumulated through a counter. A ctrl signal is
utilized to reset the counter and control the PIR circuit’s sam-
pling time window. An n-bit PIR circuit counts the sampled
outputs for 2n — 1 clocks and then returns the accumulated
value in the form of an n-bit output (OUT,,_, — OUTy). Fig.
7a exhibits the transient response of the proposed 3-bit SC-
PIR circuits, while the input of the p-bit based neuron is set
to Vin = VDTD = 400mV. When the ctrl signal is 707,

the counter is reset and the output of the PIR circuit will
be connected to GND, i.e. (OUTy, — OUTy = 000). When
the ctrl = 1, the counter is activated, and the output of the
neuron is sampled at every positive edge of the clock signal.
If the output of the RC integrator circuit connected to the
neuron is greater than Vpp/2 during the sampling time, the
PIR circuit will increment the counter, else the counter remains
unchanged. For instance, in Fig. 7a, the counter is incremented
from 000 to 001 at the fourth positive edge of the clock since
ctrl signal is equal to ’1” and the voltage of the Neuronoyr
is greater than Vpp/2 = 400mV. An n-bit SC-PIR circuit
continues this process for 2" clock periods and after the 2"-th
period, the output of the counter is used as the interpolated
output of the probabilistic neuron.

B. Sample and Shift based PIR (SS-PIR)

In this paper, we develop another alternative implementation
of PIR circuits that is called sample and shift based PIR
(SS-PIR) in the interest of improving energy consumption
while obtaining a comparable error rate. In the proposed SS-
PIR circuit, the sampled outputs are interpolated through a
bidirectional shift register at the positive edge of clock (clk).
The SS-PIR circuit shifts by one position the bit array stored
in it, shifting in Veuronoyr and shifting out the last bit in the
array at each transition of the clock input. The shift register in
the SS-PIR circuit must be shifted right or left if the sampled
output voltage of the neurons integrator (Neuronoyr) is less
than or greater than Vpp /2, respectively. In other words, the
bit array that is stored in shift register multiplies or divides
by 2 if Neuronoyr is less than or greater than Vpp/2,
respectively. A ctrl signal is utilized to reset the shift register
and control the SS-PIR circuit’s sampling time window. An
n-bit SS-PIR circuit counts the sampled outputs for n clock
periods and then returns the shifted value in the form of an
n-bit output (OUT,,_1 — OUTy). Fig. 7b exhibits the transient
response of the proposed 3-bit SS-PIR circuits while the input
of the p-bit based neuron is set to V;n = VDTD = 400mV . For
instance, as shown in the figure, when the ctrl signal is 17, the
value stored in the shift register changes from 000 to 001 at the
third positive edge, and from 001 to 011 at the fourth positive
edge of the clock since Neuronoyr > (Y82 = 0.4V).

IV. PIR FOR SPIKING NEURAL NETWORKS

With some minor changes in the PIR circuit design, they can
be utilized in the Spiking Neural Network (SNN) architectures
as well. There are various implementations of spiking neurons,
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Fig. 5: Output voltages of a 784 x 200 x 10 DBN for a sample digit of ”’4”: (a) Probabilistic output of the p-bit devices, (b)
Output of the integrator circuit [10].
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whereby some require a compatible counting and sampling
while others do not utilize such techniques. In Seo et al. [24],
each SNNs neuron circuit has its own 16-bit adder, Op-amp
comparator, and a 4:1 mux to integrate all presynaptic weights
and determine firing activity, which essentially imposes a large
power overhead to the design. In [25], the neurons readout
block includes a column ADC, which contains a summing
amplifier, a sample-and-hold circuit and a high-resolution
ADC, which again shows a large area-overhead. Wang et al.
[26] exploit a capacitive accumulator and then a comparator
as well as a flip-flop to readout the data from a SNN-based
RRAM crossbar. On the other hand, in a recent work [27], the
authors present an efficient three-step memristive-based SNNs
neuron; or reference [28] presents an all-spin SNNs by using
a domain wall-based neuron, where neither of these designs
need adder/comparator-based techniques.

The proposed sequential PIR circuit can be modified to a
combinational circuit which instead of sampling the output of
the neuron at the positive edges of the clock, would increment
the counter or shifts the shift register in SC-PIR and SS-PIR
circuits, respectively. This occurs when the input voltage of
the circuit (i.e. output of the neuron in SNN) is greater than a
specific voltage threshold. However, the proposal of our PIR
circuit is particularly important for DBNs whereas listed in
Table 1, the p-bit based neurons achieve orders of magnitude
energy and area reduction compared to their CMOS-based
counterpart, but they require an efficient interpolation circuit
to fully-leverage their advantages. Thus, in this paper, we have
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TABLE II: Parameters used for modeling and simulation [11].

Parameters Value
Saturation magnetization (CoFeB) (M) 1100 emu/cc [31]
Free Layer diameter, thickness 22nm, 2nm
< 10 ; Polarization 0.59 [32]
=1 , ; TMR 110% [32]
g 0.57 . T MTJ RA-product 90 — um? [32]
0.0 ‘ ‘ — — Damping coefficient 0.01 [31]
S 10 : Temperature 26.85°C
E 051 u n n n ; u E ’ n 0
© 00 ' focused on developing energy and area efficient interpolation
s 10 : : : circuits for DBN architectures.
= 05 n n nz E n h n V. SIMULATION RESULTS
© 00 In order to assess the performance of the proposed PIR
s 10 P ' circuits, we have utilized them within the structure of a
E 057 n n h h h h ' h 784 x 200 x 10 DBN circuit implemented by the PIN-
O g0 ‘ ; ‘ ‘ Sim framework for MNIST digit recognition application. As
co 10 7 : shown in Fig. 8, the PIR circuits are connected to the output
e= 0.5 bt meint s layer to interpolate the probabilistic output of the neurons
23 , : which represent the 0-9 digit classes of the MNIST dataset.
0.0 Moreover, we employ a circular disk magnet that have been
< 1.0 F fabricated and characterized in [29], [30], and [17] with near-
g 0.5 _‘ H H H | : ’ ‘ ' | G ’ ’ : zero energy barrier without any shape anisotropy. Table II
T e e R shows the device parameters that are used in the simulations in
00 05 10 15 20 25 30 35 40 this paper [11]. It should be emphasized that the results are not
considerably influenced by the current that is flowing at the
(@) midpoint (V;n = Vpp/2) for the selected parameters with a
S 10 : : circular free layer with an in-plane anisotropy, and any pinning
T Lt s I e at higher input voltages takes advantage of switching operation
5 of the device. By verifying the functionality and efficiency of
_ ?’8 the PIR circuits for MNIST dataset, their efficiency for larger
= ‘ ‘ ‘ ‘ ; ; ‘ ; : datasets will be validated as well. This is because the PIR
E 0.5 T n o n ) n : circuits are only used to interpolate the probabilistic output of
O 00 : the last layer in the network, while the accuracy of the network
= 1.0 - for various datasets rely on other factors such as number of
":’ 0.5 Qs inmnnnion n Y — n @ A hidden layers and number of nodes in each hidden layer which
=) n is not the focus of this work. Thus, once it is shown that PIR
© 00 circuits can properly interpolate the output of the network for
S 10 ‘ : ‘ : . MNIST dataset, it is also verified that they can interpolate the
E 0.5 T n e n e n : outputs of different DBN topologies for different datasets.
O 00
~ 1.0
6 : A. Accuracy Analyses
e e T
20 4o Herein, 100 images from MNIST dataset are selected, which
10 : : : : : : : : : induced the most discrepancy in recognition accuracy when
S classified using ADC and PIR circuits. Output classes are
X 05 ‘ : : ‘ : selected according to the binary values given to them by the
© 00 T T T T T ] i T ADC-based or PIR-based interpolation circuits. For instance,
0.0 0.5 1.0 1.5 2.0 Table III exhibits the binary values generated for each output
classes in the 784 x 200 x 10 DBN for a sample digit “2” from
(®) the selected images of the MNIST dataset. The output class(es)
Fig. 7: Timing waveforms of (a) 3-bit SC-PIR circuit and (b) with the largest binary value represents the first class(es)
3-bit SS-PIR circuit. selected by the interpolation circuit. As listed in Table III,

the 3-bit and 5-bit SC-PIR circuits produced similar output
binary values for digit classes 2,3 and 3 respectively as its
top selections, which is an incorrect recognition, while other
circuits successfully selected the correct output class.
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Fig. 8: Simulation framework utilized for application-level simulations. (a) subset of MNIST dataset with 100 test images, (b) a
784 x 200 x 10 DBN developed for MNIST pattern recognition application, (c) hardware implementation of the 784 x 200 x 10
DBN using PIN-Sim tool, (d) stochastic MRAM-based neuron (p-bit), and (e) PIR unit used to interpolate the probabilistic

output of the p-bit based output neurons to digital output.

Table IV provides a recognition accuracy comparison be-
tween DBN circuits with 3-bit ADC and DBNs with 3-bit,
4-bit and 5-bit PIR in their structure. As listed, the 3-bit PIR
circuits could obtain a comparable error rate with 3-bit ADC
circuit, which led to a top-2 error rate of 0.23 and 0.24 for
SC-PIR and SS-PIR respectively. This is mainly due to the
low number of samples in the sampling time window for the
3-bit PIR circuits, i.e. only 7 and 3 samples for SC-PIR and
SS-PIR respectively, which results in giving the same value to
different classes. On the other hand, 4-bit SC-PIR and 5-bit
SS-PIR circuits could achieve better error rate than 3-bit ADC
circuit as shown in Fig. 9. It is worth emphasizing that the
network topology, weights, and neurons in each of these DBN
implementations are similar, even a similar random seed is
utilized in the SPICE simulations to generate the probabilistic
behavior of the p-bit based neurons, thus the discrepancy in
the recognition accuracy is only induced by the difference in
the interpolation circuits and no other factors are involved.

B. Performance Analyses

In this work, the authors expected an increase in the
error rate by replacing the ADCs with PIR circuits since a
continuous integration operation followed by a sample-and-
hold operation, and analog-to-digital conversion is replaced
by a simple sample and accumulation method that is imple-
mented only by CMOS transistors. Thus, to better comprehend

m SC-PIR mSS-PIR
3-bit ADC =20

Error Rate (%)
Ln s

%)

4 5
Resolution (# of Bits)

Fig. 9: Error Rate for 3-bit, 4-bit and 5-bit SC-PIR and SS-
PIR.

the advantages of our proposed circuits, we have defined a
metric called energy-error-product (EEP) as follows, which
incorporates the energy costs to achieve a particular accuracy:

EEP =N x E x err @)

where NN is the number of output neurons, E is the energy
consumption of the PIR circuit, and err is the error rate of
the network.

Table IV provides a comparison between the 3-bit ADC
and 3-bit, 4-bit and 5-bit PIR circuits in terms of resource
utilization, power/energy consumption, and EEP values. A
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TABLE III: The binary outputs generated by ADC-based and PIR-based interpolation circuits for an input digit “2” from the

MNIST dataset of handwritten digits.

Output Class  3-bit ADC  3-bit SC-PIR  3-bit SS-PIR  4-bit SC-PIR  4-bit SS-PIR  5-bit SC-PIR  5-bit SS-PIR
Digit-0 001 100 001 0011 0000 10001 00000
Digit-1 001 000 000 0001 0000 00111 00000
Digit-2 110 111 111 1110 1111 11110 11111
Digit-3 010 111 011 0110 0011 11111 00000
Digit-4 001 001 000 0001 0000 01000 00000
Digit-5 000 000 000 0010 0000 00010 00000
Digit-6 000 001 000 0011 0000 01011 00000
Digit-7 000 000 000 0000 0000 00000 00000
Digit-8 001 100 000 0111 0000 10101 00000
Digit-9 000 000 000 0010 0000 00010 00000

1st Selected

Digit Class 2 23 2 2 2 3 2
2nd Selected

Digit Class 3 0.8 3 8 3 2 -
3rd Selected 0.14.8 46 0 3 ) 8 )

Digit Class

TABLE IV: Performance comparison between 3-bit, 4-bit and 5-bit SC-PIR and SS-PIR circuits.

Design 3-bit 3-bit 3-bit 4-bit 4-bit 5-bit 5-bit
© ADC SC-PIR SS-PIR SC-PIR SS-PIR SC-PIR  SS-PIR
OP-AMP 9 - - - - - -
Resource Capacitor 2 1 1 1 1 1 1
Utilization Resistor 22 1 1 1 1 1 1
Transistor 94 114 90 156 128 208 152
Required Number of clocks - 8 4 16 5 32 6
Error Rate 0.20 0.23 0.24 0.17 0.27 0.18 0.18
Power Consumption (W) 70.3 39.2 32 38.4 433 42.6 39.5
Energy Consumption (fJ) 351.5 156.8 64 307.2 108.25 681.6 118.5
Energy-Error-Product 702.6 360.6 153.6 522.2 292.2 1226.8 213.3

TABLE V: Power and energy consumption of weighted array, activation function and interpolation circuits for several DBN

topologies.
Power Consumption (mW) Energy Consumption (pJ)

Topology o - . Interpolation Circuits . . - . Interpolation Circuits
Weighted Array Activation Function 3Bt ADC 3Bt SSPIR Weighted Array Activation Function 3B ADC 3t SSPIR

784 x 10 4.146 0.194 0.703 0.32 8.292 0.388 3.515 0.64

784 x 200 x 10 80.4 5.6 0.703 0.32 321.6 224 3.515 0.64

784 x 200 x 200 x 10 117.57 10.5 0.703 0.32 705.42 63 3.515 0.64
1400 54% and 81% reductions in power and energy are achieved,
m SC-PIR ®SS-PIR respectively, whereas EEP reduction is 78% for 3-bit SS-PIR

1200
1000

p, 300 3-bit ADC=7026
5] e
= 600 7 8% l .

100 7/ .

> Bl

0
. Resolution (# of Bits) -
Fig. 10: EEP for 3-bit, 4-bit and 5-bit SC-PIR and SS-PIR.

comparison between 3-bit ADC and PIR circuits shows a
significant improvement in the effectiveness of resource uti-
lization. In the PIR circuits, all of the area-consuming elements
in the conventional circuits such as operational amplifiers (op-
amps), resistors, and capacitors are removed and for example,
only 58 MOS transistors are increased for 5-bit SS-PIR
compared to the 3-bit ADC circuit. Moreover, more than

circuit compared to 3-bit ADC as shown in Fig. 10. The results
obtained verify the advantage of our proposed circuit in terms
of the individual and combined metrics of accuracy and energy
consumption.

Table V lists the power and energy consumption of the
weighted array, activation function, and interpolation circuits
for several DBN topologies. In smaller networks, such as
the 784 x 10 DBN, energy consumption of the ADC-based
interpolation circuit is approximately 9-fold greater than the
energy that is consumed in the activation functions, while
it constitutes almost 28% of the total energy consumption
of the entire network. On the other hand, the proposed SS-
PIR circuit achieves more than 5-fold energy consumption
reduction compared to ADC-based circuit, which significantly
reduces the contribution of the interpolation circuit to the total
energy consumption of the network from 28% to only 6%.
By enlarging the size of the network, the activation function
and interpolation circuit will be minority sources of energy
consumption, which is partially realized by the considerable
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energy reductions achieved by utilizing the p-bit devices as
neurons and proposed PIRs as interpolation circuits.

C. Area Analysis

One of the major challenges of ADC circuits are their
significant area consumption, which is mainly induced by the
large analog components existing in their structure such as
Op-Amps. Herein, we have used a Flash ADC, which uses a
linear voltage ladder with Op-Amp based comparators and an
encoder circuit to interpolate the probabilistic output of the
circuit and compared its energy and area consumption with
our proposed PIR circuits. For the Op-Amp circuits we have
used the CMOS-based design proposed in [33], which reports
an area consumption of approximately 250um? for 130nm
CMOS technology, scaling it down to 14nm nodes using the
scaling method proposed in [34] results in an approximate
area consumption of 2.9 um? for each Op-Amps utilized
in the ADC circuits. On the other hand, the layout design
results of MRAM-based neuron demonstrate that the area
consumption of the MRAM-based neuron is approximately
equal to 32\ x 32\, where A = 14nm/2 = Tnm for 14nm
FinFET technology, thus leading to the approximate area
consumption of 0.05um? per neuron [10].

Herein we have used the area consumption of the p-bit
neuron as the baseline and all the other estimated area values
are normalized according to the p-bit area consumption. For
instance, the area required to implement the RC circuit with
100 K resistor and 20fF capacitor is almost three times
larger than that of the p-bit [10], i.e. RC a,eq=3X, i.e. 3X(p-
bit neuron area). On the other hand, we have used the well-
known 1T-1R structure for each weight in the weighted array,
which allocates one transistor to each weight and the resistive
devices are fabricated on top of the MOS transistors thus
incurring no area overhead. Therefore, the estimated area
consumption for each weight is approximately 0.02 pm?
=0.4X. Table VI provides the normalized area consumptions
for weighted arrays, activation functions, and interpolation
circuits for various network topologies. As it is listed in
table, the area consumption of the activation function and
interpolation circuits constitute a significantly smaller portion
of the entire networks area, when the DBNs become larger
which is in part realized by significant area reductions achieved
by p-bit devices and PIR circuits.

D. Fault Analysis

High performance integrated circuits must be protected
against either transient or permanent faults. The most com-
monly fault model is the single stuck-at fault, in which faults
are modeled in a way that only one circuit node is permanently
connected to either O (stuck-at 0) or 1 (stuck-at 1). When a
node is stuck-at O or 1, the value is still readable, but can not
be altered. In a write operation, the stuck-at node is faulty if
the desired value is not equal to the stuck-at value but if the
two values are equal, the node is not faulty. In order to do a
fault simulation, it is necessary to execute two simulations: one
for the fault-free circuit and another for the faulty circuit with
some faults. In this way, when using the single stuck-at model,

m SC-PIR

SS-PIR

EEFP
=
(=]

3 4
Resolution (# of Bits)

g

Fig. 11: EEFP for 3-bit, 4-bit and 5-bit SC-PIR and SS-PIR.

the fault injection includes a node that is permanently set either
to 0 or 1. By comparing the output of the two simulations,
if the simulation results are different for the same input, it
is concluded that the circuit is faulty [35]. In this paper, we
evaluate ADC and PIR circuits in terms of reliability to achieve
more efficient DBNs. For a circuit with n outputs, 2n single
stuck-at faults would be possible since each output can set
to 0 or 1. In 4-bit and 5-bit circuits, 8§ and 10 single stuck-
at faults can transpire respectively as shown in Tables VII
and VIII. The X’ shows the states that a faulty bit causes
faulty output and the blank state illustrates that output is still
correct despite a faulty bit. For example, the output of SS-
PIR will be faulty when the desired output must be 31 just
in a case that most significant bit becomes stuck at 0 (O4/0).
We calculate the faulty rate of each circuit by dividing the
number of states that cause faulty outputs by all possible stuck-
at fault states for each circuit. The faulty rate for 4-bit ADC
and SC-PIR circuits is 50% because a bit flip for each output
causes faulty output. In SS-PIR, the fault rate is 33% which
is achieved by providing some dropouts between all possible
outputs. To better comprehend the reliability advantages of
SS-PIR circuits, we have defined a metric called energy-error-
faulty-product (EEFP) as follows, where F' is the fault rate:

EEFP =N x FE xerr x F (8)

This incorporates the energy and reliability costs to achieve
a particular accuracy. As shown in Fig. 11, all PIR-based
circuits have better EEFP than 3-bit ADC up to 84% reduction
except 5-bit SC-PIR. The SS-PIR can offer better performance
also in the matter of reliability in comparison to ADC and SC-
PIR.

VI. CONCLUSION

The concept of using sampling and count operations to
interpret the probabilistic output of a p-bit based neuron offers
an intriguing approach to realize a CMOS-based probabilistic
interpolation recoder (PIR) for a spin-based stochastic binary
neuron. Herein, we proposed a PIR circuit as a replacement
for an analog-based approach to interpolate the output of
the p-bit based activation functions in the last layer of a
DBN circuit. The conventional method involved: first, using
an RC circuit to continuously integrate the analog output
of the p-bit, next an op-amp based sample and holder is
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TABLE VI: Area of weighted array, activation function and interpolation circuits for several DBN topologies relative to the

area occupied by a single p-bit-based neuron.

Normalized Area
Topology Weighted Array Activation Function 3_billntggglauog_(b:i‘:cgl;spl]{
784 X 10 2600 x 10X 2400 % 330
784 X 200 X 10 52000 X 2000 X 2400 % 330%
784 X 200 X 200 X 10 66000 X 200000 X 2400 % 330
TABLE VII: Stuck-at fault table for 4-bit SC-PIR.
Bit  Stuck-at Output = 030,0,0¢
IT1T 1110 1101 1100 101l 1010 1001 1000 OIIT OII0 OI0OI 0100 0011 0010 0001 0000
o 0 X X X X X X X X
3 1 X X X X X X X X
o 0 X X X X X X X X
2 1 X X X X X X X X
o 0 X X X X X X X X
! 1 X X X X X X X X
o 0 X X X X X X X X
0 1 X X X X X X X X
TABLE VIII: Stuck-at fault table for 5-bit SS-PIR. Finally, the beneficial reliability properties of PIR circuits
ST Output = 0,030,0,05 have been demonstrated for single stuck-at faults, relative to
5 11T Oftir 0011t 00011 00001 00000  conventional interpolation, without requiring hardware redun-
X . .
04 1 x X X X X dancy while reducing fault rate from 50% to 33%.
o 0 X
3
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