
Abstract — Magnetic Random-Access Memory (MRAM) based p-
bit neuromorphic computing devices are garnering increasing 
interest as a means to compactly and efficiently realize machine 
learning operations in Restricted Boltzmann Machines (RBMs). 
When embedded within an RBM resistive crossbar array, the p-bit 
based neuron realizes a tunable sigmoidal activation function. Since 
the stochasticity of activation is dependent on the energy barrier of 
the MRAM device, it is essential to assess the impact of process 
variation on the voltage-dependent behavior of the sigmoid function. 
Other influential performance factors arise from varying energy 
barriers on power consumption requiring a simulation environment 
to facilitate the multi-objective optimization of device and network 
parameters. Herein, transportable Python scripts are developed to 
analyze the output variation under changes in device dimensions on 
the accuracy of machine learning applications. Evaluation with 
RBM circuits using the MNIST dataset reveal impacts and limits for 
processing variation of device fabrication in terms of the resulting 
energy vs. accuracy tradeoffs, and the resulting simulation 
framework is available via a Creative Commons license. 
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I. INTRODUCTION AND BACKGROUND 

A probabilistic bit (p-bit) device is a two-terminal voltage-
controlled Magnetic Random-Access Memory (MRAM) 
component realizing a sigmoidal activation function as  an 
artificial neuron suitable for machine learning applications such 
as Restricted Boltzmann Machines (RBMs) [1]. A p-bit is 
formed by combining a common source NMOS transistor with 
an in-plane MTJ (IMTJ) between VDD and the drain of the 
NMOS transistor followed by a CMOS inverter. This creates an 
oscillating voltage at the drain of the NMOS transistor that can 
then be pinned to VDD when VIN is VDD or alternatively to 
ground when VIN is below the NMOS threshold voltage. The 
sigmoid function is realized via the stochastic output of the p-
bit due to thermal  noise induced switching [1].  

Deep Belief Networks (DBNs), specifically Restricted 
Boltzmann Machines (RBMs), can be physically realized by 
utilizing a resistive weight crossbar array with a p-bit neuron to 
realize the sigmoidal activation function. To date, a simulation 
framework called Probabilistic Inference Network (PIN-sim) 
was developed in order to create, train, and test RBM circuit 
models [2]. The framework is composed of five blocks:  

1) TrainDBN: a MATLAB training algorithm 

2) MapWeight: a MATLAB algorithm used to convert 
neuron weights and biases into resistor values  

3) MapDBN: a python script that realizes the weights and 
biases into a circuit model  

4) Neuron: the SPICE model of the p-bit  

5) TestDBN: a python script that tests the error and power 
consumption of the DBN.  

To interpret the results of the probabilistic reasoning 
process as a definitive selection, a conversion circuit is needed 
to transform the time-varying stochastic analog signal into a 
digital output such as a Probabilistic Inference Recoder (PIR). 
While functionally similar to an Analog Digital Converter 
(ADC), PIR circuits realize significant area and power 
consumption reduction of 48% and 74% versus ADCs, 
respectively [1]. To achieve practical fabrication of machine 
learning hardware, it is of particular interest to analyze how 
RBM models using PIR circuits behave in the presence of  
manufacturing variations prevalent at the 45nm process node 
and below. Herein, a Python script-based simulation framework 
was developed to extend PIN-sim that invokes SPICE neuron 
models at different energy barriers and collates the data into a 
format suitable for the designer to balance tradeoffs involved. 

II. PYTHON-DRIVEN SIMULATION FRAMEWORK 
The goal with this script is to gather data on how process 

variation will affect the energy barrier of the MTJ, thus 
changing the realization of the sigmoid function and potentially 
adverse effects to energy consumption. The Python script 
invokes SPICE to gather outputs under consecutive voltage data 
points applied to the p-bit device as shown in Figure 1. Given a 
SPICE neuron file with the small magnetic anisotropy field, HK, 
defined in the parameter file, the script changes HK values based 
on the propagated energy barrier value. It then runs the 
simulation while piping the bash output to a text file in case of 
any SPICE errors. Finally, it extracts the neuron output voltage 
data points and collates them within the results text file. 
Multiple energy barrier values can be run sequentially if a text 
file containing a list of energy barriers with each entry is passed 
as an argument to the script.  

 
Figure 1: MTJ Energy barrier simulation using Python scripting. 
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Data points can then be plotted in MATLAB to view the effect 
that the energy barrier has on the realization of the sigmoid 
activation function. The formula used by the Python script for 
calculating the energy barrier, Eb, is: 

 

𝐸𝐸𝑏𝑏 = 1
2
𝐻𝐻𝐾𝐾𝑀𝑀𝑠𝑠𝑉𝑉                             (1) 

 
where V is the volume and MS is the magnetization saturation 
of the MTJ. The pseudocode for the script is identified in 
Algorithm 1. 
 

Algorithm 1: Effect of Process Variation on the MTJ  
                       Sigmoid Activation Function Realization 

Input: energy barriers, neuron source file 
Output: neuron output voltage 
 
for each energy barrier, E: 
    calculate 𝐻𝐻𝐾𝐾 = 2𝐸𝐸𝑏𝑏

𝑀𝑀𝑠𝑠𝑉𝑉
 

    search for “HK= “ in SPICE code 
    replace anisotropy field value with calculated value 
    run SPICE simulation piping bash output to text file 
    search for voltage output and write to results file 

 
Another tool developed was a Python script to aid testing of the 
DBN’s accuracy with the MNIST dataset. The development of 
these scripts extends PIN-sim and will aid future development 
and testing of p-bit based, DBN networks with a PIR 
digitization output stage. 

III. MNIST DATASET EVALUATION 
 To analyze the performance of the PIR circuit, a Python 

script was developed to compare the large amounts of data 
commonly found in machine learning datasets. This accuracy 
analysis script operated as follows: first, it reads one line of the 
MNIST dataset file to find the expected output for that testcase 
and the testcase label. Secondly, it locates each instance of the 
testcase label in the PIR output file. Third, it reads the neuron 
data into a list until it encounters the subsequent case. Upon 
finding the next testcase, all the neurons for the current testcase 
have been read and now can be processed. The list is sorted by 
constituent probabilities from high to low. Next, the first two 
neurons are examined to see if either of them is the neuron 
indicating the expected output from the MNIST dataset. If any 
output digit neuron subsequent to the top two neurons have the 
same probability, then the output of the PIR circuit counts as a 
fail even if the expected output was within the top two 
confidence selections, whereas the circuit was not able to tell a 
clear difference between which neuron was correct. If the 
expected output was a neuron in the top two likelihood 
categories, then the testcase is regarded as a pass.  

The process is repeated until either file reaches its end. 
Upon finishing all testcases, then the total number of testcase 
passes and failures are tabulated so that the overall error rate is 
determined. The corresponding pseudocode is listed in 
Algorithm 2. The script was tested by comparing the error rates 
generated against previous works [1]. Namely, the script was 
fed outputs of a PIR circuit with 100 testcases and the MNIST 
dataset. The results obtained are listed in Table I. 

Algorithm 2:  MNIST DBN Performance Analysis 

Input: MNIST dataset, PIR output 
Output: number of testcases that passed/failed 
 
for each testcase 
    for each neuron 
        append neuron data to list 
    sort list by neuron probability high to low 
    if the expected output was in the top two neurons 
        AND its probability doesn’t match any neurons 
        beyond the top two neurons 
    then 
         testcase passes 
    else 
        testcase fails 

 
Table I: Optimization of precision, area, and accuracy for 

handwritten digit recognition using MNIST dataset. 

PIR Precision Energy Consumption Error Rate 
3 bits 90.75 fJ 24% 
4 bits 124.2 fJ 17% 
5 bits 176.0 fJ 18% 

IV. CONCLUSION 
MRAM-based p-bit neuromorphic architectures offer an 
emerging device approach to realize true intrinsic machine 
learning within accelerators and IoT edge devices. A simulation 
framework using Python scripts can thoroughly address two 
important areas requiring analysis prior to fabrication: effects 
of the variation on the p-bit sigmoid function and network 
optimization for accuracy vs area using an appropriate analog 
signal digitization strategy, such as a PIR circut. Because the p-
bit’s stochasticity is dependent on oxide barrier thickness, a one 
script ran a SPICE script multiple times, each changing the 
magnetic anisotropy field determined by the oxide thickness 
and thus permuting the energy barrier as a process variation 
yielding repeatable results to the desired confidence interval. 
The resulting simulation framework is transportable, adaptable, 
and available to other machine learning researchers via a 
Creative Commons license upon request to the authors. 
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