
Abstract — Magnetic Random-Access Memory (MRAM) based p-
bit neuromorphic computing devices are garnering increasing
interest as a means to compactly and efficiently realize machine
learning operations in Restricted Boltzmann Machines (RBMs).
When embedded within an RBM resistive crossbar array, the p-bit
based neuron realizes a tunable sigmoidal activation function. Since
the stochasticity of activation is dependent on the energy barrier of
the MRAM device, it is essential to assess the impact of process
variation on the voltage-dependent behavior of the sigmoid function.
Other influential performance factors arise from varying energy
barriers on power consumption requiring a simulation environment
to facilitate the multi-objective optimization of device and network
parameters. Herein, transportable Python scripts are developed to
analyze the output variation under changes in device dimensions on
the accuracy of machine learning applications. Evaluation with
RBM circuits using the MNIST dataset reveal impacts and limits for
processing variation of device fabrication in terms of the resulting
energy vs. accuracy tradeoffs, and the resulting simulation
framework is available via a Creative Commons license.

Keywords —Neuromorphic Computing Hardware, Python-Script
Driven Simulation, Magnetic Random-Access Memory (MRAM)
Device, Stochastic Neuron, Restricted Boltzmann Machine (RBM).

I. INTRODUCTION AND BACKGROUND

A probabilistic bit (p-bit) device is a two-terminal voltage-
controlled Magnetic Random-Access Memory (MRAM)
component realizing a sigmoidal activation function as an
artificial neuron suitable for machine learning applications such
as Restricted Boltzmann Machines (RBMs) [1]. A p-bit is
formed by combining a common source NMOS transistor with
an in-plane MTJ (IMTJ) between VDD and the drain of the
NMOS transistor followed by a CMOS inverter. This creates an
oscillating voltage at the drain of the NMOS transistor that can
then be pinned to VDD when VIN is VDD or alternatively to
ground when VIN is below the NMOS threshold voltage. The
sigmoid function is realized via the stochastic output of the p-
bit due to thermal noise induced switching [1].

Deep Belief Networks (DBNs), specifically Restricted
Boltzmann Machines (RBMs), can be physically realized by
utilizing a resistive weight crossbar array with a p-bit neuron to
realize the sigmoidal activation function. To date, a simulation
framework called Probabilistic Inference Network (PIN-sim)
was developed in order to create, train, and test RBM circuit
models [2]. The framework is composed of five blocks:

1) TrainDBN: a MATLAB training algorithm

2) MapWeight: a MATLAB algorithm used to convert
neuron weights and biases into resistor values

3) MapDBN: a python script that realizes the weights and
biases into a circuit model

4) Neuron: the SPICE model of the p-bit

5) TestDBN: a python script that tests the error and power
consumption of the DBN.

To interpret the results of the probabilistic reasoning
process as a definitive selection, a conversion circuit is needed
to transform the time-varying stochastic analog signal into a
digital output such as a Probabilistic Inference Recoder (PIR).
While functionally similar to an Analog Digital Converter
(ADC), PIR circuits realize significant area and power
consumption reduction of 48% and 74% versus ADCs,
respectively [1]. To achieve practical fabrication of machine
learning hardware, it is of particular interest to analyze how
RBM models using PIR circuits behave in the presence of
manufacturing variations prevalent at the 45nm process node
and below. Herein, a Python script-based simulation framework
was developed to extend PIN-sim that invokes SPICE neuron
models at different energy barriers and collates the data into a
format suitable for the designer to balance tradeoffs involved.

II. PYTHON-DRIVEN SIMULATION FRAMEWORK
The goal with this script is to gather data on how process

variation will affect the energy barrier of the MTJ, thus
changing the realization of the sigmoid function and potentially
adverse effects to energy consumption. The Python script
invokes SPICE to gather outputs under consecutive voltage data
points applied to the p-bit device as shown in Figure 1. Given a
SPICE neuron file with the small magnetic anisotropy field, HK,
defined in the parameter file, the script changes HK values based
on the propagated energy barrier value. It then runs the
simulation while piping the bash output to a text file in case of
any SPICE errors. Finally, it extracts the neuron output voltage
data points and collates them within the results text file.
Multiple energy barrier values can be run sequentially if a text
file containing a list of energy barriers with each entry is passed
as an argument to the script.

Figure 1: MTJ Energy barrier simulation using Python scripting.

Modular Simulation Framework for Process Variation
Analysis of MRAM-based Deep Belief Networks

Paul Wood, Hossein Pourmeidani, and Ronald F. DeMara
Department of Electrical and Computer Engineering

University of Central Florida, Orlando, FL 32816-2362
pwood9@knights.ucf.edu, hossein.pourmeidani@knights.ucf.edu, and ronald.demara@ucf.edu

mailto:pwood9@knights.ucf.edu
mailto:hossein.pourmeidani@knights.ucf.edu
mailto:ronald.demara@ucf.edu

Data points can then be plotted in MATLAB to view the effect
that the energy barrier has on the realization of the sigmoid
activation function. The formula used by the Python script for
calculating the energy barrier, Eb, is:

𝐸𝐸𝑏𝑏 = 1
2
𝐻𝐻𝐾𝐾𝑀𝑀𝑠𝑠𝑉𝑉 (1)

where V is the volume and MS is the magnetization saturation
of the MTJ. The pseudocode for the script is identified in
Algorithm 1.

Algorithm 1: Effect of Process Variation on the MTJ
 Sigmoid Activation Function Realization

Input: energy barriers, neuron source file
Output: neuron output voltage

for each energy barrier, E:
 calculate 𝐻𝐻𝐾𝐾 = 2𝐸𝐸𝑏𝑏

𝑀𝑀𝑠𝑠𝑉𝑉

 search for “HK= “ in SPICE code
 replace anisotropy field value with calculated value
 run SPICE simulation piping bash output to text file
 search for voltage output and write to results file

Another tool developed was a Python script to aid testing of the
DBN’s accuracy with the MNIST dataset. The development of
these scripts extends PIN-sim and will aid future development
and testing of p-bit based, DBN networks with a PIR
digitization output stage.

III. MNIST DATASET EVALUATION
 To analyze the performance of the PIR circuit, a Python

script was developed to compare the large amounts of data
commonly found in machine learning datasets. This accuracy
analysis script operated as follows: first, it reads one line of the
MNIST dataset file to find the expected output for that testcase
and the testcase label. Secondly, it locates each instance of the
testcase label in the PIR output file. Third, it reads the neuron
data into a list until it encounters the subsequent case. Upon
finding the next testcase, all the neurons for the current testcase
have been read and now can be processed. The list is sorted by
constituent probabilities from high to low. Next, the first two
neurons are examined to see if either of them is the neuron
indicating the expected output from the MNIST dataset. If any
output digit neuron subsequent to the top two neurons have the
same probability, then the output of the PIR circuit counts as a
fail even if the expected output was within the top two
confidence selections, whereas the circuit was not able to tell a
clear difference between which neuron was correct. If the
expected output was a neuron in the top two likelihood
categories, then the testcase is regarded as a pass.

The process is repeated until either file reaches its end.
Upon finishing all testcases, then the total number of testcase
passes and failures are tabulated so that the overall error rate is
determined. The corresponding pseudocode is listed in
Algorithm 2. The script was tested by comparing the error rates
generated against previous works [1]. Namely, the script was
fed outputs of a PIR circuit with 100 testcases and the MNIST
dataset. The results obtained are listed in Table I.

Algorithm 2: MNIST DBN Performance Analysis

Input: MNIST dataset, PIR output
Output: number of testcases that passed/failed

for each testcase
 for each neuron
 append neuron data to list
 sort list by neuron probability high to low
 if the expected output was in the top two neurons
 AND its probability doesn’t match any neurons
 beyond the top two neurons
 then
 testcase passes
 else
 testcase fails

Table I: Optimization of precision, area, and accuracy for

handwritten digit recognition using MNIST dataset.

PIR Precision Energy Consumption Error Rate
3 bits 90.75 fJ 24%
4 bits 124.2 fJ 17%
5 bits 176.0 fJ 18%

IV. CONCLUSION
MRAM-based p-bit neuromorphic architectures offer an
emerging device approach to realize true intrinsic machine
learning within accelerators and IoT edge devices. A simulation
framework using Python scripts can thoroughly address two
important areas requiring analysis prior to fabrication: effects
of the variation on the p-bit sigmoid function and network
optimization for accuracy vs area using an appropriate analog
signal digitization strategy, such as a PIR circut. Because the p-
bit’s stochasticity is dependent on oxide barrier thickness, a one
script ran a SPICE script multiple times, each changing the
magnetic anisotropy field determined by the oxide thickness
and thus permuting the energy barrier as a process variation
yielding repeatable results to the desired confidence interval.
The resulting simulation framework is transportable, adaptable,
and available to other machine learning researchers via a
Creative Commons license upon request to the authors.

ACKNOWLEDGMENTS
This work was supported in part by the Center for

Probabilistic Spin Logic for Low-Energy Boolean and Non-
Boolean Computing (CAPSL), one of the Nanoelectronic
Computing Research (nCORE) Centers as task 2759.006, a
Semiconductor Research Corporation (SRC) program
sponsored by the NSF through CCF-1739635.

REFERENCES

[1] R. Zand, et al., “Low-Energy Deep Belief Networks using Intrinsic
Sigmoidal Spintronic-based Probabilistic Neurons,” in Proceedings of
28th ACM Great Lakes Symposium on VLSI, Chicago, IL, May 23, 2018.

[2] R. Zand, K. Y. Camsari, S. Datta, and R. F. DeMara, “Composable
Probabilistic Inference Networks Using MRAM-based Stochastic
Neurons,” ACM Journal on Emerging Technologies in Computing
Systems, Vol. 15, No. 2, June 2019.

	I. INTRODUCTION and Background
	1) TrainDBN: a MATLAB training algorithm
	2) MapWeight: a MATLAB algorithm used to convert neuron weights and biases into resistor values
	3) MapDBN: a python script that realizes the weights and biases into a circuit model
	4) Neuron: the SPICE model of the p-bit
	5) TestDBN: a python script that tests the error and power consumption of the DBN.

	II. Python-Driven Simulation Framework
	III. MNIST Dataset Evaluation
	IV. Conclusion
	Acknowledgments

	References

