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We prove that every 3-regular graph with no circuit of length less than six has a subgraph
isomorphic to a subdivision of the Petersen graph.

1. Introduction

All graphs in this paper are finite, and may have loops and parallel edges. A
graph is cubic if the degree of every vertex (counting loops twice) is three.
The girth of a graph is the length of its shortest circuit, or infinity if the
graph has no circuits. (Paths and circuits have no “repeated” vertices.) The
Petersen graph is the unique cubic graph of girth five on ten vertices. The
Petersen graph is an obstruction to many properties in graph theory, and
often is, or is conjectured to be, the only obstruction. See, for example, the
result of Alspach, Goddyn and Zhang [1].
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We say that a graph G contains a graph H if G has a subgraph iso-
morphic to a subdivision of H. Thus, it appears useful to have a structural
characterization of graphs that do not contain the Petersen graph, but that
is undoubtedly a hard problem. In this paper we take a step in that direction
by proving the following theorem.

(1.1) Every cubic graph of girth at least six contains the Petersen graph.

The proof relies on the result of [5], which in turn depends on [4]. In [5]
we managed to find a characterization of cubic graphs not containing the
Petersen graph under an additional connectivity assumption. We need a few
definitions before we can state the result. If G is a graph and X ⊆ V (G),
we denote by δG(X) or δ(X) the set of edges of G with one end in X
and the other in V (G)−X. We say that a cubic graph is theta-connected
if G has girth at least five, and |δG(X)| ≥ 6 for all X ⊆ V (G) such that
|X|, |V (G)−X|≥7. We say that a graph G is apex if G\v is planar for some
vertex v of G (\ denotes deletion). We say that a graph G is doublecross
if it has four edges e1, e2, e3, e4 such that the graph G \ {e1, e2, e3, e4} can
be drawn in the plane with the unbounded face bounded by a circuit C, in
which u1,u2,v1,v2,u3,u4,v3,v4 are pairwise distinct and occur on C in the
order listed, where the edge ei has ends ui and vi for i=1,2,3,4. The graph
Starfish is shown in Figure 1. Now we can state the result of [5].

(1.2) Let G be a cubic theta-connected graph. Then G does not contain the
Petersen graph if and only if either G is apex, or G is doublecross, or G is
isomorphic to Starfish.

Theorem (1.1) does not extend to graphs of minimum degree three. For
instance, let H be (the 1-skeleton of) the Dodecahedron. The graph H has
an induced matchingM of size six. Let G be obtained fromH by subdividing
every edge of M , adding a new vertex v and joining v to all the vertices that
resulted from subdividing the edges of M . Then G has girth six, but it is
apex, and hence does not contain the Petersen graph.

We prove (1.1) by induction, but in order for the inductive argument to
work we need to prove a stronger statement which we now introduce. We say
that two circuits of a graph meet if they have at least one vertex in common.
Thus, if two circuits of a cubic graph meet, then they have at least one edge
in common. We say that a circuit of a graph is short if it has at most five
edges. A short circuit of a graph G which meets every short circuit of G is
called a breaker. We say that a graph G is interesting if it is cubic, it has at
least ten vertices, and either it has girth at least six or it has a breaker. We
shall see later that every interesting graph has at least fourteen vertices. In
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Figure 1. Starfish

fact, it can be shown that there is exactly one interesting graph on fourteen
vertices; this graph has girth six, and is usually called the Heawood graph.
The result we prove is the following.

(1.3) Every interesting cubic graph contains the Petersen graph.

Since the Petersen graph is not interesting, one might ask if it is perhaps
true that every interesting graph contains the Heawood graph. Unfortu-
nately, it is not. If a graph contains another graph, and the first admits an
embedding in the Klein Bottle (in fact, any fixed surface), then so does the
second. However, the Heawood graph does not admit an embedding in the
Klein bottle, and yet there are cubic graphs of girth six that do.

To prove (1.3) we first show in Section 2, using (1.2), that (1.3) holds for
theta-connected interesting graphs, and then prove (1.3) for all interesting
graphs in Section 3.

Andreas Huck [2] used (1.1) to deduce the following result. A graph is
Eulerian if every vertex has even degree.
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(1.4) Let G be a cubic 2-edge-connected graph not containing the Petersen
graph. Then there exist five Eulerian subgraphs of G such that every edge
of G belongs to exactly two of these graphs.

Martin Kochol [3] used (1.1) to show that the 5-flow conjecture of Tutte
holds for cubic graphs not containing the Petersen graph.

2. Apex and doublecross graphs

The objective of this section is to prove (2.6) below, our main theorem for
theta-connected graphs. We begin with the following.

(2.1) Every interesting cubic graph has at least fourteen vertices.

Proof. Let G be an interesting graph. It is easy to see that every cubic
graph of girth at least six has at least fourteen vertices. Thus we may assume
that G has a breaker C. Let H be the graph obtained from G by deleting
the edges of C. Then H has at most five vertices of degree one, and hence
at least five vertices of degree three, because G has at least ten vertices.
It follows that H has a circuit. Let C ′ be the shortest circuit of H. The
circuit C ′ has length at least six, because it is disjoint from C. Let Z be
the set of all vertices in V (G)−V (C ′) that are adjacent to a vertex of C ′.
Then |Z|= |V (C ′)| by the choice of C ′. If C ′ has length at least seven, then
|V (G)| ≥ |V (C ′)|+ |Z| ≥ 14, as desired, and so we may assume that C ′ has
length six. The above argument shows that G has at least twelve vertices,
and so we assume for a contradiction thatG has exactly twelve vertices. Thus
V (G)=V (C ′)∪Z. Hence V (C)⊆Z, and the inclusion is proper, because C
is short. The subgraph of G induced by Z−V (C) is 2-regular, and hence
has a circuit. But this circuit is short and disjoint from C, a contradiction.
Thus G has at least fourteen vertices, as desired.

A pentagon is a circuit of length five.

(2.2) Every two distinct pentagons in an interesting theta-connected cubic
graph have at most one edge in common.

Proof. Let G be an interesting theta-connected graph. Suppose for a con-
tradiction that G has two distinct pentagons C and C ′ with more than one
edge in common. Then |δG(V (C)∪V (C ′))|=5 and |V (C)∪V (C ′)|=7, be-
cause G has girth at least five, and hence |V (G)−(V (C)∪V (C ′))|≤6 by the
theta-connectivity of G, contrary to (2.1).

IfG is a graph andX⊆V (G), we denote byG |X the graphG\(V (G)−X).
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(2.3) Every interesting theta-connected cubic graph has at most five pen-
tagons.

Proof. Let G be an interesting theta-connected graph. Since G is theta-
connected, every short circuit in G is a pentagon. Suppose for a contra-
diction that G has at least six pentagons. Let C0 be a breaker in G,
and let C1, C2, C3, C4 and C5 be five other pentagons of G. The sets
E(C0)∩E(Ci) (i=1,2, . . . ,5) are nonempty, and, by (2.2), they are pairwise
disjoint and each has cardinality one. Thus G has no other short circuit.
For i=1,2, . . . ,5 let E(C0)∩E(Ci)={ei}. We may assume that e1, e2, . . . , e5
occur on C0 in the order listed. By (2.2) consecutive circuits in the se-
quence C1,C2, . . . ,C5,C1 have precisely one edge and its ends in common,
and non-consecutive circuits are vertex-disjoint, as otherwise G has a short

circuit distinct from C0,C1, . . . ,C5. We conclude that
∣
∣
∣
⋃5

i=0V (Ci)
∣
∣
∣=15. Let

X =V (G)−⋃5
i=0V (Ci); then |δG(X)| ≤ 5, and hence |X| ≤ 6 by the theta-

connectivity of G. Moreover, X has an odd number of elements, and hence
is not empty. Since X has at most five vertices and is disjoint from V (C0),
we deduce that G |X has no circuit, and that G |X is a path on at most
three vertices. Hence, every vertex of X is incident with an edge in δ(X),
and there exists a vertex v ∈ X adjacent to every vertex of X −{v}. We
may assume v has a neighbor c1 ∈ V (C1), and some vertex c2 ∈ V (C2) has
a neighbor in X. Thus c1, c2 are joined by a two-edge path with interior in
(C1∪C2)\V (C0), and by a path of length at most three with interior in X,
and their union is a short circuit disjoint from C0, a contradiction.

(2.4) Every cubic doublecross graph of girth at least five has at least six
pentagons.

Proof. Let G be a doublecross graph of girth at least five, and let
e1,u1,v1, . . . , e4,u4,v4 and C be as in the definition of doublecross. Let P1 be
the subpath of C with ends u1 and u2 not containing v1, let P2 be the subpath
of C with ends u2 and v1 not containing v2, and let P3,P4, . . . ,P8 be defined
similarly. Thus C=P1∪P2∪·· ·∪P8, and the paths P1,P2, . . . ,P8 appear on C
in the order listed. Let G′ :=G\{e1, e2, e3, e4}. We will regard G′ as a plane
graph with outer cycle C. Let f be the number of bounded faces of G′, and
let p be the number of those that are bounded by a pentagon. By Euler’s
formula |V (G)|+f+1= |E(G)|−4+2, and since G is cubic, 2|E(G)|=3|V (G)|.
We deduce that |E(G)|=3f+9. For i=1,2, . . . ,8 let di= |E(Pi)|. Since ev-
ery edge of G′\E(C) is incident with two bounded faces, and every edge of
C is incident with one we obtain 2|E(G)|≥ 6f −p+8+

∑8
i=1 di, and hence

∑8
i=1 di≤10+p.
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Since d4,d8≥1, we get d1+d2+d3+d5+d6+d7≤8+p. Let q be the number
of pentagons in the subgraph formed by P1,P2,P3 and the edges u1v1,u2v2.
Then d1+d2+1 is at least five, and at least six unless the cycle P1∪P2+u1v1
is a pentagon, and similarly for d2+d3+1. Furthermore, d1+d3+2 is at least
six unless P1∪P3+u1v1+u2v2 is a pentagon. By adding,

(d1 + d2 + 1) + (d2 + d3 + 1) + (d1 + d3 + 2) ≥ 6 + 6 + 6− q;

that is, d1+d2+d3≥7−q/2. Similarly, if there are r pentagons in the opposite
crossing, then d5+d6+d7≥7−r/2.

So, adding,

8 + p ≥ d1 + d2 + d3 + d5 + d6 + d7 ≥ 14− (q + r)/2.

So p+(q+r)/2≥6, and hence p+q+r≥6 as required.

(2.5) Every cubic apex graph of girth at least five has at least six pentagons.

Proof. Let G be a cubic apex graph of girth at least five, and let v be
a vertex of G such that G \ v is planar. Let f be the number of faces in
some planar embedding of G\v, and let p be the number of them that are
bounded by a pentagon. Then 2|E(G)|=3|V (G)| and |E(G)|= |E(G\v)|+3
because G is cubic, |V (G \ v)|+ f = |E(G \ v)|+2 by Euler’s formula, and
2|E(G\v)|≥6f−p, since G has girth at least five. We deduce that p≥6, as
desired.

In view of (2.4) and (2.5) it is natural to ask whether every cubic graph
of girth at least five not containing the Petersen graph has at least six
pentagons. That is not true, because Starfish is a counterexample.

(2.6) Every interesting theta-connected graph contains the Petersen graph.

Proof. Let G be an interesting theta-connected graph. By (2.3) G has at
most five pentagons. Thus by (2.4) G is not doublecross, by (2.5) G is not
apex, and G is not isomorphic to Starfish, because Starfish is not interesting.
Thus G contains the Petersen graph by (1.2).

3. Interesting graphs

In this section we prove (1.3), which we restate below as (3.5). Let G be
an interesting graph. We say that G is minimal if G contains no interesting
graph on fewer vertices.

(3.1) Every minimal interesting graph has girth at least four.
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Proof. Let G be a minimal interesting graph; then G is clearly connected.
Suppose for a contradiction that C is a circuit in G of length at most three.
Let C ′ be a breaker in G, and let e ∈ E(C)∩E(C ′). Let H be obtained
from G by deleting e, deleting any resulting vertex of degree one, and then
suppressing all resulting vertices of degree two. Then H has at least ten
vertices by (2.1). Also, it follows that either H has girth at least six or H
has a breaker (if C �=C ′, then the latter can be seen by considering the circuit
of H that corresponds to the circuit of C ∪C ′ \ e). Thus H is interesting,
contrary to the minimality of G.

We say that X is a shore in a graph G if X is a set of vertices of G such
that |δ(X)| ≤ 5 and both G |X and G \X have at least two circuits. The
following is easy to see.

(3.2) A cubic graph of girth at least five is theta-connected if and only if it
has no shore.

(3.3) Let G be an interesting graph, let X be a shore in G, and let C
be a breaker in G. Then G has a shore Y such that |δ(Y )| ≤ |δ(X)| and
V (C)∩Y =∅.
Proof. Let Y be a shore in G chosen so that |δ(Y )| is minimum, and subject
to that, |Y ∩V (C)| is minimum. We claim that Y is as desired. From the
minimality of |δ(Y )| we deduce that |δ(Y )| ≤ |δ(X)| and that δ(Y ) is a
matching, and from the minimality of |Y ∩V (C)| we deduce (by considering
V (G)−Y ) that |Y ∩V (C)|≤2. Suppose for a contradiction that Y ∩V (C) �=∅;
then Y ∩V (C) consists of two vertices, say u and v, that are adjacent in C.
Let Y ′=Y −V (C). We deduce that |δ(Y ′)|≤ |δ(Y )|, and so it follows from
the choice of Y that G |Y ′ has at most one circuit. On the other hand since
u and v are adjacent and have degree two in G | Y we see that G | Y ′ has
a circuit, and since |δ(Y ′)| ≤ 5 this is a short circuit disjoint from V (C), a
contradiction.

(3.4) No minimal interesting graph has a shore.

Proof. Suppose for a contradiction that G is a minimal interesting graph
which has a shore. If G has a short circuit let C be a breaker in G; otherwise
let C be the null graph. By (3.3) there is a shoreX inG with |δ(X)|minimum
such that V (C)∩X=∅. It follows that δ(X) is a matching. Let k= |δ(X)|;
then k≤5. Since G\X has no triangle by (3.1) and each of its short circuits
intersects C, if it has no circuit of length at least five, then it is isomorphic
to K2,3, in which case k= 3. So we may choose a circuit C ′ of G\X with
|V (C ′)| ≥ k. Furthermore, we may assume that if |V (C)| ≥ k, then C ′ =C.
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We claim that there exist k disjoint paths between V (C ′) and Z, where Z is
the set of all vertices of X that are incident with an edge in δ(X). Indeed,
otherwise there exists a set Y with V (C ′)∩Y =∅, Z⊆Y , and |δ(Y )|<k. It
follows that Y is a shore. Moreover, if we choose Y with |δ(Y )| minimum
and subject to that Y minimal, then it follows that either Y ∩V (C)=∅, or
V (C)⊆Y . (If |V (C)|≥k, then this follows from the choice C ′=C, whereas
if |V (C)|=4< 5=k, then this follows from the choice of Y .) In the former
case Y and in the latter case V (G)−Y contradict the minimality of k. We
may therefore select k disjoint paths P1,P2, . . . ,Pk such that for i=1,2, . . . ,k
the ends of Pi are ui∈Z and vi∈V (C ′) numbered so that v1,v2, . . . ,vk occur
on C ′ in this order. Let H be obtained from G |X by adding a circuit C ′′
with vertex-set {w1,w2, . . . ,wk} in order and one edge with ends ui and wi

for i=1,2, . . . ,k. Then C ′′ is a breaker in H. Since G |X has a circuit, and
that circuit, being disjoint from C, has length at least six, we deduce that
H has at least ten vertices, and so is interesting. Moreover, G contains H,
and is not isomorphic to H, because G\X is not a circuit, contradicting the
minimality of G.

We are now ready to prove (1.3), which we restate.

(3.5) Every interesting graph contains the Petersen graph.

Proof. It suffices to show that every minimal interesting graph contains the
Petersen graph. To this end let G be a minimal interesting graph. If G has
girth at least five, then G is theta-connected by (3.2) and (3.4), and hence
contains the Petersen graph by (2.6). Thus we may assume that G has a
circuit of length less than five, say C. Since G has girth at least four by
(3.1), we deduce that C has length four.

We claim that C is the only short circuit in G. To prove this claim
suppose for a contradiction that C ′ is a short circuit in G other than C.
Since G is interesting, we may assume that the pair C,C ′ is chosen in such
a way that C or C ′ is a breaker in G. Then |δ(V (C)∪ V (C ′))| ≤ 5. Let
X=V (G)− (V (C)∪V (C ′)). By (3.4) X is not a shore, and so G |X has at
most one circuit, because |δG(X)|≤5. Thus |X|≤5. It follows that G has at
most twelve vertices, contrary to (2.1). Thus C is the only short circuit in
G, as claimed.

Let the vertices of C be u1,u2,u3,u4 (in order), for i=1,2,3,4 let ei be
the edge of C with ends ui and ui+1 (where u5 means u1), and let fi be the
unique edge of E(G)−E(C) incident with ui. Let H be the graph obtained
from G \ e1 by contracting the edges e2 and e4. Then H is a cubic graph
with girth at least five, and hence |V (H)|≥10, as is easily seen. Moreover,
every pentagon in H contains one end of e3.



GIRTH SIX CUBIC GRAPHS HAVE PETERSEN MINORS 1421

Let us assume first that H is theta-connected. By the minimality of G,
the graph H is not interesting; in particular, the edge e3 belongs to no
pentagon of H. Since no two pentagons in a cubic graph of girth at least
five share more than two edges, we deduce that the ends of e3 belong to
at most two pentagons each. Thus H is not doublecross by (2.4), it is not
apex by (2.5), and it is not isomorphic to Starfish, because Starfish has three
pairwise vertex-disjoint pentagons. Thus H contains the Petersen graph by
(1.2), and hence so does G, as desired.

We may therefore assume that H is not theta-connected. By (3.2) H
has a shore. By (3.4) applied to G there exists a set X1 ⊆ V (G) such
that |X1|, |V (G)−X1| ≥ 7, |δG(X1)| = 6, u1,u4 ∈ X1, u2,u3 �∈ X1, and
that δG(X1) is a matching. Thus |X1|, |V (G)−X1| ≥ 8. By arguing simi-
larly for the graph G \ e2 we deduce that either G contains the Petersen
graph, or there exists a set X2 ⊆ V (G) such that |X2|, |V (G)−X2| ≥ 8,
|δG(X2)|=6, u1,u2∈X2, and u3,u4∈V (G)−X2. We may assume the latter.
Since |δG(X1 ∩X2)|+ |δG(X1 ∪X2)| ≤ |δG(X1)|+ |δG(X2)| = 12, we deduce
that δG(X1∩X2) or δG(X1∪X2) has at most six elements. From the sym-
metry we may assume that it is the former. Let Y =X1∩X2−{u1}. Since
e1, e4 ∈ δG(X1∩X2), it follows that |δG(Y )| ≤ 5. By (3.4) Y is not a shore,
and hence the graph G | Y has at most one circuit. However, if G | Y has
a circuit, then that circuit does not meet C, and yet it has length at most
five (because |δ(Y )|≤5), which is impossible. Thus G |Y has no circuit, and
hence |Y |≤3. Similarly, either |X1−X2−{u4}|≤3 or |X2−X1−{u2}|≤3, and
from the symmetry we may assume the former. Thus |X1|≤8. Since |X1|≥8
as we have seen earlier, the above inequalities are satisfied with equality. In
particular, |δG(X1∪X2)|=6, and hence |δG(X1∪X2∪{u3})|≤5, and likewise
|δG(X2−X1−{u2})| ≤ 5. As above we deduce that |V (G)−X1|= 8. Since
δG(X) is a matching of size six and C is the only short circuit in G we de-
duce that G |X1 and G\X1 both have eight vertices, six vertices of degree
two, two vertices of degree three, and girth at least six. It follows that G |X1

and G\X1 are both isomorphic to the graph that is the union of three paths
on four vertices each, with the same ends and otherwise vertex-disjoint.

We now show that H is isomorphic to the graph shown in Figure 2. That
graph contains the Petersen graph, and so this will complete the proof. Let
G |X1 consist of three paths abicid for i=1,2,3, and let G\X1 have three
paths pqiris similarly. So there is a six-edge matching M in G between
{b1, b2, b3, c1, c2, c3} and {q1, q2, q3, r1, r2, r3}. Since C exists we can assume
that b3 is matched by M to q3 and c3 to r3. Thus V (C)={b3, c3, r3, q3}.

Now X2 exists and contains a,p and not d,s; and each of the six paths
of the previous paragraph includes an edge of δ(X2). Thus no edge of M
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q
2

r2c2

Figure 2.

belongs to �(X2). If X2 contains both b1 and c1, then b1; c1 are matched by
M to vertices with distance at most two in X2, and hence G has a circuit
of length at most �ve disjoint from C, a contradiction. Thus X2 contains
at most one of b1; c1, and similarly for the pairs (b2; c2), (q1; r1) and (q2; r2).
We may therefore assume that X2 = fa;b1; b2; b3;p;q1; q2; q3g. So b1; b2 are
matched to q1; q2 and c1; c2 to r1; r2 in some order. Because G is interesting,
we may assume the pairs are (b1; q1), (b2; q2), (c1; r2), (c2; r1). Thus H is
isomorphic to the graph shown in Figure 2. That graph, however, contains
the Petersen graph, as desired. To see that delete the vertices s and r3.

References

[1] B. Alspach, L. Goddyn and C.-Q. Zhang: Graphs with the circuit cover property,
Trans. Amer. Math. Soc. 344 (1994), 131{154.

[2] A. Huck: Reducible con�gurations for the cycle double cover conjecture, Proceedings
of the 5th Twente Workshop on Graphs and Combinatorial Optimization (Enschede,
1997), Discrete Appl. Math. 99 (2000), 71{90.

[3] M. Kochol: Cubic graphs without a Petersen minor have nowhere-zero 5-
ows, Acta
Math. Univ. Comenian. (N.S.) 68 (1999), 249{252.



GIRTH SIX CUBIC GRAPHS HAVE PETERSEN MINORS 1423

[4] N. Robertson, P. D. Seymour andR. Thomas: Cyclically 5-connected cubic graphs,
J. Combin. Theory Ser. B 125 (2017), 132–167.

[5] N. Robertson, P. D. Seymour and R. Thomas: Excluded minors in cubic graphs,
J. Combin. Theory Ser. B 138 (2019), 219–285.

Neil Robertson

Department of Mathematics

Ohio State University

231 W. 18th Ave.

Columbus, Ohio 43210, USA

robertso@math.ohio-state.edu

Paul D. Seymour

Department of Mathematics

Princeton University

Princeton, New Jersey 08544, USA

pds@math.princeton.edu

Robin Thomas

School of Mathematics

Georgia Institute of Technology

Atlanta, Georgia 30332, USA

thomas@math.gatech.edu

mailto:robertso@math.ohio-state.edu
mailto:pds@math.princeton.edu
mailto:thomas@math.gatech.edu

	Girth six cubic graphs have Petersen minors
	1 Introduction
	2 Apex and doublecross graphs
	3 Interesting graphs


