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An embedding of a graph in 3-space is linkless if for every two disjoint cycles there exists
an embedded ball that contains one of the cycles and is disjoint from the other. We prove
that every bipartite linklessly embeddable (simple) graph on n > 5 vertices has at most
3n — 10 edges, unless it is isomorphic to the complete bipartite graph K3 ,_s.

1. Introduction

All graphs in this paper are finite and simple. Paths and cycles have no
“repeated” vertices. An embedding of a graph in 3-space is linkless if for
every two disjoint cycles there exists an embedded ball that contains one of
the cycles and is disjoint from the other. We prove the following theorem.

Theorem 1.1. Every bipartite linklessly embeddable graph on n > 5 ver-
tices has at most 3n — 10 edges, unless it is isomorphic to the complete
bipartite graph K3 ,_3.

The question of whether linklessly embeddable bipartite graphs on n >
5 vertices have at most 3n —9 edges is stated as [18, Problem 2.3|, and
Theorem 1.1 is implied by [6, Conjecture 4.5].

The following are equivalent conditions for a graph to be linklessly em-
beddable. A graph H is obtained from a graph G by a YA transformation
if H is obtained from G by deleting a vertex v of degree 3 and joining every
pair of non-adjacent neighbors of v by an edge. Conversely, G is obtained

Mathematics Subject Classification (2010): 05C35; 05C10, 05C83
* Partially supported by NSF under Grants No. DMS-1202640 and DMS-1700157.

0209-9683/119/$6.00 ©2019 Janos Bolyai Mathematical Society and Springer-Verlag Berlin Heidelberg


http://dx.doi.org/10.1007/s00493-019-3856-z

1082 ROSE MCCARTY, ROBIN THOMAS

from H by means of a AY transformation if G is obtained from H by delet-
ing the edges of a cycle of length 3 (“a triangle”) and adding a vertex of
degree 3 joined to the vertices of the triangle. The Petersen family is the set
of seven graphs obtained from the complete graph K¢ by means of YA and
AY transformations. The Petersen graph is a member of the family, and
hence the name. The Petersen family is depicted in Figure 1. A graph is a
minor of another if the first can be obtained from a subgraph of the second
by contracting edges. An H minor is a minor isomorphic to H. We denote
by ©(G) the graph invariant introduced by Colin de Verdiere [3]. We omit
its definition, because we do not need it.

Figure 1. The Petersen family
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Theorem 1.2. For every graph G the following conditions are equivalent:

(i) G has an embedding in 3-space such that every two disjoint cycles have
even linking number.
(ii) G is linklessly embeddable.
(iii) G has an embedding in 3-space such that every cycle bounds an open
disk disjoint from the embedding of G.
(iv) G has no minor isomorphic to a member of the Petersen family.

(v) u(G) <4

Here (iii) = (ii) and (ii) = (i) are trivial, (i) = (iv) was shown by
Sachs [16,17], (iv)=-(iii) was shown by Robertson, Seymour and the second
author [15], (v) = (iv) was shown by Bacher and Colin de Verdiere [1], and
(iii) = (v) was shown by Lovész and Schrijver [11].

Let us now put Theorem 1.1 in perspective. For general graphs excluding
only the Petersen graph as a minor, Hendrey and Wood [5] showed that the
correct bound on the number of edges is 5n—9, which is tight. For linklessly
embeddable graphs that are not necessarily bipartite the correct bound on
the number of edges is 4n—10, which is tight for any graph obtained from a
planar triangulation G on at least three vertices by adding a new vertex with
neighborhood V(G). This bound follows from the following more general
result of Mader [12].

Theorem 1.3. For every integer p = 2,3,...,7, every graph on n > p—1
vertices with no minor isomorphic to K, has at most (p—2)n— (pgl) edges.

Theorem 1.3 is such a nice result that it raises the question of whether
it can be generalized to all values of p. But there is some depressing news:
for large p a graph must have at least £2(py/logpn) edges in order to guar-
antee a K, minor, because, as noted by several people (Kostochka [7,8], and
Fernandez de la Vega [4] based on Bollobés, Catlin and Erdés [2]), a ran-
dom graph with no K, minor may have average degree of order p\/logp.
Kostochka [7,8] and Thomason [20] proved that this is indeed the correct
order of magnitude, and in a remarkable result, Thomason [21] was able to
determine the constant of proportionality. For small s, Kiithn and Osthus
[10] and Kostochka and Prince [9] have shown that average degree of order
p suffices to guarantee a K, minor.

It may seem that an effort to generalize Theorem 1.3 to clique minors will
be in vain, but there are still the following possibilities. The random graph
examples provide only finitely many counterexamples for any given value
of p. Of course, more counterexamples can be obtained by taking disjoint
unions or even gluing counterexamples along small cutsets, but we know
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of no construction of highly connected infinite families of counterexamples.
More specifically, Seymour and the second author conjecture the following.

Conjecture 1.4. For every integer p>2 there exists a constant N = N (p)
such that every (p —2)-connected graph on n > N vertices with no minor
isomorphic to K, has at most (p—2)n— (pgl) edges.

In a slightly different direction the first author conjectures [13] the fol-
lowing.

Conjecture 1.5. For every integer p> 3, every graph G on n>p—1 vertices
with p1(G) <p—2 has at most (p—2)n— (pgl) edges.

Whether Conjecture 1.5 holds is stated as [18, Problem 1]. Conjecture 1.5
is implied by [14, Conjecture 1.5].

Let us repeat that for not necessarily bipartite graphs the bound on the
number of edges for linklessly embeddable graphs and graphs with no Kg
minors coincide. Not so for bipartite graphs. In an earlier version of this
paper we conjectured the following.

Conjecture 1.6. For every integer p=2,3,...,8, every bipartite graph on
n>2p—5 vertices with no minor isomorphic to K, has at most (p—2)n—(p—2)*
edges.

The bound in Conjecture 1.6 is tight, because of the graphs K2, ,12.
For p<4 Conjecture 1.6 is easy, and for p=35 it follows from Wagner’s char-
acterization of graphs with no K5 minor [22]. Conjecture 1.6 certainly does
not hold for all p, because a graph with 2(p/logpn) edges and no K, minor
has a bipartite subgraph with 2(py/logpn) edges and no K, minor. Since
the time of submission, Thomas and Yoo [19] proved a theorem implying
Conjecture 1.6. They proved

Theorem 1.7. For every integer p=2,3,...,9, every triangle-free graph on
n>2p—5 vertices with no minor isomorphic to K,, has at most (p—2)n—(p—2)*
edges.

Motivated by Theorem 1.1 and the equivalence of (ii) and (v) in Theo-
rem 1.2 we also conjecture the following.

Conjecture 1.8. For every integer p > 3, every bipartite graph G on n >
2p— 3 vertices with (G) <p has at most (p—1)n—(p—1)? edges.
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Let us remark that the bound in Conjecture 1.8, if true, is tight, because
of the graphs K,_1,—pt+1. For p =3 Conjecture 1.8 follows from the fact
that graphs G with ©(G) <3 are precisely planar graphs [3], and for p=4 it
follows from Theorems 1.1 and 1.2.

For linklessly embeddable graphs, we conjecture that Theorem 1.1 in fact
holds for triangle-free graphs.

Conjecture 1.9. Every triangle-free linklessly embeddable graph on n>5
vertices has at most 3n — 10 edges, unless it is isomorphic to the complete
bipartite graph K3 ,_3.

A possible approach to Conjecture 1.9 is to prove the following conjecture:

Conjecture 1.10. Every linklessly embeddable graph on n > 7 vertices
with t triangles has at most 3n—9-+1t/3 edges.

Thomas and Yoo [19] recently proved that Conjecture 1.10 holds for apex
graphs, that is, graphs G with a vertex v so that G—wv is planar. One could
speculate whether Conjecture 1.8 holds for triangle-free graphs, but we do
not have enough evidence to formally conjecture that.

The paper is organized as follows. In the next section we introduce def-
initions and notation. In Section 3 we state Theorem 3.1, which implies
Theorem 1.1 and prove half of it, proving some useful lemmas and disposing
of vertices of degree 5. In Section 4 we complete the proof of Theorem 3.1
by disposing of vertices of degree 4.

2. Notation and Definitions

For positive integers ni,na,...,n; with k>2, we let K, »,... n, denote the
complete multipartite graph with k& independent sets of sizes ni,ns,...,ng.
We let K, denote the graph obtained from K44 by deleting an edge. We
also let K, GAY denote the graph obtained from Kg by performing a AY trans-
formation.

For a graph G we write V(G) for the vertex set of G and E(G) for the
edge set of G. We write 6(G) for the minimum degree of G and A(G) for
the maximum degree of G. Suppose v is a vertex of G and S is a subset of
V(G). Then we write G[S] for the induced subgraph of G with vertex set S
and G—S for the induced subgraph of G with vertex set V(G)—S. We write
G —v for G—{v}. We write dg(v), or d(v) if the graph is understood from
context, for the degree of v in G. We write N¢(.S) for the set of all vertices
in V(G) — S that are adjacent to some vertex in S. We write N(S) if the
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graph is understood from context, and we write N(v) for N({v}). We use
Nv] to denote N (v)U{v}.

If G is a graph with S and T disjoint subsets of V(G), we say an edge
wv € E(Q) is between S and T if SN{u,v}#0 and TN{u,v}#{. If S consists
of a single vertex v, we may talk about the edges between v and T'. Given a
graph G, we say that {Xo, X1} is a bipartition of G if { Xy, X1} is a partition
of V(G) so that all edges of G are between Xy and Xj.

We define a separation of a graph G to be a pair of sets (A4,B) with
union V(G) such that G has no edge between A— B and B — A. The order
of a separation (4, B) is |[ANB|. We also say that a separation of order k is
a k-separation. A separation (A, B) is non-trivial if both A— B and B— A
are non-empty. We say that a separation (A, B) is minimal if there does not
exist a non-trivial separation (A’, B") of G with A/NB'C ANB.

It is convenient for us to give the following related definition. We say
a super-separation of a graph G is a pair of graphs (Gp,G1) such that
V(G) CV(Go)UV(Gy), and E(G) C E(Go)UE(G1), and both Gy and G
are isomorphic to minors of G. We say a super-separation (Go,G1) of G is
non-trivial if both Gy and G are isomorphic to proper minors of G. (That
is, neither G nor (i1 is isomorphic to G.) We say that the order of a super-
separation (Go,G1) of G is |V(Go)|+ |V (G1)| — |V (G)|. Finally, we say a
super-separation (Go,G1) is bipartite if both Gy and G are bipartite.

Note that if (A, B) is a (non-trivial) separation of G of order k, then
(G[A],G[B)) is a (non-trivial) super-separation of G of order k. Furthermore,
if G is bipartite, then the super-separation (G[A],G[B]) is bipartite. In this
paper, each super-separation we use will be constructed from a non-trivial
separation (A, B) as follows. We will construct a graph G 4 formed from G[A]
by possibly adding some edges with both ends in ANB, and possibly a new
vertex a ¢ V(G) with neighbors in ANB. We will show that G 4 is isomorphic
to a proper minor of G by contracting some edges with at least one end in
B. A graph Gp will be formed similarly from G[B], so that (G4,Gp) is a
non-trivial super-separation.

Finally, if G is a bipartite graph with bipartition { X, X1} and SCV(G),
then we will write G[S] for the bipartite complement of G[S]. That is, G[S]

is the graph on vertex set S where uv is an edge of G[S] if and only if exactly
one of u and v is in Xy and wv ¢ E(G).

3. Proof of Main Theorem: Vertices of Degree 5

By Theorem 1.2, the following theorem implies Theorem 1.1.
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Theorem 3.1. Every bipartite graph on n>5 vertices with no K¢, K133,
Ky, or K(),AY minor has at most 3n—10 edges, unless it is isomorphic to the
complete bipartite graph Kz ,,_3.

The rest of the paper is dedicated to proving Theorem 3.1. Going for a
contradiction, suppose that Theorem 3.1 is false. Let G be a counterexample
with |[V(G)| 4 |E(G)| minimum. Write n = |V(G)|, and let {Xo, X1} be a
bipartition of G.

We begin by giving a brief outline of our proof strategy. First we will show
an easy lemma, and that 4 <4(G) <5. Then we show that G cannot have
certain separations and super-separations of small order. It follows that G
has no subgraph isomorphic to K3 3: otherwise it either has a K7 3 3 minor or
a separation of small order. Next we show that if v is a vertex of degree 4 or 5
and x and y are neighbors of v, then x and y have several common neighbors
other than v. Then it is fairly easy to show that G has no vertex v of degree
5: for every pair of distinct neighbors x and y of v, let v, , be a vertex other
than v that is adjacent to both x and y. If all ten v, , are distinct, then G
has a K minor. Otherwise we find a K33 subgraph or another forbidden
minor. In Section 4 we will deal with the case that §(G)=4.

We begin with two easy lemmas:

Lemma 3.2. n>7.

Proof. Otherwise, n € {5,6}. Then [n/2] =3 and |[n/2] =n—-3. If G is a
subgraph of K33, then since by assumption G is not isomorphic to K3 ,,_3,
we have |E(G)| <|E(K3,-3)] —1=3n—10, a contradiction. So G is not a
subgraph of K3 ,_3. Then

3n =9 <[E(G)| < [Xol|Xa] < ([n/2] +1)([n/2] — 1) = 4(n —4).
This gives us n>7, a contradiction. |
Lemma 3.3. 4<46(G)<5.

Proof. Since G was chosen to be a counterexample with |V (G)|+ |E(G)|
minimum, |[E(G)|<3n—8. So 6(G) <5 by the handshaking lemma.

Now, let v be a vertex of minimum degree. Since n > 6 by Lemma 3.2,
either G—v is isomorphic to K3 ,,—4 and |E(G—v)|=3(n—1)-9, or |E(G—v)| <
3(n—1)—10. If d(v) <2, then

|E(G)| = |E(G —v)| +d(v) <3(n—1)—9+2=3n— 10,

a contradiction. Now suppose that d(v) =3. If G — v is not isomorphic to
K3 4, then similarly |E(G)| <3n—10, and we are done.
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So G—w is isomorphic to K3 ,—4. Without loss of generality suppose that
ve Xo. If N(v) =X, then G is isomorphic to K3 ,_3, a contradiction. So
there exists a vertex u € X1—N(v). Then | Xo—{v}|=3, and G[XoU{u}UN (v)]
is isomorphic to K, a contradiction. So 6(G) = d(v) > 4, completing the
proof of the lemma. ]

Next we prove two lemmas on separations and super-separations of G.
Observe that since §(G) >4 by Lemma 3.3, if (A4, B) is a non-trivial separa-
tion of G, then (G[A],G[B]) is a non-trivial bipartite super separation of G
such that |V(G[A])|,|V(G[B])| > 5. We will frequently apply the following
lemma to such a case.

Lemma 3.4. Let (Gy,G1) be a non-trivial bipartite super-separation of G
of order k such that |V (Gy)|,|V (G1)| >5 and neither Gy nor Gy is isomorphic
to K3 for any t. Then 3k>|E(Go)|+|E(G1)|—|E(G)|+11.

Proof. For convenience, write e =|E(Gy)|+ |E(G1)|—|E(G)|. By the con-
ditions of the lemma and since G is a counterexample with |V (G)|+|E(G)|
minimum,

3n—9 < |E(GQ)]
= [E(Go)| + [E(G1)| —e
<3(V(Go) +[V(G1)]) =20 —e
=3(n+k)—20—e.

So 3k>e+11, as desired. ]

Next we show that G does not have certain separations of small order.

Lemma 3.5. Let (A, B) be a non-trivial separation of G such that for each
1€{0,1}, |ANBNX;|<3. Then |ANB|=6 and A(G[ANB])<1.

Proof. Suppose otherwise for some separation (A, B). Note that any non-
trivial separation (A’, B") of G with A’NB’C AN B also violates the lemma.
Thus we may assume that (A, B) is minimal.

First we show that both A and B have at least four vertices in each side
of the bipartition of G. Let v€ A— B, and without loss of generality assume
that v€ Xo. Then |X;NA|>|N(v)| >4 since §(G) >4 by Lemma 3.3. Also,
since [ANBNX;| <3, there exists a vertex u€ N(v)—(ANB). Then similarly
| XoNA|>|N(u)| >4. The same argument shows that B has at least four
vertices in each side of the bipartition of G.

Now for convenience write S := AN B. So |S| < 6. Let z € S so that
dm(z) is maximum, where G[S] is the bipartite complement of G[S]. Let
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G4 be the graph formed from G[A] by adding edges between z and every
vertex in Narey [S]( z). We can see that G 4 is a minor of G by contracting some

component of G[B— A] to z and by the minimality of (A4, B). Furthermore
G 4 is bipartite, has fewer vertices than (G, and has at least four vertices in
each side of the bipartition of G. So G4 is not isomorphic to K3 for any
t. Define Gp analogously, by adding edges between z and every vertex in

G[S]( z) to G[B].
We have shown that (G 4,Gp) is non-trivial bipartite super-separation of
G so that G4 and G both have at least five vertices, and neither G4 nor
Gp is isomorphic to K3, for any ¢. Furthermore, the order of (G4,Gpg) is

|S| and
[E(GA)|l + |E(G)| = [E(G)| = [E(GIA]] + [E(G[B])| + 2dgg(2) - [E(G))]
= |E(G[S])] + 2dgg(2)-

So by Lemma 3.4 applied to the super-separation (G4,Gp), we have
3|5 > |E(G[S])|—|—2d@(z)—l—11. Thus |S|>4. We proceed by cases.

Case |S|=4. Then |E(G[S})|+2dG[ }( 2)<1. So dG[s]( z)=0. Thus G[S] is
a complete bipartite graph on four vertices with at least one vertex on each
side of its bipartition. So |E(G][S])| >3, a contradiction.

Case |S|=5. Since | XN S|,|X1NS|<3 and by symmetry between X, and
X1, we may assume that | XoNS|=3 and |X;NS|=2. Let z; and 22 be the
vertices in X1MNS. By the definition of z,

4> |B(GIS))| + 2dgg(2) > |EGIS)] + dggg(z1) + dggg(z2) = 6.

a contradiction.

Case |S|=6 and A(G[S])>2. Then | XoNS|=|X1NS|=3. Let z; and z3 be
the other vertices on the same side of the bipartition of G[S] as the vertex
of maximum degree. Then

72 | B(GIS))| + 2 () = [BGIS)] + dgpg (1) + dggg(22)
= A(G[S]) +6 > 8,
a contradiction. 1

Next we observe that G' has no K33 subgraph, and then we show that
common neighbors of a vertex of degree 4 or 5 in fact share several common
neighbors.

Lemma 3.6. G does not have a subgraph isomorphic to K3 3.
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Proof. Suppose H is a subgraph of G isomorphic to K3 3. Since n>7 by
Lemma 3.2, the graph G —V(H) is non-empty. Let C' be the vertex set of
some component of G—V (H). Then since (CUN (C))N(V(G)—C)=N(C)C
V(H), by Lemma 3.5, the separation (CUN(C),V(G)—C) is trivial. Then
CUN(C)=V(G), and so N(C)=V(H). So the graph obtained by contacting
C to a single vertex is isomorphic to K1 33, a contradiction. |

Lemma 3.7. Let v € V(G) be a vertex of degree 4 or 5. Let x and y be
distinct vertices in N(v). Then x and y share at least 7 — d(v) common
neighbors other than v.

Proof. Suppose otherwise, and write ¢ :=|N(x) N N(y)| — 1. That is, ¢ is
the number of common neighbors of x and y other than v. So ¢ <6 —d(v).
Without loss of generality suppose that ve Xg. Let G’ be the graph formed
from G by deleting y and v, and adding edges between = and all vertices in
N(y)—N(z). We can see that G’ is a minor of G by contracting y and v to
x. Furthermore, G’ is bipartite and since n>7 by Lemma 3.2, the graph G’
has at least five vertices. Let £ be 1 if G’ is isomorphic to K3, for some t,
and 0 otherwise. Then:

3n—9<|E(G)

— |B(G - v)| + d(v)
|E(G")| + ¢+ d(v)
3(n—2)—10+ L+ c+d(v)
3n—10+ ¢+ (c—6+d(v)).

Al

It follows that /=1 and ¢=6—d(v). Thus, G’ is isomorphic to K3 for some ¢.
If d(v) =4, then ¢=2 and G[N (v)J(N (z)NN(y))] is isomorphic to K3 4. This
is a contradiction since by Lemma 3.6, the graph G has no K33 subgraph.
If d(v) =5, then | X1NV(G")|>d(v)—1=4, and so [XoNV(G')|=3. Then
G(XoNV(G"))U(N (v)—{x,y})] is isomorphic to K3 3, again a contradiction
to Lemma. 3.6. |

Now we are ready to show:
Lemma 3.8. G has no vertex of degree 5.
Proof. Suppose v€V(G) is a vertex of degree 5. Let
W ={w e V(G) — N[v] : IN(w) N N(v)| = 2},

and let
Up ={u e V(G) — N[v] : IN(u) N N(v)| > 3}.
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We will show a contradiction by proving that G[N[v]UW UUp] has a minor
isomorphic to Kg or KGAY. If Uy =0, then this is immediate since by Lemma
3.8 every pair of vertices in N(v) share at least two common neighbors
other than v. On the other hand, if Uy has too many vertices with too many
neighbors in N(v), then we will find a K3 3 subgraph, contradicting Lemma
3.7. The proof proceeds by carefully contracting certain vertices in W UUj
to one of their neighbors in N(v). Note that since G is bipartite, if G’ is
obtained from G[N|[v]UW UUy| by performing such contractions and then
deleting edges with both ends in N(v), then G’ is a subgraph of G. We will
sometimes need this fact to find a K33 subgraph in G.

Now, let G be the graph formed from G[N[v]UW UUy| by contracting,
for every vertex w € W, an arbitrary edge with one end w and the other end
in N(w)NN(v). Please note that Gy is not necessarily bipartite. By Lemma
3.7, every pair of vertices in N (v) are either adjacent in G or share at least
two common neighbors in Uy.

First we show the following claim:

Claim 3.8.1. There exist a set Uy CUy and a graph GG so that:

1. The graph G is formed from Gy by contracting edges with one end in
Uo—U; and the other end in N (v).

2. Every pair of distinct vertices in N(v) are either adjacent in Gy or share
a common neighbor in Uj.

3. Every vertex in Uy has degree exactly 3 in Gy, and 6(G1[N (v)])>1.

Proof. Observe that Uy is non-empty since otherwise Go[N[v]] is isomorphic
to Kg. Fix a vertex z €Uy with dg,(z) maximum. First suppose dg,(z)=5.
Then since G has no K33 subgraph by Lemma 3.6, every pair of vertices in
N (v) are adjacent in Go. Then Go[N[v]] is isomorphic to Kg, a contradiction.
So dg,(z) <4.

Now observe that every vertex in Uy other than z has degree exactly 3
in Gy. This is clear if dg,(2) =3, and follows since G has no K33 subgraph
if dg,(z)=4.

Let € N(v) — Ng,(2). If dg,(2)=3, let 2’ be the vertex other than x in
N(v) = Ng,(2). If dg,(z) =4, let 2’ be any vertex in N(v) other than z.

First suppose that z and 2’ are adjacent in Gy. Then let G be the graph
formed from Gy by contracting z to one of its neighbors in Gg, and let
Uy :=Uy—{z}. Then G; and U; satisfy the conditions of the claim.

So we may assume that z and 2’ are not adjacent in Gy. Then they
have a common neighbor 2’ € Uy — {z}. Let G; be the graph formed from
Gy by contracting z to a vertex in Ng,(z) — Ng,(2') and 2’ to a’. Write
Uy:=Uy—{z,2'}. Then G; and U; satisfy the conditions of the claim. ]
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Fix G and U as in the claim. Choose a graph G9 and a set Uy CU; so
that:

1. The graph Gs is formed from G by contracting edges with one end in
U1 —U; and the other end in N(v).

2. Every pair of distinct vertices in N (v) are either adjacent in G or share
a common neighbor in Us.

3. Subject to the above, |Usz| is minimum.

Such a choice is possible because G : =G and Uy :="Uj satisty (i) and (ii).
Observe that G5 is a minor of G. We first show that for all u € Us, the graph
G2[Ng,(u)] has no edges. Since every vertex in U; has degree exactly 3 in Gy
by the claim, u also has degree exactly 3 in Gy. Write Ng, (u) ={z,2’, 2"}
and suppose z2’ € E(G3). Then let G} be the graph formed from Ga by
contracting u to z”, and let Uj:=Us —{u}. Then G% and U} contradict our
choice of G5 and Us.

Then by the last paragraph and condition (ii), if |Uz|] < 1, then
G2[N[v] UUy] is isomorphic to either Kg or K&Y. So there exist distinct
vertices u,u’ € Us. Both u and v’ have degree exactly 3 in G2. We proceed
by cases.

Case |Ng,(u) N Ng,(u')] =3. Then G[Ng,(u)U{v,u,u'}] is isomorphic to
K33, a contradiction to Lemma 3.6.

Case |Ng,(u) N Ng,(v')] = 2. Then let z be the unique vertex in
N¢,(u)—Ng, (u'). Let G% be the graph formed from G2 by contracting u to
x, and let U):=Us—{u}. Then G and U, contradict part (iii) of our choice
of GQ and UQ.

Case |Ng, (u)NNg,(u')|=1. Let x be the unique vertex in Ng, (u)\Ng, (u).
Then z is adjacent to no vertices in N(v) in the graph Ga. But this is a
contradiction since 0(G2[N(v)]) > 6(G1[N(v)]) > 1 by part (iii) of Claim
3.8.1. This is the final case and completes the proof of Lemma 3.8. ]

4. Proof of Main Theorem: Vertices of Degree 4

Now that we have shown G has no vertices of degree 5 and that 4 <4(G) <5
by Lemma 3.3, the remainder of the proof deals with vertices of degree 4.
First we will show that if v is any vertex of degree 4, then G has no vertex u
such that |N(u)NN(v)| >4. We then use this fact to show that G does not
have additional kinds of separations of small order. Finally, we fix a vertex
v of degree 4 and a certain set U C V(G) — NJv] of three or fewer vertices
that each have neighbors in N(v). We show that G—(N[v]UU) is connected
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and has a cut vertex a. We then use the fact that G — (N[v]UU U{a}) is
disconnected to find a separation showing a contradiction to Lemma 3.4.

Lemma 4.1. Suppose veV(Q) is a vertex of degree 4. Then there does not
exist a vertex w€V (G) — N[v] so that |[N(u)NN(v)|=4.

Proof. Suppose otherwise. Without loss of generality assume that v € Xj.
Write N(v) = {v1,v2,v3,v4}. For every i,j € {1,2,3} with ¢ < j, let u;; €
V(G)—{v,u} be a vertex that is adjacent to both v; and v;. Such vertices exist
since by Lemma 3.7, v; and v; have at least three common neighbors other
than v. Since G has no K3 3 subgraph by Lemma 3.6 and |N(u)NN(v)|=4,
the vertices uj 2, u1 3, and ug 3 are distinct. Write U :={uj 2,u1 3,u23}, and
H :=G[N[v]uUU{u}]. Then dy(v4) <2 since G has no K33 subgraph. So
since 6(G) >4 by Lemma 3.3, there exists a component of G —V (H) with
neighbor v4. Let C be the vertex set of such a component. Observe that
N(C)CN(v)uUU{u}.

Now we show that either N(v) C N(C) or UU{u} C N(C). Suppose
otherwise. Then for all :€{0,1}, we have | X; N N(C)|<3. Then by Lemma
3.5 applied to the separation (CUN (C),V(G)—C), it follows that |[N(C)|=6
and A(G[N(C)]) <1. Then since |[N(C)NN(v)|=3 and |[N(u)NN(v)| =4,
we have u ¢ N(C). Then U C N(C). But |[N(C)N{v1,v2,v3}| > 2, which is
a contradiction since A(G[N(C)]) <1. We have shown that either N(v) C
N(C) or UU{u}CN(C).

If N(v) C N(C), let G’ be the graph formed from G by contracting C
to a single vertex with neighborhood N (v) and deleting all other vertices in
G —V(H). Let G” be the graph formed from G’ by contracting u 2 to vy,
ug,3 to v2, and u1 3 to vs. Then G” is isomorphic to KﬁAY, a contradiction.

So we may assume that UU{u} C N(C'). Remember also that by the choice
of C, we have vy € N(C). Now let G’ be the graph formed by contracting C
to a vertex with neighborhood UU{u,v4} and deleting all other vertices in
G-V (H). Let G” be the graph formed from G’ by contracting v to v4 and
by contracting uj 2 to vi, ug s to va, and uy 3 to vs. Then G” is isomorphic
to Kg, a contradiction. ]

We are now ready to show that G does not have additional kinds of
separations of small order.

Lemma 4.2. Let (A,B) be a non-trivial separation of G. If there exists
i €{0,1} such that | X;NANB| <4 and |X;_;NANB| <2, then either
|A—B|=1or |B—A|=1.

Proof. Suppose otherwise. Let (A, B) be a separation of minimum order
that violates the lemma. Write S := AN B for convenience. Without loss of
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generality we assume that | XoNS| <4 and |X;NS|<2. By Lemma 3.5, we
have | XoNS|=4.

First we will show that there exists a component of G[A— B] with neigh-
borhood S. Suppose otherwise. Let C' be the vertex set of any component of
G[A-B]. If |C|>2 and N(C)#S, then (CUN(C),V(G)—C) is a separation
violating the lemma of smaller order, a contradiction to the choice of (A, B).
So |C|=1 and thus since 6(G) >4 by Lemma 3.3, we have N(C)=XyNS.
Then since |A — B| > 2, the graph G[A — B] has another component with
vertex set C' also consisting of a single vertex with neighborhood XyNS.
But this is a contradiction to Lemma 4.1. This shows that there exists a
component of G[A— B] with neighborhood S. By symmetry the same holds
for G[B — A]. We now proceed by cases.

Case either |S| =4, or |S| =5 and |E(G[S])| =4. We will construct a
super-separation (G 4,Gp) that contradicts Lemma 3.5. This will be the first
time that V(G4)Z A.

Let G4 be the graph formed from G[A] by adding a single vertex, call
it a, with neighborhood XgNS. We can see that G4 is a minor of G by
contracting a component of G[B—A| with neighborhood S to a single vertex.
Furthermore, G 4 is bipartite, has fewer vertices than G since by assumption
|B— A| > 2, and has at least five vertices since A C V(G4). Define Gp
analogously, by adding a single vertex with neighborhood SN Xy to G[B].

Suppose G 4 is isomorphic to K3 for some ¢. Then since Ng , (a) =5SNXy
and |S N Xp| = 4, there exist two vertices v and v in G4 — Ng ,[a] with
degree exactly 4 in G4. Then since |S| <5, we have |S— Ng ,[a]| <1, so at
least one of the vertices, say v, is in A—S. Then v has degree 4 in G, and
|IN(u) NN (v)| =4, a contradiction to Lemma 4.1. By symmetry, we have
shown that neither G 4 nor G'p is isomorphic to K3 for any ¢. Furthermore,
the order of the super-separation (G 4,Gp) is |S|+2, and

[E(Ga)l + [E(GB)| - [E(G)] = |[E(G[A])] + |[E(G[B])] + 8 - |E(G)|
= [E(G[S])] + 8.

So by Lemma 3.4 applied to the super-separation (Ga4,Gp), we have
3(|S|+2) >|E(G[S])|+19. But this is a contradiction since either |S|<4, or
|S|=5 and |E(G]S])|=4.

Case either |S|=5 and |E(G[S])|<3, or |S|=6. This case is similar to
the proof of Lemma 3.5. Let z € X;NS so that d@(z) is maximum. Let
G 4 be the graph formed from G[A] by adding edges between z and every

vertex in Nm(z) We can see that G4 is a minor of G by contracting a
component of G[B— A] with neighborhood S to z. The graph G 4 is bipartite
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and has fewer vertices than G. Since there is a component of G[A— B] with
neighborhood S and both XpNS and X;NS are non-empty, both XoN(A—B)
and XN (A— B) are also non-empty. Thus, since 6(G) >4, A has at least
four vertices in each side of the bipartition of G. So G4 is not isomorphic to
K3 for any t. Define G g analogously, by adding edges between z and every
vertex in Nw(z) to G[B]. By symmetry, neither G4 nor Gp is isomorphic
to K3, for any t.
The order of the super-separation (G4,Gp) is |S|, and

[E(GA)| + |E(GB)| = [E(G)] = [E(GIA]] + |[E(G[B])| + 2dgg(2) - [E(G))]

= |B(G[S))| + 2dgp5(2).

Then by Lemma 3.4, 3|S|>|E(G]S))| +2d®(2) +11. Observe that

zeX1NS

Soif |S|=5 and |E(G[S])| <3, then d@(z) >1 and so \E(G[S])|+2d®(z) >
5. This is a contradiction. So |S|=6. But then | E(G][S]) |—|—2d@(2) > 8, which
is again a contradiction. |

By Lemmas 3.3 and 3.8, the graph G has a vertex of degree 4. Fix v €
V(G) a vertex of degree 4, and write N (v)={v1,v2,v3,v4}. Without loss of
generality assume that v € Xy. Choose a set U C V(G) — N[v] of minimum
cardinality such that either:

1. U consists of a single vertex u with |N(u)NN(v)|=3, or
2. U={u12,u13,u23} and for all i,5 € {1,2,3} with i<j, N(u; ;)N (v)=
{vi,vj}.
First we show that such a set exists. If there exists a vertex u€ V(G)— N|[v]
such that |N(u)NN(v)| >3, then by Lemma 4.1 in fact |[N(u)NN(v)| =3
and we are done. So we may assume that for all u € V(G)— N[v] we have
|IN(u)NN(v)| <2. Then for all 4,5 € {1,2,3} with i <j, let u;; be a vertex
not in N[v] that is adjacent to both v; and v;j. Such a vertex exists since v;
and v; have at least three common neighbors other than v by Lemma 3.7.
By assumption u1 2, u1,3, and ug 3 are distinct and N (w; ;) VN (v) ={v;,v;}.
So such a set exists.
Write H :=G[N[v]UU]. Next we show one short lemma.

Lemma 4.3. There do not exist disjoint sets A, BCV (G)—V (H) such that
G[A] and G[B] are connected, and N(v) CN(A) and N(v) CN(B).
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Proof. Let G’ be the graph obtained from G by contracting A to a sin-
gle vertex with neighborhood N (v), contracting B to a single vertex with
neighborhood N (v), and deleting all other vertices in G—V (H).

If [U| =1, then G’ is isomorphic to K, a contradiction. If |U| = 3,
then let G” be the graph formed from G’ by contracting u;; to v; for all
i,j€{1,2,3} with i<j. Then G” is isomorphic to K&, a contradiction. |

In the next lemma we show that G —V(H) is connected and has a 1-
separation satisfying certain properties.

Lemma 4.4. The graph G —V (H) is connected. Furthermore, there exist
{ap,ay,a1,a,} CV(G)—V(H) and a I-separation (Ag, A1) of G—V (H) such
that for every i€{0,1}, we have a;,a; € A; and a; and a); are both adjacent
to v9;41 and vaiy2.

Proof. First we will show that G — V(H) is connected. Otherwise, by
Lemma 4.3, there exists a component of G — V(H) with vertex set C
so that N(v) ¢ N(C). So by Lemma 3.5 applied to the separation
(CUN(C), V(G) —C’), we find that |[N(C)| = 6 and A(G[N(C)]) < 1.
It follows that |[U| = 3 and U C N(C). This is a contradiction since
IN(C)N{v1,v2,v3} >2 and A(G[N(C)])<1. So G-V (H) is connected.
Now for every i€{0,1}, let a; and a] be distinct vertices in V(G)—V (H)
that are adjacent to both vg;41 and wvo; 2. Such vertices exist since by Lemma
3.7 the vertices v9;11 and vy;49 share at least three common neighbors other
than v, and by the definition of U they share no more than one com-
mon neighbor in U. Furthermore by Lemma 4.1, in fact ag,ap,a1,a) are
all distinct. By Menger’s Theorem, either the desired 1-separation exists,
or G—V(H) contains vertex-disjoint paths P and P’ so that both P and
P’ have one end in {ag,a(} and one end in {ai,a}}. But then by choosing
A=V (P) and B:=V(P’) we have a contradiction to Lemma 4.3. 1

Fix {ao,ay,a1,a}} CV(G)—V (H) and a 1-separation (Ag, A1) of G-V (H)
as in the lemma. Let a be the unique vertex in AgN Ay, and for convenience
write H' := G[V(H)U{a}]. Let C be the vertex set of a component of
G-V (H') so that 1 <|N(C)NN(v)|<3. Subject to this, choose C such that
|N(C)| is minimum.

To see that such a component exists, for every i € {0,1}, let C; be the
vertex set of a component of G[A4; —{a}] with C;N{a;,a,} #0. Then G[Cy]
and G[C’l] are distinct components of G — V(H’). By Lemma 4.3, either

¢_ N(Cp) or N(v g N(C1). So such a component exists. We first show:

Lemma 4.5. |U|=
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Proof. Suppose |U|=1. Let u be the unique vertex in U. Without loss of
generality we may assume that N(u) NN (v) = {v1,v2,v3}. Remember that
v € Xo. If a € Xy, then for every ¢ € {0,1}, we have |[N(C)NX;| <3. But
|N(C)| <5, which is a contradiction to Lemma 3.5. Thus a € X;. We prove
the following claim:

Claim 4.5.1. Let C’ be the vertex set of a component of G—V (H') so that
N(v) € N(C'). Then C’ consists of a single vertex of degree 4 that is only
adjacent to vertices in N(v)U{a}.

Proof. Let C’ be the vertex set of such a component. Then |[N(C")NX;|=
IN(C')N(N(v)U{a})] <4 and |[N(C")NXy| =|N(C")NU| < 1. Note that
[V(G) -V (C")| > |[N[v] =V(C")| > 2. Then by Lemma 4.2 applied to the
separation (C'UN(C"),V(G)—C"), the set C’" consists of a single vertex.
Then since 0(G) > 4 by Lemma 3.3, the vertex in C’ is only adjacent to
vertices in N(v)U{a}. 1

Now define the set
W ={weV(G)-V(H) :dg(w) =4 and N(w) C N(v)U{a}}.

Since G—V (H) is connected by Lemma 4.1, every vertex we W is adja-
cent to a. Furthermore, every vertex w € W is adjacent to vy, as otherwise
G{v,v1,v2,v3,u,w}] is isomorphic to K33, a contradiction to Lemma 3.6.

Now we show that |W|>2. By the claim and the choice of C, we have
|C|=1. Since a € X; while {ag,a),a1,a}} C X, for every i €{0,1} we have
|A;i—({a}uC)| >|{ai,a,}—C|>1. So G—V (H’) has at least three components.
So by Lemma 4.3 and by the claim, |W|>2.

Next we show that G — (V(H')UW) has a component with vertex set
D so that N(v)U{a} C N(D). By Lemma 3.7, the vertices v; and ve have
at least three common neighbors besides v. Suppose that there are dis-
tinct vertices w,w’ € W that are common neighbors of v; and vy. Then
Gl{v,w,w’,v1,v2,v4}] is isomorphic to K33, a contradiction to Lemma 3.6.
So the vertices v; and v9 have a common neighbor in V(G)— (V(H')UW).
So V(G)— (V(H')UW) is non-empty. Let D be the vertex set of any com-
ponent of G—(V(H")UW). Since G—V (H) is connected, we have a € N (D).
If N(v) € N(D), then by the claim, D consists of a single vertex of degree
4 that is only adjacent to vertices in N(v)U{a}. But this is a contradiction
to the choice of W. So N(v)U{a} CN(D).

Let w and w’ be distinct vertices in W. Since G has no K33 subgraph,
we may assume without loss of generality that N(w) = {v1,v9,v4,a} and
N(w")={v1,v3,v4,a}. Then let G’ be the graph formed from G by contract-
ing D to a single component with neighborhood N(v)U{a} and deleting
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all other vertices except V(H')U{w,w’}. Then let G’ be the graph formed
from G’ by contracting w to vg, u to vs, v to vg, and w’ to a. Then G” is
isomorphic to Kg, a contradiction. This completes the proof of the lemma. |

So |U|=3. Write U = {u; 2,u1,3,u2,3} so that for all 7,5 € {1,2,3} with
i <j, N(ui;)NN(v)={vi,v;}. By the choice of U, no vertex other than v
is adjacent to three or more vertices in N(v). For convenience write T =
Ngnv(ey(a) UNm(a). That is, T is the set of all vertices in N(C) that
are in the other side of the bipartition of G from that of the vertex a. Let z
be some vertex in N(v)—N(C). Such a vertex exists since by the choice of
C we have |[N(C)NN(v)| <4.

Now we give an overview of the rest of the proof. The goal is to show
a contradiction to Lemma 3.4 on super-separations of G. Note that since
IN(C)NN(v)| <3, we have N(C) C N(v)UUU{a}. So |[N(C)| < 7. The
previous lemmas on separations of G, Lemmas 3.5 and 4.2, apply only to
separations of order six or less, so some casework is required to show a
contradiction. We will frequently construct a super-separation (G¢,G’) so
that G[CUN(C)] is a subgraph of G and G—C'is a subgraph of G'.

We first show a straightforward lemma that will help with constructing
such super-separations. We are then able to show the harder lemma that
a€X; and that G— (V(H')UC) is connected. Then it is easy to show that
vy & N(C), or else G has a K¢ minor. A final lemma shows that certain
vertices in U have no neighbor in V(G) — (V(H')UC). We then construct
one last super-separation of G that gives a contradiction to Lemma 3.4,
completing the proof. We begin with the following lemma.

Lemma 4.6. The following hold:

1. The set C has at least two vertices. Both CUN(C) and V(G)—C have
at least four vertices in each side of the bipartition of G.

2. Every neighbor of v is adjacent to a vertex in V(G)— (V(H")UC).

3. IN(C)NN(v)|=3 and |T|=3.

Proof. First we show that |C|>2 and |V(G)— (V(H')UC)| > 2. We have
[V(G)— (CUN(C))| > |N[v] = (CUN(C))| > 2. Suppose |C| = 1. Since
|N(C)NN(v)|>1 by the choice of C, it follows that N(C)C N(v)U{a}. But
then since 0(G) >4 by Lemma 3.3, we have |N(C)NN (v)| >3, a contradiction
to the choice of U.

Next we show (i). The set V(G)— C has at least four vertices in each
side of the bipartition of G since V(H)CV(G)—C. Since |C|>2 and G[C]
is connected, the set C' is not contained in one side of the bipartition of G.
Thus, since §(G) >4, the set CUN(C') has at least four vertices in each side
of the bipartition of G.



BIPARTITE LINKLESSLY EMBEDDABLE GRAPHS 1099

Now we show (ii). Let y be any vertex in N(v)—{z}. By Lemma 3.7, the
vertices x and y share at least three common neighbors other than v. By the
choice of U, they share no more than two common neighbors in UU{a}. So
x and y have a common neighbor in V(G)— (V(H")UC).

Finally we show (iii). If a € Xy and |[N(C)N N(v)| <2, then this is a
contradiction to Lemma 4.2 applied to the separation (CUN(C),V(G)—-C).
If a € X7 and |[N(C)NN(v)| <2, then by Lemma 3.5, we have |[N(C)| =6
and A(G[N(C)]) < 1. This is a contradiction since then U C N(C') and
|IN(C)NN(v)|=2, but every vertex in {vi,vs,v3} has two neighbors in U.

If a€ Xy, then T=N(C)NN(v) and so |T|=3 by the last paragraph. If
a€ X1 and |T| <2, then this is a contradiction to Lemma 4.2 applied to the
separation (CUN(C),V(G)—-C). |

Next we show the following lemma.
Lemma 4.7. a€ X; and G— (V(H')UC) is connected.

Proof. Suppose otherwise. That is, suppose that a€ Xy or G—(V(H")UC)
is not connected. Then:

Claim 4.7.1. If a € Xy, then there exists a component of G— (V(H')UC)
with vertex set C' so that U C N(C") and |[N(C")NN(v)|=3.

Proof. Suppose a€ X;. Then G— (V(H')UC) is not connected, and so by
Lemma 4.3, it has a component with vertex set C’ such that N(v) £ N(C").
Since C is the vertex set of a component of G —V(H’), it follows that C’
is also the vertex set of a component of G —V(H'). So N(C")NXy CU
and thus |[N(C") N Xy| < 3. So by Lemma 3.5 applied to the separation
(C"UN(C"),V(G)—C"), we have that |[N(C")NX1|>2. So C’ is the vertex
set of a component of G —V(H’) such that 1 <|N(C")NN(v)| <3. Then
by the choice of C, we have |[N(C’)| > |N(C)|. By part (iii) of Lemma 4.6,
since a € X1, we have |[N(C)|=7. Then [N(C")| >7, and so U C N(C") and
IN(C")NN(v)|=3. |

Recall that by part (iii) of Lemma 4.6, we have |[N(C)NN(v)| = 3. If
vg ¢ N(C), then let G denote the graph obtained from G[C'UN(C)] by
adding edges between a and every vertex in Nm(a). If v4€ N(C), then

let G¢ denote the graph obtained from G[CUN (C')] by adding edges between
a and every vertex in Nm(a), and by adding edges between v4 and every
vertex in N(z)NUNN(C).

Observe that in both cases, GG¢ is bipartite and has fewer vertices than
G. Furthermore, by part (i) of Lemma 4.6, the graph G¢ is not isomorphic
to K3, for any ¢, and has at least five vertices. We now show two claims

about the graph G¢.
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Claim 4.7.2. The graph G¢ is a minor of G.

Proof. Recall that G—V(H) is connected by Lemma 4.4. So every compo-
nent of G— (V(H')UC) has a as a neighbor.

First suppose that a € Xy. By part (ii) of Lemma 4.6, every vertex in
N(v) has a neighbor in V(G)— (V(H')UC). Then we can see that G¢ is a
minor of G by contracting every component of G— (V(H')UC) to a, and if
va € N(C), by contracting = and v to vs.

So we may assume that a € X;. Then by Claim 4.7.1, there exists a

component of G — (V(H')UC) with vertex set C’ so that U C N(C") and
|N(C")NN(v)|=3. Then we can see that G¢ is a minor of G by contracting
C’ to a, and if v4€ N(C), by contracting = and v to vy. 1

Claim 4.7.3. |E(Gc)|+ |E(G—O)| - |B(GQ)|=3+2|N(C)NU|.

Proof. First suppose that |[N(C)NU|=3. Observe that then if vy € N(C)
we have |[N(z)NUNN(C)|=|N(z)NU|=2. Let 1,,cn(c) be 1 if v4€ N(C)
and 0 otherwise. Then:

[E(Go)| + [E(G = C)| - |E(G)]

= damvien(@) + 2Luenc) +IE(GICUN(Q))| + |[E(G - O)| - |[E(G))
= damve(@) + 2Luene) + [E(GIN(O)))]

=2Len(c) + T + [E(GIN(C) = {a}])]-
In either case, since |T'|=3 by part (iii) of Lemma 4.6,
21yen(c) + T+ [E(GIN(C) —{a}])| = 9 =3+ 2IN(C) N U,

which completes the case that |N(C)NU|=3.

So we may assume that |N(C)NU| < 2. Since |T| > 3, it follows that
a€ Xo. Then by Lemma 3.5 applied to the separation (CUN(C),V(G)—-C),
we have |[N(C)NU|=2 and A(G[N(C)])<1. By symmetry between pairs of
vertices in U, we may assume that N(C)NU ={uj 2,u13}. Then v; ¢ N(C).
Then |[N(z)NUNN(C)|=|N(vi)NUNN(C)| =2 and similarly to the last
case we find that

|E(Go)| +|E(G = C)| = |E(G)| = |T|+ 2+ |[E(GIN(C) — {a}])]|
= |T|+4=3+2IN(C)NU|,

which completes the proof of the claim. |

We now show that G[N(C)] is almost a complete bipartite graph.
Claim 4.7.4. A(G|N(C)])<1.
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Proof. Suppose that A(G[N(C)]) > 2. Let z € N(C) be a vertex with
maximum degree in G[N(C)]. Then let G’ be the graph obtained from G—-C
by adding an edge between z and every vertex in Nm(z). We can see

that G’ is a minor of G on strictly fewer vertices by contracting C to z.
Furthermore, G’ is bipartite, and by part (i) of Lemma 4.6, has at least five
vertices and is not isomorphic to K3 for any ¢. By Claim 4.7.2, the graph
G¢ is a minor of G. So since (CUN(C),V(G)—C) is a separation of G, it
follows that (G¢,G’) is a super-separation of G.

In fact we have shown that (G¢,G’) is a non-trivial bipartite super-
separation of G so that both G and G’ have at least five vertices and are
not isomorphic to K3 for any t. Since |[N(C)NN(v)|=3 and a€ N(C), the
order of the super-separation (G¢,G’) is 4+|N(C)NU|. Then by Lemma 3.4
and the last claim,

3(4+ IN(C) N U|) = |E(Go)| + |B(G)| — |E(G)| + 11
> |B(Ge)| +|B(G - O)| - |B(G)| +13
= 2|N(C)NU| + 16.

But then |N(C)NU|>4, which is a contradiction since |U|=3. 1

We are now ready to complete the proof of the lemma. We proceed by
cases.

Case ac Xo. By the last claim, dggey )]( a) <1. Then since |[N(C)NN(v)|=

3, a is adjacent to at least two vertices in N(v). So by the choice of U,
a is adjacent to exactly two vertices in N(v). So there exists a vertex y €
N(C)NN(v) that is not adjacent to a. By the last claim, dG[N(C)}( y)<1. So

since y is not adjacent to a, y is adjacent to every vertex in N(C)NU.

Then U ¢ N(C). Then by Lemma 3.5 applied to the separation
(CUN(C),V(G)—-C), we have |[N(C)NU|=2 and A(G[N(C)])<1. But then
1>dgivey (W) =3 —dayey [N((J)]( y) > 2, a contradiction.

Case a € X;. Then since |T'|=3, we have U C N(C). Suppose there exists
ueU such that ua¢ E(G). Then since |[N(C)NN (v)|=3 and u is adjacent to
exactly two vertices in N (v), it follows that dG[ N(C )]( u)>2, a contradiction

to the last claim. So U C N (a). Also by the last claim applied to v4, we have
vag N(C). So N(C)=UU{v1,v2,v3,a}.

By Claim 4.7.1, there exists a component of G—(V(H')UC) with vertex
set C’ so that UCN(C’) and [N(C")NN (v)|=3. By symmetry between the
vertices v, v, and v3, we may assume that vy € N(C’). Then let G be the
graph formed from G[CUN(C')] by adding an edge between v, and uz 3. We
can see that G- is a minor of G with strictly fewer vertices by contracting
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C’ to v1. By part (i) of Lemma 4.6, the graph G, has at least five vertices
and is not isomorphic to K3, for any ¢.

Let G’ be the graph formed from G —C by adding an edge between v;
and ug 3. We can see that G’ is a minor of G on strictly fewer vertices by
contacting C' to v;. By part (i) of Lemma 4.6, the graph G’ has at least five
vertices and is not isomorphic to K3; for any ¢.

Then (G, G’) is a non-trivial bipartite super-separation of G of order 7
such that neither G}, nor G’ is isomorphic to K3 for any ¢. So by Lemma
3.4 and since U C N(a) and N(C)=UU{vy,v2,v3,a},

3(7) > |E(Ge)| + | E(G))| - |E(G)| + 11
= [E(GI[CUN(O))|+|EG - C)| - [E(G)|+13
= [E(G[N(O)])] +13
=22,

a contradiction. This completes the proof of the lemma. |

We have shown that a € X; and that G— (V(H')UC) is connected. For
convenience write D=V (G)— (V(H')UC). By part (ii) of Lemma 4.6, we
have N(v) C N(D). Also since |T'| =3, we have U C N(C). The final two
lemmas show that certain vertices are not neighbors of C' or not neighbors
of D.

Lemma 4.8. vs¢ N(C).

Proof. Suppose vy € N(C). Remember that U U {a} C N(C). Then let
G’ be the graph formed from G by contracting D to a single vertex with
neighborhood N(v)U{a} and by contracting C' to a single vertex, call it ¢,
with neighborhood U U {vy,a}. Then let G” be the graph formed from G’
by contracting u1 2 to v, ug3 to va, u1,3 to v3, v to v4, and finally ¢ to a.
Then G” is isomorphic to Kg, a contradiction. ]

Lemma 4.9. If uc UNN(D), then ua€ E(G).

Proof. Suppose otherwise. Let G¢ be the graph formed from G[CUN (C)]
by adding edges between u and all vertices in Nm(u) We can see that
G is a minor of G by contracting D to u, since N(v)U{a} CN(D). Let G’
be the graph formed from G—C by adding edges between a and all vertices
in Nm(a). We can see that G’ is a minor of G by contracting C' to
a. Then (G¢,G') is a non-trivial bipartite super-separation of G of order
|IN(C)|=7. By part (i) of Lemma 4.6, both Go and G’ have at least four
vertices on each side of the bipartition of G. So neither is isomorphic to K3



BIPARTITE LINKLESSLY EMBEDDABLE GRAPHS 1103

for any t. So by Lemma 3.4 and since u is adjacent to exactly two vertices
in N(v),

3(7) = |E(Ge)| + [BE(G)] = |E(G)| + 11

= dgmey (W) + dgmey (@ + [E(GIN(O))] + 11

> |N(C) N U| + |E(GIN(C) — {a}])] + 13,

Since vg ¢ N(C) by Lemma 4.8, we have |E(G[N(C)—{a}])|=6. This is a
contradiction since |N(C)NU|=3. 1

Write U':=UNN (D). Let G¢ be the graph formed from G[CUN(C)] by
adding a vertex with neighborhood {v;,vs,v3,a}. We can see that G¢ is a
minor of G on strictly fewer vertices by contracting D to a single vertex and
since |D|>2 by the choice of U. Also, by part (i) of Lemma 4.6, the graph
G¢ has at least four vertices in each side of the bipartition of G.

Let G’ be the graph formed from G[DUN (D)U{v}] by adding a vertex
with neighborhood {vy,v9,v3,a}. We can see that G’ is a minor of G on
strictly fewer vertices by contracting C' to a single vertex and since |C|>2
by part (i) of Lemma 4.6. Furthermore, G’ is not isomorphic to K3, for any
t since va¢ E(G').

Now we show that every edge of H' is an edge of either G or G'. Let e
be an edge of H'. If e is incident to v, then e is an edge of G'. If ¢ is incident
to a vertex in U, then e is an edge of the graph G¢. Furthermore, if e is
incident to a vertex in U’, then e is also an edge of G’.

So (G¢,G") is a non-trivial bipartite super-separation of G. Furthermore,
neither G¢ nor G’ is isomorphic to K3 for any ¢, and the order of the super-
separation (G¢,G') is 6+ |U’|. Remember also that by Lemma 4.9, every
vertex u€ U’ is adjacent to a. Then by Lemma 3.4,

3(6+|U')) = |[E(Go)| + |E(G)| — |E(G)| + 11 = 3|U"| + 19,
a contradiction. This completes the proof of Theorem 3.1.
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