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An embedding of a graph in 3-space is linkless if for every two disjoint cycles there exists
an embedded ball that contains one of the cycles and is disjoint from the other. We prove
that every bipartite linklessly embeddable (simple) graph on n≥ 5 vertices has at most
3n−10 edges, unless it is isomorphic to the complete bipartite graph K3,n−3.

1. Introduction

All graphs in this paper are finite and simple. Paths and cycles have no
“repeated” vertices. An embedding of a graph in 3-space is linkless if for
every two disjoint cycles there exists an embedded ball that contains one of
the cycles and is disjoint from the other. We prove the following theorem.

Theorem 1.1. Every bipartite linklessly embeddable graph on n≥ 5 ver-
tices has at most 3n− 10 edges, unless it is isomorphic to the complete
bipartite graph K3,n−3.

The question of whether linklessly embeddable bipartite graphs on n≥
5 vertices have at most 3n− 9 edges is stated as [18, Problem 2.3], and
Theorem 1.1 is implied by [6, Conjecture 4.5].

The following are equivalent conditions for a graph to be linklessly em-
beddable. A graph H is obtained from a graph G by a Y ∆ transformation
if H is obtained from G by deleting a vertex v of degree 3 and joining every
pair of non-adjacent neighbors of v by an edge. Conversely, G is obtained
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from H by means of a ∆Y transformation if G is obtained from H by delet-
ing the edges of a cycle of length 3 (“a triangle”) and adding a vertex of
degree 3 joined to the vertices of the triangle. The Petersen family is the set
of seven graphs obtained from the complete graph K6 by means of Y ∆ and
∆Y transformations. The Petersen graph is a member of the family, and
hence the name. The Petersen family is depicted in Figure 1. A graph is a
minor of another if the first can be obtained from a subgraph of the second
by contracting edges. An H minor is a minor isomorphic to H. We denote
by µ(G) the graph invariant introduced by Colin de Verdière [3]. We omit
its definition, because we do not need it.

Figure 1. The Petersen family
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Theorem 1.2. For every graph G the following conditions are equivalent:

(i) G has an embedding in 3-space such that every two disjoint cycles have
even linking number.

(ii) G is linklessly embeddable.
(iii) G has an embedding in 3-space such that every cycle bounds an open

disk disjoint from the embedding of G.
(iv) G has no minor isomorphic to a member of the Petersen family.
(v) µ(G)≤4.

Here (iii) ⇒ (ii) and (ii) ⇒ (i) are trivial, (i) ⇒ (iv) was shown by
Sachs [16,17], (iv)⇒(iii) was shown by Robertson, Seymour and the second
author [15], (v)⇒ (iv) was shown by Bacher and Colin de Verdière [1], and
(iii)⇒(v) was shown by Lovász and Schrijver [11].

Let us now put Theorem 1.1 in perspective. For general graphs excluding
only the Petersen graph as a minor, Hendrey and Wood [5] showed that the
correct bound on the number of edges is 5n−9, which is tight. For linklessly
embeddable graphs that are not necessarily bipartite the correct bound on
the number of edges is 4n−10, which is tight for any graph obtained from a
planar triangulation G on at least three vertices by adding a new vertex with
neighborhood V (G). This bound follows from the following more general
result of Mader [12].

Theorem 1.3. For every integer p = 2,3, . . . ,7, every graph on n ≥ p− 1
vertices with no minor isomorphic to Kp has at most (p−2)n−

(
p−1
2

)
edges.

Theorem 1.3 is such a nice result that it raises the question of whether
it can be generalized to all values of p. But there is some depressing news:
for large p a graph must have at least Ω(p

√
logpn) edges in order to guar-

antee a Kp minor, because, as noted by several people (Kostochka [7,8], and
Fernandez de la Vega [4] based on Bollobás, Catlin and Erdős [2]), a ran-
dom graph with no Kp minor may have average degree of order p

√
logp.

Kostochka [7,8] and Thomason [20] proved that this is indeed the correct
order of magnitude, and in a remarkable result, Thomason [21] was able to
determine the constant of proportionality. For small s, Kühn and Osthus
[10] and Kostochka and Prince [9] have shown that average degree of order
p suffices to guarantee a Ks,p minor.

It may seem that an effort to generalize Theorem 1.3 to clique minors will
be in vain, but there are still the following possibilities. The random graph
examples provide only finitely many counterexamples for any given value
of p. Of course, more counterexamples can be obtained by taking disjoint
unions or even gluing counterexamples along small cutsets, but we know
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of no construction of highly connected infinite families of counterexamples.
More specifically, Seymour and the second author conjecture the following.

Conjecture 1.4. For every integer p≥2 there exists a constant N =N(p)
such that every (p− 2)-connected graph on n ≥N vertices with no minor
isomorphic to Kp has at most (p−2)n−

(
p−1
2

)
edges.

In a slightly different direction the first author conjectures [13] the fol-
lowing.

Conjecture 1.5. For every integer p≥3, every graph G on n≥p−1 vertices
with µ(G)≤p−2 has at most (p−2)n−

(
p−1
2

)
edges.

Whether Conjecture 1.5 holds is stated as [18, Problem 1]. Conjecture 1.5
is implied by [14, Conjecture 1.5].

Let us repeat that for not necessarily bipartite graphs the bound on the
number of edges for linklessly embeddable graphs and graphs with no K6

minors coincide. Not so for bipartite graphs. In an earlier version of this
paper we conjectured the following.

Conjecture 1.6. For every integer p= 2,3, . . . ,8, every bipartite graph on
n≥2p−5 vertices with no minor isomorphic toKp has at most (p−2)n−(p−2)2

edges.

The bound in Conjecture 1.6 is tight, because of the graphs Kp−2,n−p+2.
For p≤4 Conjecture 1.6 is easy, and for p=5 it follows from Wagner’s char-
acterization of graphs with no K5 minor [22]. Conjecture 1.6 certainly does
not hold for all p, because a graph with Ω(p

√
logpn) edges and no Kp minor

has a bipartite subgraph with Ω(p
√

logpn) edges and no Kp minor. Since
the time of submission, Thomas and Yoo [19] proved a theorem implying
Conjecture 1.6. They proved

Theorem 1.7. For every integer p=2,3, . . . ,9, every triangle-free graph on
n≥2p−5 vertices with no minor isomorphic toKp has at most (p−2)n−(p−2)2

edges.

Motivated by Theorem 1.1 and the equivalence of (ii) and (v) in Theo-
rem 1.2 we also conjecture the following.

Conjecture 1.8. For every integer p≥ 3, every bipartite graph G on n≥
2p−3 vertices with µ(G)≤p has at most (p−1)n−(p−1)2 edges.
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Let us remark that the bound in Conjecture 1.8, if true, is tight, because
of the graphs Kp−1,n−p+1. For p = 3 Conjecture 1.8 follows from the fact
that graphs G with µ(G)≤3 are precisely planar graphs [3], and for p=4 it
follows from Theorems 1.1 and 1.2.

For linklessly embeddable graphs, we conjecture that Theorem 1.1 in fact
holds for triangle-free graphs.

Conjecture 1.9. Every triangle-free linklessly embeddable graph on n≥5
vertices has at most 3n−10 edges, unless it is isomorphic to the complete
bipartite graph K3,n−3.

A possible approach to Conjecture 1.9 is to prove the following conjecture:

Conjecture 1.10. Every linklessly embeddable graph on n ≥ 7 vertices
with t triangles has at most 3n−9+ t/3 edges.

Thomas and Yoo [19] recently proved that Conjecture 1.10 holds for apex
graphs, that is, graphs G with a vertex v so that G−v is planar. One could
speculate whether Conjecture 1.8 holds for triangle-free graphs, but we do
not have enough evidence to formally conjecture that.

The paper is organized as follows. In the next section we introduce def-
initions and notation. In Section 3 we state Theorem 3.1, which implies
Theorem 1.1 and prove half of it, proving some useful lemmas and disposing
of vertices of degree 5. In Section 4 we complete the proof of Theorem 3.1
by disposing of vertices of degree 4.

2. Notation and Definitions

For positive integers n1,n2, . . . ,nk with k≥2, we let Kn1,n2,...,nk
denote the

complete multipartite graph with k independent sets of sizes n1,n2, . . . ,nk.
We let K−4,4 denote the graph obtained from K4,4 by deleting an edge. We

also let K∆Y
6 denote the graph obtained from K6 by performing a ∆Y trans-

formation.
For a graph G we write V (G) for the vertex set of G and E(G) for the

edge set of G. We write δ(G) for the minimum degree of G and ∆(G) for
the maximum degree of G. Suppose v is a vertex of G and S is a subset of
V (G). Then we write G[S] for the induced subgraph of G with vertex set S
and G−S for the induced subgraph of G with vertex set V (G)−S. We write
G−v for G−{v}. We write dG(v), or d(v) if the graph is understood from
context, for the degree of v in G. We write NG(S) for the set of all vertices
in V (G)−S that are adjacent to some vertex in S. We write N(S) if the
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graph is understood from context, and we write N(v) for N({v}). We use
N [v] to denote N(v)∪{v}.

If G is a graph with S and T disjoint subsets of V (G), we say an edge
uv∈E(G) is between S and T if S∩{u,v} 6=∅ and T∩{u,v} 6=∅. If S consists
of a single vertex v, we may talk about the edges between v and T . Given a
graph G, we say that {X0,X1} is a bipartition of G if {X0,X1} is a partition
of V (G) so that all edges of G are between X0 and X1.

We define a separation of a graph G to be a pair of sets (A,B) with
union V (G) such that G has no edge between A−B and B−A. The order
of a separation (A,B) is |A∩B|. We also say that a separation of order k is
a k-separation. A separation (A,B) is non-trivial if both A−B and B−A
are non-empty. We say that a separation (A,B) is minimal if there does not
exist a non-trivial separation (A′,B′) of G with A′∩B′(A∩B.

It is convenient for us to give the following related definition. We say
a super-separation of a graph G is a pair of graphs (G0,G1) such that
V (G)⊆ V (G0)∪V (G1), and E(G)⊆E(G0)∪E(G1), and both G0 and G1

are isomorphic to minors of G. We say a super-separation (G0,G1) of G is
non-trivial if both G0 and G1 are isomorphic to proper minors of G. (That
is, neither G0 nor G1 is isomorphic to G.) We say that the order of a super-
separation (G0,G1) of G is |V (G0)|+ |V (G1)| − |V (G)|. Finally, we say a
super-separation (G0,G1) is bipartite if both G0 and G1 are bipartite.

Note that if (A,B) is a (non-trivial) separation of G of order k, then
(G[A],G[B]) is a (non-trivial) super-separation of G of order k. Furthermore,
if G is bipartite, then the super-separation (G[A],G[B]) is bipartite. In this
paper, each super-separation we use will be constructed from a non-trivial
separation (A,B) as follows. We will construct a graph GA formed from G[A]
by possibly adding some edges with both ends in A∩B, and possibly a new
vertex a /∈V (G) with neighbors in A∩B. We will show that GA is isomorphic
to a proper minor of G by contracting some edges with at least one end in
B. A graph GB will be formed similarly from G[B], so that (GA,GB) is a
non-trivial super-separation.

Finally, if G is a bipartite graph with bipartition {X0,X1} and S⊆V (G),

then we will write G[S] for the bipartite complement of G[S]. That is, G[S]

is the graph on vertex set S where uv is an edge of G[S] if and only if exactly
one of u and v is in X0 and uv /∈E(G).

3. Proof of Main Theorem: Vertices of Degree 5

By Theorem 1.2, the following theorem implies Theorem 1.1.
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Theorem 3.1. Every bipartite graph on n≥5 vertices with no K6, K1,3,3,
K−4,4, or K

∆Y
6 minor has at most 3n−10 edges, unless it is isomorphic to the

complete bipartite graph K3,n−3.

The rest of the paper is dedicated to proving Theorem 3.1. Going for a
contradiction, suppose that Theorem 3.1 is false. Let G be a counterexample
with |V (G)|+ |E(G)| minimum. Write n := |V (G)|, and let {X0,X1} be a
bipartition of G.

We begin by giving a brief outline of our proof strategy. First we will show
an easy lemma, and that 4≤ δ(G)≤ 5. Then we show that G cannot have
certain separations and super-separations of small order. It follows that G
has no subgraph isomorphic to K3,3: otherwise it either has a K1,3,3 minor or
a separation of small order. Next we show that if v is a vertex of degree 4 or 5
and x and y are neighbors of v, then x and y have several common neighbors
other than v. Then it is fairly easy to show that G has no vertex v of degree
5: for every pair of distinct neighbors x and y of v, let vx,y be a vertex other
than v that is adjacent to both x and y. If all ten vx,y are distinct, then G
has a K6 minor. Otherwise we find a K3,3 subgraph or another forbidden
minor. In Section 4 we will deal with the case that δ(G)=4.

We begin with two easy lemmas:

Lemma 3.2. n≥7.

Proof. Otherwise, n ∈ {5,6}. Then dn/2e= 3 and bn/2c= n−3. If G is a
subgraph of K3,n−3, then since by assumption G is not isomorphic to K3,n−3,
we have |E(G)| ≤ |E(K3,n−3)|−1 = 3n−10, a contradiction. So G is not a
subgraph of K3,n−3. Then

3n− 9 ≤ |E(G)| ≤ |X0||X1| ≤ (dn/2e+ 1)(bn/2c − 1) = 4(n− 4).

This gives us n≥7, a contradiction.

Lemma 3.3. 4≤δ(G)≤5.

Proof. Since G was chosen to be a counterexample with |V (G)|+ |E(G)|
minimum, |E(G)|≤3n−8. So δ(G)≤5 by the handshaking lemma.

Now, let v be a vertex of minimum degree. Since n≥ 6 by Lemma 3.2,
either G−v is isomorphic to K3,n−4 and |E(G−v)|=3(n−1)−9, or |E(G−v)|≤
3(n−1)−10. If d(v)≤2, then

|E(G)| = |E(G− v)|+ d(v) ≤ 3(n− 1)− 9 + 2 = 3n− 10,

a contradiction. Now suppose that d(v) = 3. If G− v is not isomorphic to
K3,n−4, then similarly |E(G)|≤3n−10, and we are done.
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So G−v is isomorphic to K3,n−4. Without loss of generality suppose that
v ∈X0. If N(v) =X1, then G is isomorphic to K3,n−3, a contradiction. So
there exists a vertex u∈X1−N(v). Then |X0−{v}|=3, and G[X0∪{u}∪N(v)]
is isomorphic to K−4,4, a contradiction. So δ(G) = d(v)≥ 4, completing the
proof of the lemma.

Next we prove two lemmas on separations and super-separations of G.
Observe that since δ(G)≥4 by Lemma 3.3, if (A,B) is a non-trivial separa-
tion of G, then (G[A],G[B]) is a non-trivial bipartite super separation of G
such that |V (G[A])|, |V (G[B])| ≥ 5. We will frequently apply the following
lemma to such a case.

Lemma 3.4. Let (G0,G1) be a non-trivial bipartite super-separation of G
of order k such that |V (G0)|, |V (G1)|≥5 and neither G0 nor G1 is isomorphic
to K3,t for any t. Then 3k≥|E(G0)|+ |E(G1)|−|E(G)|+11.

Proof. For convenience, write e= |E(G0)|+ |E(G1)|− |E(G)|. By the con-
ditions of the lemma and since G is a counterexample with |V (G)|+ |E(G)|
minimum,

3n− 9 ≤ |E(G)|
= |E(G0)|+ |E(G1)| − e
≤ 3(|V (G0)|+ |V (G1)|)− 20− e
= 3(n+ k)− 20− e.

So 3k≥e+11, as desired.

Next we show that G does not have certain separations of small order.

Lemma 3.5. Let (A,B) be a non-trivial separation of G such that for each
i∈{0,1}, |A∩B∩Xi|≤3. Then |A∩B|=6 and ∆(G[A∩B])≤1.

Proof. Suppose otherwise for some separation (A,B). Note that any non-
trivial separation (A′,B′) of G with A′∩B′(A∩B also violates the lemma.
Thus we may assume that (A,B) is minimal.

First we show that both A and B have at least four vertices in each side
of the bipartition of G. Let v∈A−B, and without loss of generality assume
that v∈X0. Then |X1∩A|≥ |N(v)|≥4 since δ(G)≥4 by Lemma 3.3. Also,
since |A∩B∩X1|≤3, there exists a vertex u∈N(v)−(A∩B). Then similarly
|X0 ∩A| ≥ |N(u)| ≥ 4. The same argument shows that B has at least four
vertices in each side of the bipartition of G.

Now for convenience write S := A∩B. So |S| ≤ 6. Let z ∈ S so that

d
G[S]

(z) is maximum, where G[S] is the bipartite complement of G[S]. Let
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GA be the graph formed from G[A] by adding edges between z and every
vertex in N

G[S]
(z). We can see that GA is a minor of G by contracting some

component of G[B−A] to z and by the minimality of (A,B). Furthermore
GA is bipartite, has fewer vertices than G, and has at least four vertices in
each side of the bipartition of G. So GA is not isomorphic to K3,t for any
t. Define GB analogously, by adding edges between z and every vertex in
N
G[S]

(z) to G[B].

We have shown that (GA,GB) is non-trivial bipartite super-separation of
G so that GA and GB both have at least five vertices, and neither GA nor
GB is isomorphic to K3,t for any t. Furthermore, the order of (GA,GB) is
|S| and

|E(GA)|+ |E(GB)| − |E(G)| = |E(G[A])|+ |E(G[B])|+ 2d
G[S]

(z)− |E(G)|
= |E(G[S])|+ 2d

G[S]
(z).

So by Lemma 3.4 applied to the super-separation (GA,GB), we have
3|S|≥|E(G[S])|+2d

G[S]
(z)+11. Thus |S|≥4. We proceed by cases.

Case |S|= 4. Then |E(G[S])|+2d
G[S]

(z)≤1. So d
G[S]

(z) = 0. Thus G[S] is

a complete bipartite graph on four vertices with at least one vertex on each
side of its bipartition. So |E(G[S])|≥3, a contradiction.

Case |S|=5. Since |X0∩S|, |X1∩S|≤3 and by symmetry between X0 and
X1, we may assume that |X0∩S|=3 and |X1∩S|=2. Let z1 and z2 be the
vertices in X1∩S. By the definition of z,

4 ≥ |E(G[S])|+ 2d
G[S]

(z) ≥ |E(G[S])|+ d
G[S]

(z1) + d
G[S]

(z2) = 6,

a contradiction.

Case |S|=6 and ∆(G[S])≥2. Then |X0∩S|= |X1∩S|=3. Let z1 and z2 be
the other vertices on the same side of the bipartition of G[S] as the vertex
of maximum degree. Then

7 ≥ |E(G[S])|+ 2d
G[S]

(z) ≥ |E(G[S])|+ d
G[S]

(z1) + d
G[S]

(z2)

= ∆(G[S]) + 6 ≥ 8,

a contradiction.

Next we observe that G has no K3,3 subgraph, and then we show that
common neighbors of a vertex of degree 4 or 5 in fact share several common
neighbors.

Lemma 3.6. G does not have a subgraph isomorphic to K3,3.
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Proof. Suppose H is a subgraph of G isomorphic to K3,3. Since n≥ 7 by
Lemma 3.2, the graph G−V (H) is non-empty. Let C be the vertex set of
some component of G−V (H). Then since (C∪N(C))∩(V (G)−C)=N(C)⊆
V (H), by Lemma 3.5, the separation (C∪N(C),V (G)−C) is trivial. Then
C∪N(C)=V (G), and so N(C)=V (H). So the graph obtained by contacting
C to a single vertex is isomorphic to K1,3,3, a contradiction.

Lemma 3.7. Let v ∈ V (G) be a vertex of degree 4 or 5. Let x and y be
distinct vertices in N(v). Then x and y share at least 7− d(v) common
neighbors other than v.

Proof. Suppose otherwise, and write c := |N(x)∩N(y)| − 1. That is, c is
the number of common neighbors of x and y other than v. So c≤ 6−d(v).
Without loss of generality suppose that v∈X0. Let G′ be the graph formed
from G by deleting y and v, and adding edges between x and all vertices in
N(y)−N(x). We can see that G′ is a minor of G by contracting y and v to
x. Furthermore, G′ is bipartite and since n≥7 by Lemma 3.2, the graph G′

has at least five vertices. Let ` be 1 if G′ is isomorphic to K3,t for some t,
and 0 otherwise. Then:

3n− 9 ≤ |E(G)|
= |E(G− v)|+ d(v)

= |E(G′)|+ c+ d(v)

≤ 3(n− 2)− 10 + `+ c+ d(v)

= 3n− 10 + `+ (c− 6 + d(v)).

It follows that `=1 and c=6−d(v). Thus, G′ is isomorphic to K3,t for some t.
If d(v)=4, then c=2 and G[N(v)∪(N(x)∩N(y))] is isomorphic to K3,4. This
is a contradiction since by Lemma 3.6, the graph G has no K3,3 subgraph.
If d(v) = 5, then |X1∩V (G′)| ≥ d(v)−1 = 4, and so |X0∩V (G′)|= 3. Then
G[(X0∩V (G′))∪(N(v)−{x,y})] is isomorphic to K3,3, again a contradiction
to Lemma 3.6.

Now we are ready to show:

Lemma 3.8. G has no vertex of degree 5.

Proof. Suppose v∈V (G) is a vertex of degree 5. Let

W := {w ∈ V (G)−N [v] : |N(w) ∩N(v)| = 2},

and let
U0 := {u ∈ V (G)−N [v] : |N(u) ∩N(v)| ≥ 3}.
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We will show a contradiction by proving that G[N [v]∪W ∪U0] has a minor
isomorphic to K6 or K∆Y

6 . If U0=∅, then this is immediate since by Lemma
3.8 every pair of vertices in N(v) share at least two common neighbors
other than v. On the other hand, if U0 has too many vertices with too many
neighbors in N(v), then we will find a K3,3 subgraph, contradicting Lemma
3.7. The proof proceeds by carefully contracting certain vertices in W ∪U0

to one of their neighbors in N(v). Note that since G is bipartite, if G′ is
obtained from G[N [v]∪W ∪U0] by performing such contractions and then
deleting edges with both ends in N(v), then G′ is a subgraph of G. We will
sometimes need this fact to find a K3,3 subgraph in G.

Now, let G0 be the graph formed from G[N [v]∪W ∪U0] by contracting,
for every vertex w∈W , an arbitrary edge with one end w and the other end
in N(w)∩N(v). Please note that G0 is not necessarily bipartite. By Lemma
3.7, every pair of vertices in N(v) are either adjacent in G0 or share at least
two common neighbors in U0.

First we show the following claim:

Claim 3.8.1. There exist a set U1⊆U0 and a graph G1 so that:

1. The graph G1 is formed from G0 by contracting edges with one end in
U0−U1 and the other end in N(v).

2. Every pair of distinct vertices in N(v) are either adjacent in G1 or share
a common neighbor in U1.

3. Every vertex in U1 has degree exactly 3 in G0, and δ(G1[N(v)])≥1.

Proof. Observe that U0 is non-empty since otherwise G0[N [v]] is isomorphic
to K6. Fix a vertex z∈U0 with dG0(z) maximum. First suppose dG0(z)=5.
Then since G has no K3,3 subgraph by Lemma 3.6, every pair of vertices in
N(v) are adjacent in G0. Then G0[N [v]] is isomorphic to K6, a contradiction.
So dG0(z)≤4.

Now observe that every vertex in U0 other than z has degree exactly 3
in G0. This is clear if dG0(z)=3, and follows since G has no K3,3 subgraph
if dG0(z)=4.

Let x∈N(v)−NG0(z). If dG0(z)=3, let x′ be the vertex other than x in
N(v)−NG0(z). If dG0(z)=4, let x′ be any vertex in N(v) other than x.

First suppose that x and x′ are adjacent in G0. Then let G1 be the graph
formed from G0 by contracting z to one of its neighbors in G0, and let
U1 :=U0−{z}. Then G1 and U1 satisfy the conditions of the claim.

So we may assume that x and x′ are not adjacent in G0. Then they
have a common neighbor z′ ∈ U0−{z}. Let G1 be the graph formed from
G0 by contracting z to a vertex in NG0(z)−NG0(z′) and z′ to x′. Write
U1 :=U0−{z,z′}. Then G1 and U1 satisfy the conditions of the claim.
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Fix G1 and U1 as in the claim. Choose a graph G2 and a set U2⊆U1 so
that:

1. The graph G2 is formed from G1 by contracting edges with one end in
U1−U2 and the other end in N(v).

2. Every pair of distinct vertices in N(v) are either adjacent in G2 or share
a common neighbor in U2.

3. Subject to the above, |U2| is minimum.

Such a choice is possible because G2 :=G1 and U2 :=U1 satisfy (i) and (ii).
Observe that G2 is a minor of G. We first show that for all u∈U2, the graph
G2[NG2(u)] has no edges. Since every vertex in U1 has degree exactly 3 in G0

by the claim, u also has degree exactly 3 in G2. Write NG2(u) = {x,x′,x′′}
and suppose xx′ ∈ E(G2). Then let G′2 be the graph formed from G2 by
contracting u to x′′, and let U ′2 :=U2−{u}. Then G′2 and U ′2 contradict our
choice of G2 and U2.

Then by the last paragraph and condition (ii), if |U2| ≤ 1, then
G2[N [v]∪U2] is isomorphic to either K6 or K∆Y

6 . So there exist distinct
vertices u,u′ ∈U2. Both u and u′ have degree exactly 3 in G2. We proceed
by cases.

Case |NG2(u)∩NG2(u′)|= 3. Then G[NG2(u)∪{v,u,u′}] is isomorphic to
K3,3, a contradiction to Lemma 3.6.

Case |NG2(u) ∩ NG2(u′)| = 2. Then let x be the unique vertex in
NG2(u)−NG2(u′). Let G′2 be the graph formed from G2 by contracting u to
x, and let U ′2 :=U2−{u}. Then G′2 and U ′2 contradict part (iii) of our choice
of G2 and U2.

Case |NG2(u)∩NG2(u′)|=1. Let x be the unique vertex in NG2(u)∩NG2(u′).
Then x is adjacent to no vertices in N(v) in the graph G2. But this is a
contradiction since δ(G2[N(v)]) ≥ δ(G1[N(v)]) ≥ 1 by part (iii) of Claim
3.8.1. This is the final case and completes the proof of Lemma 3.8.

4. Proof of Main Theorem: Vertices of Degree 4

Now that we have shown G has no vertices of degree 5 and that 4≤δ(G)≤5
by Lemma 3.3, the remainder of the proof deals with vertices of degree 4.
First we will show that if v is any vertex of degree 4, then G has no vertex u
such that |N(u)∩N(v)|≥4. We then use this fact to show that G does not
have additional kinds of separations of small order. Finally, we fix a vertex
v of degree 4 and a certain set U ⊆ V (G)−N [v] of three or fewer vertices
that each have neighbors in N(v). We show that G−(N [v]∪U) is connected
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and has a cut vertex a. We then use the fact that G− (N [v]∪U ∪{a}) is
disconnected to find a separation showing a contradiction to Lemma 3.4.

Lemma 4.1. Suppose v∈V (G) is a vertex of degree 4. Then there does not
exist a vertex u∈V (G)−N [v] so that |N(u)∩N(v)|=4.

Proof. Suppose otherwise. Without loss of generality assume that v ∈X0.
Write N(v) = {v1,v2,v3,v4}. For every i, j ∈ {1,2,3} with i < j, let ui,j ∈
V (G)−{v,u} be a vertex that is adjacent to both vi and vj . Such vertices exist
since by Lemma 3.7, vi and vj have at least three common neighbors other
than v. Since G has no K3,3 subgraph by Lemma 3.6 and |N(u)∩N(v)|=4,
the vertices u1,2, u1,3, and u2,3 are distinct. Write U :={u1,2,u1,3,u2,3}, and
H :=G[N [v]∪U ∪{u}]. Then dH(v4)≤ 2 since G has no K3,3 subgraph. So
since δ(G)≥ 4 by Lemma 3.3, there exists a component of G−V (H) with
neighbor v4. Let C be the vertex set of such a component. Observe that
N(C)⊆N(v)∪U ∪{u}.

Now we show that either N(v) ⊆ N(C) or U ∪ {u} ⊆ N(C). Suppose
otherwise. Then for all i∈{0,1}, we have |Xi∩N(C)|≤3. Then by Lemma
3.5 applied to the separation (C∪N(C),V (G)−C), it follows that |N(C)|=6
and ∆(G[N(C)])≤ 1. Then since |N(C)∩N(v)|= 3 and |N(u)∩N(v)|= 4,
we have u /∈N(C). Then U ⊆N(C). But |N(C)∩{v1,v2,v3}| ≥ 2, which is
a contradiction since ∆(G[N(C)])≤ 1. We have shown that either N(v)⊆
N(C) or U ∪{u}⊆N(C).

If N(v) ⊆N(C), let G′ be the graph formed from G by contracting C
to a single vertex with neighborhood N(v) and deleting all other vertices in
G−V (H). Let G′′ be the graph formed from G′ by contracting u1,2 to v1,
u2,3 to v2, and u1,3 to v3. Then G′′ is isomorphic to K∆Y

6 , a contradiction.
So we may assume that U∪{u}⊆N(C). Remember also that by the choice

of C, we have v4∈N(C). Now let G′ be the graph formed by contracting C
to a vertex with neighborhood U ∪{u,v4} and deleting all other vertices in
G−V (H). Let G′′ be the graph formed from G′ by contracting v to v4 and
by contracting u1,2 to v1, u2,3 to v2, and u1,3 to v3. Then G′′ is isomorphic
to K6, a contradiction.

We are now ready to show that G does not have additional kinds of
separations of small order.

Lemma 4.2. Let (A,B) be a non-trivial separation of G. If there exists
i ∈ {0,1} such that |Xi ∩A∩B| ≤ 4 and |X1−i ∩A∩B| ≤ 2, then either
|A−B|=1 or |B−A|=1.

Proof. Suppose otherwise. Let (A,B) be a separation of minimum order
that violates the lemma. Write S :=A∩B for convenience. Without loss of
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generality we assume that |X0∩S|≤4 and |X1∩S|≤2. By Lemma 3.5, we
have |X0∩S|=4.

First we will show that there exists a component of G[A−B] with neigh-
borhood S. Suppose otherwise. Let C be the vertex set of any component of
G[A−B]. If |C|≥2 and N(C) 6=S, then (C∪N(C),V (G)−C) is a separation
violating the lemma of smaller order, a contradiction to the choice of (A,B).
So |C|= 1 and thus since δ(G)≥ 4 by Lemma 3.3, we have N(C) =X0∩S.
Then since |A−B| ≥ 2, the graph G[A−B] has another component with
vertex set C ′ also consisting of a single vertex with neighborhood X0 ∩S.
But this is a contradiction to Lemma 4.1. This shows that there exists a
component of G[A−B] with neighborhood S. By symmetry the same holds
for G[B−A]. We now proceed by cases.

Case either |S| = 4, or |S| = 5 and |E(G[S])| = 4. We will construct a
super-separation (GA,GB) that contradicts Lemma 3.5. This will be the first
time that V (GA) 6⊆A.

Let GA be the graph formed from G[A] by adding a single vertex, call
it a, with neighborhood X0 ∩S. We can see that GA is a minor of G by
contracting a component of G[B−A] with neighborhood S to a single vertex.
Furthermore, GA is bipartite, has fewer vertices than G since by assumption
|B −A| ≥ 2, and has at least five vertices since A ⊆ V (GA). Define GB
analogously, by adding a single vertex with neighborhood S∩X0 to G[B].

Suppose GA is isomorphic to K3,t for some t. Then since NGA
(a)=S∩X0

and |S ∩X0| = 4, there exist two vertices u and v in GA −NGA
[a] with

degree exactly 4 in GA. Then since |S| ≤ 5, we have |S−NGA
[a]| ≤ 1, so at

least one of the vertices, say v, is in A−S. Then v has degree 4 in G, and
|N(u)∩N(v)| = 4, a contradiction to Lemma 4.1. By symmetry, we have
shown that neither GA nor GB is isomorphic to K3,t for any t. Furthermore,
the order of the super-separation (GA,GB) is |S|+2, and

|E(GA)|+ |E(GB)| − |E(G)| = |E(G[A])|+ |E(G[B])|+ 8− |E(G)|
= |E(G[S])|+ 8.

So by Lemma 3.4 applied to the super-separation (GA,GB), we have
3(|S|+2)≥|E(G[S])|+19. But this is a contradiction since either |S|≤4, or
|S|=5 and |E(G[S])|=4.

Case either |S|= 5 and |E(G[S])|≤ 3, or |S|= 6. This case is similar to
the proof of Lemma 3.5. Let z ∈X1∩S so that d

G[S]
(z) is maximum. Let

GA be the graph formed from G[A] by adding edges between z and every
vertex in N

G[S]
(z). We can see that GA is a minor of G by contracting a

component of G[B−A] with neighborhood S to z. The graph GA is bipartite
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and has fewer vertices than G. Since there is a component of G[A−B] with
neighborhood S and both X0∩S and X1∩S are non-empty, both X0∩(A−B)
and X1∩ (A−B) are also non-empty. Thus, since δ(G)≥ 4, A has at least
four vertices in each side of the bipartition of G. So GA is not isomorphic to
K3,t for any t. Define GB analogously, by adding edges between z and every
vertex in N

G[S]
(z) to G[B]. By symmetry, neither GA nor GB is isomorphic

to K3,t for any t.
The order of the super-separation (GA,GB) is |S|, and

|E(GA)|+ |E(GB)| − |E(G)| = |E(G[A])|+ |E(G[B])|+ 2d
G[S]

(z)− |E(G)|
= |E(G[S])|+ 2d

G[S]
(z).

Then by Lemma 3.4, 3|S|≥|E(G[S])|+2d
G[S]

(z)+11. Observe that

4|X1 ∩ S| =
∑

x∈X1∩S

(
dG[S](x) + d

G[S]
(x)
)
.

So if |S|=5 and |E(G[S])|≤3, then d
G[S]

(z)≥1 and so |E(G[S])|+2d
G[S]

(z)≥
5. This is a contradiction. So |S|=6. But then |E(G[S])|+2d

G[S]
(z)≥8, which

is again a contradiction.

By Lemmas 3.3 and 3.8, the graph G has a vertex of degree 4. Fix v ∈
V (G) a vertex of degree 4, and write N(v)={v1,v2,v3,v4}. Without loss of
generality assume that v ∈X0. Choose a set U ⊆ V (G)−N [v] of minimum
cardinality such that either:

1. U consists of a single vertex u with |N(u)∩N(v)|=3, or
2. U ={u1,2,u1,3,u2,3} and for all i, j∈{1,2,3} with i<j, N(ui,j)∩N(v) =
{vi,vj}.

First we show that such a set exists. If there exists a vertex u∈V (G)−N [v]
such that |N(u)∩N(v)| ≥ 3, then by Lemma 4.1 in fact |N(u)∩N(v)|= 3
and we are done. So we may assume that for all u ∈ V (G)−N [v] we have
|N(u)∩N(v)| ≤ 2. Then for all i, j ∈{1,2,3} with i < j, let ui,j be a vertex
not in N [v] that is adjacent to both vi and vj . Such a vertex exists since vi
and vj have at least three common neighbors other than v by Lemma 3.7.
By assumption u1,2, u1,3, and u2,3 are distinct and N(ui,j)∩N(v)={vi,vj}.
So such a set exists.

Write H :=G[N [v]∪U ]. Next we show one short lemma.

Lemma 4.3. There do not exist disjoint sets A,B⊆V (G)−V (H) such that
G[A] and G[B] are connected, and N(v)⊆N(A) and N(v)⊆N(B).
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Proof. Let G′ be the graph obtained from G by contracting A to a sin-
gle vertex with neighborhood N(v), contracting B to a single vertex with
neighborhood N(v), and deleting all other vertices in G−V (H).

If |U | = 1, then G′ is isomorphic to K−4,4, a contradiction. If |U | = 3,

then let G′′ be the graph formed from G′ by contracting ui,j to vi for all
i, j∈{1,2,3} with i<j. Then G′′ is isomorphic to K∆Y

6 , a contradiction.

In the next lemma we show that G−V (H) is connected and has a 1-
separation satisfying certain properties.

Lemma 4.4. The graph G−V (H) is connected. Furthermore, there exist
{a0,a′0,a1,a′1}⊆V (G)−V (H) and a 1-separation (A0,A1) of G−V (H) such
that for every i∈{0,1}, we have ai,a

′
i∈Ai and ai and a′i are both adjacent

to v2i+1 and v2i+2.

Proof. First we will show that G − V (H) is connected. Otherwise, by
Lemma 4.3, there exists a component of G − V (H) with vertex set C
so that N(v) * N(C). So by Lemma 3.5 applied to the separation
(C ∪ N(C),V (G) − C), we find that |N(C)| = 6 and ∆(G[N(C)]) ≤ 1.
It follows that |U | = 3 and U ⊆ N(C). This is a contradiction since
|N(C)∩{v1,v2,v3}|≥2 and ∆(G[N(C)])≤1. So G−V (H) is connected.

Now for every i∈{0,1}, let ai and a′i be distinct vertices in V (G)−V (H)
that are adjacent to both v2i+1 and v2i+2. Such vertices exist since by Lemma
3.7 the vertices v2i+1 and v2i+2 share at least three common neighbors other
than v, and by the definition of U they share no more than one com-
mon neighbor in U . Furthermore by Lemma 4.1, in fact a0,a

′
0,a1,a

′
1 are

all distinct. By Menger’s Theorem, either the desired 1-separation exists,
or G−V (H) contains vertex-disjoint paths P and P ′ so that both P and
P ′ have one end in {a0,a′0} and one end in {a1,a′1}. But then by choosing
A :=V (P ) and B :=V (P ′) we have a contradiction to Lemma 4.3.

Fix {a0,a′0,a1,a′1}⊆V (G)−V (H) and a 1-separation (A0,A1) of G−V (H)
as in the lemma. Let a be the unique vertex in A0∩A1, and for convenience
write H ′ := G[V (H) ∪ {a}]. Let C be the vertex set of a component of
G−V (H ′) so that 1≤|N(C)∩N(v)|≤3. Subject to this, choose C such that
|N(C)| is minimum.

To see that such a component exists, for every i ∈ {0,1}, let Ci be the
vertex set of a component of G[Ai−{a}] with Ci∩{ai,a′i} 6=∅. Then G[C0]
and G[C1] are distinct components of G− V (H ′). By Lemma 4.3, either
N(v)*N(C0) or N(v)*N(C1). So such a component exists. We first show:

Lemma 4.5. |U |=3.
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Proof. Suppose |U |= 1. Let u be the unique vertex in U . Without loss of
generality we may assume that N(u)∩N(v) = {v1,v2,v3}. Remember that
v ∈X0. If a ∈X0, then for every i ∈ {0,1}, we have |N(C)∩Xi| ≤ 3. But
|N(C)|≤5, which is a contradiction to Lemma 3.5. Thus a∈X1. We prove
the following claim:

Claim 4.5.1. Let C ′ be the vertex set of a component of G−V (H ′) so that
N(v)*N(C ′). Then C ′ consists of a single vertex of degree 4 that is only
adjacent to vertices in N(v)∪{a}.

Proof. Let C ′ be the vertex set of such a component. Then |N(C ′)∩X1|=
|N(C ′)∩ (N(v)∪{a})| ≤ 4 and |N(C ′)∩X0| = |N(C ′)∩U | ≤ 1. Note that
|V (G)− V (C ′)| ≥ |N [v]− V (C ′)| ≥ 2. Then by Lemma 4.2 applied to the
separation (C ′ ∪N(C ′),V (G)−C ′), the set C ′ consists of a single vertex.
Then since δ(G) ≥ 4 by Lemma 3.3, the vertex in C ′ is only adjacent to
vertices in N(v)∪{a}.

Now define the set

W := {w ∈ V (G)− V (H ′) : dG(w) = 4 and N(w) ⊆ N(v) ∪ {a}}.

Since G−V (H) is connected by Lemma 4.1, every vertex w∈W is adja-
cent to a. Furthermore, every vertex w∈W is adjacent to v4, as otherwise
G[{v,v1,v2,v3,u,w}] is isomorphic to K3,3, a contradiction to Lemma 3.6.

Now we show that |W | ≥ 2. By the claim and the choice of C, we have
|C|= 1. Since a∈X1 while {a0,a′0,a1,a′1}⊆X0, for every i∈{0,1} we have
|Ai−({a}∪C)|≥|{ai,a′i}−C|≥1. So G−V (H ′) has at least three components.
So by Lemma 4.3 and by the claim, |W |≥2.

Next we show that G− (V (H ′)∪W ) has a component with vertex set
D so that N(v)∪{a}⊆N(D). By Lemma 3.7, the vertices v1 and v2 have
at least three common neighbors besides v. Suppose that there are dis-
tinct vertices w,w′ ∈ W that are common neighbors of v1 and v2. Then
G[{v,w,w′,v1,v2,v4}] is isomorphic to K3,3, a contradiction to Lemma 3.6.
So the vertices v1 and v2 have a common neighbor in V (G)− (V (H ′)∪W ).
So V (G)− (V (H ′)∪W ) is non-empty. Let D be the vertex set of any com-
ponent of G−(V (H ′)∪W ). Since G−V (H) is connected, we have a∈N(D).
If N(v)*N(D), then by the claim, D consists of a single vertex of degree
4 that is only adjacent to vertices in N(v)∪{a}. But this is a contradiction
to the choice of W . So N(v)∪{a}⊆N(D).

Let w and w′ be distinct vertices in W . Since G has no K3,3 subgraph,
we may assume without loss of generality that N(w) = {v1,v2,v4,a} and
N(w′)={v1,v3,v4,a}. Then let G′ be the graph formed from G by contract-
ing D to a single component with neighborhood N(v)∪ {a} and deleting
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all other vertices except V (H ′)∪{w,w′}. Then let G′′ be the graph formed
from G′ by contracting w to v2, u to v3, v to v4, and w′ to a. Then G′′ is
isomorphic to K6, a contradiction. This completes the proof of the lemma.

So |U |= 3. Write U = {u1,2,u1,3,u2,3} so that for all i, j ∈ {1,2,3} with
i < j, N(ui,j)∩N(v) = {vi,vj}. By the choice of U , no vertex other than v
is adjacent to three or more vertices in N(v). For convenience write T :=
NG[N(C)](a)∪N

G[N(C)]
(a). That is, T is the set of all vertices in N(C) that

are in the other side of the bipartition of G from that of the vertex a. Let x
be some vertex in N(v)−N(C). Such a vertex exists since by the choice of
C we have |N(C)∩N(v)|≤4.

Now we give an overview of the rest of the proof. The goal is to show
a contradiction to Lemma 3.4 on super-separations of G. Note that since
|N(C)∩N(v)| ≤ 3, we have N(C) ( N(v)∪U ∪ {a}. So |N(C)| ≤ 7. The
previous lemmas on separations of G, Lemmas 3.5 and 4.2, apply only to
separations of order six or less, so some casework is required to show a
contradiction. We will frequently construct a super-separation (GC ,G

′) so
that G[C∪N(C)] is a subgraph of GC and G−C is a subgraph of G′.

We first show a straightforward lemma that will help with constructing
such super-separations. We are then able to show the harder lemma that
a∈X1 and that G−(V (H ′)∪C) is connected. Then it is easy to show that
v4 /∈ N(C), or else G has a K6 minor. A final lemma shows that certain
vertices in U have no neighbor in V (G)− (V (H ′)∪C). We then construct
one last super-separation of G that gives a contradiction to Lemma 3.4,
completing the proof. We begin with the following lemma.

Lemma 4.6. The following hold:

1. The set C has at least two vertices. Both C∪N(C) and V (G)−C have
at least four vertices in each side of the bipartition of G.

2. Every neighbor of v is adjacent to a vertex in V (G)−(V (H ′)∪C).
3. |N(C)∩N(v)|=3 and |T |=3.

Proof. First we show that |C| ≥ 2 and |V (G)− (V (H ′)∪C)| ≥ 2. We have
|V (G)− (C ∪N(C))| ≥ |N [v]− (C ∪N(C))| ≥ 2. Suppose |C| = 1. Since
|N(C)∩N(v)|≥1 by the choice of C, it follows that N(C)⊆N(v)∪{a}. But
then since δ(G)≥4 by Lemma 3.3, we have |N(C)∩N(v)|≥3, a contradiction
to the choice of U .

Next we show (i). The set V (G)−C has at least four vertices in each
side of the bipartition of G since V (H)⊆V (G)−C. Since |C|≥2 and G[C]
is connected, the set C is not contained in one side of the bipartition of G.
Thus, since δ(G)≥4, the set C∪N(C) has at least four vertices in each side
of the bipartition of G.
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Now we show (ii). Let y be any vertex in N(v)−{x}. By Lemma 3.7, the
vertices x and y share at least three common neighbors other than v. By the
choice of U , they share no more than two common neighbors in U∪{a}. So
x and y have a common neighbor in V (G)−(V (H ′)∪C).

Finally we show (iii). If a ∈ X0 and |N(C)∩N(v)| ≤ 2, then this is a
contradiction to Lemma 4.2 applied to the separation (C∪N(C),V (G)−C).
If a ∈X1 and |N(C)∩N(v)| ≤ 2, then by Lemma 3.5, we have |N(C)|= 6
and ∆(G[N(C)]) ≤ 1. This is a contradiction since then U ⊆ N(C) and
|N(C)∩N(v)|=2, but every vertex in {v1,v2,v3} has two neighbors in U .

If a∈X0, then T =N(C)∩N(v) and so |T |=3 by the last paragraph. If
a∈X1 and |T |≤2, then this is a contradiction to Lemma 4.2 applied to the
separation (C∪N(C),V (G)−C).

Next we show the following lemma.

Lemma 4.7. a∈X1 and G−(V (H ′)∪C) is connected.

Proof. Suppose otherwise. That is, suppose that a∈X0 or G−(V (H ′)∪C)
is not connected. Then:

Claim 4.7.1. If a∈X1, then there exists a component of G− (V (H ′)∪C)
with vertex set C ′ so that U⊆N(C ′) and |N(C ′)∩N(v)|=3.

Proof. Suppose a∈X1. Then G− (V (H ′)∪C) is not connected, and so by
Lemma 4.3, it has a component with vertex set C ′ such that N(v)*N(C ′).
Since C is the vertex set of a component of G−V (H ′), it follows that C ′

is also the vertex set of a component of G− V (H ′). So N(C ′)∩X0 ⊆ U
and thus |N(C ′) ∩X0| ≤ 3. So by Lemma 3.5 applied to the separation
(C ′∪N(C ′),V (G)−C ′), we have that |N(C ′)∩X1|≥2. So C ′ is the vertex
set of a component of G−V (H ′) such that 1 ≤ |N(C ′)∩N(v)| ≤ 3. Then
by the choice of C, we have |N(C ′)| ≥ |N(C)|. By part (iii) of Lemma 4.6,
since a∈X1, we have |N(C)|= 7. Then |N(C ′)|≥ 7, and so U ⊆N(C ′) and
|N(C ′)∩N(v)|=3.

Recall that by part (iii) of Lemma 4.6, we have |N(C)∩N(v)| = 3. If
v4 /∈ N(C), then let GC denote the graph obtained from G[C ∪N(C)] by
adding edges between a and every vertex in N

G[N(C)]
(a). If v4∈N(C), then

let GC denote the graph obtained from G[C∪N(C)] by adding edges between
a and every vertex in N

G[N(C)]
(a), and by adding edges between v4 and every

vertex in N(x)∩U ∩N(C).
Observe that in both cases, GC is bipartite and has fewer vertices than

G. Furthermore, by part (i) of Lemma 4.6, the graph GC is not isomorphic
to K3,t for any t, and has at least five vertices. We now show two claims
about the graph GC .
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Claim 4.7.2. The graph GC is a minor of G.

Proof. Recall that G−V (H) is connected by Lemma 4.4. So every compo-
nent of G−(V (H ′)∪C) has a as a neighbor.

First suppose that a ∈ X0. By part (ii) of Lemma 4.6, every vertex in
N(v) has a neighbor in V (G)− (V (H ′)∪C). Then we can see that GC is a
minor of G by contracting every component of G−(V (H ′)∪C) to a, and if
v4∈N(C), by contracting x and v to v4.

So we may assume that a ∈ X1. Then by Claim 4.7.1, there exists a
component of G− (V (H ′)∪C) with vertex set C ′ so that U ⊆N(C ′) and
|N(C ′)∩N(v)|=3. Then we can see that GC is a minor of G by contracting
C ′ to a, and if v4∈N(C), by contracting x and v to v4.

Claim 4.7.3. |E(GC)|+ |E(G−C)|−|E(G)|=3+2|N(C)∩U |.

Proof. First suppose that |N(C)∩U |= 3. Observe that then if v4 ∈N(C)
we have |N(x)∩U ∩N(C)|= |N(x)∩U |=2. Let 1v4∈N(C) be 1 if v4∈N(C)
and 0 otherwise. Then:

|E(GC)|+ |E(G− C)| − |E(G)|
= d

G[N(C)]
(a) + 21v4∈N(C) + |E(G[C ∪N(C)])|+ |E(G− C)| − |E(G)|

= d
G[N(C)]

(a) + 21v4∈N(C) + |E(G[N(C)])|
= 21v4∈N(C) + |T |+ |E(G[N(C)− {a}])|.

In either case, since |T |=3 by part (iii) of Lemma 4.6,

21v4∈N(C) + |T |+ |E(G[N(C)− {a}])| = 9 = 3 + 2|N(C) ∩ U |,

which completes the case that |N(C)∩U |=3.
So we may assume that |N(C)∩U | ≤ 2. Since |T | ≥ 3, it follows that

a∈X0. Then by Lemma 3.5 applied to the separation (C∪N(C),V (G)−C),
we have |N(C)∩U |=2 and ∆(G[N(C)])≤1. By symmetry between pairs of
vertices in U , we may assume that N(C)∩U={u1,2,u1,3}. Then v1 /∈N(C).
Then |N(x)∩U ∩N(C)|= |N(v1)∩U ∩N(C)|= 2 and similarly to the last
case we find that

|E(GC)|+ |E(G− C)| − |E(G)| = |T |+ 2 + |E(G[N(C)− {a}])|
= |T |+ 4 = 3 + 2|N(C) ∩ U |,

which completes the proof of the claim.

We now show that G[N(C)] is almost a complete bipartite graph.

Claim 4.7.4. ∆(G[N(C)])≤1.
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Proof. Suppose that ∆(G[N(C)]) ≥ 2. Let z ∈ N(C) be a vertex with

maximum degree in G[N(C)]. Then let G′ be the graph obtained from G−C
by adding an edge between z and every vertex in N

G[N(C)]
(z). We can see

that G′ is a minor of G on strictly fewer vertices by contracting C to z.
Furthermore, G′ is bipartite, and by part (i) of Lemma 4.6, has at least five
vertices and is not isomorphic to K3,t for any t. By Claim 4.7.2, the graph
GC is a minor of G. So since (C∪N(C),V (G)−C) is a separation of G, it
follows that (GC ,G

′) is a super-separation of G.
In fact we have shown that (GC ,G

′) is a non-trivial bipartite super-
separation of G so that both GC and G′ have at least five vertices and are
not isomorphic to K3,t for any t. Since |N(C)∩N(v)|=3 and a∈N(C), the
order of the super-separation (GC ,G

′) is 4+|N(C)∩U |. Then by Lemma 3.4
and the last claim,

3(4 + |N(C) ∩ U |) ≥ |E(GC)|+ |E(G′)| − |E(G)|+ 11

≥ |E(GC)|+ |E(G− C)| − |E(G)|+ 13

= 2|N(C) ∩ U |+ 16.

But then |N(C)∩U |≥4, which is a contradiction since |U |=3.

We are now ready to complete the proof of the lemma. We proceed by
cases.

Case a∈X0. By the last claim, d
G[N(C)]

(a)≤1. Then since |N(C)∩N(v)|=
3, a is adjacent to at least two vertices in N(v). So by the choice of U ,
a is adjacent to exactly two vertices in N(v). So there exists a vertex y ∈
N(C)∩N(v) that is not adjacent to a. By the last claim, d

G[N(C)]
(y)≤1. So

since y is not adjacent to a, y is adjacent to every vertex in N(C)∩U .
Then U * N(C). Then by Lemma 3.5 applied to the separation

(C∪N(C),V (G)−C), we have |N(C)∩U |=2 and ∆(G[N(C)])≤1. But then
1≥dG[N(C)](y)=3−d

G[N(C)]
(y)≥2, a contradiction.

Case a∈X1. Then since |T |= 3, we have U ⊆N(C). Suppose there exists
u∈U such that ua /∈E(G). Then since |N(C)∩N(v)|=3 and u is adjacent to
exactly two vertices in N(v), it follows that d

G[N(C)]
(u)≥2, a contradiction

to the last claim. So U⊆N(a). Also by the last claim applied to v4, we have
v4 /∈N(C). So N(C)=U ∪{v1,v2,v3,a}.

By Claim 4.7.1, there exists a component of G−(V (H ′)∪C) with vertex
set C ′ so that U⊆N(C ′) and |N(C ′)∩N(v)|=3. By symmetry between the
vertices v1, v2, and v3, we may assume that v1∈N(C ′). Then let G′C be the
graph formed from G[C∪N(C)] by adding an edge between v1 and u2,3. We
can see that G′C is a minor of G with strictly fewer vertices by contracting
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C ′ to v1. By part (i) of Lemma 4.6, the graph G′C has at least five vertices
and is not isomorphic to K3,t for any t.

Let G′ be the graph formed from G−C by adding an edge between v1
and u2,3. We can see that G′ is a minor of G on strictly fewer vertices by
contacting C to v1. By part (i) of Lemma 4.6, the graph G′ has at least five
vertices and is not isomorphic to K3,t for any t.

Then (G′C ,G
′) is a non-trivial bipartite super-separation of G of order 7

such that neither G′C nor G′ is isomorphic to K3,t for any t. So by Lemma
3.4 and since U⊆N(a) and N(C)=U ∪{v1,v2,v3,a},

3(7) ≥ |E(G′C)|+ |E(G′)| − |E(G)|+ 11

= |E(G[C ∪N(C)])|+ |E(G− C)| − |E(G)|+ 13

= |E(G[N(C)])|+ 13

= 22,

a contradiction. This completes the proof of the lemma.

We have shown that a∈X1 and that G− (V (H ′)∪C) is connected. For
convenience write D :=V (G)− (V (H ′)∪C). By part (ii) of Lemma 4.6, we
have N(v) ⊆ N(D). Also since |T | = 3, we have U ⊆ N(C). The final two
lemmas show that certain vertices are not neighbors of C or not neighbors
of D.

Lemma 4.8. v4 /∈N(C).

Proof. Suppose v4 ∈ N(C). Remember that U ∪ {a} ⊆ N(C). Then let
G′ be the graph formed from G by contracting D to a single vertex with
neighborhood N(v)∪{a} and by contracting C to a single vertex, call it c,
with neighborhood U ∪{v4,a}. Then let G′′ be the graph formed from G′

by contracting u1,2 to v1, u2,3 to v2, u1,3 to v3, v to v4, and finally c to a.
Then G′′ is isomorphic to K6, a contradiction.

Lemma 4.9. If u∈U ∩N(D), then ua∈E(G).

Proof. Suppose otherwise. Let GC be the graph formed from G[C∪N(C)]
by adding edges between u and all vertices in N

G[N(C)]
(u). We can see that

GC is a minor of G by contracting D to u, since N(v)∪{a}⊆N(D). Let G′

be the graph formed from G−C by adding edges between a and all vertices
in N

G[N(C)]
(a). We can see that G′ is a minor of G by contracting C to

a. Then (GC ,G
′) is a non-trivial bipartite super-separation of G of order

|N(C)|= 7. By part (i) of Lemma 4.6, both GC and G′ have at least four
vertices on each side of the bipartition of G. So neither is isomorphic to K3,t
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for any t. So by Lemma 3.4 and since u is adjacent to exactly two vertices
in N(v),

3(7) ≥ |E(GC)|+ |E(G′)| − |E(G)|+ 11

= d
G[N(C)]

(u) + d
G[N(C)]

(a) + |E(G[N(C)])|+ 11

≥ |N(C) ∩ U |+ |E(G[N(C)− {a}])|+ 13.

Since v4 /∈N(C) by Lemma 4.8, we have |E(G[N(C)−{a}])|= 6. This is a
contradiction since |N(C)∩U |=3.

Write U ′ :=U∩N(D). Let GC be the graph formed from G[C∪N(C)] by
adding a vertex with neighborhood {v1,v2,v3,a}. We can see that GC is a
minor of G on strictly fewer vertices by contracting D to a single vertex and
since |D|≥2 by the choice of U . Also, by part (i) of Lemma 4.6, the graph
GC has at least four vertices in each side of the bipartition of G.

Let G′ be the graph formed from G[D∪N(D)∪{v}] by adding a vertex
with neighborhood {v1,v2,v3,a}. We can see that G′ is a minor of G on
strictly fewer vertices by contracting C to a single vertex and since |C|≥2
by part (i) of Lemma 4.6. Furthermore, G′ is not isomorphic to K3,t for any
t since va /∈E(G′).

Now we show that every edge of H ′ is an edge of either GC or G′. Let e
be an edge of H ′. If e is incident to v, then e is an edge of G′. If e is incident
to a vertex in U , then e is an edge of the graph GC . Furthermore, if e is
incident to a vertex in U ′, then e is also an edge of G′.

So (GC ,G
′) is a non-trivial bipartite super-separation of G. Furthermore,

neither GC nor G′ is isomorphic to K3,t for any t, and the order of the super-
separation (GC ,G

′) is 6 + |U ′|. Remember also that by Lemma 4.9, every
vertex u∈U ′ is adjacent to a. Then by Lemma 3.4,

3(6 + |U ′|) ≥ |E(GC)|+ |E(G′)| − |E(G)|+ 11 = 3|U ′|+ 19,

a contradiction. This completes the proof of Theorem 3.1.
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[22] K. Wagner: Über eine Eigenschaft der ebenen Komplexe, Math. Ann. 114 (1937),
570–590.

Rose McCarty

Department of Combinatorics and Opti-

mization University of Waterloo

Waterloo, Canada

rose.mccarty@uwaterloo.ca

Robin Thomas

School of Mathematics

Georgia Institute of Technology

Atlanta, Georgia 30332-0160, USA

thomas@math.gatech.edu

https://arxiv.org/abs/1706.07451
https://arxiv.org/abs/1703.09732
mailto:rose.mccarty@uwaterloo.ca
mailto:thomas@math.gatech.edu

	The extremal function for bipartite linklessly embeddable graphs
	1 Introduction
	2 Notation and Definitions
	3 Proof of Main Theorem: Vertices of Degree 5
	4 Proof of Main Theorem: Vertices of Degree 4


