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Abstract—This work presents a novel deep learning architec-
ture called BNU-Net for the purpose of cardiac segmentation
based on short-axis MRI images. Its name is derived from the
Batch Normalized (BN) U-Net architecture for medical image
segmentation. New generations of deep neural networks (NN)
are called convolutional NN (CNN). CNNs like U-Net have been
widely used for image classification tasks. CNNs are supervised
training models which are trained to learn hierarchies of features
automatically and robustly perform classification. Our architec-
ture consists of an encoding path for feature extraction and a
decoding path that enables precise localization. We compare this
approach with a parallel approach named U-Net. Both BNU-Net
and U-Net are cardiac segmentation approaches: while BNU-Net
employs batch normalization to the results of each convolutional
layer and applies an exponential linear unit (ELU) approach
that operates as activation function, U-Net does not apply batch
normalization and is based on Rectified Linear Units (ReLU).
The presented work (i) facilitates various image preprocessing
techniques, which includes affine transformations and elastic
deformations, and (ii) segments the preprocessed images using
the new deep learning architecture. We evaluate our approach
on a dataset containing 805 MRI images from 45 patients.
The experimental results reveal that our approach accomplishes
comparable or better performance than other state-of-the-art
approaches in terms of the Dice coefficient and the average
perpendicular distance.

Index Terms—Magnetic Resonance Imaging; Batch Normal-
ization; Exponential Linear Units

I. INTRODUCTION

In the United States, cardiovascular disease is the primary

cause of death for both males and females [1]. One of the

parameters that cardiologists examine in the diagnosis of heart

disease is the amount of blood ejected by the left ventricle

[2]. Physicians use Magnetic Resonance Imaging (MRI) scans

to obtain relevant images of the cardiac areas to assess the

structural and functional features for cardiovascular diagnosis

and disease management in a non-invasive manner [2]. Main

indicators of cardiovascular disease are the left ventricle (LV)

end-systolic volume (ESV), the end-diastolic volume (EDV),

and the ejection fraction (EF) [3]. The segmented contour of

the left ventricle has been crucial in determining ESV and

EDV. Therefore, coherent and precise segmentation of the LV

from MRI images is critical to the precision of identification

of ESV, EDV, and EF, which is crucial to determine cardiac

disease in a non-invasive manner. Currently, it takes physicians

several minutes to diagnose a patients condition and the

obtained results are not easily reproducible [4]. Therefore,

the development of automated cardiac segmentation methods

based on magnetic resonance imaging datasets is a crucial step

to facilitate this cumbersome diagnosis process [5]. Using an

improved automatic process to determine heart parameters and

function can lead to a quicker, coherent diagnosis and generate

a repeatable diagnostic process. While research over the past

decade has addressed some of the above-mentioned technical

difficulties in achieving tangible progress on automatically

generated ventricle segmentation from short-axis MRI, the

corresponding automated segmentation contours still have to

be significantly improved for clinical use [4]. In addition, as-

sessment of prior studies on small benchmark datasets, which

may not reflect real-world variability in image resolution and

heart physiological and functional features across locations,

institutions, and populations, are restricted in scope [6]. This

paper demonstrates an enhanced technique for automatic left

ventricle segmentation in MRI pictures.

In this paper, we first present the method to augment

the original images and ground truth deformation. We then

present a novel CNN architecture, which we call the BNU-

Net (“Batch-Normlization-U-Net”) that leverages the power

of a fully convolutional neural network. It is designed to

process 2D MRI images as inputs and produce a labeled

slice as output. Finally, we validate our method by comparing
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with a state-of-the-art network on a large database of 805

cardiac images from the Sunnybrook dataset. We demonstrate

fast results for calculating MRI test volumes and we provide

an experimental evaluation that directly compares with other

methods using the same test data.

II. METHODOLOGY

A. The Structure of Network

A traditional learning process [7] faces numerous issues that

limit the efficacy of the automatic diagnosis of the images.

The first issue in training a fully convolutional network (FCN)

for medical segmentation is that they are computationally

expensive because of the number of FLOPs required to process

an image; this is why an encoder architecture is preferred

[6]. The second issue of FCN is internal covariate shift

where the training kernel is encumbered by the distribution of

change of input features [8] and also results in unsatisfactory

learning speed. Therefore, we use batch normalization to

address the problem of the slow processing of the training

data. In addition, a regular FCN does not provide a well-

defined segmentation, which means there is no obviously

defined boundary between the pictures, and this causes ESV

and EDV measurements to be inaccurate [6].

Fig. 1. Architecture of the BNU-Net convolutional network. (a) The con-
traction path is responsible for feature extraction. (b) Batch normalization is
performed after each convolution in the convolutional layer.

In this paper, we present the feasibility of deep learning ap-

proaches for a fully convolutional neural network architecture

which we call BNU-Net. Its architecture is shown in Fig. 1.

This work modified and improved the U-Net architecture [9]

to make it work with fewer training images and improve

performance. BNU-Net has 11 convolution layers, 4 layers

on the contraction path and 7 layers on the expansion path. In

the contractive path, each convolutional block corresponds to

2 convolutional layers followed by 2×2 max pooling layers.

One of the key features of this architecture is the use of

concatenation path connections between down-sampling and

up-sampling layers for the purpose of fusing local and global

information. The expanding path is followed by a series of

TABLE I
COMPARISON BETWEEN OUR PROPOSED BNU-NET MODEL

WITH ELU AND BNU-NET WITH RELU

BNU-Net
with ELU

BNU-Net
with ReLU

Dice mean 0.92 0.90
Dice std 0.04 0.06

Sensitivity 0.96 0.95

convolutional filters and concatenations of feature maps from

the contracting path at each stage for more precise localization

as shown by the gray arrows in the figure. As in the U-

Net architecture, the network used consists of two paths: the

contracting path and the expansive path. There are six repeated

applications of 3 × 3 convolutions, each followed by a rectified

linear (ReLU) activation function in the contracting path. The

above architecture is different from the U-Net based approach

that contains four layers with batch normalization [10], and

exponential linear in the contracting path.

Because the training process is affected by the parameters

of each input layer, small changes of network parameters will

affect the network greatly. The batch normalization [10] is a

mechanism that aims to make the training of neural networks

more stable to a given network layer. One of the motivations

for the development of batch normalization was to allow

each layer of the network to train more efficiently. It reduced

problems when the input values change and reduced internal

covariate shift. We saw that when the inputs of the network

were transformed such that the first two moments (mean

and variance) were respectively set to zero and unit values,

the network converges faster and makes the optimization

landscape smoother.

Different from the original U-Net which used ReLU [4],

we integrated exponential linear units to make the mean

activations closer to zero, which helps improve the efficiency

of the data compiling and calculations process [5]. we applied

ReLU and ELU separately in BNU-Net and the segmentation

evaluation metrics as shown in table I. The improved method

also incorporates cropping 2D, which is a cropping layer

used to crop feature maps and concatenate multiple feature

maps from the contraction path. Cropping is essential as each

convolution will blur the pixels of the border of MRI image,

impacting the accuracy of the estimation.

B. Dataset

We evaluated our approach using the dataset from the MIC-

CAI 2009 challenge on automated left ventricle segmentation;

it was downloaded from the Imaging Research Centre for

Cardiovascular Interventions at Sunnybrook Health Sciences

Centre [11]. The Sunnybrook dataset comprises cine MRI from

45 patients (a total of 805 images) suffering from different

cardiac conditions: heart failure with infarction (12 cases),

heart failure without infarction (12 cases), hypertrophy (12

cases) and healthy patients (9 cases). Each time series consists

of 6 to 12 2D cine stacks with 8 mm slice thickness and 1.3



mm to 1.4 mm in-plane resolution [11]. For the purpose of

the research, the MRI image files were originally split into

training, validation, and testing sets in the ratio of 15 : 15 : 15.

Each patient has 12 to 28 images. The database also provides

MRI ground truth medical images manually segmented by an

expert.

III. RESULTS

A. Experimental Studies

The normal unsupervised learning process [12] requires a

large amount of the data to yield a satisfactory classification.

This is impractical given the limited amount of the data avail-

able. We present a neural network and training approach which

depends heavily on information increase for more efficient use

of the dataset noted. Specifically, the improved methods of

processing use elastic deformations and random affine trans-

formations to do data augmentation. Elastic Transform was

first proposed by Patrice et al. [13] in 2003. It was first applied

in the MNIST handwritten digit recognition data set. The

implementation performs on-the-fly elastic transformations for

efficient data augmentation during training. We also perform

affine transformation (rotation, scaling, translation) to augment

the training set and mitigate overfitting and improve general-

ization. Figure 2 shows examples of using elastic transform

and random affine transformation.

We applied elastic deformations to the available training

images in our data set. The elastic deformation enables the

neural network to grasp invariance to this kind of deforma-

tions without seeing these changes throughout the annotated

corpus of the picture. Such a process is especially essential

in biomedical segmentation as deformation is one of the most

prevalent tissue variations, which allows effective simulation

of realistic deformations.

B. Experimental Metrics

To measure the performance of the BNU-Net, we provide

an overview of the main metrics reported in the literature for

comparative purposes.

Let A and G be the automatically segmented and ground

truth (manual) region/contours, respectively. Let a and g be

the predicted (automated) and ground truth (manual) contours

delineating the object class in short-axis MRI, respectively.

1) The Dice Metric: a measure of contour overlap between

automatically and manually segmentation, and is defined as:

Dice =
2(A ∩G)

A+G
(1)

where A∪G denotes the intersection between A and G, and

A ∩ G means the union between A and G. The Dice index

varies from zero to one. Zero indicates a total mismatch with

the ground truth and one indicates there is perfect match.

2) Average perpendicular distance (APD) measures the

distance in mm between contours a and g, averaged over

all contour points. A low value implies that the two contours

match closely.

Fig. 2. The contour comparison based on MRI input. (a) Sunnybrook Image
and corresponding label. (b) Perform affine transformations (translation=0.03,
rotation=4.6 and scaling=[0.98,1.02]) (c) Perform elastic transformation to
augment the training set, in which alpha=[28, 30], sigma=[3.5, 4.0]

3) In addition to the two similarity measures above, two

additional metrics used to evaluate the performance of the

segmentation are the sensitivity and the specificity. They are

computed using the formulas:

Sensitivity =
T1

B1
(2)

Specificity =
T0

B0
(3)

where T1 and T0 are the total number of correctly predicted

object and background pixels, respectively. The total number

of object and background pixels are denoted by B1 and B0,

respectively.

C. Experimental Results

Table II summarizes the results of BNU-Net with and with-

out data augmentation and compares them to U-Net results.

From the graph, we can see that with and/or without data

augmentation, the BNU-Net achieved the best dice score and

sensitivity score. We found that the left ventricle recognition

is improved when using data augmentation.



TABLE II
OUTPUT OF THE MODEL AND EFFICIENCY METRICS RESULTS

Unet with data aug-
mentation

Unet without data
augmentation

BNU-Net with data
augmentation

BNU-Net without
data augmentation

Dice mean 0.88 0.87 0.93 0.92
Dice std 0.09 0.11 0.03 0.04

Sensitivity 0.96 0.95 0.97 0.96

Fig. 3. Segmentation predictions on raw inputs from the Sunnybrook dataset.

TABLE III
SEGMENTATION RESULTS ON THE SUNNYBROOK DATASET,

COMPARED TO THE PERFORMANCE FROM THE STATE OF THE
ART METHODS

Dice
Mean

Dice Std APD
(mm)

BNU-Net with data augmentation 0.93 0.03 1.94

BNU-Net without data augmentation 0.91 0.04 2.06

Huang et al[2] 0.89 0.04 2.16

Ngo and Carneiro[14] 0.90 0.03 2.08

Hu et al[15] 0.89 0.03 2.24

Liu et al[16] 0.88 0.03 2.36

Figure 3 shows two examples of the output segmentation.

We have demonstrated the efficacy and utility of the BNU-

Net architecture for semantic segmentation in cardiac MRI.

The quantitative evaluation of the BNU-Net is based on the

the dice coefficient, and the average perpendicular distance.

This fast training time with limited resources, including the

amount of the images and the processing power, has made it

possible to apply this methodology to more settings. Among

the methods in Sunnybrook dataset, four groups report their

performances on the 45 patients cases that have the same data

and split. The performances on these cases of BNU-Net and

these methods are shown in Table III. We find that BNU-Net

with data augmentation achieves best dice mean, dice std, and

APD performance compared with other group’s results.

IV. DISCUSSION AND CONCLUSION

Today, cardiac segmentation of two-dimensional medical

images is vital for medical image analysis. During the last

decade, machine learning and deep learning has been applied

to understand images and segmentation, and has proven ver-

satile compared to traditional methods. Its practical imple-



mentation in the clinical realm has been limited since well-

labelled medical data is harder to obtain. U-Net was originally

proposed for general biomedical image segmentation [7]. In

this paper, we proposed a novel method called BNU-Net model

for the segmentation of the left ventricle. The model consists of

two main paths which are the encoding path and the decoding

(up-sampling) path. In the encoding path, successive layers

consist of the convolutional filters followed by an activation

function (ELU) which is used to learn a representation of

the input image. To solve the internal covariate shift and

help the network train faster and achieve higher accuracy,

one important modification in the model is that we applied

batch normalization after the convolutional filters. We use

batch normalization throughout the BNU-Net, which helps

bypass sharp local minima and correct activations to be zero-

mean and of unit standard deviation. It allow us to prevent

small changes in layer parameters from amplifying through

the deep network [9]. In addition, we are less careful about

initialization. A series of 2×2 max pooling layers were used

to down-sample the output and capture the features crossing

different layers. The decode path consists of the up-sampling

of the channels followed by convolutional blocks and ELU.

One of the important steps in up-sampling is the concatenated

connection from the encode path, which is used to propagate

context information to detect the fine, higher resolution fea-

tures.

We applied data augmentation when training our model by

applying affine transformations and elastic deformations to

the Sunnybrook biomedical segmentation dataset. It achieves

outstanding performance, only needs a few annotated images,

and achieved high training speed on each epoch (11 seconds)

with a batch size of 16 on a NVIDIA GeForce Titan X

Pascal GPU. At test time, our model segments the whole

series of images in less than 12 seconds. We also used the

smaller images size of 176×176 pixels, which yielded slightly

better performance results on the testing set and faster training

time. With 1 GPU and 200 epochs, 256×256 images took 36

minutes to complete training, while 176×176 images took 30

minutes.

The paper introduced a deep learning approach for detecting

and segmenting left ventricals with fast training speed. We

presented the BNU-Net architecture for constructing, training,

and testing with batch-normalized. It is based on the premise

that covariate shift, which is known to complicate the training

of machine learning systems, also applies to sub-networks and

layers, and removing this shift from internal activations of the

network may aid in training. By combining multiple models

trained with Sunnybrook dataset, we performed better segmen-

tation than other networks. Moreover, we identified the BNU-

Net network with batch normalization that the inputs stabled

and shifted to maintain the network expressivity. A real-time

implementation of the proposed method is sufficiently fast to

be used for intraoperative registration of preoperative cardiac

anatomy [17].
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