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Abstract—This paper presents the simulation results of a radio
frequency (RF) compressed sensing (CS) radar for 2-D
localization and mapping. In contrast to many existing literatures,
this paper deals with the RF front-end compressive sensing, which
is achieved by illuminating the target scenario with pseudo
random multi-beam radiation patterns. The spatial sparsity of the
target frame enables the use of compressed sensing to recover the
scene from fewer number of scans compared with a conventional
beam scanning radar. Preliminary simulations are performed,
and the results of the reconstructed target frame are presented.

Index Terms— 2-D localization, compressed sensing, multi-
beam radiation pattern, spatial sparsity.

I. INTRODUCTION

With the need for more precise and accurate localization in
the internet of things era, modern radars [1] require a large
signal bandwidth and complex front-end circuits for beam
scanning mechanism. To provide accurate localization, the RF
front-end must steer a very narrow beam over a small step size,
increasing the scanning time and the number of samples.

Compressed sensing based radar offers the possibility to
provide accurate localization using a reduced spatial scanning
time. CS exploits the sparsity of a signal to reconstruct it from
far fewer number of samples in contrast to the conventional
Shannon-Nyquist sampling criteria. This also ensures less
complexity of the RF front-end system, thereby reducing the
system cost and increasing the energy efficiency. Compressed
sensing has found significant applications in cameras [2] and
radars [3.4]. Existing literatures on compressed sensing radars
introduce randomness, which is the key to compressed sensing,
using different methods such as random filtering and
convolution based on digital signal processing. These were
typically carried out in the baseband computational unit.

In this paper, preliminary simulation of an RF front-end
compressed sensing radar in a simplified 2-D localization and
mapping scenario is discussed. The proposed radar introduces
randomness directly in the RF front-end, which is one of the
most expensive and power-hungry blocks of the radar system.
Randomness is employed by illuminating the target space with
pseudo random multi-beam radiation patterns, which can be
generated using a digital beamforming architecture. Compared
to conventional beam scanning radar, the proposed RF front-
end compressed sensing radar reconstructs the target scene
using a fewer number of scans, thereby having the potential to
reduce the scanning time and front-end energy consumption.
Simulations are performed using MATLAB software and the
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Fig. 1. Indoor localization and mapping. (a) Conventional beam scanning radar.
(b) Proposed RF front-end compressed sensing based radar.
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results for simplified 2-D localization for sparse target frames
are discussed.

II. THEORY

Compressed sensing [5] technique can recover a sparse signal
from a small set of random linear measurements. A signal is
said to be k-sparse if it contains utmost & non-zero elements in
it. Compressed sensing in mathematical terms can be expressed
as y = ¢x, where y represents the measured vector of length m,
x represents the k-sparse input signal of length ». and ¢ is called
the measurement matrix of length mxn. The fact that & << n
makes it feasible to use m < n random measurements to
reconstruct the signal x from y using compressed sensing
reconstruction algorithms such as basis pursuit (BP),
orthogonal matching pursuit (OMP) and many more. However,
to recover the signal x from y. the measurement matrix ¢ must
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Fig. 2. A simplified target scenario under consideration.

have a low mutual coherence u. The mutual coherence u is

given as:

H(‘P) = maxi#jl(qoiaq;'j)l; (1)
where g; represents the normalized columns of ¢.

For 2-D localization application, where the target frame is
usually sparse in spatial domain. the proposed compressed
sensing radar can recover the target frame using lesser number
of scans. Fig. 1 shows the difference between a conventional
scanning radar and the proposed RF front-end compressed
sensing based radar. In a conventional scanning radar as shown
inFig. 1 (a), the radar scans the 2-D space using N single beams.
In the proposed radar as shown in Fig. 1 (b), the 2-D space is
illuminated with M (< N) scans of pseudo random multi-beam
radiation patterns.

Any target in a 2-D space can be represented in polar co-
ordinates by its range » and angle #. For convenience, the 2-D
frame under consideration is represented using polar co-
ordinates (7,6). Further, the range axis and the angular axis are
divided into discrete ranges and discrete angles respectively.

For each discretized range, a corresponding row vector X is
formulated, where p represents the range. Each element of the
range vector corresponds to the presence of the target at the
polar co-ordinate (p.d), where € represents each discrete angle.
Each element is represented as 1 denoting the presence of a
target or 0 otherwise. Thus, X, is row vector of size 1 x L, where
L represents the number of discrete angles. The target frame is
then represented as the input matrix X whose rows correspond
to each discretized range vector. As an example, consider the
angular axis to be divided info discrete angles from 30 deg to
90 deg in steps of 10 deg. The range axis is divided into discrete
ranges from 1 m to 5 m in steps of 1 m. The target frame has
three targets at positions (3.40), (3.60), and (5.30). The range
vector X3 for the discretized range of 3 m is given as X3 =
[0,1,0.1,0.0.0]. The range vector X5 for the discretized range of
5mis given as X5=[1.0,0,0,0,0.,0]. The remaining range vectors
X1, X3, X for the discretized ranges of 1 m, 2 m, and 4 m are all
given as [0,0,0,0.0,0.0]. The range axis can be discretized into
further smaller steps at the cost of computational time.

The measurement matrix ¢ will assume a size of K x L,
where K represents the number of measurements. The
measurement matrix is generated using a random number
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Fig. 3. (a) Reconstructed 2-D map from 100 multi-beam radiation patterns. (b)
Reconstructed 2-D map from 30 multi-beam radiation patterns.

generator with values 0 and 1. Each row vector of the
measurement matrix corresponds to the pseudo random multi-
beam radiation pattern for each measurement. For each
measurement, a fixed number of beams are radiated randomly
in the direction of the discretized angles. Each element of the
row vector in the measurement matrix corresponds to the
radiation of the beam in the direction of the discretized angles.
If the element in a row vector is set to 1, a beam is radiated in
the direction of the corresponding discrete angle for that
measurement. Assume the same discretized angles from the
previous example and number of multiple beams per
measurement to be 2. If the first row vector of the measurement
matrix is [0,0,0.1,0,0.1], then two beams are simultaneously
radiated at angles 60 deg and 90 deg respectively for the first
measurement. If the second row vector is [1,0.0,1,0,0,0], then
two beams are simultaneously radiated at angles 30 deg and 60
deg, respectively, for the second measurement.

The measured matrix Y is obtained by the matrix
multiplication of the measurement matrix ¢ and the input
matrix X. The measured matrix ¥ is equivalent to the target
frame samples measured by the radar. Each column vector of ¥,
denoted as ¥, represent the samples for each discretized range
p. To reconstruct the signal X from Y, the samples Y, for each
range vector Xp are taken separately and the corresponding
range vector is reconstructed using the I11-minimization
technique:

min|X, ||, s.t. Y, = ¢X,, (2)
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measurement matrices for the case of using 50 radiation patterns.

where X, is the reconstructed range vector for the discretized
range p. The reconstructed target frame is then represented as
the matrix X whose rows correspond to each reconstructed
discretized range vector.

III. SIMULATION RESULTS

Fig. 2 represents the target frame in polar co-ordinates. The
range axis is divided into discrete ranges from 1 m to 10 m in
steps of 1 m. Similarly, the angular axis is divided into discrete
angles from 30 deg to 150 deg in steps of 1 deg. There are four
targets at positions (5.45), (5.60). (8.90), and (8.120)
respectively. The measurement matrix is generated using a
random number generator with entries 0 and 1. For each range
vector, the corresponding measured vector is calculated. The
range vector is then reconstructed using /1-magic toolbox [6].
All the reconstructed range vectors combined create the
reconstructed 2-D target frame.

Fig. 3 (a) shows the perfectly reconstructed target frame with
100 measurements. Fig. 3 (b) represents the scenario where
false targets are reconstructed when 30 measurements are used.
A simulation is carried out with two targets at polar co-
ordinates (3,90) and (3.120) to observe the variation in quality
of reconstruction with the number of measurements. The
quality of reconstruction is represented as the mean square error

(MSE), which is calculated as the 12-norm of the difference
between the reconstructed matrix and the input matrix. Fig. 4
shows the variation of mean square error in reconstruction with
the number of measurements. It is to be noted that MSE is a
mere mathematical representation and it does not provide the
physical range error or angle error in the target reconstruction.
Fig. 5 represents the variation in mean square error in
reconstruction with different randomly generated measurement
matrices keeping the number of measurements constant, which
in this case is 50. In the current scenario, a conventional beam
scanning radar requires 121 scans to scan through each of the
discretized angles in the 2-D space.

It should be noted that the FMCW radar parameters and the
antenna array parameters were not considered in the
preliminary simulation. The short coming of the above results
is that there must be at least one beam in the direction of every
target during the measurements, which can be resolved by
considering the directivity of the antenna array. Furthermore,
the reconstruction problem can be set up by directly considering
the FMCW radar beat signals for different radial distances and
the reflectivity of the targets. The beat signals represent the
basis expansion matrix and the reflectivity of the targets
represent the sparse coefficients of the basis expansion matrix
that can be recovered using compressed sensing.

IV. CONCLUSION

In this paper, preliminary simulation for an RF front-end
compressed sensing radar for 2-D localization and mapping was
discussed. A pseudo random multi-beam radiation pattern was
used to illuminate the target space. A simulation environment
was set up fo reconstruct a sparse target frame. From the
simulation results, it was shown that the proposed radar was
able to reconstruct the target scene from a smaller number of
scans as compared to a conventional beam scanning radar. The
effect of number of measurements on the quality of
reconstruction was also studied. The similarity between the
input matrix and the reconstructed matrix is used to evaluate the
quality of reconstruction.
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