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Abstract—We consider the graph estimation for Ising model
from observed binary data. Popular approaches in the literature
are largely penalized sparse selection procedures that depend on
tuning parameters to be selected. The output of such procedures
is usually one single sparse graph without any ranking infor-
mation of the individual edges. In scientific practice, however,
it is more desirable to be able to rank all potential edges
based on their statistical significance, and select the sparse graph
by thresholding. In this paper, we propose a novel PRediction
Approach for Ising Model Estimation (PRAIME). The proposed
framework reformulates Ising model estimation as the prediction
of the observed data, and provides an estimate and a statistical
significance measure of the Ising model parameter for each node
pair using only the predicted values. Thus it enables the ranking
all potential edges and the flexible sparse graph selection by
thresholding, and allows the researchers to use the predictive
algorithm of their choice. We implemented PRAIME using
random forest, illustrated the advantage of PRAIME over the
penalized sparse selection approaches in accuracy and flexibility
using synthetic data, and applied it to a congress co-sponsorship
dataset.

Index Terms—graphical model, Ising model, random forest

[. INTRODUCTION

Probabilistic graphical models have enabled the scientists
from various domains to infer the dependency structure among
variables. Very often, such dependencies can be conveniently
modeled as Markov Random Fields (MRF). We focus on
the binary MREF, i.e., the Ising model. Ising model with
chain structure was first proposed in statistical mechanics
for modeling ferromagnetism [1]. Later it was extended to
lattice and arbitrary graphs, and became widely used in spatial
statistics [2], imaging processing [3] and neural science [4],
for which the graph structures are usually known.

Graph learning for Ising model has also drawn more atten-
tion in the last decade. For identifiability and interpretability,
the unknown graph is preasumbly sparse. A popular approach
of sparse graph estimation for Ising model is to perform sepa-
rate node-wise penalized logistic regression, which is referred
to as neighborhood selection in the literature [5], [6]. This
can be considered as the binary extension of [7] which is for
Gaussian graphical model (GGM). Similar to graphical lasso
[8] that provides a penalized maximum likelihood estimator
(MLE) for the sparse GGM, penalized maximum pseudo-
likelihood estimators have also been proposed for sparse Ising
model estimation [9], [10]. It can be seen as solving all
node-wise logistic regressions jointly without giving up the

symmetric constraints. A related line of research approximate
penalized MLE using MCMC samples from Gibbs sampler
where the sampling distributions are essentially the node-wise
components of the pseudo-likelihood [11], [12]. All the above
methods formulate the Ising model estimation as a sparse
model selection problem, and propose penalized optimization
procedures that require predefined regularization parameters.
Despite the recent progress on penalty parameter selection,
penalized model selection remains a difficult problem as these
parameters are often un-intuitive, and the optimal selection
of them may require additional “hyper” tuning parameters.
Furthermore, penalized model selection approaches do not
provide ranking of statistical significance of the edges, and
there is no precise control over the sparsity of the resultant
graph. An output graph with reasonable number of edges are
often from numerous trial-and-error experiments with various
penalty parameters. The cause of these problems lays in the
sparsity constraints of optimization objectives, which cannot
be solved by further development along this direction, even
though it may be alleviated.

We propose to address these issues by a complete de-
coupling of the Ising model parameters, and the edge-wise
estimation of them with associated uncertainty measures.
Since all parameters are estimated separately, the algorithm is
embarrassingly parallel. All the edges can be ranked based on
their statistical significance, and further thresholding yields a
sparse graph with appropriate number of edges. Our estimators
only depend on the predicted conditional probabilities of
the observed data. Thus there is no structural assumptions
such as sparsity of the graph to be estimated, or parametric
assumptions on the predictive models utilized. In this paper,
we use random forest for predictions. But it can be replaced by
other probabilistic predictive models such as neural network.

II. BACKGROUND
A. Notations

We first introduce the default notations used in this paper.
For a length g vector z, and set A C {1,...,q} with
|A] = s, we use z4 to denote the length s subvectors of
x with coordinates in A, and x_4 = x - where A° is the
complement set of A. Similarly, for a ¢ x p matrix X, and
sets A C {1,...,¢q} with |A| = s and B C {1,...,p} with
|B| = r, we use X4, p to denote the s X r submatrix of X
with rows in A and columns in B, and X_4 5 = X4 B,
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Xa—p = Xapeand X_4 _p = Xae pe. In particular, we
use X to denote the element of X in its jth row and kth
column, X 4, as the s X p submatrix of X composed of the
rows in A and X, p the ¢ x r submatrix consisting of the
columns in B.

B. Ising Models
Let Y = (Y3,Ya,...,Y,)T € {0,1}” be a length p binary
random vector, and assume that it follows the Ising model with
probability mass function
Iy(y) = (D

% exp (—yTQy)

and

where the symmetric parameter matrix © = (Qji),,,

Z(Q) = X eronyr exp (—y"Qy) is the normalization con-
stant.
Let G(Q) = (V,FE) be the sparse graph among the p

coordinates of Y induced by 2, where V {1,...,p}
and E is the set of the pairs of the row and column ID’s
of the nonzero off-diagonal elements of 2. Since the graph
is undirected, these pairs are un-ordered. The conditional
independence structure among the p variables is encoded in
this graph, and there is

ij =0« 3/7 1 Yk‘Y—{j,k}-

Suppose we observe y(1), 42 . y(" n iid samples from
the above Ising model. The goal of this paper is to use these
observed data to estimate the Ising model parameter matrix (2,
especially recovering its sparse graph structure.

C. Node-wise Logistic Regression

This graph estimation problem is equivalent to identifying
the neighboring vertex set for each node. This observation
leads to the neighborhood selection methods for the Ising
model graph estimation [5], [6].

For an arbitrary node v € {1,...
distribution of Y, |Y_,, satisfies

logit (P(Yu =1[Y-u=y-u) = —Quu—2 Y Quul

wene(u)

{v,u} € E,v # u} is the

,p}, the conditional

where ne(u) = {v € V :
neighborhood of the node u.

Neighborhood selection approaches reformulate the graph
estimation as p separate variable selection problems, one for
each node. They can be solved using penalized regression
techniques such as the lasso [13]. The variable selection
consistency of the lasso for logistic regression assures the
graph selection consistency of the neighborhood selection
procedures. The idea of neighborhood selection was first arisen
in the context of GGM estimation [7]. [5] can be regarded as
its extension to the binary MRF, and it was later generalized
to the a wider range of MRFs with node-wise conditional dis-
tributions from certain exponential families [14], [15]. Node-
wise regression ignores the fact that (2, the parameter matrix
of the Ising model, is symmetric. Thus the output parameter
matrix needs to be symmetrized, and the final estimate of 2,
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could be the minimum or the maximum of the corresponding
estimates from the two logistic regression models for nodes j
and k.

D. Classical Pseudo-likelihood

The Ising model likelihood is notoriously intractable. Even
when the graph structure is known, parameter estimation
via maximizing the likelihood is difficult. A computationally
tractable alternative without much loss in accuracy is maximiz-
ing the following pseudo-likelihood based on the node-wise
conditional distributions

2

p

Uy, Ly ="

j=1

[Z log (P(YJ = UJ(I) Y_; = UY;))

i=1
where

tog (P(v; = "IV = )

==y |2 +2> w0 | - 20,0
k#k

with @(y&z;., Q) log (1 +exp(—Qy; =230, y,(;)Qj;c))
as the log-normalization constant.

Pseudo-likelihood based approach was first proposed by
[16] for Ising model parameter estimation on lattice graph, and
was later extended to sparse graph estimation with a graph
sparsity penalty imposed [9], [10]. These pseudo-likelihood
based methods for sparse graph estimation takes advantage
of the simple structure of the conditional distributions so that
more computationally efficient estimation algorithms become
possible.

The conditional likelihood of each node only depends on
one row (or column) of the parameter matrix 2. The node-
wise logistic regression procedures are in fact approximates
of the pseudo-likelihood estimator by maximizing the p pieces
of the pseudo-likelihood for each node separately to estimate
the rows (or columns) of € without the symmetry constraint.
The pseudo-likelihood methods can be seen as solving the p
logistic regressions together. This connection between them is
similar to that between graphical lasso and [7], with the only
difference being that the exact penalized MLE is feasible for
GGM but not for Ising model due to the computational burden
in evaluating the partition function as discussed above.

III. PROPOSED METHOD: PRAIME
A. Pairwise conditional likelihood

The pseudo-likelihood (2) belongs to a wider class of
composite likelihood methods aiming at performing statistical
inference based on the product of a collection of simpler
component likelihoods instead of the full likelihood [17].
The individual components of the composite likelihood could
be the conditional distributions of the individual variables
given the values of all other variables as in (2), the marginal
distribution of the individual variables as commonly used in
variational Bayes methods, the pairwise marginal distributions
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of the variables, or the marginal distributions of some other
simple functions of pairs of variables.

In this paper, we propose to consider the following compos-
ite likelihood for Ising model based on pairwise conditional
distributions.

0y ™, y™)

e P (i) (@)
-5 55 [Soton (0t = =)
j=1k=j+1 Li=1

3

Define r19 = Qj; + 20 _(jx¥Y—G)» o1 = Qe +
2Q4. —(j,k)Y—(j,k)> and there is

P(Y(ik) = 01Y_(j0) = Y—(j,k))
1 5 = (0,0)
~ exp[—rig] §=(1,0) C))
exp[—7o1] d=1(0,1)
exp[—T10 — ro1 —2Qjx] 0= (1,1)
Let
TW-Gm) = PYGw =0y =y-Gr) O

for § € S = {(0,0), (0,
follows that

1),(1,0),(1,1)}, and it immediately
0)
Y-Gm)m - (W-Gik)

Y- G5y (y—<.7',k>))

which only depends on the conditional distribution of Y(; 1),
but not the other components of the composite likelihood (3).

()(

log <
Tik

1 (o,

Q= —3

(0.1)

B. Pairwise Classification

We propose to take advantage the above observation, and
estimate each element of the parameter matrix completely
separately using an individual component pairwise conditional
likelihood.

For each distinct node pair (j,k), we treat the bivariate
random vector Y{; ry as a categorical variable with four classes
S ={(0,0),(0,1),(1,0),(1,1)}, and estimate the conditional
distribution P(Y(; 1)|Y_(j ) = ¥—(j,x)) using a probabilistic
multi-class classification algorithm such as logistic regression
or random forest. We use W?k(y( 2 )) for 6 € S to denote the
predicted values of the conditional probabllltles (5) for sample
i.

We propose a PRediction Approach for Ising Model
Estimation (PRAIME) which estimates 2,5, with

—1 Z h(l)

/\

(6)

where
(4)
Y_Gio

6)
Y_(i.k)

o W) 6 )
(@)
Y5,k ))

The PRAIME outputs are estimates of {2;; for all node
pairs. A statistical significance measure for each can be

@_ 1
hjk_ QIOg A(01)( )(10)(
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calculated according to the properties of the probabilistic
classification algorithm used. For example, if implemented
with multi-class logistic regressions, €2;; is simply a linear
combination of the estimated class-specific intercepts, and
the corresponding Wald statistic can be used for ranking all
potential edges.

The theoretical properties of PRAIME also depend on the
properties of the predictive algorithm used, and a compre-
hensive case-by-case investigation is beyond the scope of
this paper. The following proposition on the consistency of
PRAIME holds in general.

Proposition 1 (Consistency). The estimator (6) is consistent
if the mean square prediction error of the probabilistic multi-
class classifier goes to zero and if the true and the predicted
conditional probabilities are bounded above zero.

Proof. 1f the true and the predicted conditional probabilities
for all samples are all abounded above d > 0, then for some
constant Cy > 0 that depends on d, there is

(hyk) — Q) <Cq- > A%y’ 27 k)~ ?k(y(—izj,m)ﬁ
JeS

Aggregating both sides of the above over i = 1,...,n gives
the following upper bound for the estimation error of (6)

SRS - )2

=1

~

1
E(Q—Q)* < E [n < Cq-MSPEjy,

where the mean square prediction error of the multi-class
probabilistic classifier is defined as
5 (i
-

-1

>
i=16eS

So the proposed estimator is consistent if M .SPEj, — 0 for

the probabilistic classifier used.

(1)

MSPEj;, = { s )

O

C. Random Forest Graph Estimator

We propose to implement PRAIME using random forest
[18] as the classifier due to its overall superior empirical
performance and simplicity in training and tuning. We use
the out-of-bag samples for prediction. We refer to this version
of PRAIME as PRAIME-RF. In the literature of conditional
independence graph estimation, random forest has been used
within the node-wise regression framework where the neigh-
borhood for each node is selected based on random forest’s
variable importance measure [19]. In contrast, PRAIME-RF
only relies on the prediction performance of random forest.

For PRAIME-RF, we propose to rank the potential edges
using an empirical Bayes framework. In detail, for node pair
(4, k), we define its t statistic as

Zj = LU
sdjr/V/n

where sd;; is the standard deviation of sequence {h( n

)
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In principle, all potential edges can be ranked based on
Zji’s, and there is no edge between (j,k) if it is small.
In practice, we apply further empirical Bayes adjustment, as
it is unclear whether these t statistics have an appropriate
theoretical null distribution (the distribution when there is
no true edge). Using all {Z;; : 1 < j < k < p} as the
input z scores, we calculated their local false discovery rates
following Efron’s framework [20, Chapter 5]. For node pair
(4, k), we refer to its local false discovery rate as locfdr;y.
Roughly speaking, locfdr;j, has the interpretation of P({2;, =
0ly™M,...,y™). So the statistical significance of the edge
decreases as locfdr increases. Ranking all edges (j, k) with
j < k in the ascending order of locfdrj;, and let locfdry,
be the mth value in this sequence, the False Discovery Rate
(FDR) for the graph with exactly M edges is

M
FDRy, =M™! Z locfdry,
m=1
Thus the user can threshold the graph based on prespecified

FDR control or domain knowledge.
We summarize PRAIME-RF in Algorithm 1.

Algorithm 1 PRAIME-RF

Input: y™ y@ .. 4™ n iid observations from an Ising
model with unknown parameter matrix €2
Output: Estimated graph structure of (2.
1: for each node pair 1<j<k<pdo

2: Use random forest to predict Y(; ;) as a multi-class
response, and obtain frfk(y(_lgjk)) the out-of-bag proba-
bilistic predictions of P(Y(; ) = 0[Y_(jx) =y, ) for
deSandi=1,...,n.

3: Estimate €25, by (6)

4: Calculate the t statistic by (7)

5: end for

6: Calculate the local false discovery rates locfdr;;, for 1 <
j < k < p according to [20, Chapter 5].

7: Rank the edges in the ascending order of locfdr and select

the sparse graph by hard thresholding.

IV. EXPERIMENTS

In this section, we investigate PRAIME-RF’s ranking per-
formance and the properties of the resultant graphs in ex-
periments using both synthetic and real world datasets. We
compared PRAIME-RF with many other competitors in syn-
thetic data evaluation, including: (1) an efficient pseudo-
likelihood method with L1 sparsity penalty (EPL) [10]; and
(2) a neighborhood selection method [6] where extended BIC
[21] is used to select the penalty parameters of the lasso
logistic regressions for neighborhood selection. We refer to
this neighborhood selection method as NS-BIC(y) where ~
is the tuning parameter of the extended BIC. We consider
v = 0,0.5,1, same as in [6]. For the real data evaluation,
however, we have to skip EPL due to the limitation in
computational speed and memory, even though it is already
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much more computationally efficient than the previous pseudo-
likelihood algorithms [9].

A. Synthetic Data Evaluation

We investigate the ranking performance using synthetic
data. We simulate data using R package IsingSampler [22]
with the Ising model parameter matrix Q = 71, — §[G —
diag(G1lp)] where G is a binary symmetric sparse matrix
whose induced graph is a /p x /p 2D lattice. In this
simulation model, the strength of the edges increases with 6
and the proportion of 1’s in the simulated outcomes decreases
as 7 increases. The existing literature of Ising model estimation
(e.g., [6]) predominantly focuses on the cases where the two
classes of the outcomes are balanced (roughly 50% of 0 and
1, respectively). This is equivalent to 7 = 0 in our simulation
setup, and we also include more realistic settings where the
data is imbalanced.

In our simulations, we fixed n = 1000, p = 64, and the
/P % /P lattice as the induced graph. We remark that there are
p(p—1)/2 = 2016 node pairs in the graph. Hence the number
of parameters is actually greater than the sample size n. There
are 112 true edges in the graph, roughly 5.6% of all node pairs.
We consider all nine combinations of 6 € {0.25,0.5,1} and
7 € {0,0.025,0.05}, and repeated each setting for N = 40
times.

We first investigate how the accuracy (the proportion of true
edges among the selected) of PRAIME-RF change with the
proportion of node pairs selected (Figure 1). Since only 5.6%
of the node pairs are true edges in this graph, the accuracy
of the top candidates is a more relevant measure of ranking
performance than measures of the whole ranking list such as
area under ROC. We find that the top candidates selected by
PRAIME-RF are very accurate, and selecting the top 5.6%
leads to almost perfect graph selection in many settings. While
EPL does not provide a ranking of all edges directly, its
regularization trace does output a sequence of graphs with
increasing density as a discrete approximate ranking. We
plot the accuracy of these graphs as curve in these figures,
and found that it does not perform as well as PRAIME-RF,
since the curve accuracy of EPL is always lower than the
corresponding one for PRAIME-RF.

Neighborhood selection methods cannot return exact or
approximate ranking of graphs, as p regularization paths
are involved, and their optimal penalty parameters may be
different. Instead, neighborhood selection methods typically
only output one single graph. For each simulation setting, and
each v = 0,0.5,1 in NS-BIC(y), we also plotted a marker
in Figure 1 representing its average proportion of node pairs
selected (X axis value) and the average accuracy (Y axis value)
of its output graphs across simulation replicates. We first find
that NS-BIC(y) tends to select graphs much sparser than the
true graphs. Even for the same proportion of edges selected,
the accuracy of NS-BIC(v) are lower than PRAIME-RF in
the most of the cases, except when its selected graph is almost
empty (e.g., when 6 = 0.25). In contrast, PRAIME-RF enables
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Fig. 1. Ranking accuracy in simulations. The titles of the panels are the values of the simulation parameters (6, 7). The X-axis represents the proportion
of node pairs selected (in square-root scale), and the Y-axis represents the accuracy, i.e., the proportion of true edges in the selected node pairs. We present
the mean accuracy curve for PRAIME-RF and EPL methods. The vertical lines represent the sparsity level of the true graph (5.6% of node pairs are true
edges). The markers in each panel show the average proportion of selected edges and the average accuracy for NS-BIC(«y), a neighborhood selection method
[6]. The markers triangle, diamond and circle represent the performance of BIC with the parameter v = 0, 0.5, 1 respectively. The star markers represent
the the average proportion of selected edges and the average accuracy for EPL with optimal A selected by cross-validation. The position of the markers are
determined by the mean accuracy (y-axis) and the proportion of detected edges (x-axis).

the flexibility of selecting sparse graphs with high accuracy
based on user-provided thresholds in all cases.

We also compared the computational costs of these methods
(Table I), and find that NS-BIC is the fastest, but it does not
compensate the loss in accuracy as shown in Figure 1. In the
remaining two methods, PRAIME-RF is faster than EPL.

We further studied the False Discovery Rate (FDR) control
of PRAIME-RF (Table II), and find that the empirical FDR
are reasonably close to the nominal level in the majority of
the case. We remark that the pseudo-likelihood methods and
neighborhood selection methods cannot provide any natural
FDR control at all.
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TABLE I
THE MEAN AND STANDARD DEVIATION (IN PARENTHESES) OF
COMPUTATION TIMES (IN SECONDS) ACROSS 40 SIMULATIONS.

6,7 PRAIME-RF | NS-BIC(0) | NS-BIC(0.5) | NS-BIC(1) EPL
0.25, 0) 4624(0.23) | 0.07(0.01) | 0.07 (0.01) | 0.07 (0.03) | 101.83(7.12)
(0.25,0.025) | 46.36(0.24) | 0.06 (0.01) | 0.06 (0.01) | 0.06 (0.01) | 102.43(6.85)
(0.25,0.05) | 46.34(0.25) | 0.06 (0.01) | 0.06 (0.01) | 0.06 (0.01) | 101.75(7.12)
(0.5, 0) 46.20(0.25) | 0.08 (0.01) | 0.08 (0.01) | 0.08 (0.01) | 101.10(5.12)
(0.5,0.025) | 46.45(0.26) | 0.08 (0.01) | 0.08 (0.01) | 0.08 (0.01) | 101.20(4.71)
(0.5, 0.05) 46.18(0.28) | 0.08 (0.01) | 0.08 (0.01) | 0.08 (0.01) | 97.55(4.54)
(1,0) 45.62(024) | 0.14 (0.02) | 0.14 (0.02) | 0.14 (0.02) | 157.25(6.62)
(1, 0.025) 45.54(025) | 0.12 (0.02) | 0.12(0.02) | 0.12 (0.02) | 147.62(5.62)
(1, 0.05) 45.82(0.26) | 0.10 (0.01) | 0.10 (0.01) | 0.10 (0.01) | 134.94(6.01)

B. Analysis of House Co-sponsorship data

We analyze the US House of Representatives cosponsorship
dataset [23] for the 109th (January 3, 2005 - January 3, 2007)
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TABLE 11
THE MEAN AND STANDARD DEVIATION (IN PARENTHESES) OF PROPORTION OF CANDIDATE EDGES SELECTED (% EDGES) BY PRAIME-RF AND THE
EMPIRICAL FDR (EFDR) ACROSS 40 SIMULATIONS AT THE NOMINAL FDR LEVEL 0.05, 0.1 AND 0.2.

FDR=0.05 FDR=0.10 FDR=0.20
@, 1) % edges EFDR % edges EFDR % edges EFDR
0.25, 0) 0.0491(0.0038) | 0.0651(0.0282) | 0.0559(0.0037) | 0.1313(0.0396) | 0.0697(0.0047) | 0.2500(0.0446)
(0.25, 0.025) | 0.0484(0.0033) | 0.0527(0.0287) | 0.0562(0.0037) | 0.1224(0.0389) | 0.0689(0.0054) | 0.2414(0.0526)
(0.25, 0.05) 0.0495(0.0031) | 0.0703(0.0250) | 0.0578(0.0038) | 0.1426(0.0410) | 0.0712(0.0054) | 0.2647(0.0479)
0.5, 0) 0.0615(0.0017) | 0.1068(0.0253) | 0.0662(0.0027) | 0.1683(0.0342) | 0.0754(0.0054) | 0.2676(0.0568)
(0.5, 0.025) 0.0616(0.0022) | 0.1056(0.0332) | 0.0660(0.0037) | 0.1624(0.0511) | 0.0746(0.0075) | 0.2534(0.0862)
(0.5, 0.05) 0.0611(0.0014) | 0.1019(0.0201) | 0.0661(0.0022) | 0.1645(0.0289) | 0.0750(0.0045) | 0.2708(0.0491)
(1,0) 0.0451(0.0062) | 0.0611(0.0312) | 0.0547(0.0060) | 0.1244(0.0404) | 0.0349(0.0034) | 0.2539(0.0559)
(1, 0.025) 0.0369(0.0097) | 0.0434(0.0293) | 0.0479(0.0097) | 0.1102(0.0388) | 0.0641(0.0102) | 0.2326(0.0627)
(1, 0.05) 0.0164(0.0089) | 0.0375(0.0425) | 0.0284(0.0099) | 0.0605(0.0529) | 0.0454(0.0117) | 0.1507(0.0755)
often, they are more likely to cosponsor the same bills.
House 110 House 109 . . .
40 40 A NeBOO) Previous studies on cosponsorhip network have also confirmed
a5 as, & oo that the initial two large community detected in this network
i " 3 -=- PRAMERF(OD) are roughly along the party line [24]. In the absence of the
L 0N e PRAIME-RF(RR)

3 —— PRAIME-RF(OR)

Fig. 2. Edge densities within each party and between party, normalized by the
overall density of the corresponding network. The curves are for PRAIME-
REF, and the markers are for the neighborhood selection method NS-BIC(~y).
For each of v = 0, 0.5, 1, the points for the edge densities within Democrats,
within Republications and between parties are annotated with “DD”, “RR”
and “DR”, respectively.

and 110th (January 3, 2007 - January 3, 2009) Congresses.
For each bill introduced to the house of representatives, there
must be one sponsor congressperson. Then the other members
of the house can express their support to the bill by signing
as cosponsors. A house member may sponsor/cosponsor a
bill due to its ideological appealingness, or his/her social
relationship with the other congresspersons supporting it.

Let p be the number of the members of the house, and
n be the number of bills introduced. We observe ‘(i)
2 (Z))T € {0,1}? for i = 1,...,n where ij> =1

W,
if the congressperson j sponsor/cosponsor bill j. We model
y@ for i = 1,...,n as independent samples from an Ising
model. The sparse graph structure induced by the parameter
matrix of this Ising model contains the information on the
interdependence among the members of the house. Each bill
usually only receives cosponsorship from less than 5% of the
congress members, and typically each member of the house
only sponsors or cosponsors no more than 4% of the bills
introduced. So this cosponsorship dataset is very imbalanced
as there are much less 1’s than 0’s in the outcomes.

Since congresspersons in the same party collaborate more
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ground truth in real data analysis, we use the party affiliation
as an approximate, i.e., we expect higher edge densities within
each party than that between the two parties in the sparse graph
induced by the estimated Ising model parameter matrix.

For PRAIME-RF, we rank all node pairs by locfdr, and
investigated how the within party and between party edge den-
sities change as the threshold change (Figure 2). As expected,
we find that the edge densities within each party are always
higher than that between the two parties. But this difference
starts vanishing as higher proportions of edges are introduced
in the network, suggesting that the network may become less
informative if the threshold is too loose. We also find that the
density within Democrats is higher than that within Republi-
cans, especially that the strongest edges are mostly between
Democrats. This is consistent with the findings in the literature
of political science that liberals may have more intensive
cosponsorship activities as they believe the government should
take more extensive responsibilities [25]. We also analyze the
cosponsorship data using the neighborhood selection method
NS-BIC(%). For each of v = 0,0.5,1, we calculate and plot
their edge intensities in Figure 2. Surprisingly, we find in these
graphs that the edges are denser among the congresspersons
in different parties, contradicting to the conventional wisdom.

Fig. 3. PRAIME-RF output networks using 1—locfdr as the edge weights.
Democrats are plotted as blue circles, and Republicans red triangles.

We used 1—locfdr as the edge weights of the congress
member networks (Figure 3). The large scale community
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TABLE III
COMMUNITY DETECTION ERROR RATES USING PARTY AFFILIATION AS
THE TRUE LABELS.

Graph House 110 | House 109
PRAIME-RF 0.080 0.097
NS-BIC(0) 0.235 0.200
NS-BIC(0.5) 0.228 0.180
NS-BIC(1) 0.210 0.160

structure appears to be along the party line. To further quan-
titatively validate this, we apply spectral clustering based
community detection [27] to these PRAIME-RF output graphs,
and evaluate the cluster assignments using the party affiliation
as the true labels. We find that PRAIME-RF output networks
lead to much lower mis-classification rates than the results
from the neighborhood selection outputs (Table III).

These conditional independence graphs among congressper-
sons could help political scientists to gain insights in various
aspects of congressional politics. We present one such example
to illustrate the interpretability of PRAIME-RF outputs. In the
literature of network analysis, it is commonly believed that
the “hubs”, i.e., highly connected nodes, within a community
is more likely to be influential or scientifically interesting
than the hubs of the whole network (e.g., [28]). Intuitively, a
congressperson with no direct association with the members in
the opposite party has higher chance to be ideological extreme.
Combining the above two thoughts, we examine the political
positions of the congress members who have high within-party
degree (above 80% quantile of the party) and low across-party
degree (no more than 0.2) in both of the 109th and 110th
congresses (Table IV). We find that all Democrats satisfy-
ing these criteria are among the most prominent progressive
figures in the house, and their Republican counterparts are
regarded as the most conservative members or the leaders in
the conservative wing, including the then-Congressman and
today’s Vice President, Mike Pence.

V. DI1SCUSSION AND CONCLUSION

The literature has predominantly treated the sparse graph
estimation for Ising models as a sparse variable selection prob-
lem. The existing popular methods for Ising model estimation
are largely based on penalized regression with un-intuitive
tuning parameters, and return one single graph with no full
ranking of all edges or guarantees of the desired sparsity level.

We propose a PRediction Approach for Ising Model
Estimation (PRAIME). PRAIME is based on the pairwise
complete decouping of the Ising model parameters. It estimates
the individual parameters for each potential edge using the
probabilistic predictions of the observed data from an arbitrary
probabilistic predictive model, provides the ranking of all node
pairs by statistical significance, and enables flexible selection
of the sparse graph by thresholding with the threshold chosen
by the analysts. We implemented PRAIME using random
forest, and illustrated its advantage in accuracy and flexibility
over the neighborhood selection method using synthetic and
real data.
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