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Abstract— Monitoring driver’s attentiveness is crucial for
transportation safety. In this article, inattentive driving
behavior detection based on frequency-modulated continuous-
wave (FMCW) radar systems is proposed for this purpose. Seven
typical driving behaviors which result in reduced attentiveness
are involved in this study. Time-Doppler spectrogram and range-
Doppler trajectory are utilized to analyze their features in
multiple domains, including time, Doppler, range, and radar
cross-section (RCS). These features are extracted as inputs
to a machine learning classifier to obtain recognition results.
Extensive experiments on a real car environment have been
conducted to show its feasibility and superiority by obtaining an
average accuracy rate of around 95%. The influences of radar
center frequency, individual diversity, and radar view angle are
also investigated.

Index Terms—Driving behavior monitoring, frequency-
modulated continuous-wave (FMCW) radar, machine learning,
range-Doppler, time-Doppler.

I. INTRODUCTION

RIVING is an important component of modern society.
It requires a set of activities, as well as situational
awareness from the driver. Direct attention is required for
quick and accurate decision making. More than 20% of crashes
occurred due to inattentive driving [1]. Therefore, monitoring

Manuscript received March 11, 2019; revised June 14, 2019; accepted
July 31, 2019. Date of publication August 27, 2019; date of current version
October 4, 2019. This work was supported in part by the National Science
Foundation (NSF) under Grant ECCS-1808613 and Grant CNS-1718483,
in part by the National Natural Science Foundation of China under Grant
61871224 and Grant 81601568, in part by the Key Research and Development
Plan of Jiangsu Province under Grant BE2018729, in part by the Fundamental
Research Funds for the Central Universities under Grant 30917011316, and in
part by the State Scholarship Fund of China Scholarship Council under Grant
201806840055. This article is an expanded version from the IEEE MTT-S
Radio and Wireless Week (Wireless Sensors and Sensor Networks), Orlando,
FL, USA, January 20-23, 2019. (Corresponding author: Hong Hong.)

C. Ding is with the School of Electronic and Optical Engineering, Nanjing
University of Science and Technology, Nanjing 210094, China, and also
with the Department of Electrical and Computer Engineering, Texas Tech
University, Lubbock, TX 79409 USA.

R. Chae is with the Woodbridge High School, Irvine, CA 92618 USA
(e-mail: rachelchaetx @gmail.com).

J. Wang and C. Li are with the Department of Electrical and Computer
Engineering, Texas Tech University, Lubbock, TX 79409 USA (e-mail:
changzhi.li@ttu.edu).

L. Zhang, H. Hong, and X. Zhu are with the School of Electronic and
Optical Engineering, Nanjing University of Science and Technology, Nanjing
210094, China (e-mail: hongnju@njust.edu.cn).

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TMTT.2019.2934413

, Senior Member, IEEE

attention status is regarded as one of the most important
approaches to transportation safety and autonomous driving,
as there are various situations where the car needs to be
informed how attentive the driver is and if it is possible to
give back the control of the car to the driver [2].

Researchers have attempted various ways to achieve this
purpose, including vehicle-based methods, physiology-based
methods, and behavior-based methods. Vehicle-based methods
estimate a driver’s level of attentiveness by lane tracking, pedal
usage, and erratic steering wheel movements [3]. However,
they have inherent defects such as lack of direct relationship
with the level of attentiveness. Physiology-based methods have
been widely explored for drowsiness driving detection such as
electroencephalography (EEG) [4], [5] for brain wave signal
measurement, electrooculography (EOG) [6], [7] for eye blink
detection, and electrocardiography (ECG) [8], [9] for heart
rate variability (HRV) detection. These features are all aimed
to determine the level of driving fatigue. However, during
the above measurements, drivers are usually confined with
attached sensors and electrodes, which are uncomfortable and
could negatively affect the driver’s behavior. On the other
hand, existing noncontact physiological detection sensors, such
as vision or radar technologies, are not reliable because of
driver’s extraneous movements [10]-[12]. In a real driving
scenario, picking up objects or being distracted by nearby
incidences should also be detected as they result in loss
of attention. In behavior-based methods, vision systems are
commonly used to monitor eye blinking, mouth state, and
face/head motions [13]-[15]. In [13], visual changes in eye
locations were investigated using the horizontal symmetry
feature of eyes, and experimental results achieved 94% accu-
racy in eye blinking detection. Raman et al. [14] used a
camera for driver fatigue detection by locating and tracking
a driver’s yawning. In [15], a vision system was proposed to
compute head posture and gaze direction based on features
extracted from the driver’s facial images. However, cameras
are vulnerable to lighting conditions, such as darkness and
bright light from car lamps. Furthermore, it may infringe
privacy issues.

The radar-based methods of behavior detection have
attracted great interests worldwide for its potential of high
accuracy, robustness, and privacy preservation [16]—[21]. For
example, Ren et al. [16] proposed a new mathematical model
based on micro-Doppler signatures to detect human walking

0018-9480 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Texas Tech University. Downloaded on March 06,2020 at 16:10:44 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0002-5139-5036
https://orcid.org/0000-0003-4552-0352
https://orcid.org/0000-0002-4303-5137
https://orcid.org/0000-0002-1528-8479
https://orcid.org/0000-0003-2188-4506

4032

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 67, NO. 10, OCTOBER 2019

a b .
Time-Doppler Range-Doppler P ( ) Time-Doppler Range-Doppler /2( ) Time-Doppler Range-Doppler
5 5 . 5 5 . ) 5 5 -
20 VAN 20 4 "x ) 20 A\ 20 1 '_\ £o V4 Zo /3'
g & g \/ 5 o/ \ 5 8
Time Range n Time Range Time Range
Time-Doppler Range-Doppler (d) D ) (e) (D
9 Time-Doppler Range-Doppler < Time-Doppler Range-Doppler s
g = ~
2 F L, i
2o 2o 5 N 3 AN F 5 5 . )
< ] . ANNNN] < ALY
a a \,\,\_'L §0 §0 / §0 vy §0 0
Time Range \\ /(\
Time Range Time Range
Time-Doppler Range-Doppler (g)
5 5 J
U 20 . 7
L~ L7 T
Time Range
Fig. 1. Illustration of different driving behaviors and their predicted corresponding time-Doppler spectrogram and range-Doppler trajectory. (a)—(g) Seven

typical driving behaviors related to inattentive driving.

strides using ultra-wideband (UWB) radar. In [17], a two-tone
radar system was used to track hand gestures with concurrent
detection of absolute distance and relative motion. In [18],
a detection method was presented to remotely identify a
potential active shooter with weapons based on radar micro-
Doppler and range-Doppler signatures.

In this article, a frequency-modulated continuous-
wave (FMCW) radar system is proposed for inattentive
driving behavior detection and recognition in a real car
environment. Compared with the preliminary work reported
in [22], seven typical driving behaviors resulting in reduced
attentiveness are studied, and machine learning-based solution
is proposed to achieve automatic driving behavior recognition.
A deep analysis of the behaviors’ corresponding time-Doppler
spectrogram and range-Doppler frames is presented. Extensive
experiments are conducted with six volunteers in a real car
environment. Furthermore, the performance of radar systems
with different center frequencies (i.e., 24 and 5.8 GHz)
is compared, and the optimal setup for inattentive driving
behavior detection is discussed.

The rest of this article is organized as follows. Section II
introduces the theory and algorithm of inattentive driving
behavior detection based on the time-Doppler spectrogram and
range-Doppler frames. In Section III, FMCW radar systems
and experimental setup are introduced. Section IV presents
the analysis and results of behavior recognition. Section V
extends further discussions, and Section VI is the conclusion.

II. THEORY AND ALGORITHM

Seven typical driving behaviors related to inattentive driving
are selected for recognition in this study, including dorsal
flexion, dorsal hyperextension, sleepy, rotation, forward body
motion, shaking head, and picking up a phone. An illustration
of these driving behaviors is shown in Fig. 1, and the detailed
description is given in Table I. The characteristic features
are analyzed and extracted from micro-Doppler spectrogram
to recognize these driving behaviors. The machine learning
method is further adapted to obtain classification results.

TABLE I
SEVEN DRIVING BEHAVIORS UNDER STUDY

No Motions DESCRIPTION

(a) Dorsal flexion ~ Bending down head forward at an angle.

(b) Sleepy Qul(?k lifting head back up after the initial dorsal

flexion.
Dorsal .

(c) hyperextension Lifting head backward at an angle.

(d) Rotation Rotating head around its axis.

(e) Forward body ~ Moving head and upper body forward straightly.
(f) Shaking head Shaking/dancing with music.

(g) Pickingup a phone Grabbing a phone and holding it in front of face

A. Analysis of Driving Behaviors

Fig. 1(a) illustrates the dorsal flexion of the subject’s neck,
where the subject’s head tilts forward at an angle. This behav-
ior involves the movement of the head toward the radar and is
characterized by a positive Doppler signature and decreasing
range. However, if the subject lifts the head back up after
the initial dorsal flexion, the Doppler signature will suddenly
change to negative and then increase before returning to zero
[Fig. 1(b)]. Since sudden and quick dorsal flexion of the neck
usually indicates a low level of driver alertness, it is important
to distinguish dorsal flexion from other head and neck motions.

Fig. 1(d) illustrates the rotation of the subject’s neck, where
a subject’s head rotates around its axis. As the rotation
of the neck involves the relatively small movement of the
head toward or away from the radar, it should not result in
significant changes in either range- or Doppler-information.

Fig. 1(e) illustrates the forward body behavior by the sub-
ject, where the subject’s head and upper body move forward
without bending down at an angle. This movement should
result in positive Doppler and decreasing range. Particularly,
the detected power should keep increasing as the body and
head approach the radar sensor.
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Fig. 2. Flowchart of the proposed processing method.

Fig. 1(f) illustrates shaking head behavior by the subject,
where the subject’s head shakes/dances with music. This
behavior should lead to a sinusoidal-like wave both in the
Doppler- and range-domains.

Fig. 1(g) illustrates the action of picking up a phone, where
the subject grabs a phone and holds it in front of his/her face.
Decreasing negative Doppler and increasing range will result
from this motion. At the same time, although the driver’s
hand is moving away from the radar, it is also getting close
to the beam center. However, the change in the detected
power level would vary among persons with different body
characteristics.

B. Spectrogram Processing and Feature Extraction

Fig. 2 shows the flowchart of the proposed signal processing
algorithm. First, after preprocessing, which includes removing
stationary clutter, the raw data is rearranged in a matrix accord-
ing to the synchronization signals. Next, the range profile of
the subject can be calculated by performing a fast Fourier
transform (FFT) along the fast time of the raw signal. Then,
the obtained signal can be stored in an N x M matrix R(n, m)
as a time-Range map, where n = [1,2, ..., N] indicates the
index of slow time and m = [1, 2, ..., M] indicates the index
of the beat frequency corresponding to range bins. Based on
this time-Range map, time-Doppler spectrogram and Range-
Doppler trajectory can be obtained, respectively.

1) Time-Doppler Spectrogram: To obtain the time-Doppler
spectrogram, the “range of focus” should first be determined.
This can be designated as the range at which the maximum
power was observed. Furthermore, to prevent interferences
from hand movements around the steering wheel and other
passengers in the backseats, the range of focus was limited
by setting the minimum range of focus to 0.2 m and the
maximum range of focus to 2 m. Then, the short-time Fourier
transform (STFT) is performed on the signal in the range of
focus to get the time-Doppler spectrogram as:

N—-1

STFT(pa CU) = Z R(}’l, m]c)w(n — p)e*jzﬂna)/N (1)
n=0

where p = [1,2,...,P] and w = [1,2,..., W] represent
the time and Doppler index of the time-Doppler spectrogram,

Algorithm 1 Upper- and Lower-Envelope Detection
Input: STFT(p, w), E(p), a
Output: Fyp, Flow

1: for p=1to P do

20 Ew(p) < E(p)xa;

3: for v = 1to W do

4: E(p, w) < STFT(p, w)*;
5: if E(p,w) > Eqx(p) then
6: index,(®) <~— o

7 end if

8: end for

9: Fup(p) < max(index,);
10: Flow(p) < min(index);
11: end for

12:  return Fyp, Flow

respectively, m ¢ is the index of the range of focus, and w(p)
is a window function.
As shown in Fig. 3, based on the time-Doppler spectrogram,
three types of features can be extracted as follows.
Envelope—Fyp, Flow : This feature consists of the upper-
and lower-envelopes of the time-Doppler spectrogram. First,
the energy corresponding to the time index p is computed as

w
E(p)= D STFT(p,w)’, p=12,....P.  (2)
w

Then, an energy-based threshold algorithm is established to
calculate the upper- and lower-envelopes with a predetermined
threshold a. For each time index p, the maximum of the
Doppler indexes whose corresponding energies are greater
than or equal to the predetermined threshold constitutes the
upper-envelopes, while the minimum constitutes the lower-
envelopes. The pseudocode of the proposed envelope detection
is depicted in Algorithm 1. By considering the various phases
of driving behaviors, 2-s time sequences of the upper- and
lower-envelopes were extracted, respectively, which indicate
dynamic Doppler changes for different driving behaviors.
Extreme Frequency— fmax, fmin : This feature contains the
maximum and minimum frequencies, which are related to the
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Fig. 3. Time-Doppler spectrogram of a sleepy behavior with the 24-GHz
FMCW radar.

velocity of driving behaviors

Sfmax = max(w),

Sfmin = min(w),

® € Fyp 3)
® € Flow. “4)

Power Density of the Effective Area—E; : The area cov-
ered between the upper- and lower-envelopes except for the
baseband (—10 to +10 Hz) is treated as the effective area.
The power density of this area represents the intensity of
driving behaviors, which is crucial for distinguishing between
Doppler-similar behaviors

E; = 2 ZZE(FII?W(;;) E(p, w)'
>, (Fup(p) = Fiow(p))

2) Range-Doppler Trajectory: A dynamic range-Doppler
trajectory method was proposed to analyze driving behav-
iors based on the range-Doppler domain. For obtaining a
range-Doppler trajectory, FFT was performed on R(n,m)
along the slow time direction with a sliding time window.
Then, a sequence of snapshots of driving behaviors in the
range-Doppler domain can be acquired, which can be called
range-Doppler frames. A single range-Doppler frame can be
achieved as follows:

5)

L
Fi(k,m) = D R(n,m)e” /27 (©6)
n=1
where i represents the index of snapshots, k indicates the index
of the frequency, and L is the length of the time window.
Fig. 4(a) shows six range-Doppler frames of a typical
sleepy behavior (0.25-s time window with no overlapping).
For obtaining the behavior trajectory based on range-Doppler
frames, the baseband signal components close to 0 Hz are
initially removed by an empirical Doppler threshold of 10 Hz.
Next, the point with the maximum energy is extracted from
each range-Doppler frame to construct a range-Doppler trajec-
tory map with the following equation:
(ki, m;) = argmax E;(k, m), Ej(k,m) = F;i(k,m)*> (1)
(k,m)
where (k;, m;) represents the ith trajectory point extracted
from the corresponding range-Doppler frame, and E;(k, m)
indicates the energy of points in the ith frame.
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Fig. 4. Range-Doppler frames and trajectory of a sleepy behavior. (a) Six
range-Doppler frames. (b) Corresponding range-Doppler trajectory.

As shown in Fig. 4(b), the blue dots indicate the extracted
trajectory points, whose coordinate values represent range and
Doppler, respectively. Their sizes correspond to the power
level related to the radar cross-section (RCS) information.
Then, three types of features can be extracted as follows:

Dynamic Doppler Frequency—D : This feature consists of
a time sequence of the Doppler values along the trajectory.
It represents the time-varying intensity of driving behaviors

D) = k;. (8)

Dynamic Range Change—A R : Range information is crucial
for driving behavior recognition. The x-coordinate of each
trajectory point represents the range of driving behaviors.
Furthermore, for situations of different detection distances, it is
adjusted as a time sequence of relative range change. This
feature describes the relative range change for each driving
behavior, and to some degree, indicates motion velocity and
range span

ARG) =miy1 —m;, €[l 1—-1] ©)

Dynamic Power Change—AE : Considering the effects of
different distances, this feature is based on the time-dependent
power change. It indicates the time-varying RCS, which is
important to discriminate motions that are similar in range
and Doppler, e.g., dorsal flexion and forward body motion

AE(i)=Eiy1 — E;, ie[l,1—1] (10)

where E; represents the energy of the ith trajectory point.

C. Machine Learning

Twelve machine learning classifiers were selected based on
their popularity, diversity, and capabilities. These classifiers
can be divided into four categories: decision tree, support vec-
tor machine (SVM), k-nearest neighbor (KNN), and ensemble
learning. Models with a mature theoretical foundation like the
decision tree and SVM are used in our experiment. The KNN
is chosen since its probabilistic models are built, and they
are frequently applied in biomedical signal processing [23].
In addition, the ensemble classifiers, which belong to a recent
popular category, are explored comprehensively.

1) Decision Tree: Decision tree learning is one of the

predictive modeling approaches used in statistics, data
mining, and machine learning [24]. In a tree structure,
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each branch indicates a possible decision, outcome or
reaction. The farthest branches, i.e., leaves on the tree
represent the final results or labels. The decision tree is
commonly used in classification, as it is not sensitive to
outliers and missing values.

2) Support Vector Machine (SVM): SVM 1is a supervised
learning model with an associated learning algorithm
that analyzes data for classification and regression analy-
sis [25]. It outputs a hyperplane or set of hyperplanes in
a high- or infinite-dimensional space for classification.
An SVM model is a representation of the examples as
points in space, mapped so that the examples of the sepa-
rate categories are divided by a clear gap that is as wide
as possible. New examples are then mapped into the
same space and predicted to a category based on which
side of the gap they fall into. In SVM, a regularization
parameter can be set to reduce the risk of overfitting, and
it is defined by a convex optimization problem, which
means there are efficient methods without local minima.

3) K-Nearest Neighbor (KNN): KNN is a nonparametric
method used for classification and regression [26]. It is
an approach to data classification that estimates how
likely a data point is to be a member of one category
or the other according to what category the data points
nearest to it are in. KNN is a “lazy learner” algorithm
because it does not generate a model of the data set
beforehand. The only calculation it makes is when
it is asked to poll the data point’s neighbors. This
makes KNN appropriate for dealing with the multiclass
problem.

4) Ensemble Learning: Ensemble methods use multiple
learning algorithms to obtain better classification
performance than a single one [27]. Unlike a statistical
ensemble in a statistical mechanism, which is usually
infinite, a machine learning ensemble refers only to a
concrete finite set of alternative models but typically
allows for much more flexible structure to exist among
those alternatives. Ensemble learning tends to obtain
better results when there is significant diversity among
the models. In our experiments, bagged trees [28],
boosted trees [29], and subspace KNN [30] were
selected as the ensemble algorithms.

All classifiers are based on the Classification Learner Tool
in MATLAB R2016b. Detailed parameters with default values
are listed in Table II. For providing an unbiased evaluation,
ten-fold cross-validation (CV) procedure was used in classi-
fication [31]. Specifically, all samples were divided into ten
subsets containing recordings as equal as possible. During
each iteration of the tenfold CV, nine subsets were used to
train the classifier, and the remaining subset was used for
validation. The classification results were obtained on each test
data of the CV. After that, the evaluation of the classification’s
performance was formed by averaging all results.

III. EXPERIMENTAL SETUP

Two custom-designed FMCW radar systems with differ-
ent center frequencies were used in this study [32], [33].

4035

TABLE 11
PARAMETERS OF DIFFERENT CLASSIFIERS

Parameters

Maximum number of splits: 20, 100.

Split criterion: Ginis diversity index.

Surrogate decision splits: Off.

Maximum surrogates per node: 10.

Kernel function: Linear, Quadratic, Cubic, Gaussian.
Box constraint level: 1.

Kernel scale mode: Auto, Manual.

Manual kernel scale: 1, 26.

Multicalss method: One-vs-One.

Number of neighbors: 10, 100.

Distance metric: Cosine, Minkowski (cubic).
Distance weight: Equal, Squared inverse.

Ensemble method: AdaBoost, Bag, Subspace.
Learner type: Decision tree, Nearest neighbors.
Maximum number of splits: 20; Number of learners: 30.
Learning rate: 0.1; Subspace dimension: 1, 22.

Classifiers

Decision Trees

SVM

Ensemble

(a)
ACUdif Synchronization . RX
ar Baseband o
: N LNA
Beat signal Amplifier v @

Audio
Card

Fig. 5. Block diagrams of (a) 24-GHz and (b) 5.8-GHz FMCW radar systems.

Their block diagrams are illustrated in Fig. 5. The 24-GHz
radar consists of a flexible radio frequency (RF) board and a
rigid baseband board. The RF board was built on a flexible
substrate, including a pair of 4 x 4 patch antenna arrays,
a voltage-controlled oscillator (VCO), a pair of low noise
amplifiers (LNA), and a six-port structure [34]. The VCO
and LNAs are off-the-shelf components. The six-port structure
works as a quadrature mixer, which converts the RF signal
to zero-IF baseband. The rigid baseband board has baseband
amplifiers, as well as an on-board sawtooth voltage gener-
ator (SVG). In the transmitting part, the SVG generates a
960-Hz sawtooth voltage signal to control a free-running VCO
to obtain a 700-MHz bandwidth frequency ramp with a center
frequency of 24 GHz. After a power divider, the signal is
transmitted through the antenna. In the receiving part, after
the LNA, the RF signal is down-converted to the baseband
with a six-port structure. Then, the beat signal can be obtained
through an operational amplifier. A reference pulse sequence
is generated at the same time with the sawtooth voltage to
maintain coherence. A data acquisition interface is employed
to simultaneously sample the reference sequence and the
beat signal through the audio card of a laptop, facilitating
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5.8-GHzFMCW Radar

TABLE IV
KEY COMPONENTS USED IN RADAR SYSTEMS
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System Part Part Number Manufactory
VCO HMC739LP4E Analog Devices
. 90° Quadrature
Power Divider Hybrid Custom
24 GHz LNA XL1010-QT-OGOT Macom
. SMS7621 Schottky
Six-port Diodes Skyworks
Baseband Amplifier ADA4581 Analog Devices
24-GHz FMCW Radmr VCO HMC358MS8G Analog Devices
Power Divider GP2X1 Mini-Ciruits
LNA HMC320MS8G Analog Devices
5.8 GHz Gain Block NBB 400 Qorvo
. . Mixer HMC525LC4 Analog Devices
Fig. 6. Experimental setup and the two FMCW radar systems. Bascband Amplifier ADA4531 Analog Devices
TABLE III
KEY PARAMETERS OF THE FMCW RADAR SYSTEM TABLE V
BRIEF PHYSICAL DESCRIPTION OF THE VOLUNTEERS
Radar Type 1 5
Parameters . . 2
Volunteers Gender Age Weight (k Height (m) BMI (kg/m
Center frequency 24 GHz 5.8 GHz B ge (y) ght (k) ght (m) (kg/m’)
Transmitted bandwidth 700 MHz 320 MHz 1 F 26 50 1.57 20.28
Sampling frequency 192 KHz 192 KHz 2 M 29 86 1.74 28.41
Frequency ramp repetition Ims 10 ms 3 M 27 75 172 2535
period
Average transmitted power 8 dBm 8 dBm 4 M 26 100 1.89 27.99
sonwin | PPmeletln [ Eamettibe 8 Mmoo
pare oo pole ~o ¢ 6 M 24 68 1.78 21.42

real-time demodulation. During the signal processing,
the phase of the baseband signal is aligned according to the
pulse edge of the reference sequence, and thus, coherence is
achieved.

As shown in Fig. 5(b), the architecture of the 5.8-GHz
radar is similar to that of the 24-GHz radar. Different from
the 4 x 4 patch antenna arrays in the 24-GHz system,
a pair of 2 x 2 patch antenna arrays is used to transmit and
receive signals for the 5.8-GHz device. This causes a wider
beamwidth, which can cover a larger area but involves more
noise. In addition, the 24-GHz device uses a six-port structure
to down-convert the RF signal to the baseband, whereas the
5.8-GHz system uses a commercial quadrature mixer chip.
Their key parameters, part numbers, and manufacturers are
listed in Tables III and IV.

The experimental setup is illustrated in Fig. 6. The radar sys-
tem was set behind the steering wheel with a height of 0.85 m
from the floor. Six volunteers, including five males and one
female, were involved. Their brief physical descriptions are
listed in Table V. During measurements, each volunteer was
required to adjust the seat to their most comfortable posi-
tions. Consequently, the distance between the radar and the
subject ranged from 0.4 to 0.8 m, while the height of their
heads ranged from 0.9 to 1.2 m. Six volunteers performed
each behavior for 15 times, 5 of which were measured in
a parked car, while the others were recorded in a moving
car with speed ranging from 16.1 to 64.4 km/h. For safety
consideration, measurements in a moving car were conducted

in the passenger seat with the same experimental setup. As a
result, a total of 630 measurements were recorded.

IV. RESULTS

In this section, the measurement results are first analyzed
for different carrier frequencies. Then the classification per-
formance based on the time-Doppler spectrogram and range-
Doppler trajectory is compared.

A. 5.8-GHz Versus 24-GHz Carrier Frequency

Fig. 7 shows the time-Doppler spectrogram, range-Doppler
frames, and trajectory of sleepy behavior with the 5.8-GHz
FMCW radar system. Compared to the time-Doppler spec-
trogram obtained by the 24-GHz system in Fig. 3, the one
with the 5.8-GHz system shows negative Doppler components
during dorsal flexion, while positive Doppler parts appear
when the subject lifts his/her head back up. This is reasonable
as the wider beamwidth brings more noise and the narrower
bandwidth of the 5.8-GHz system results in worse range
resolution, which causes Doppler leakage in its spectrogram.
In addition, as shown in Fig. 7(b), the poor range resolution
also leads to wider main lobes in the range-Doppler frames
than the ones in Fig. 4(a). This makes it difficult to track
the driver’s behaviors, which even resulted in unreliable range
tracking of the second trajectory point, as shown in Fig. 7(c).
Therefore, the 24-GHz FMCW radar system was adopted in
the following measurements.
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a sleepy behavior detected by the 5.8-GHz FMCW radar. (a) Time-Doppler
spectrogram. (b) Range-Doppler frames. (c) Range-Doppler trajectory.

Fig. 8 shows the time-Doppler spectrogram and range-
Doppler trajectory (0.25-s time window with half overlapping)
of seven driving behaviors with the 24-GHz FMCW radar
system.

As shown in Fig. 8(a), as the subject’s head bent toward
the radar, the time-Doppler spectrogram displayed positive
Doppler. Then, it returned to zero when the subject did not
raise his/her head again. The range-Doppler trajectory also
displayed positive Doppler and decreasing range during dorsal
flexion, and the Doppler signature faded in the end.

However, when the subject lifted his/her head back up again
after dorsal flexion, the Doppler signature changed to negative
before returning to zero [Fig. 8(b)]. Likewise, both the Doppler
and range signatures in the range-Doppler trajectory increased
again after the initial decline.

The time-Doppler spectrogram and range-Doppler trajectory
imaging in Fig. 8(c) correspond to the dorsal hyperextension of
the neck. In a real car environment, the subject’s head always
bumped into the seat cushion after dorsal hyperextension. As a
result, there were positive Doppler parts identified at the end
of this behavior in the time-Doppler spectrogram.

Fig. 8(d) shows the time-Doppler spectrogram and range-
Doppler trajectory of the lateral neck rotation. Since the
left and right rotations result in identical Doppler and range
signatures, only the right lateral rotation was recorded. Besides
the predicted negative Doppler, a few positive Doppler com-
ponents were observed at the same time. The reason is that
during the rotation of the neck, one side of the face is
turning far away from the radar, while the other side is
turning closer to the radar. The upper- and lower-envelope
extracted from time-Doppler spectrogram can indicate this
characteristic. However, it is hard for the range-Doppler
trajectory map to describe the positive Doppler compo-
nents, as only one trajectory point is extracted from one
range-Doppler frame.
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Fig. 8(e) illustrates forward body behavior by the volunteer,
where the subject moves both the head and body forward
without bending down at an angle. In the time-Doppler spec-
trogram, the envelope of forward body behavior was similar
to that of dorsal flexion. However, there were fewer scatters
between the upper- and lower-envelope. This is because the
scatters of the head and body exhibited the same velocity
(i.e., Doppler frequency) without bending down at an angle.
Furthermore, forward body behavior was also characterized
by increasing power when approaching the radar, which can
be observed from the time-Doppler spectrogram and range-
Doppler trajectory.

As shown in Fig. 8(f), head shaking/dancing with music
displayed periodic features both in the time-Doppler spectro-
gram and the range-Doppler trajectory, which is consistent
with predictions detailed in Section II.

Fig. 8(g) shows the time-Doppler spectrogram and range-
Doppler trajectory of picking up a phone. Note that the
detected power kept increasing before the corresponding
Doppler returned to zero. This demonstrates that, in this case,
getting close to the beam center has a larger impact on power
than moving away from the radar.

B. Selection of Machine Learning Classifier

Twelve classifiers were compared to find the most appro-
priate one for driving behavior detection. As shown in Fig. 9,
red bars represent the recognition accuracy with time-Doppler
spectrogram features, while blue ones indicate the correspond-
ing accuracy with range-Doppler trajectory features. It is
obvious that among all the selected classifiers, Bagged Trees
obtained the highest level of accuracy for both time-Doppler
and range-Doppler features. It is reasonable that individual
diversity brings different characteristics to even the same
driving behaviors, which leads to variance in features. The
Bagged Trees is proposed to reduce the variance of a simple
decision tree classifier. It creates several subsets of data from
the training sample randomly chosen with replacement. Then,
each collection of subset data is used to train their decision
trees, which results in an ensemble of different models. The
average of all the predictions from different trees is used to
achieve a more robust classification than a single decision tree.

C. Classification Based on Time-Doppler Spectrogram

Based on the time-Doppler spectrogram, classification of
seven driving behaviors achieved an average accuracy rate
of 94.8%. The detailed confusion matrix is shown in Table VI.
Note that (b) sleepy and (e) forward body behavior obtained
the highest level of classification accuracy of 97.8%. Owing
to the power density feature, only two samples of (a) dorsal
flexion were recognized as (e) forward body behavior although
they are similar in the time-Doppler domain. On the other
hand, (c) dorsal hyperextension behavior had the lowest accu-
racy of 90%. This behavior could be easily confused with (d)
rotation, as low amplitude dorsal hyperextension is similar
to rotation in the time-Doppler domain. There also existed
confusion among (a) dorsal flexion, (b) sleepy, and (f) shaking
head caused by different shaking amplitudes and periods.
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D. Classification Based on the Range-Doppler Trajectory

Based on the range-Doppler trajectory, an average accuracy
rate of 93.3% was obtained. The detailed confusion matrix is
shown in Table VII. Likewise, (a) dorsal flexion, (b) sleepy,
and (e) forward body behaviors are the top three in recognition
accuracy rate. On the other hand, (c) dorsal hyperextension
obtained the lowest level of classification accuracy of 83.3%.
Nine and six of them were misclassified as (d) rotation
and (g) picking up a phone, respectively. Their similar tra-
jectories in the range-Doppler domain make it difficult to
distinguish them.

In addition, fusing features of both the time-Doppler spec-
trogram and the range-Doppler trajectory in classification was
investigated. The recognition accuracy rate can be raised to
95.6%. However, the improvement may not be worth the
increased computation load.

TABLE VI

CONFUSION MATRIX OF CLASSIFICATION WITH
TIME-DOPPLER SPECTROGRAM

red.”

Act) @ b | © | | @ | & | (® | TPR
(a) 87 1 2 96.7%
(b) 1 88 1 97.8%
(©) 81 8 1 90%
(d) 1 5 84 93.3%
(e) 2 88 97.8%
® 2 3 84 1 | 933%
(8 2 2 1 85 | 94.4%

! Act. means the actual samples.

2 Pred. means the predicted samples.

3 (a): Dorsal flexion; (b): Sleepy; (c) Dorsal hyperextension; (d) Rotation;
(e) Forward body; (f) Shaking head; (g) Picking up a phone.

4 TPR means true positive rate.

V. DISCUSSION
A. Individual Variability

The influence of individual diversity on the proposed
method was also investigated. Indeed, detecting the driving
behavior of unknown individuals based on trained data from
known individuals would mirror the device’s real-life applica-
tion. For this purpose, five volunteers were randomly selected
as the training group and the remaining volunteers as the test
group. The data from the training group was used to train the
machine learning classifier, and classification was performed
using data from the test group. For each condition, each test
was repeated 30 times to obtain a reliable evaluation. Fig. 10
shows test results as boxplots based on the time-Doppler
spectrogram and the range-Doppler trajectory, respectively.
The boxplot indicates the distribution of the test accuracy rates
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TABLE VII

CONFUSION MATRIX OF CLASSIFICATION WITH
RANGE-DOPPLER TRAJECTORY

et g w | @ @|e]| o] e |
(@) 87 3 96.7%
(b) 87 1 1 1 | 96.7%
© 75 9 6 83.3%
(d) 4 3 80 1 2 | 88.9%
(© 2 1 87 96.7%
® 4 86 95.6%
) 2 2 | 86 | 95.6%
+ Outliers
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100 9.1 (Q3 + 1.5%x IQR)
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Fig. 10. Boxplots of recognition accuracies with the time-Doppler spectro-
gram and range-Doppler trajectory in individual diversity study. (a) Recogni-
tion accuracy in different conditions. (b) Legend of the boxplot.

in each condition. The upper and lower boundary of the blue
box represents the third and first quartile of all the accuracy
rates, which are denoted as Q3 and Qj, respectively. This
means half of the test accuracy rates are located in the blue
box. The size of the box, indicated by I QR, corresponds to
its robustness. The red line in the box means the median
value, which is denoted as Q. Points with values higher
than (Q3 + 1.5 x IQR) or lower than (Q1—1.5xIQR) are
identified as outliers and marked by red crosses. As shown
in Fig. 10, the results based on time-Doppler spectrogram
could get a higher maximum and a lower minimum accuracy.
In addition, there was a large gap between the upper and lower
boundaries that signifies a considerable discrepancy among
different individuals. On the other hand, the range-Doppler
trajectory method showed a robust performance with a narrow
blue box for unknown individuals.

B. Installation Position of the Radar System

The installation position of the radar system has a great
impact and is worth studying experimentally. There are two
straightforward options: one is to set the radar on the dash-
board, and another is to set it on the rear-view mirror. The
first position is exactly in front of the driver and can detect
almost all the driver’s behaviors. But the pitch angle of the
radar needs to be adjusted according to the driver’s sitting
positions and postures. The other position can always directly
point to the driver’s head, bringing a perfect view angle for
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head tracking. However, as the rear-view mirror position is
not placed on the central axis of the driver, body parts that
are far away from the beam center may not be detected well.
Furthermore, there is a possibility that careless drivers would
not point the rear-view mirror correctly.

VI. CONCLUSION

This article proposed a novel method for inattentive driving
behavior detection based on FMCW radar systems. Seven
typical driving behaviors that may result in loss of attention
were studied. Both time-Doppler spectrogram and range-
Doppler trajectory were utilized to analyze their characteristics
in multiple domains, including time, range, Doppler, and RCS.
Experiments in a real car environment were conducted with
six volunteers. Based on a Bagged Trees classifier, the recog-
nition performance has been demonstrated with around 95%
accuracy. Furthermore, the method based on the range-Doppler
trajectory showed higher robustness than that of the time-
Doppler spectrogram when facing individual diversity influ-
ences. Because range detection capability is highly desirable
to focus the algorithm on the target of interest. The advantages
and disadvantages of different radar installation positions were
also discussed. In the future, more driving behaviors in a more
complex road situation could be studied, and the database will
be expanded. In addition, the feasibility of fusing multi-sensor
information to achieve practical monitoring of driver status
will be explored.
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