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a b s t r a c t 

An analytical model is presented to calculate the elasto-plastic bending response of electrical wires subjected 
to large deflections. Electrical wires are defined as helically wound conductors enclosed in polymer insulation. 
For modeling purposes, the conductor layout in a wire’s cross section is estimated using a packing algorithm. 
Euler-Bernoulli beam theory describes the overall wire bending behavior; the conductors’ stick-slip behavior 
is modeled based on Coulomb’s friction law. In the plastic region, the conductors are modeled as laminated 
composite beams. A cantilever bending setup is used to characterize the force displacement response of wires with 
different diameters, number of conductors, beam lengths, and conductor cross sections. The model parameters 
are calibrated to ensure that the force-displacement calculations are within the 95% confidence interval of the 
test data. 
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. Introduction 

Automobiles have multiple electronic, electrical, and electro-
echanical systems connected by a network of wire harnesses. Issues

elated to wire harnesses are a root cause of a significant number of
ustomer reported problems [1] . Additionally, increasing vehicle elec-
rification due to technological advances has increased the complexity
f wire harnesses [2] . This has increased the demand for reliability of
ire harnesses. Shortened development periods and reduced number
f prototypes has also called for a greater efficiency in harness design.
his can be achieved with digital manufacturing of wire harnesses to

dentify and mitigate any performance issues that may arise during and
fter manufacturing. However, current commercial software is intrin-
ically inaccurate for mechanical modeling of wire harness networks
ince they typically assume linear elasticity, whereas in practice, har-
esses are complex multi-material structures that undergo elasto-plastic
eformations. Hence, there is a need to accurately model the harness
omponents for use in digital manufacturing applications. Digital man-
facturing can also help to identify the effects of variability in harness
eatures such as excess harness lengths or insufficient tape layers, nei-
her of which damage the harness but can cause unwanted noise due to
attling. 
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A wire harness is an assembly of electrical wires, protective con-
uits, insulation tape, mounting clips, and electrical connectors. Electri-
al wires are key building blocks of wire harnesses and a starting point
or addressing the complex structure of wire harnesses. A typical elec-
rical wire is made by helically winding conductors around a core in
ne or multiple layers, and then encasing them in polymeric insulation
 Fig. 1 ). Harnesses are predominantly subjected to bending loads during
he assembly process [3] , so this work focuses on modeling the response
f wires subjected to such loads. 

Costello [4] proposed a model for bending of wire ropes with sin-
le layers, which posits that the bending stiffness reaches a minimum
alue corresponding to the slip state. This model was generalized for
ires with complex cross sections by Velinsky [5] . However, neither of

hese models includes the effect of interlayer friction. Lanteigne [6] for-
ulated a general stiffness matrix for aluminum conductor steel re-

nforced (ACSR) cables subjected to bending, torsion, and elongation
hich includes only the contribution of radial force to interlayer fric-

ion. Papailiou [7] presented a model for bending of ACSR cables tak-
ng into account interlayer friction and derived a moment-curvature
elationship. Hong et al. [8] have modified the model by including
he change in interlayer lay angle for calculating the radial contact
orces. 
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Fig. 1. Architecture of a typical helically-wound, stranded electrical wire mod- 
eled in this paper. 
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Inagaki et al. [9] extended Papailiou’s model to second-order helical
ables and modeled the effect of axial and torsional forces on the bend-
ng moment of wire conductors, incorporating a model for the contact
etween insulation and conductors. Foti and Martinelli [10] extended
his model by including the effect of residual radial contact forces be-
ween layers and also proposing a substantially different approach to
valuate the axial force in the wires. Another extension of Papailiou’s
odel is presented in Foti and Martinelli [11] , which accounts for the

oupled axial-bending behavior of wire ropes. Jiang [12] presented a
nite element model to predict the elasto-plastic behavior of a straight
ire under pure bending loads. In our previous work [13] , a methodol-
gy was presented to determine Holloman’s material constants for ho-
ogenized electrical wires. 

A new analytical formulation is presented in this paper for large
eflection elastic-plastic bending of electrical wires. The overall bend-
ng behavior of the electrical wire is modeled based on Euler-Bernoulli
eam theory [14] . The friction between conductors is defined using
montons-Coulomb friction laws. The kinematic state of the wire is de-

ermined by comparing stick and slip axial forces acting on each conduc-
or. Plasticity is modeled by treating the conductors as laminated com-
osite beams with each lamina having a different bending modulus. The
hange in helix angle is neglected since the conductors are enclosed in
nsulation, which limits twisting of the helix and separation of the con-
uctors. The total bending moment of the wire is the sum of moments
n the individual conductors and the insulation. 

An effective bending stiffness versus curvature relation is derived
y homogenizing the wire as a cylindrical beam. The effective bending
tiffness can then be used in digital manufacturing applications. An algo-
ithm for packing circles in a larger circle [15] is used to determine the
onductor layout in the wire cross section, i.e., the radial and angular
ositions of the conductors in the cross section. This is required as most
anufacturers of electrical wires (e.g., [16] ) specify only the number

f conductors in a wire, but the arrangement of conductors needs to be
nown to model the forces acting on individual conductors. The pack-
ng algorithm and the analytical model together form a tool to automate
he process of determining the bending stiffness for a large number of
lectrical wires based on their geometric and material properties. 

Friction coefficients and the radial force exerted by the insulation
re considered to be model parameters. A cantilever bending test is de-
igned to characterize the wires with force at the free end recorded as
 function of tip displacement. The cantilever bending test is simulated
sing the homogenized bending stiffness computed by the analytical
odel in a large deflection bending formulation to output force at the

ree end as a function of tip displacement. The model parameters are
elected to minimize the error between the model output and experi-
ental data. A 3D finite element simulation of the cantilever bending

est is also conducted using Abaqus FEA® finite element analysis soft-
are. The laminated beam assumption is validated by comparing the
nalytical model output with the FE model output. 

Section 2 presents a nonlinear optimization method to evaluate the
ross section layout of conductors and the nomenclature used to desig-
ate the conductors. The analytical formulation to model the elastic-
lastic bending of helically stranded electrical wires is presented in
ection 3 . The evaluation of a homogenized bending stiffness and a large
eflection formulation to simulate the cantilever bending of wires are
resented in Section 4 . Section 5 describes the cantilever bending test
etup for model calibration and validation. The model has been cali-
rated and validated for wires with various conductor diameters, insu-
ation thicknesses, types of conductors, and wire lengths and the results
re presented in Section 6 . 

. Wire geometry 

In a wire, the positions of the conductors in the cross section affect
he bending stiffness of the wire. Hence, in order to automate the pro-
ess of defining conductor layouts for a large number of wire types and
izes in digital manufacturing applications, an algorithm is written for
acking smaller circles in a larger bounding circle. The smaller circles
epresent the conductors and the larger circle represents the inner sur-
ace of the insulation. Initial values for the center coordinates of each
onductor are guessed using a random number generator. The conduc-
or layout is estimated by minimizing the elastic energy of the system,
efined as the sum of distances squared. 

Assume N smaller circles with equal radii r are to be packed in a
arger bounding circle of radius R . The minimum distance between an
 

th circle with center 
(
𝑥 𝑖 , 𝑦 𝑖 ; 𝑖 = 1 , 2 , 3 , … , 𝑁 

)
and a j th circle with center

𝑥 𝑗 , 𝑦 𝑗 ; 𝑗 = 1 , 2 , 3 , … , 𝑁 

)
is given by 

 ij = 

⎧ ⎪ ⎨ ⎪ ⎩ 
2 𝑟 − 

√ (
𝑥 𝑖 − 𝑥 𝑗 

)2 + 

(
𝑦 𝑖 − 𝑦 𝑗 

)2 
if 

√ (
𝑥 𝑖 − 𝑥 𝑗 

)2 + 

(
𝑦 𝑖 − 𝑦 𝑗 

)2 
< 2 𝑟 

0 otherwise . 

(1) 

The minimum distance between the i th circle and the bounding circle
ith center at the origin (0, 0) is given by 

 𝑖 0 = 

⎧ ⎪ ⎨ ⎪ ⎩ 
𝑟 − 𝑅 + 

√ 

𝑥 2 
𝑖 
+ 𝑦 2 
𝑖 

if 
√ 

𝑥 2 
𝑖 
+ 𝑦 2 
𝑖 
+ 𝑟 > 𝑅 

0 otherwise . 
(2)

Assuming a unit proportionality constant, the potential energy of the
 

th body is given by 

 𝑖 = 𝑑 2 
𝑖 0 + 

𝑁 ∑
𝑗 =1 ,𝑗 ≠𝑖 

𝑑 2 
𝑖𝑗 
, (3)

nd the total potential energy U of the system is given by 

 = 

𝑁 ∑
𝑖 =1 
𝑈 𝑖 . (4)

Conductor centerline coordinates are solved by multi-variable op-
imization of 𝑈 

(
𝑥 1 , 𝑦 1 , 𝑥 2 , 𝑦 2 , … ., 𝑥 𝑁 , 𝑦 𝑁 

)
using the MATLAB® func-

ion fminunc . This function uses a quasi-Newton search method
o find the function minimum; the search direction is determined
y estimating the approximate Hessian matrix using the Broy-
en —Fletcher —Goldfarb —Shanno (BFGS) formula. Initial values of the
enter locations are randomly chosen such that conductor centers are
ithin the insulation as shown in Fig. 2 (a). The final conductor ar-

angement after packing is shown in Fig. 2 (b). Comparisons between
he estimated conductor arrangements and actual wire cross sections
or 7-conductor and 19-conductor wires are shown in Fig. 3 . 

The wire conductors are sorted into groups based on the radial dis-
ances of the conductor centerlines to the wire centerline. Here, the num-
er of groups equals the number of layers in the helix. For simplicity, a
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Fig. 2. (a) Initial guess for conductor configuration; (b) optimized conductor 
configuration obtained using a circle packing algorithm. The dashed circle rep- 
resents the inner surface of the insulation and the solid circles represent the 
outlines of the individual conductors. 
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th conductor in a q th layer is identified as ( p, q ). The values taken by
 p, q ) are 

 𝑝, 𝑞 ) = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

1 , 1 1 , 2 … 1 , 𝑄 

2 , 1 2 , 2 … ⋮ 
⋮ ⋮ ⋱ ⋮ 
𝑁 1 , 1 ⋮ ⋱ ⋮ 

𝑁 2 , 2 ⋱ ⋮ 
⋱ ⋮ 

𝑁 𝑄 , 𝑄 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 
, (5) 

ith the columns representing the helix layers and the rows represent-
ng the conductors in a layer. For example, the 7-conductor wire shown
n Fig. 3 (a) has one core and one layer with 6 conductors, so 𝑄 = 1 and
 1 = 6 . Similarly, for the 19-conductor wire shown in Fig. 3 (b), 𝑄 = 2 ,
 1 = 6 , and 𝑁 2 = 12 . In Fig. 3 (b) there is a slight mismatch between the

alculated and actual positions of the conductors in the second layer.
ence, we applied the analytical model to both the algorithm-generated
nd true configurations and found that the difference between the model
utputs was not significant. For modeling, the wire layout is oriented by
efining the neutral axis by a vector connecting the wire centerline and
he centerline for a randomly chosen conductor in the first layer. For the
ires tested in this work (lay angles < 15 °), no distortion in the conduc-

or cross sections was observed in either FEA or optical measurements.
owever, for wires with larger lay angles, it is understood that the lay
ngle can have an effect on the cross section shape of the conductors.
o account for this change in cross section shape, the algorithm can be
odified to pack ellipses within a circle [17] . The algorithm above is

estricted to conductors with equal diameters, but can be readily modi-
ed to model wires having layers composed of conductors with different
iameters [18] . 

In this work, we have modeled and tested two types of wires: wires
ith circular conductors and wires with compacted conductors. For cir-

ular conductors, the cross section layout is estimated using the algo-
ithm as described above. For wires with compacted conductors, the
lgorithm is effective for determining the number of conductors in each
ayer by assuming circles with equivalent cross sections. However, once
he number of conductors in each layer is determined, the actual shapes
f the conductors are modeled by defining polygons to fit that number
f conductors in the layer while preserving conductor area. 

. Stick-slip model of the conductor 

An electrical wire’s conductive core is made of helically wound metal
onductors. Due to its stranded nature, a wire in bending exhibits two
inematic states: stick state and slip state. Initially, the wire is in a stick
tate and bends as a single beam. With increasing curvature, the axial
orces induced in the conductors due to bending exceed the frictional
orce and the conductors start to slip against adjacent surfaces, causing
he wire to be in the slip state. 

.1. Stick state 

Conductors in the stick state are modeled as Euler-Bernoulli beams
nd the axial strain in a conductor is the sum of responses from torsion,
longation, and bending of the wire. The axial strain in the p th conductor
n the q th layer is given as 

𝑝,𝑞 = 𝜅𝑤 𝑟 𝑞 sin 𝜃𝑝,𝑞 cos 2 𝛼𝑞 + 𝜖𝑤 cos 2 𝛼𝑞 + 𝜏𝑤 𝑟 𝑞 sin 𝛼𝑞 cos 𝛼𝑞 , (6)

here 𝜅𝑤 , 𝜖𝑤 , and 𝜏w respectively denote curvature, elongation, and
wist in a wire, r q is the distance from the wire center to the q th layer,

p,q is the angular position of the conductor from the x-axis, and 𝛼q is the

ay angle of the q th layer. Multiplying (6) with conductor axial rigidity
 EA ) s gives the axial force as 

 𝑝,𝑞 = ( 𝐸𝐴 ) 𝑠 
(
𝜅𝑤 𝑟 𝑞 sin 𝜃𝑝,𝑞 cos 2 𝛼𝑞 + 𝜖𝑤 cos 2 𝛼𝑞 + 𝜏𝑤 𝑟 𝑞 sin 𝛼𝑞 cos 𝛼𝑞 

)
. (7)

The wires are assumed to be under pure bending. Hence, the wire
longation and twist are neglected and the conductor axial force T p,q 

n (7) is directly proportional to r q , the radial distance of the conductor
enterline from the wire centerline. Therefore, slip begins in the conduc-
ors farthest from the neutral plane and progresses towards the center. 

.2. Slip state 

In the slip state, the Amontons-Coulomb friction model is used to de-
ne the contact forces between conductors and between the conductors
nd the insulation. Helically wound wires have a small tangential gap
etween conductors in the same layer [9] due to imperfections from
anufacturing or the loading process. Hence, only the contact forces

etween conductors of adjacent layers are modeled and contact forces
etween conductors in the same helix layer are neglected. A differential
onductor element in the q th layer is selected and is shown in Fig. 4 . The
tatic equilibrium equation is given by 

𝐹 𝑝,𝑞 − 𝑔 𝑝,𝑞 − ℎ 𝑝,𝑞 = 0 , (8)

𝐹 𝑝,𝑞 − 𝜇𝑞 𝐻 𝑝,𝑞 − 𝜇𝑞−1 𝐺 𝑝,𝑞 = 0 , (9)

here 𝜇q and H p,q are the friction coefficient and the normal force, re-
pectively, between layer q and layer 𝑞 + 1 . Similarly, 𝜇𝑞−1 and G p,q are
Fig. 3. Estimated and actual cross sections of a typi- 
cal (a) 7-conductor wire and (b) 19-conductor wire. 
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Fig. 4. Static force diagram for a differential element of the p th conductor in 
the q th layer subjected to an axial force F p,q , normal forces H p,q and G p,q from 

adjacent layers, friction forces h p,q and g p,q resulting from relative sliding of 
adjacent layers, and the resulting increment in axial force dF . 

t  

𝑞

 

t  

e

𝐻  

 

f

𝐻  

𝐺  

 

i

𝑑

 

S  

p

𝐹

 

𝐵  

a  

s  

f

𝐹  

3

 

o  

m  

b

𝑀  

 

E  

f  

w

𝐸  

w  

c

3

 

p  

a  

p  

F  

g
 

H  

r  

a  

e  

a

𝑑  

a  

o

𝐸  
he friction coefficient and the normal force, respectively, between layer
 − 1 and layer q . 

The radial force exerted by the insulation F rad is constant throughout
he wire cross section. To satisfy equilibrium between layers, the force
xerted by layer q on layer 𝑞 − 1 is given by 

 𝑝,𝑞−1 = 𝐺 𝑝,𝑞 

𝑁 𝑞 

𝑁 𝑞−1 
. (10)

Substituting (10) in (9) and satisfying static equilibrium, the normal
orces exerted on the q th layer by the surrounding layers are given by 

 𝑝,𝑞 = 

𝑄 ∑
𝑘 = 𝑞+1 

( 

𝐹 𝑝,𝑘 sin 𝛼𝑘 
𝑁 𝑘 

𝑁 𝑞 

) 

+ 𝐹 rad 

𝑁 𝑄 

𝑁 𝑞 

, (11)

 𝑝,𝑞 = 𝐻 𝑝,𝑞 + 𝐹 𝑝,𝑞 sin 𝛼𝑞 . (12)

Substituting (11) and (12) in (9) we have the differential increment
n axial force dF p,q as 

𝐹 𝑝,𝑞 = 

(
𝜇𝑞 + 𝜇𝑞−1 

)( 

𝑄 ∑
𝑘 = 𝑞+1 

𝐹 𝑝,𝑘 sin 𝛼𝑘 
𝑁 𝑘 

𝑁 𝑞 

+ 𝐹 rad 

𝑁 𝑄 

𝑁 𝑞 

) 

𝑑𝜃

+ 𝜇𝑞−1 𝐹 𝑝,𝑞 sin 𝛼𝑞 𝑑𝜃. (13)

olving (13) with initial condition F p,q (0), the frictional force F p,q in the

 

th conductor in the q th layer is given by 

 𝑝,𝑞 = exp 
(
𝜇𝑞−1 sin 𝛼𝑞 𝜃𝑝,𝑞 

)( 

𝐹 𝑝,𝑞 ( 0 ) + 

𝜇𝑞 + 𝜇𝑞−1 

𝜇𝑞−1 sin 𝛼𝑞 
𝐵 𝑝,𝑞 

) 

− 

𝜇𝑞 + 𝜇𝑞−1 

𝜇𝑞−1 sin 𝛼𝑞 
𝐵 𝑝,𝑞 , (14)

 𝑝,𝑞 = 

𝑄 ∑
𝑘 = 𝑞+1 

( 

𝐹 𝑝,𝑘 sin 𝛼𝑘 
𝑁 𝑘 

𝑁 𝑞 

) 

+ 𝐹 rad 

𝑁 𝑄 

𝑁 𝑞 

. (15)
In the solution procedure, for each increment in curvature 𝜅, T p,q 

nd F p,q are compared to determine if the conductor is in the stick or
lip state and the minimum of ( T p,q , F p,q ) is taken as the conductor axial
orce. Mathematically, the axial force is represented as 

 𝑝,𝑞 = 

{ 

𝑇 𝑝,𝑞 if 𝑇 𝑝,𝑞 < 𝐹 𝑝,𝑞 (stick state) 

𝐹 𝑝,𝑞 otherwise (slip state) . 
(16)

.3. Bending moment 

The total bending moment induced in an electrical wire is the sum
f moments in the conductors, moments in the insulation, and the mo-
ents induced by the conductors’ axial forces. At a curvature 𝜅, the total

ending moment induced in a wire is given by 

 = 

𝑄 ∑
𝑞=1 

𝑁 𝑞 ∑
𝑝 =1 
𝐸 𝐼 𝑝,𝑞 𝜅 + 𝐸 𝐼 𝑖𝑛𝑠 𝜅 + 

𝑄 ∑
𝑞=1 

𝑁 𝑞 ∑
𝑝 =1 
𝐹 𝑝,𝑞 𝑟 𝑞 sin 𝜃𝑝,𝑞 . (17)

Here, EI p,q is the bending stiffness of the p th strand in the q th layer,
I ins is the bending stiffness of the insulation, F p,q is the conductor axial
orce, and r q sin 𝜃p,q is the distance of the conductor center from the
ire’s neutral axis. In (17) , EI p,q is given [10] by 

 𝐼 𝑝,𝑞 = 

𝑐𝑜𝑠 
(
𝛼𝑞 
)

2 
𝐸 𝐼 𝑠 

( 

1 + cos 2 𝛼𝑞 + 

sin 𝛼𝑞 
1 + 𝜈𝑠 

) 

, (18)

here EI s is the bending stiffness of the conductor assumed as a straight
ylindrical beam, and 𝜈s is the Poisson’s ratio of the conductor. 

.4. Effect of plasticity 

During large deflection bending of a wire, the conductors undergo
lastic deformation. The plastic zone begins when the maximum stress
long the beam cross section exceeds the material’s yield stress. The
lastic zone spreads towards the neutral axis with increasing curvature.
ig. 5 (b) shows the stress distribution in elastic and elasto-plastic re-
ions. 

A beam having only elastic stress distribution obeys Hooke’s Law.
owever, in elasto-plastic stress distribution, the strain in the plastic

egion is not linearly related to the stress [19] . Therefore, the beam is
ssumed to have a laminated structure, with each lamina having differ-
nt material properties. For a lamina with thickness dy , width b ( y ), and
t a distance y from the neutral axis, the bending stiffness is given by 

 

(
𝐸𝐼 𝑠 

)
= 𝐸 ( 𝑦 ) 𝑏 ( 𝑦 ) 𝑦 2 𝑑𝑦, (19)

nd integrating (19) across the beam cross section, the bending stiffness
f the beam is given by 

 𝐼 𝑠 = ∫
ℎ 2 

− ℎ 1 
𝐸 ( 𝑦 ) 𝑏 ( 𝑦 ) 𝑦 2 𝑑 𝑦. (20)
Fig. 5. (a) Cross section of a generic beam showing a layer 
of differential thickness dy ; (b) stress distribution across a 
beam cross section for elastic and elasto-plastic bending, 
showing stress reduction due to plasticity. 
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Table 1 

Wire diameter, conductor area, number of conductors, lay angles of the 
Here, the elastic modulus E ( y ) is the secant modulus calculated from
he material stress-strain curve at a local strain 𝜖𝑥𝑥 = 𝑦𝜅. The conductors
re typically made with ductile metals, hence the conductor is assumed
o have the same stress-strain relationship in compression and in tension.
or a cylindrical conductor with radius r , the bending stiffness given by
20) reduces to 

 𝐼 𝑠 = 2 ∫
𝑟 

− 𝑟 
𝐸 ( 𝑦 ) 

(√
𝑟 2 − 𝑦 2 

)
𝑦 2 𝑑 𝑦, (21)

nd discretizing the integral, we have 

𝐼 𝑠 = 2 
𝑉 ∑
𝑣 =1 
𝐸 𝑣 

( √ 

𝑟 2 − 𝑦 2 
𝑣 

) 

𝑦 2 
𝑣 
Δ𝑦. (22)

ere, V is the total number of laminae in the conductor cross section,
 v is the elastic modulus of the v th layer, y v is the distance of the v th 

amina from the neutral axis, and Δy is the lamina thickness ( Δy ≪ R ).
he bending stiffness given by (22) is for a straight cylindrical beam.
ubstituting (22) in (18) yields the bending stiffness of a helical beam.
he total bending moment (17) is differentiated with respect to 𝜅 to give

 𝐼 𝑤 ( 𝜅) = 

𝑄 ∑
𝑞=1 

𝑁 𝑞 ∑
𝑝 =1 
𝐸 𝐼 𝑝,𝑞 + 𝐸 𝐼 𝑖𝑛𝑠 + 

𝑄 ∑
𝑞=1 

𝑁 𝑞 ∑
𝑝 =1 

𝑑 𝐹 𝑝,𝑞 𝑟 𝑞 

𝑑 𝜅
. (23)

t each value of curvature, the homogenized bending stiffness of the
ire is evaluated using (23) and is recorded as a lookup table. The

ookup table serves as a tool for use in digital manufacturing software
o simulate wires as homogenized rods. 

. Large deflection formulation 

In a wire subjected to small deflections, the curvature is 𝜅 ≈ 𝑑 2 𝑦 
𝑑𝑥 2 

and

he bending moment is 𝑀 ≈ 𝐸𝐼 𝑤 
𝑑 2 𝑦 
𝑑𝑥 2 

. For large deflections, elementary
eam theory [20] gives the bending moment as 

 = 𝐸𝐼 𝑤 𝜅 = 𝐸𝐼 𝑤 

𝑑 2 𝑦 
𝑑𝑥 2 ( 

1 + 

(
𝑑𝑦 

𝑑𝑥 

)2 
) 

3 
2 

. (24)

Here, EI w is the homogenized bending stiffness of the wire. Expand-
ng the denominator in (24) using binomial expansion and substituting
 with 𝑃 ( 𝑙 − 𝑥 ) we have 

𝑑 2 𝑦 

𝑑𝑥 2 
= 

𝑃 ( 𝑙 − 𝑥 ) 
𝐸 𝐼 𝑤 ( 𝜅) 

∞∑
𝑟 =0 

( 

1 . 5 

𝑟 

) ( 

dy 

dx 

) 2 𝑟 
, (25)

here P is the point load applied at the free end of the cantilever, l is the
rojection of the cantilever beam on the x-axis, x is the distance from
he free end as shown in Fig. 6 , and EI w ( 𝜅) is a function of curvature 𝜅
ig. 6. Large deflection bending of a cantilever beam subjected to a point load 
t its free end, showing the beam length L and the projected length l . 
s shown in (23) . Solving the nonlinear differential Eq. (25) [21] using
eversion [22] , we derive the beam equation y ( x ) as 

 ( 𝑥 ) = 

( 

𝑃 

2 𝐸 𝐼 𝑤 ( 𝜅) 

) ( 

− 

𝑥 3 

3 
+ 𝑙𝑥 2 

) 

+ 

1 
2 

( 

𝑃 

2 𝐸 𝐼 𝑤 ( 𝜅) 

) 3 

×
( 

− 

𝑥 7 

7 
+ 𝑙 𝑥 6 − 

12 
5 
𝑙 2 𝑥 5 + 2 𝑙 3 𝑥 4 

) 

+ higher order terms . (26) 

In the simulation procedure, the force P is increased in steps and
t each increment, the shape of the beam is evaluated using (26) . The
ending stiffness EI w varies with curvature and is determined from a
ook-up table of EI w versus 𝜅. Curvature at the fixed end, where slip ini-
iates, is used to determine EI w and at each increment of P , the bending
tiffness is assumed constant along the beam curved length l . The tip
isplacement y ( l ) is recorded as a function of the tip force P . 

. Experiments 

The bending responses of wires were measured to calibrate and val-
date model parameters such as friction coefficients and radial force ex-
rted by the insulation. Two types of wires are tested; type A wires have
ncompressed conductors and type B wires have compressed conduc-
ors. Dimensions, sample lengths, and cross section schematics of the
ires tested are tabulated in Table 1 . The wire diameters and the con-
uctor areas are provided in the wire manufacturer specification sheet.
he helix angle is determined by stripping the wire insulation and using
 microscope to optically measure the angle between the helix and the
ire axis. Type B wires were tested in two sample lengths to validate

he model for different sample lengths. 
This section describes the experimental setup and the procedure to

est the samples. An inverted cantilever bending setup is designed to test
he samples as shown in Fig. 7 . One end of the wire sample is clamped
n a fixture creating the fixed boundary condition, and the adapter is
ounted on a shaft connected to a stepper motor. The other end is con-
ected to a load cell with an aramid strand. The stepper motor provides
isplacement to the fixed end of the cantilever beam and simultaneously
he tension in the aramid strand is measured by the load cell. 

Fig. 8 shows the initial and bent shapes of a wire sample. The sample
s displaced by 50 mm at 1 mm s −1 . The aramid strand length is 760 mm
nd the tension in the strand is measured with a Cooper 2 g load cell.
 dSPACE 1103 control box is used to control the stepper motor and to
ecord the load cell measurements. Additionally, the shape of the wire
ample during bending and the tip displacement are measured with a
otion capture system. This avoids error due to the possibility of missing

tepper motor steps at low speeds. The data is sampled at 10 kHz. 
conductors, sample lengths, and conductor layouts of the five types of wires 
tested. Type A wires have cylindrical conductors and type B wires have 
compressed conductors. 

Wire d w (mm) A c (mm 

2 ) N s 𝛼q (°) L (mm) Cross section 

A1 1.4 0.37 7 12 85 

A2 1.6 0.56 7 12 85 

A3 1.8 0.86 19 12, -15 85 

B1 1.1 0.35 7 12 85, 100 

B2 1.25 0.49 7 12 85, 100 
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Fig. 7. Schematic representation of the experimental setup used for cantilever 
bend testing of electrical wires. The clamped end is displaced and the force at 
the free end is measured. 
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Fig. 9. Simulated bending stiffness versus curvature for wire A2 showing the 
two kinematic states for elastic and elasto-plastic models of wire bending. 
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Three samples of each wire type and length are tested and the force
ersus tip displacement data for each test is recorded. For comparison
ith the analytical model, a 95% confidence interval is estimated based
n the experimental data. The confidence limits at any displacement
23] 𝛿 for unknown population standard deviation are given by 

 𝑙𝑖𝑚𝑖𝑡𝑠,𝛿 = 𝑥 𝛿 ± 𝑡 0 . 95 ,𝑛 
𝑠 √
𝑛 
, (27)

here 𝑥 𝛿 is the mean force of all samples at displacement 𝛿, n is the
umber of samples, t 0.95, n is the t-statistic for n samples, and s is the
tandard deviation. 

. Results and discussion 

The wires used in the analytical model development are made with
opper conductors enclosed in PVC insulation. A stress-strain curve from
taller et al. [24] is used to model annealed copper and the elastic mod-
lus of plasticized PVC is modeled as 1.225 GPa [25] . In the stick state,
he wire has a constant bending stiffness since the conductors are in con-
act with each other and the wire bends as a single beam. In pure elastic
ending, as the conductors start to slip against each other, the bending
tiffness of the wire reduces towards a minimum value, at which point
he friction between the conductors is negligible. However, in elasto-
lastic bending, the conductors start to undergo plastic deformation be-
ore attaining a fully slip state. The cantilever bend test presented in
ection 5 is simulated based on the analytical model and the model pa-
ameters are calibrated by comparing the simulated force-displacement
esponse with the test data. 

The reduction in bending stiffness with increasing curvature for wire
2 is shown in Fig. 9 . In the case of wire A2, the bending stiffness re-
uces by 77% from the stick to slip state and by another 55% from the
lip state to the plastic region. The dashed line represents the variation
n bending stiffness for a purely elastic model. The slip state represents
he transition from partial to full slip. In the absence of plasticity, the
ending stiffness reaches a constant value. 

.1. Model evaluation 

The radial force exerted by the insulation F ins , and the interlayer
riction coefficients 

(
𝜇1 , 𝜇2 , … , 𝜇𝑁−1 , 𝜇𝑁 

)
are identified as the model

arameters. Because all the conductors are made with copper, inter-
onductor friction coefficients are assumed to be equal, i.e. 𝜇1 = 𝜇2 =
= 𝜇𝑁−1 = 𝜇𝑠 , and the friction coefficient between the insulation and

he outermost layer ( N 

th layer) 𝜇N is designated as 𝜇p . The parame-
er values are evaluated by calibrating the model to minimize the error
Fig. 8. (a) Initial and (b) final shapes of a wire 
sample during the cantilever bending test used 
for model development. 
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Table 2 

Initial and optimized values of analytical 
model parameters: radial force exerted by the 
insulation ( F rad ), inter-conductor friction coef- 
fcient ( 𝜇s ), and insulation-conductor friction 
coefficient ( 𝜇p ). 

Parameter F rad (N) 𝜇s 𝜇p 

Initial value 0.2 0.2 0.2 

Optimized value 0.15 0.21 0.10 

b  

a  

v

𝜖  

w  

v  

e  

o  

u  

m  

t  

c  

i
 

m  

a  

d  

a  

t  

r  

t  

e  

u  

F  

m
 

t  

f  

i  

n
 

v  

a  

a  

c  

w  

w

Fig. 11. Bending stiffness versus curvature for the three type A wires showing 
the difference in stick, slip, and plastic regions of the wires. Wire A3 has a more 
gradual transition from stick to slip state due to having two layers compared to 
a single layer for wires A1 and A2. 

Table 3 

Sum of squares errors (SSE) and root mean 
square errors (RMSE) for the analytical model 
relative to experimental measurements. All of 
the wire types have an error ≪ 1, indicating 
that the analytical model provides a good fit. 

Wire type SSE RMSE 

A1 0.0056 0.0059 

A2 0.0012 0.0021 

A3 0.0005 0.0020 

B1 0.0033 0.0037 

B2 0.0127 0.0057 
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a

etween the model output and the test data. For minimizing the error,
n objective function is defined with 𝜇s , 𝜇p , and F rad as the function
ariables and is given by 

= 

𝑛 ∑
𝑖 =1 

[
𝐹 𝑚,𝑖 

(
𝜇𝑠 , 𝜇𝑝 , 𝐹 𝑟𝑎𝑑 

)
− 𝐹 𝑒,𝑖 

]2 
, (28)

here 𝜖 is the error sum of squares ( SSE ), n is the total number of obser-
ations, F e,i is the force measured at displacement d i , and F m,i is the force
valuated by the model at displacement d i . Multivariable unconstrained
ptimization of the objective function using MATLAB® function fmin-

nc solves for ( 𝜇s , 𝜇p , F rad ) such that the objective function 𝜖 attains a
inimum. Table 2 summarizes the initial and optimized values of the

hree model parameters. Data from testing wire A2 is used for model
alibration and the data from testing other wires is used for model val-
dation. 

The measured and the simulated forces are normalized against the
aximum overall recorded force and plotted versus tip displacement,

s shown in Fig. 10 (a). The wire shape is compared at six discrete tip
isplacement intervals and the measured and the simulated wire shapes
re shown in Fig. 10 (b). For each displacement interval, dots represent
he motion capture markers on the experimental sample, the dashed line
epresents a polynomial fit of the markers, and the solid line represents
he shape of the beam simulated by the analytical model. The differ-
nce in initial profiles between the measured sample shape and sim-
lated beam shape is due to variability in preparing the wire sample.
ig. 10 shows that the model output agrees well with the experimental
easurement. 

The bending stiffnesses of wires A1, A2, and A3 are shown as a func-
ion of curvature in Fig. 11 . As expected, the bending stiffness is highest
or wire A3 which has the largest diameter. The stick-to-slip transition
n wire A3 occurs over a higher range of curvature due to the larger
umber of conductors. 

Fig. 12 (a) and (b) show the measured force and the simulated force
ersus tip displacement for wires A1 and A3. Wire A1 and A2 samples
re 85 mm long, and wire A3 samples are 120 mm long. Wire A3 samples
re longer to reduce the maximum force measured, due to the load cell
apacity limit. The maximum tip displacement is 50 mm for all of the
ire types. Therefore, the force observed at 50 mm displacement for
ire A3 is lower than that for wires A1 and A2. 
Wire type B samples were tested in two different lengths, 85 mm
nd 100 mm, to validate the independence of the analytical model on
he sample length. Figs. 13 and 14 show the measured force and the
imulated force as a function of tip displacement for wires B1 and B2,
espectively. 

Sum of squares errors ( SSE ) and root mean square errors ( RMSE ) are
hosen as metrics to evaluate the model fit with respect to the experi-
ental data. The SSE and RMSE values are calculated by 

 𝑆 𝐸 = 

𝑛 ∑
𝑖 =1 

(
𝐹 𝑚𝑜𝑑𝑒𝑙,𝑖 − 𝐹 𝑒𝑥𝑝,𝑖 

)2 
, (29)

𝑀𝑆𝐸 = 

√ ∑𝑛 
𝑖 =1 

(
𝐹 𝑚𝑜𝑑𝑒𝑙,𝑖 − 𝐹 𝑒𝑥𝑝,𝑖 

)2 
𝑛 

, (30)

nd are shown in Table 3 . 
Fig. 10. (a) Measured and simulated force 
versus displacement curves for cantilever 
bending of wire A2 and (b) measured wire 
marker locations (dots), polynomial fits of 
marker locations (dashed lines), and the 
simulated wire shapes (solid lines) at vari- 
ous intervals of bending. 
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Fig. 12. Measured and simulated force versus 
displacement curves for (a) wire type A1 (sam- 
ple length = 85 mm) and (b) wire type A3 (sam- 
ple length = 120 mm). 

Fig. 13. Measured and simulated force versus 
displacement curves for (a) 85 mm and (b) 
100 mm long samples of wire type B1. 

Fig. 14. Measured and simulated force versus 
displacement curves for (a) 85 mm and (b) 
100 mm long samples of wire type B2. 
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For the evaluation of error metrics, the model output for each wire
s compared against the experimental mean of the corresponding wire.

ire types A1, A2, A3, and B1 have SSE ≪ 1 which shows that the
odel is a good fit. The analytical model output for wire type B2 is
ithin the 95% confidence interval of the experimental data, but the
SE value is high because of a large variance in the test data. 

.2. FEA of wire bending 

Due to the high computational costs associated with performing
igh-fidelity simulations of stranded electrical wire bending, only wires
2 and B2 were chosen for the FEA study in Abaqus FEA®. The ge-
metry, FE mesh, and deformed shapes of these wires are shown in
ig. 15 . The conductors are discretized using 8-node hexahedral ele-
ents, where a custom Python script was developed for meshing com-
ressed conductors in wire B2. The PVC insulation is meshed using 8-
ode 3D continuum shell elements, which account for the insulation
hickness the same way as 3D solid elements. The conductor cross sec-
ion is discretized into 10 elements and the aspect ratio of each ele-
ent is less than 3. An explicit integration scheme with a mass scal-

ng factor of 20 is used to perform the simulation. Note that the mass
caling factor and the mesh size were chosen after a parametric study
o ensure kinetic forces are insignificant, i.e., less than 5% of iner-
ia forces at each time increment. In the cantilever bending simula-
ion, one end of the wire is fixed by constraining all degrees of free-
om, while the other end is vertically displaced. The friction coeffi-
ients, radial force exerted by the insulation, material properties, and
eometrical properties are the same as those used with the analytical
odel. 

Fig. 16 shows the measured force, simulated force, and analyti-
al model output force as a function of tip displacement for wires A2
nd B2. 
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Fig. 15. FE models of wires (a) A2 and (b) 
B2, showing portions of the mesh and simu- 
lated bent shape of the wires. 

Fig. 16. Force versus displacement plots show- 
ing the experimental data, analytical model out- 
put, and FE model output for wire (a) A2 and (b) 
B2. 

Fig. 17. Von Mises stress distribution at the 
fixed end for (a) wire type A2 and (b) wire type 
B2. The symmetric stress distribution in each 
wire supports the laminated stress distribution 
assumption presented in Section 3.4 . 

 

e  

t  

F  

e  

a  

e  

m  

p  

i  

o  

c  

m  

t
 

f  

u  

a  

t  

w  

m

C

 

d  

m  

t  

c  

p  

t  

t  

s  

m  

b  

e  

m

For wire A2, the RMS error between the FE model output and the
xperiments is 0.0031 for wire A2 and 0.0038 for wire B2. For the lat-
er, there is a notable difference between the the force outputs of the
E model and the analytical model at higher deflections. This differ-
nce could be due to higher friction between conductors resulting from
 larger contact area with the compressed wires, as well as the differ-
nt cross section geometry of compressed conductors. In the analytical
odel, the compressed conductor cross sections are modeled as perfect
olygons to simplify calculations, while the polygon edges are rounded
n the FE model to improve the fidelity of simulations. However, outputs
f both the analytical model and the FE model are still within the 95%
onfidence interval of the experimental data. The wavy nature of the FE
odel force output is caused by the mass scaling factor used to reduce

he computational cost, as described by Taghipour et al. [13] . 
Fig. 17 shows that the stress profile in the conductors has a laminar

orm as proposed in Section 3.4 . Stress profiles in wire A2 are fairly
niform for all the conductors. However, the stress profiles in wire B2
re biased about the horizontal plane of symmetry. It is conjectured that
his bias is due to the polygonal shape of the conductor cross sections,
hich interlock to resist twisting of the conductors, thus resulting in
ultiple sites of stress concentration. 

onclusion 

A new analytical formulation is presented to characterize the large
eflection elasto-plastic bending of electrical wires. The analytical
odel accounts for the helical structure of the conductors, friction be-

ween the conductors, the radial force exerted by the insulation on the
onductors, and the plastic deformation of the conductors. The model
arameters have been calibrated and validated against experiments such
hat the model output is within the 95% confidence interval of the
est data. The analytical model output is also compared with 3D FE
imulations for cantilever bending to further support the analytical
odel assumptions. The analytical model is successful in evaluating the

ending stiffness of wires based on their geometrical and material prop-
rties. Hence, the analytical model can serve as a surrogate for experi-
ental testing of electrical wires. 
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Future work will involve extending the analytical model to cable
tructures, where the wires are arranged in a bundle configuration. 
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