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An analytical model is presented to calculate the elasto-plastic bending response of electrical wires subjected
to large deflections. Electrical wires are defined as helically wound conductors enclosed in polymer insulation.
For modeling purposes, the conductor layout in a wire’s cross section is estimated using a packing algorithm.
Euler-Bernoulli beam theory describes the overall wire bending behavior; the conductors’ stick-slip behavior
is modeled based on Coulomb’s friction law. In the plastic region, the conductors are modeled as laminated

composite beams. A cantilever bending setup is used to characterize the force displacement response of wires with
different diameters, number of conductors, beam lengths, and conductor cross sections. The model parameters
are calibrated to ensure that the force-displacement calculations are within the 95% confidence interval of the

test data.

1. Introduction

Automobiles have multiple electronic, electrical, and electro-
mechanical systems connected by a network of wire harnesses. Issues
related to wire harnesses are a root cause of a significant number of
customer reported problems [1]. Additionally, increasing vehicle elec-
trification due to technological advances has increased the complexity
of wire harnesses [2]. This has increased the demand for reliability of
wire harnesses. Shortened development periods and reduced number
of prototypes has also called for a greater efficiency in harness design.
This can be achieved with digital manufacturing of wire harnesses to
identify and mitigate any performance issues that may arise during and
after manufacturing. However, current commercial software is intrin-
sically inaccurate for mechanical modeling of wire harness networks
since they typically assume linear elasticity, whereas in practice, har-
nesses are complex multi-material structures that undergo elasto-plastic
deformations. Hence, there is a need to accurately model the harness
components for use in digital manufacturing applications. Digital man-
ufacturing can also help to identify the effects of variability in harness
features such as excess harness lengths or insufficient tape layers, nei-
ther of which damage the harness but can cause unwanted noise due to
rattling.

A wire harness is an assembly of electrical wires, protective con-
duits, insulation tape, mounting clips, and electrical connectors. Electri-
cal wires are key building blocks of wire harnesses and a starting point
for addressing the complex structure of wire harnesses. A typical elec-
trical wire is made by helically winding conductors around a core in
one or multiple layers, and then encasing them in polymeric insulation
(Fig. 1). Harnesses are predominantly subjected to bending loads during
the assembly process [3], so this work focuses on modeling the response
of wires subjected to such loads.

Costello [4] proposed a model for bending of wire ropes with sin-
gle layers, which posits that the bending stiffness reaches a minimum
value corresponding to the slip state. This model was generalized for
wires with complex cross sections by Velinsky [5]. However, neither of
these models includes the effect of interlayer friction. Lanteigne [6] for-
mulated a general stiffness matrix for aluminum conductor steel re-
inforced (ACSR) cables subjected to bending, torsion, and elongation
which includes only the contribution of radial force to interlayer fric-
tion. Papailiou [7] presented a model for bending of ACSR cables tak-
ing into account interlayer friction and derived a moment-curvature
relationship. Hong et al. [8] have modified the model by including
the change in interlayer lay angle for calculating the radial contact
forces.
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Insulation

Conductor core

Fig. 1. Architecture of a typical helically-wound, stranded electrical wire mod-
eled in this paper.

Inagaki et al. [9] extended Papailiou’s model to second-order helical
cables and modeled the effect of axial and torsional forces on the bend-
ing moment of wire conductors, incorporating a model for the contact
between insulation and conductors. Foti and Martinelli [10] extended
this model by including the effect of residual radial contact forces be-
tween layers and also proposing a substantially different approach to
evaluate the axial force in the wires. Another extension of Papailiou’s
model is presented in Foti and Martinelli [11], which accounts for the
coupled axial-bending behavior of wire ropes. Jiang [12] presented a
finite element model to predict the elasto-plastic behavior of a straight
wire under pure bending loads. In our previous work [13], a methodol-
ogy was presented to determine Holloman’s material constants for ho-
mogenized electrical wires.

A new analytical formulation is presented in this paper for large
deflection elastic-plastic bending of electrical wires. The overall bend-
ing behavior of the electrical wire is modeled based on Euler-Bernoulli
beam theory [14]. The friction between conductors is defined using
Amontons-Coulomb friction laws. The kinematic state of the wire is de-
termined by comparing stick and slip axial forces acting on each conduc-
tor. Plasticity is modeled by treating the conductors as laminated com-
posite beams with each lamina having a different bending modulus. The
change in helix angle is neglected since the conductors are enclosed in
insulation, which limits twisting of the helix and separation of the con-
ductors. The total bending moment of the wire is the sum of moments
in the individual conductors and the insulation.

An effective bending stiffness versus curvature relation is derived
by homogenizing the wire as a cylindrical beam. The effective bending
stiffness can then be used in digital manufacturing applications. An algo-
rithm for packing circles in a larger circle [15] is used to determine the
conductor layout in the wire cross section, i.e., the radial and angular
positions of the conductors in the cross section. This is required as most
manufacturers of electrical wires (e.g., [16]) specify only the number
of conductors in a wire, but the arrangement of conductors needs to be
known to model the forces acting on individual conductors. The pack-
ing algorithm and the analytical model together form a tool to automate
the process of determining the bending stiffness for a large number of
electrical wires based on their geometric and material properties.

Friction coefficients and the radial force exerted by the insulation
are considered to be model parameters. A cantilever bending test is de-
signed to characterize the wires with force at the free end recorded as
a function of tip displacement. The cantilever bending test is simulated
using the homogenized bending stiffness computed by the analytical
model in a large deflection bending formulation to output force at the
free end as a function of tip displacement. The model parameters are
selected to minimize the error between the model output and experi-
mental data. A 3D finite element simulation of the cantilever bending
test is also conducted using Abaqus FEA® finite element analysis soft-
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ware. The laminated beam assumption is validated by comparing the
analytical model output with the FE model output.

Section 2 presents a nonlinear optimization method to evaluate the
cross section layout of conductors and the nomenclature used to desig-
nate the conductors. The analytical formulation to model the elastic-
plastic bending of helically stranded electrical wires is presented in
Section 3. The evaluation of a homogenized bending stiffness and a large
deflection formulation to simulate the cantilever bending of wires are
presented in Section 4. Section 5 describes the cantilever bending test
setup for model calibration and validation. The model has been cali-
brated and validated for wires with various conductor diameters, insu-
lation thicknesses, types of conductors, and wire lengths and the results
are presented in Section 6.

2. Wire geometry

In a wire, the positions of the conductors in the cross section affect
the bending stiffness of the wire. Hence, in order to automate the pro-
cess of defining conductor layouts for a large number of wire types and
sizes in digital manufacturing applications, an algorithm is written for
packing smaller circles in a larger bounding circle. The smaller circles
represent the conductors and the larger circle represents the inner sur-
face of the insulation. Initial values for the center coordinates of each
conductor are guessed using a random number generator. The conduc-
tor layout is estimated by minimizing the elastic energy of the system,
defined as the sum of distances squared.

Assume N smaller circles with equal radii r are to be packed in a
larger bounding circle of radius R. The minimum distance between an
i circle with center (x;,y;;i =1,2,3,..., N) and a j* circle with center
(xj,yj;j =1,2,3,...,N) is given by

2=\ (x =52+ (=) 3V (x = x) 2 (=) < 2

0 otherwise.

dy =

(C))

The minimum distance between the i circle and the bounding circle
with center at the origin (0, 0) is given by

2.2 i 2. .2
dy = r—R+\/x,.+y,. lf\/x,.+yi+r>R @
0 otherwise.

Assuming a unit proportionality constant, the potential energy of the
it" body is given by

N
2 2
U=dy+ Y d;, 3)
J=Lj#i

and the total potential energy U of the system is given by

N
U= U, @
i=1

Conductor centerline coordinates are solved by multi-variable op-
timization of U(xy,y;,x,,¥,.....Xy,yy) using the MATLAB® func-
tion fminunc. This function uses a quasi-Newton search method
to find the function minimum; the search direction is determined
by estimating the approximate Hessian matrix using the Broy-
den—TFletcher—Goldfarb—Shanno (BFGS) formula. Initial values of the
center locations are randomly chosen such that conductor centers are
within the insulation as shown in Fig. 2(a). The final conductor ar-
rangement after packing is shown in Fig. 2(b). Comparisons between
the estimated conductor arrangements and actual wire cross sections
for 7-conductor and 19-conductor wires are shown in Fig. 3.

The wire conductors are sorted into groups based on the radial dis-
tances of the conductor centerlines to the wire centerline. Here, the num-
ber of groups equals the number of layers in the helix. For simplicity, a
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Fig. 2. (a) Initial guess for conductor configuration; (b) optimized conductor
configuration obtained using a circle packing algorithm. The dashed circle rep-
resents the inner surface of the insulation and the solid circles represent the
outlines of the individual conductors.

pt? conductor in a g layer is identified as (p, q). The values taken by
(, @) are

1,1 1,2 .. Lo
2,1 2,2 :
N1 o
.9 = Ny2 \ ®)
Np.0

with the columns representing the helix layers and the rows represent-
ing the conductors in a layer. For example, the 7-conductor wire shown
in Fig. 3(a) has one core and one layer with 6 conductors, so O = 1 and
N, = 6. Similarly, for the 19-conductor wire shown in Fig. 3(b), O =2,
N, =6,and N, = 12. In Fig. 3(b) there is a slight mismatch between the
calculated and actual positions of the conductors in the second layer.
Hence, we applied the analytical model to both the algorithm-generated
and true configurations and found that the difference between the model
outputs was not significant. For modeling, the wire layout is oriented by
defining the neutral axis by a vector connecting the wire centerline and
the centerline for a randomly chosen conductor in the first layer. For the
wires tested in this work (lay angles < 15 °), no distortion in the conduc-
tor cross sections was observed in either FEA or optical measurements.
However, for wires with larger lay angles, it is understood that the lay
angle can have an effect on the cross section shape of the conductors.
To account for this change in cross section shape, the algorithm can be
modified to pack ellipses within a circle [17]. The algorithm above is
restricted to conductors with equal diameters, but can be readily modi-
fied to model wires having layers composed of conductors with different
diameters [18].

In this work, we have modeled and tested two types of wires: wires
with circular conductors and wires with compacted conductors. For cir-
cular conductors, the cross section layout is estimated using the algo-
rithm as described above. For wires with compacted conductors, the
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algorithm is effective for determining the number of conductors in each
layer by assuming circles with equivalent cross sections. However, once
the number of conductors in each layer is determined, the actual shapes
of the conductors are modeled by defining polygons to fit that number
of conductors in the layer while preserving conductor area.

3. Stick-slip model of the conductor

An electrical wire’s conductive core is made of helically wound metal
conductors. Due to its stranded nature, a wire in bending exhibits two
kinematic states: stick state and slip state. Initially, the wire is in a stick
state and bends as a single beam. With increasing curvature, the axial
forces induced in the conductors due to bending exceed the frictional
force and the conductors start to slip against adjacent surfaces, causing
the wire to be in the slip state.

3.1. Stick state

Conductors in the stick state are modeled as Euler-Bernoulli beams
and the axial strain in a conductor is the sum of responses from torsion,
elongation, and bending of the wire. The axial strain in the pt conductor
in the g layer is given as

- ; 2 2 .
€pq = Kl SN0, , cOS™ @ + €, €08™ a + T,r Sin @, COS ), (6)

where «,,¢€,, and 7, respectively denote curvature, elongation, and
twist in a wire, rq is the distance from the wire center to the gt layer,
0, is the angular position of the conductor from the x-axis, and « is the
lay angle of the gt layer. Multiplying (6) with conductor axial rigidity
(EA); gives the axial force as

— o 2 2 H
T,, = (EA); (Kqu sinf, , cos” a, + €,,cos” a, + T, F, Sin @, COS aq). (@)

The wires are assumed to be under pure bending. Hence, the wire
elongation and twist are neglected and the conductor axial force T,
in (7) is directly proportional to ry the radial distance of the conductor
centerline from the wire centerline. Therefore, slip begins in the conduc-

tors farthest from the neutral plane and progresses towards the center.

3.2. Slip state

In the slip state, the Amontons-Coulomb friction model is used to de-
fine the contact forces between conductors and between the conductors
and the insulation. Helically wound wires have a small tangential gap
between conductors in the same layer [9] due to imperfections from
manufacturing or the loading process. Hence, only the contact forces
between conductors of adjacent layers are modeled and contact forces
between conductors in the same helix layer are neglected. A differential
conductor element in the g layer is selected and is shown in Fig. 4. The
static equilibrium equation is given by

dF, —h,, =0, ®)

q ~ 8paq
dFpq = HeHyg = 1#q1Gpq =0, ®

where Hq and H, , are the friction coefficient and the normal force, re-
spectively, between layer g and layer ¢ + 1. Similarly, 4, , and G, 4 are

Fig. 3. Estimated and actual cross sections of a typi-
cal (a) 7-conductor wire and (b) 19-conductor wire.
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Pq
h
Pq
F F +dF
».q P4 p.q
G
pr9q

Fig. 4. Static force diagram for a differential element of the p conductor in
the g™ layer subjected to an axial force F, ;> normal forces H, ; and G, ; from
adjacent layers, friction forces h,, and g, resulting from relative sliding of

adjacent layers, and the resulting increment in axial force dF.

the friction coefficient and the normal force, respectively, between layer
q — 1 and layer q.

The radial force exerted by the insulation F, 4 is constant throughout
the wire cross section. To satisfy equilibrium between layers, the force
exerted by layer q on layer g — 1 is given by

N,

=G el 10)

H —_—
pq Nq—l

pg—1

Substituting (10) in (9) and satisfying static equilibrium, the normal
forces exerted on the g layer by the surrounding layers are given by

Q
. Ny No
H,, = Z (Fp’ksmak7>+FmdF, 11
k=q+1 q q
G,g=H,,+ F,, sina,. (12)

Substituting (11) and (12) in (9) we have the differential increment
in axial force dFM as

S - N No
dFy, = (ug+ug)| Y Fpasinag—t + Fg a0
k=g+1 q q

+ g1 Fy g sina,do. (13)

Solving (13) with initial condition Fp)q(O), the frictional force Fp, q in the
p® conductor in the g layer is given by

. ”q + ”q—l
Fpq = exp (s sina,0,,)( F,,0)+ B,

Hg—1SinQy
Mg+ Uy
_‘1—."1 . (14)
Hg—y sina, ¥
Q
Ny Ng
By,= ) (F ksinak—>+F i— (15)
P p. ra
k=q+1 Nq Nq

Elastic bending
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In the solution procedure, for each increment in curvature x, Tp,

and F, ; are compared to determine if the conductor is in the stick or
slip state and the minimum of (Tp’ ¢, q) is taken as the conductor axial
force. Mathematically, the axial force is represented as

F = Thq
P
P4

3.3. Bending moment

if T g < Fpg (stick state) (16)
otherwise (slip state).

The total bending moment induced in an electrical wire is the sum
of moments in the conductors, moments in the insulation, and the mo-
ments induced by the conductors’ axial forces. At a curvature «, the total
bending moment induced in a wire is given by

0 Ny 0 Ny
M= N El,k+Elx+ Y Y F,r,sing,,. 7
g=1p= g=1p=1

Here, EI, ; is the bending stiffness of the pt strand in the gt! layer,
El;y, is the bending stiffness of the insulation, F, 4 is the conductor axial
force, and resing,  is the distance of the conductor center from the

wire’s neutral axis. In (17), EL, is given [10] by

cos(ay) ) sina,
=— E15<1+cos a, + . ) (18)

p.q

where EI, is the bending stiffness of the conductor assumed as a straight
cylindrical beam, and v; is the Poisson’s ratio of the conductor.

3.4. Effect of plasticity

During large deflection bending of a wire, the conductors undergo
plastic deformation. The plastic zone begins when the maximum stress
along the beam cross section exceeds the material’s yield stress. The
plastic zone spreads towards the neutral axis with increasing curvature.
Fig. 5(b) shows the stress distribution in elastic and elasto-plastic re-
gions.

A beam having only elastic stress distribution obeys Hooke’s Law.
However, in elasto-plastic stress distribution, the strain in the plastic
region is not linearly related to the stress [19]. Therefore, the beam is
assumed to have a laminated structure, with each lamina having differ-
ent material properties. For a lamina with thickness dy, width b(y), and
at a distance y from the neutral axis, the bending stiffness is given by

d(EI,) = EQb(y)y*dy. (19)

and integrating (19) across the beam cross section, the bending stiffness
of the beam is given by

hy
EI = / E»b(»)y*dy. (20)
_hl

Fig. 5. (a) Cross section of a generic beam showing a layer
of differential thickness dy; (b) stress distribution across a
beam cross section for elastic and elasto-plastic bending,
showing stress reduction due to plasticity.

Elasto-plastic bending

(b)
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Here, the elastic modulus E(y) is the secant modulus calculated from
the material stress-strain curve at a local strain ¢, = yx. The conductors
are typically made with ductile metals, hence the conductor is assumed
to have the same stress-strain relationship in compression and in tension.
For a cylindrical conductor with radius r, the bending stiffness given by
(20) reduces to

EI, = Z/rE(y)(\/rz - y2>y2dy, @1

and discretizing the integral, we have

|4
El, =22EU<\/r2—y3>y12)Ay. (2
v=1

Here, V is the total number of laminae in the conductor cross section,
E, is the elastic modulus of the v! layer, y, is the distance of the v?
lamina from the neutral axis, and Ay is the lamina thickness (Ay < R).
The bending stiffness given by (22) is for a straight cylindrical beam.
Substituting (22) in (18) yields the bending stiffness of a helical beam.
The total bending moment (17) is differentiated with respect to « to give

qurq

EI (k) = 2 Z El,,+ElL, + 2 ﬁ a (23)

g=1p=1 g=1p=1

At each value of curvature, the homogenized bending stiffness of the
wire is evaluated using (23) and is recorded as a lookup table. The
lookup table serves as a tool for use in digital manufacturing software
to simulate wires as homogenized rods.

4. Large deflection formulation

. . . 2
In a wire subjected to small deflections, the curvature is x % and

2
the bending moment is M ~ EIW%. For large deflections, elementary
beam theory [20] gives the bending moment as

_dxr (24)

(H(dx)z);

Here, EI,, is the homogenized bending stiffness of the wire. Expand-
ing the denominator in (24) using binomial expansion and substituting
M with P(I — x) we have

2 P(l — 1.5 v\
&y _Pl-x Z Y (25)
dx? EI (k) w(K) = dx
where P is the point load applied at the free end of the cantilever, [ is the

projection of the cantilever beam on the x-axis, x is the distance from
the free end as shown in Fig. 6, and EI,,(x) is a function of curvature «

M =EI,x=EI,

= Initial shape

4
= = Bent shape V4
7’
7’
’
PR
AL.\" P -
-
-
% X - -
/ >
Ll
»i L .
L
P

Fig. 6. Large deflection bending of a cantilever beam subjected to a point load
at its free end, showing the beam length L and the projected length L
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as shown in (23). Solving the nonlinear differential Eq. (25) [21] using
reversion [22], we derive the beam equation y(x) as

= (P V(-2 ) s (P
Y=\ 2E1,00 3 2\ 2E1,(x)

;
X (—x— +1x6 = %szs + 2[3x4> + higher order terms. (26)

In the simulation procedure, the force P is increased in steps and
at each increment, the shape of the beam is evaluated using (26). The
bending stiffness EI,, varies with curvature and is determined from a
look-up table of EI,, versus k. Curvature at the fixed end, where slip ini-
tiates, is used to determine EI,, and at each increment of P, the bending
stiffness is assumed constant along the beam curved length I. The tip
displacement y(I) is recorded as a function of the tip force P.

5. Experiments

The bending responses of wires were measured to calibrate and val-
idate model parameters such as friction coefficients and radial force ex-
erted by the insulation. Two types of wires are tested; type A wires have
uncompressed conductors and type B wires have compressed conduc-
tors. Dimensions, sample lengths, and cross section schematics of the
wires tested are tabulated in Table 1. The wire diameters and the con-
ductor areas are provided in the wire manufacturer specification sheet.
The helix angle is determined by stripping the wire insulation and using
a microscope to optically measure the angle between the helix and the
wire axis. Type B wires were tested in two sample lengths to validate
the model for different sample lengths.

This section describes the experimental setup and the procedure to
test the samples. An inverted cantilever bending setup is designed to test
the samples as shown in Fig. 7. One end of the wire sample is clamped
in a fixture creating the fixed boundary condition, and the adapter is
mounted on a shaft connected to a stepper motor. The other end is con-
nected to a load cell with an aramid strand. The stepper motor provides
displacement to the fixed end of the cantilever beam and simultaneously
the tension in the aramid strand is measured by the load cell.

Fig. 8 shows the initial and bent shapes of a wire sample. The sample
is displaced by 50 mm at 1 mm s~'. The aramid strand length is 760 mm
and the tension in the strand is measured with a Cooper 2 g load cell.
A dSPACE 1103 control box is used to control the stepper motor and to
record the load cell measurements. Additionally, the shape of the wire
sample during bending and the tip displacement are measured with a
motion capture system. This avoids error due to the possibility of missing
stepper motor steps at low speeds. The data is sampled at 10 kHz.

Table 1

Wire diameter, conductor area, number of conductors, lay angles of the
conductors, sample lengths, and conductor layouts of the five types of wires
tested. Type A wires have cylindrical conductors and type B wires have
compressed conductors.

Wire d, (mm) A/ (mm?) N, a,() L (mm) Cross section
Al 1.4 0.37 7 12 85 @
A2 1.6 0.56 7 12 85 @
A3 1.8 0.86 19 12, -15 85 @
B1 1.1 0.35 7 12 85, 100 .
B2 1.25 0.49 7 12 85, 100 .
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Load cell

Aramid strand
Stepper g

motor

Wire sample

Load frame

Fig. 7. Schematic representation of the experimental setup used for cantilever
bend testing of electrical wires. The clamped end is displaced and the force at
the free end is measured.

Three samples of each wire type and length are tested and the force
versus tip displacement data for each test is recorded. For comparison
with the analytical model, a 95% confidence interval is estimated based
on the experimental data. The confidence limits at any displacement
[23] 6 for unknown population standard deviation are given by

_ N
Flimim,é =X5 t0.95,n_’ (27)
n

where X; is the mean force of all samples at displacement §, n is the
number of samples, t; g5, is the t-statistic for n samples, and s is the
standard deviation.

6. Results and discussion

The wires used in the analytical model development are made with
copper conductors enclosed in PVC insulation. A stress-strain curve from
Staller et al. [24] is used to model annealed copper and the elastic mod-
ulus of plasticized PVC is modeled as 1.225 GPa [25]. In the stick state,
the wire has a constant bending stiffness since the conductors are in con-
tact with each other and the wire bends as a single beam. In pure elastic
bending, as the conductors start to slip against each other, the bending
stiffness of the wire reduces towards a minimum value, at which point
the friction between the conductors is negligible. However, in elasto-

Aramid strand |

Motion capture |
markers

P
R |
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| | Elastic-plastic
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5 ! N o
g ! Elastic region | Plastic region
= < + »iet >
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an | |
‘—5 | |
= 1 | l g
9] | |
aa] |
| I ~~===-
0.5F ! | ]
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| |
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10° 10” 107" 10° 10" 10°

Curvature [1/m]

Fig. 9. Simulated bending stiffness versus curvature for wire A2 showing the
two kinematic states for elastic and elasto-plastic models of wire bending.

plastic bending, the conductors start to undergo plastic deformation be-
fore attaining a fully slip state. The cantilever bend test presented in
Section 5 is simulated based on the analytical model and the model pa-
rameters are calibrated by comparing the simulated force-displacement
response with the test data.

The reduction in bending stiffness with increasing curvature for wire
A2 is shown in Fig. 9. In the case of wire A2, the bending stiffness re-
duces by 77% from the stick to slip state and by another 55% from the
slip state to the plastic region. The dashed line represents the variation
in bending stiffness for a purely elastic model. The slip state represents
the transition from partial to full slip. In the absence of plasticity, the
bending stiffness reaches a constant value.

6.1. Model evaluation

The radial force exerted by the insulation F,, and the interlayer
friction coefficients (uy, uy..... un_i, uy) are identified as the model
parameters. Because all the conductors are made with copper, inter-
conductor friction coefficients are assumed to be equal, i.e. y; =y, =
... = Hn_| = H,, and the friction coefficient between the insulation and
the outermost layer (N layer) uy is designated as Hp- The parame-
ter values are evaluated by calibrating the model to minimize the error

Fig. 8. (a) Initial and (b) final shapes of a wire
sample during the cantilever bending test used
for model development.
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Table 2

Initial and optimized values of analytical
model parameters: radial force exerted by the
insulation (F,,4), inter-conductor friction coef-
fcient (u,), and insulation-conductor friction
coefficient (yp).

Parameter Fqg (N) Hs Hp
Initial value 0.2 0.2 0.2
Optimized value  0.15 0.21 0.10

between the model output and the test data. For minimizing the error,
an objective function is defined with ug, up, and F,4 as the function
variables and is given by

n
€= Z [Fm,i(”s’ Hps Frad) - Fe,i]z’ (28)
i=1

where ¢ is the error sum of squares (SSE), n is the total number of obser-
vations, F,; is the force measured at displacement d;, and F,, ; is the force
evaluated by the model at displacement d;. Multivariable unconstrained
optimization of the objective function using MATLAB® function fmin-
unc solves for (ug, pp, Frqq) such that the objective function e attains a
minimum. Table 2 summarizes the initial and optimized values of the
three model parameters. Data from testing wire A2 is used for model
calibration and the data from testing other wires is used for model val-
idation.

The measured and the simulated forces are normalized against the
maximum overall recorded force and plotted versus tip displacement,
as shown in Fig. 10(a). The wire shape is compared at six discrete tip
displacement intervals and the measured and the simulated wire shapes
are shown in Fig. 10(b). For each displacement interval, dots represent
the motion capture markers on the experimental sample, the dashed line
represents a polynomial fit of the markers, and the solid line represents
the shape of the beam simulated by the analytical model. The differ-
ence in initial profiles between the measured sample shape and sim-
ulated beam shape is due to variability in preparing the wire sample.
Fig. 10 shows that the model output agrees well with the experimental
measurement.

The bending stiffnesses of wires A1, A2, and A3 are shown as a func-
tion of curvature in Fig. 11. As expected, the bending stiffness is highest
for wire A3 which has the largest diameter. The stick-to-slip transition
in wire A3 occurs over a higher range of curvature due to the larger
number of conductors.

Fig. 12 (a) and (b) show the measured force and the simulated force
versus tip displacement for wires Al and A3. Wire Al and A2 samples
are 85 mm long, and wire A3 samples are 120 mm long. Wire A3 samples
are longer to reduce the maximum force measured, due to the load cell
capacity limit. The maximum tip displacement is 50 mm for all of the
wire types. Therefore, the force observed at 50 mm displacement for
wire A3 is lower than that for wires A1 and A2.
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Fig. 11. Bending stiffness versus curvature for the three type A wires showing
the difference in stick, slip, and plastic regions of the wires. Wire A3 has a more
gradual transition from stick to slip state due to having two layers compared to
a single layer for wires A1 and A2.

Table 3

Sum of squares errors (SSE) and root mean
square errors (RMSE) for the analytical model
relative to experimental measurements. All of
the wire types have an error < 1, indicating
that the analytical model provides a good fit.

Wire type SSE RMSE

Al 0.0056 0.0059
A2 0.0012 0.0021
A3 0.0005 0.0020
B1 0.0033 0.0037
B2 0.0127 0.0057

Wire type B samples were tested in two different lengths, 85 mm
and 100 mm, to validate the independence of the analytical model on
the sample length. Figs. 13 and 14 show the measured force and the
simulated force as a function of tip displacement for wires B1 and B2,
respectively.

Sum of squares errors (SSE) and root mean square errors (RMSE) are
chosen as metrics to evaluate the model fit with respect to the experi-
mental data. The SSE and RMSE values are calculated by

n
SSE = 2 (Fmadel,i - Fexp,i)z! (29)

i=1

= 2
RMSE = Z?:] (Fmoa’el,i - Fexp,i)

, (30)

n

and are shown in Table 3.
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Fig. 12. Measured and simulated force versus
displacement curves for (a) wire type Al (sam-
ple length = 85 mm) and (b) wire type A3 (sam-
ple length = 120 mm).

Fig. 13. Measured and simulated force versus

displacement curves for (a) 85 mm and (b)
100 mm long samples of wire type B1.

Fig. 14. Measured and simulated force versus
displacement curves for (a) 85 mm and (b)
100 mm long samples of wire type B2.
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For the evaluation of error metrics, the model output for each wire
is compared against the experimental mean of the corresponding wire.
Wire types Al, A2, A3, and Bl have SSE <« 1 which shows that the
model is a good fit. The analytical model output for wire type B2 is
within the 95% confidence interval of the experimental data, but the
SSE value is high because of a large variance in the test data.

6.2. FEA of wire bending

Due to the high computational costs associated with performing
high-fidelity simulations of stranded electrical wire bending, only wires
A2 and B2 were chosen for the FEA study in Abaqus FEA®. The ge-
ometry, FE mesh, and deformed shapes of these wires are shown in
Fig. 15. The conductors are discretized using 8-node hexahedral ele-
ments, where a custom Python script was developed for meshing com-
pressed conductors in wire B2. The PVC insulation is meshed using 8-

Displacement [mm]

(b)

node 3D continuum shell elements, which account for the insulation
thickness the same way as 3D solid elements. The conductor cross sec-
tion is discretized into 10 elements and the aspect ratio of each ele-
ment is less than 3. An explicit integration scheme with a mass scal-
ing factor of 20 is used to perform the simulation. Note that the mass
scaling factor and the mesh size were chosen after a parametric study
to ensure kinetic forces are insignificant, i.e., less than 5% of iner-
tia forces at each time increment. In the cantilever bending simula-
tion, one end of the wire is fixed by constraining all degrees of free-
dom, while the other end is vertically displaced. The friction coeffi-
cients, radial force exerted by the insulation, material properties, and
geometrical properties are the same as those used with the analytical
model.

Fig. 16 shows the measured force, simulated force, and analyti-
cal model output force as a function of tip displacement for wires A2
and B2.
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Fig. 15. FE models of wires (a) A2 and (b)
B2, showing portions of the mesh and simu-
lated bent shape of the wires.

AR RS AAA

1 ; ; ; 1 ; = ; Fig. 16. Force versus displacement plots show-
------ Mean of experimental data - Mean of experimental data ] ing the experimental data, analytical model out-
08t -95% CI of experimental data A 08l -95% CI of experimental data L put, and FE model output for wire (a) A2 and (b)
" [|— Analytical model ”," ~ l|——Analytical model R ’/_: B2.
z —--FEA output L4 Z ---FEA output e :f//
Z 0.61 & P Z 06 -
—_— ‘0 ” 2 [ S—)
9 0471 /,/ = 04r
B o =
02f ' 0.2
437
0 - - - - 0 : - - -
0 10 20 30 40 50 0 10 20 30 40 50
Displacement [mm)] Displacement [mm)]
(a) (b)
o (MPa)  Fig. 17. Von Mises stress distribution at the
‘\ 70 fixed end for (a) wire type A2 and (b) wire type
b 40 B2. The symmetric stress distribution in each
wire supports the laminated stress distribution
/ 20 assumption presented in Section 3.4.
-0
- |
-40
-60
-90

For wire A2, the RMS error between the FE model output and the
experiments is 0.0031 for wire A2 and 0.0038 for wire B2. For the lat-
ter, there is a notable difference between the the force outputs of the
FE model and the analytical model at higher deflections. This differ-
ence could be due to higher friction between conductors resulting from
a larger contact area with the compressed wires, as well as the differ-
ent cross section geometry of compressed conductors. In the analytical
model, the compressed conductor cross sections are modeled as perfect
polygons to simplify calculations, while the polygon edges are rounded
in the FE model to improve the fidelity of simulations. However, outputs
of both the analytical model and the FE model are still within the 95%
confidence interval of the experimental data. The wavy nature of the FE
model force output is caused by the mass scaling factor used to reduce
the computational cost, as described by Taghipour et al. [13].

Fig. 17 shows that the stress profile in the conductors has a laminar
form as proposed in Section 3.4. Stress profiles in wire A2 are fairly
uniform for all the conductors. However, the stress profiles in wire B2
are biased about the horizontal plane of symmetry. It is conjectured that
this bias is due to the polygonal shape of the conductor cross sections,

which interlock to resist twisting of the conductors, thus resulting in
multiple sites of stress concentration.

Conclusion

A new analytical formulation is presented to characterize the large
deflection elasto-plastic bending of electrical wires. The analytical
model accounts for the helical structure of the conductors, friction be-
tween the conductors, the radial force exerted by the insulation on the
conductors, and the plastic deformation of the conductors. The model
parameters have been calibrated and validated against experiments such
that the model output is within the 95% confidence interval of the
test data. The analytical model output is also compared with 3D FE
simulations for cantilever bending to further support the analytical
model assumptions. The analytical model is successful in evaluating the
bending stiffness of wires based on their geometrical and material prop-
erties. Hence, the analytical model can serve as a surrogate for experi-
mental testing of electrical wires.
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Future work will involve extending the analytical model to cable

structures, where the wires are arranged in a bundle configuration.
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