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Abstract — Compressed Sensing (CS) has provided a viable
approach to undersample a sparse signal and reconstruct it
perfectly. In this paper, the simulation results of a frequency-
modulated continuous-wave (FMCW) radar, which employs a
CS based data acquisition and reconstruction algorithm to
recover a sparse 2-D target frame using fewer number of scans
are presented. A 16-element antenna array based on digital
beamforming approach is used on the receiver end to obtain
random spatial measurements of the target frame, which is the
key to compressed sensing. A linear relationship is established
between the total received FMCW beat signal for each scan and
the 2-D sparse target frame using a basis transform matrix.
Simulations of the proposed radar are performed in MATLAB
and the reconstruction results for different noise levels are
presented.

Index Terms — compressed sensing, digital beamforming,
frequency-modulated continuous-wave radar, radar imaging,
random illumination, target localization.

I. INTRODUCTION

Nowadays, compressed sensing is being used extensively
for sparse signal reconstruction [1]. In contrast to the
traditional sampling theorem, compressed sensing allows for
reconstruction of a sparse signal by randomly under sampling
the signal and posing it as an optimization based inverse
problem. Compressed sensing has found increasing
applications in radars, including target localization [2],[3],
and subsurface imaging [4].

In [2] and [3], the need for a matched filter and high
sampling rate analog-to-digital (A/D) converter on the
receiver end was eliminated by transmitting a pseudo noise
(PN) or chirp sequence and an Alltop sequence (provides
good incoherence), respectively, and introducing CS
algorithms in the signal processing stage. In the author’s
previous publication [5], the concept of a radio frequency
(RF) front-end compressed sensing radar for 2-D localization
was proposed, which was intended to reduce the number of
scans. However, the results presented in [5] did not take into
consideration any radar parameters or the antenna directivity.
The response of each target was mathematically represented
in 1’s and 0’s. Moreover, the range of the targets was
assumed to be known beforehand and the CS algorithm was
used to determine only the angular positions of the targets.
Since the entries of the measurement matrix were represented
as 1’s and 0’s, with 1 representing the presence of a beam and
0 representing the absence of a beam, the most significant
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Fig. 1.  Proposed radar system with random radiation pattern
illuminating the target frame.

limitation in [5] was that there should be at least one beam
radiated in the direction of each target during the scanning
time, else the information about that corresponding target
would not be embodied in any of the measurements obtained.
The 2-D target frame was discretized along the angular axis
in steps of 1°, which was difficult to achieve practically.

In this paper, the simulation results of a compressed
sensing based FMCW radar for 2-D sparse target
reconstruction are presented. The radar operates at a center
frequency of 24.15 GHz, bandwidth of 300 MHz, and chirp
duration of 10 ms. Random spatial measurements of the 2-D
target frame are obtained by using a 16-element 4/2 spaced
antenna array at the receiver end, fed with random gaussian
weights using the digital beamforming approach. The
directivity of the radiation pattern is considered as the
measurement matrix. A practically realizable angular step
size of 6° is used. The received FMCW beat signal for each
scan is measured and a linear relationship is established with
the 2-D target frame using a basis transform matrix. CS
algorithms are used to recover both the range and the angular
positions of the sparse targets.

II. THEORY
A. Compressed Sensing

Compressed sensing provides a significant advantage over
existing data compression methods by simultaneously
compressing the signal while sampling it. This compression
while sampling approach allows for reduced sampling
time/rate when dealing with sparse signals. Compressed
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Fig. 2. Graphical representation of the 2-D discretized grid and
the total received beat signal for the k™ measurement.

sensing states that a K-sparse signal x of length N can be
under sampled and perfectly reconstructed using M random
measurements, where M << N. The signal x can have a sparse
representation in another orthobasis y, ie. x can be
represented as a linear combination of basis vectors from y

x = NiLisiY 1

where si represents the weighting coefficients, such that only
K of them are non-zero.

To reconstruct the signal x with high probability, the
measurements y should be random in nature. Mathematically,
the measurement matrix ¢ and the orthobasis y should be
highly incoherent for proper reconstruction. An interesting
choice for the measurement matrix is i.i.d. random variables
from a gaussian distribution or uniform Bernoulli
distribution. It is proven that these random distributions are
incoherent with any orthobasis. The random measurements y
can be represented in matrix notation as

y = &x = Pihs. 2)

The signal x can be exactly recovered from the measurements
yusing the basis pursuit algorithm, which is a /i minimization
problem given as

s’ = argmin [|s]|; s.t. y = dYs 3)

where s’ represents the reconstructed weighting coefficients.
If the measurements are corrupted with noise, the algorithm
above is slightly modified and given as

s’ = argmin [|s]|; s.t. [ly — ®Ys]l, < € 4
where € depends on the noise power level.
B. Proposed Compressed Sensing Based Radar

Fig. 1 shows the overview of the proposed FMCW radar
with a digital beamforming architecture, which illuminates
the target frame with a random radiation pattern for every
scan. In FMCW mode of operation, the radar transmits a
linear frequency-modulated continuous-wave chirp signal for
a given duration 7 with a bandwidth B and center frequency
fc. The down-converted received signal (beat signal) sb
corresponding to a target at a given range R is given as

sp(R) = exp(j(

4TBRt + 4-nfCR)) (5)
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Fig. 3. The 2-D target frame to be reconstructed.

where c is the speed of light in vacuum and ¢ € [0,7].

To apply compressed sensing, the 2-D target frame must be
discretized into a 2-D grid and a linear relation must be
established between the total received beat signal and the
targets across the 2-D grid. Consider that the target frame is
discretized into m discrete ranges along the range axis and n
discrete angles along the angular axis. The grid has a total of
mxn points and o represents the radar cross section (RCS) of
the target at the i range and ;" angle. Each target across the
range axis can be uniquely identified by the corresponding
beat signal it generates. To distinguish the targets across the
angular axis for a given discrete range, the directivity D of
the antenna array is useful. For the & measurement, the total
received beat signal Sy corresponding to all the targets on the
2-D grid can be represented using a linear relationship given
by

Sp(t) = Xitalsp(R;) Xj=1 Dxjoijl (6)

where Ri represents the i discretized range and Dx; represents
the directivity along the ;% discrete angle for the ™
measurement. Fig. 2 shows the pictorial representation of the
discrete grid and the total received beat signal for the A"
measurement. The total received beat signal corresponding to
each of the £ measurements can be represented in a matrix
notation given by

[SyD]kx1 = [Plixn X [Wlaxmn X [0]lmnx1 (7

where v is the basis transform matrix represented as

sp(R) ™ 0 sp(Ry) ™ 0
0 0 0 0
0 . . . . .
v=1 : ST
: . 0 0 0

0 . Sb(Rl) 0 Sb (Rm) hxmn

®)

When the 2-D grid to be reconstructed is sparse,
resemblance can be noticed between (7) and (2), where the
directivity matrix D is equivalent to the measurement matrix
@, o represents the sparse coefficients, and i is the orthobasis.
For proper reconstruction, the directivity D must be random
in nature. The digital beamforming method is used to
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Fig. 4.  Reconstructed 2-D target frame when measurements are
corrupted with noise of (a) standard deviation = 0.1 and (b) standard
deviation = 0.5.

generate random multi-beam radiation patterns, with three
main beams pointing at random discretized angles for each
measurement. To further improve the randomness, the
amplitude and phase of each element of the antenna array are
derived from a standard gaussian distribution. To recover the
target positions, k scans of the target frame are performed,
and the sparse targets are recovered using (3) for a noiseless
scenario or (4) when the measurements are corrupted with
noise.

III. SIMULATION RESULTS

Simulations for the proposed radar are performed in
MATLAB software. The FMCW radar parameters
considered are: center frequency (fc) of 24.15 GHz, chirp
duration (7) of 10 ms, bandwidth (B) of 300 MHz, and a
sampling frequency of 5 KHz. A 16-element A/2 spaced
antenna array is used to generate the random radiation
patterns, where A is the free space wavelength. A random
number generator is used to decide the direction of the three
main beams for each measurement. The 2-D frame of interest
is discretized along the range axis from 1 m to 10 m in steps
of 0.5 m, and from 30° to 150° in steps of 6° along the angular
axis. oij = 1 indicates the presence of a target at the i
discretized range and j% discretized angle, and ojj = 0
indicates the absence of a target. The effect of the radar range
equation on the power of the received signal is not considered
in the simulation. The reconstruction algorithms are
implemented in CVX [6], a convex optimization program
supported in MATLAB.

Fig. 3 shows the 2-D target frame that must be
reconstructed. Four targets are considered at locations
(6m,90°), (2m,96°), (7.5m,126°), and (7m,144°). Fig. 4 (a)
represents the perfectly reconstructed targets when noise with
standard deviation of 0.1 is added to the measurements, and
10 scans are performed. When the standard deviation of the
noise is increased to 0.5, the targets are not fully
reconstructed, and some false targets appear as shown in Fig.
4 (b). In the similar conditions presented above, a
conventional beam scanning radar would require 21 scans to
reconstruct the target frame, whereas the proposed radar can
reconstruct the target frame in 10 scans, offering 50%
reduction in the scanning time. The simulation was repeated
250 times in a noise free scenario, with varying target
locations and antenna directivity for each iteration. Random
outliers were observed twice, where the targets were not
properly reconstructed. The cause of these random outliers is
still being researched.

IV. CONCLUSION

A basis transform matrix was used to obtain a linear
relationship between the total received FMCW beat signal for
each scan and the sparse targets across the discretized 2-D
grid. A 1l6-element antenna array employing digital
beamforming technique was used on the receiver end to
obtain random spatial measurements. Each antenna element
was fed with random gaussian weights. Basis pursuit
algorithm was applied on the obtained data to recover the
sparse targets from fewer number of scans. The effect of
noise on the target reconstruction was illustrated.
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