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We consider imaging the reflectivity of scatterers from intensity-only data recorded by a single moving transducer that both
emits and receives signals, forming a synthetic aperture. By exploiting frequency illumination diversity, we obtain multiple intensity
measurements at each location, from which we determine field cross-correlations using an appropriate phase controlled illumination
strategy and the inner product polarization identity. The field cross-correlations obtained this way do not, however, provide all the
missing phase information because they are determined up to a phase that depends on the receiver’s location. The main result of
this paper is an algorithm with which we recover the field cross-correlations up to a single phase that is common to all the data
measured over the synthetic aperture, so all the data are synchronized. Thus, we can image coherently with data over all frequencies
and measurement locations as if full phase information was recorded.

I. INTRODUCTION

We consider a multifrequency phaseless synthetic aperture
imaging system composed of a single transmitter/receiver
element that operates at microwave frequencies. The system
only records the intensities of the signals, and forms the
images by combining the data coherently over the entire
synthetic aperture. With the proposed computational imaging
approach, we show that using intensity-only data is as good as
coherent imaging with full (phase and amplitude) data; cross-
range and range resolutions are still inversely proportional to
the synthetic aperture size and to the bandwidth of the recorded
signals, respectively.

Imaging with microwaves is of interest in security ap-
plications because they can penetrate through materials that
are opaque at visible wavelengths, allowing the detection of
concealed objects under cloths and inside luggage [21], [27].
Microwaves have also been successfully used for through-
wall imaging [30], breast cancer detection in medical imaging
[25], [16], and space surveillance [8]. An arbitrary number of
transmitters and receivers is used in general, typically arranged
in a planar or spherical geometry, while a moving single
transmitter/receiver element can also be used so as to form
a synthetic aperture. This last mode records less information
but it can still provide data with enough frequency and space
diversity for imaging.

In all applications, control and detection of phases is es-
sential to image coherently for good resolution. However, to
maintain phase coherence during the whole data acquisition
process may be difficult or impossible. This is the case, for
example, when high frequency signals, above 30 GHz, and
large synthetic apertures are used to form high quality images
[18], [32]. Other situations in which phase measurements may
not be reliable arise when there is uncertainty in the antenna
location or in the signal trajectory.

The conventional way to overcome lack of coherent phase
measurements is to resort to computational imaging systems
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that use intensity-only data recorded with simpler system
architectures. The missing phases are then reconstructed with
the well-known phase retrieval algorithms, which rely in an es-
sential way on prior information about the object to be imaged.
This is the case in various fields including crystallography,
optical imaging, astronomy, and electron microscopy.

We recount briefly the basic facts about phase retrieval.
In this problem, the objective is to reconstruct a signal from
its power spectrum. This is, of course, an ill-posed problem
because there is not enough information to recover the true
signal. To resolve this issue, one can invoke prior knowledge
about the signal and look for a solution by using a phase
retrieval algorithm. The most widely used algorithms are the
alternating projection algorithms introduced by Gerchberg and
Saxton [15] and by Fienup [11], [12] that project the iterates
on intensity data (or prior information) sequentially in both
the real and the Fourier spaces. Although these algorithms are
efficient and flexible for reconstructing the missing phases in
the data, and performance is often good in practice, they may
not converge or even get close to the true, missing phases
because the problem is non-convex.

In [29], the authors use the quadratic approach which for-
mulates the phase retrieval problem as a non-linear (quadratic)
inverse problem with data the square amplitude of the near
field. For this quadratic inverse problem, the presence of
local minima can be avoided by increasing the number of
independent data (cf. [29] and references therein). A convex,
non-iterative approach that guarantees exact recovery in the
case of sparse reflectivity was proposed in [6], [4], but its
computational cost is high when the problem is large.

Holographic methods can also be used. These are interfero-
metric approaches that obtain phase field differences from in-
tensity data. For example, phase information can be recovered
by superposing the scattered signals with a known and well-
controlled reference signal. Holography was first introduced
to increase the resolution of electron microscopes [14]. It was
a two-step method for recording the phase of optical signals,
since photographic film is not sensitive to complex amplitudes
but to intensities. Later, holography was used with microwaves



JOURNAL OF COMPUTATIONAL IMAGING 2

for measuring antenna radiation patterns [19], [1]. For recent
adaptations of microwave holographic techniques, we refer to
[7], [17], [28], [18].

On the other hand, the Wirtinger Flow (WF) phase retrieval
algorithm of [5] is used in [13] for microwave imaging with a
frequency-diverse metasurface antenna. The antenna produces
spatially diverse radiation patterns that vary as a function of
the frequency sampled over the operational K-band (17.5-
26.5 GHz). In [32], the authors use the more recent sparse
WF algorithm proposed in [31] that allows to reduce the
computational cost of the method.

We follow here a different strategy inspired by interfer-
ometry. The key idea is to resolve the non-uniqueness of
the phase retrieval problem creating redundancy in the data
by illuminating the image multiple times. Indeed, by using
an appropriate illumination strategy and the inner product
polarization identity, the missing phase information can be
uniquely determined, up to a global phase [26], [23], [24]. The
polarization identity is a well known formula in mathematics
that relates the inner product of two vectors with their norms.
It is not related to the polarization of electromagnetic waves.
Special forms of the polarization identity have also been used
in [20] where antenna phase patterns are obtained from the
responses to two probe antennas recorded at three power
detectors, and in [7] where intensity data are collected with
two probes at fixed offset moving over an arbitrary scanning
surface.

In this paper, we present a new computational imaging
approach to accurately reconstruct the reflectivity of scatterers
with synthetic aperture, intensity-only data. The method has
two stages. First, from the intensity data at each source-
detector position, we recover field cross-correlations corre-
sponding to coherent sources of different frequencies. This
is achieved using a special sequence of illuminations that
exploits the frequency diversity available on the transmitter
side. The recovered field cross-correlations are the same as the
ones obtained from full data, up to a phase that is different
at each receiver location. Hence, at this point, these field
cross-correlations cannot be combined coherently to image
the reflectivity. To use them coherently over all the synthetic
aperture they need to be synchronized or aligned first.

This is the second step of the proposed method in which all
the phases that depend on the receiver locations are referred to
a single global phase. The main idea of the second step is to
refer the total reflectivity estimated at each receiver location
to the total true reflectivity, which is a common quantity for
all measurement locations. This is the main contribution of the
paper. With the strategy proposed here, we show that imaging
with intensity-only data is as good as imaging with full-phase
data.

The paper is organized as follows. In Section II, we explain
the proposed method to obtain coherent cross-correlations
when one element that transmits multifrequency microwaves
and measures only intensities is used to collect the data on
a synthetic aperture. In Section III, we discuss two imaging
methods traditionally used when full (phase and amplitude)
data are available. We use these methods with the recovered
cross-correlations. In Section IV, we show the results of our

numerical experiments. Section V contains our conclusions.

II. MULTI-FREQUENCY INTERFEROMETRIC SYNTHETIC
APERTURE IMAGING

In the next two subsections we present in detail the two
stages of the proposed approach. The goal is to determine
the reflectivity ρ within a region of interest, called the image
window IW, from multiple intensity-only measurements at
different locations xj , j = 1, . . . , N , and frequencies ωl,
l = 1, . . . , S, with a total number of D = N · S data (see
Figure 1). We denote by |P (xj , ωl)| the amplitude of the
signal received at location xj when a signal of frequency
ωl, unit amplitude, and zero phase is emitted from the same
location.

For imaging purposes, the IW is discretized using a uniform
grid of K points yk, k = 1, . . . ,K . The unknown is the
reflectivity vector ρ = [ρ1, . . . , ρK ]t ∈ CK , whose entries
are the values of the reflectivity ρk = ρ(yk) on the grid
points yk, k = 1, . . . ,K . We assume that K > D, and often
we have K � D. Moreover, we assume that the unknown
reflectivity vector is M -sparse with M � K. This is often
true in applications where the reflectivity to be imaged does
not occupy the entire scene but rather a small part of the IW.

yk

xj

IW

Fig. 1. General setup of a synthetic aperture imaging problem. The transducer
at xj emits a probing signal and the reflected intensities are recorded at the
same location for all illuminations. The scatterers are located inside the image
window IW which is discretized with the grid points yk , k = 1, . . . ,K.

A. Multi-frequency field cross-correlations

We pursue here the idea of [26], [23], [24], where it
is shown that field cross-correlations can be obtained from
intensity-only measurements by using an appropriate protocol
of illuminations and the polarization identity. In these works,
the illumination strategy was implemented with an array in
which all its elements were used to emit and receive signals.

In synthetic aperture imaging, however, there is an inherent
loss of possible illuminations because only one transmit-
ter/receiver element is used. This lack of flexibility, or diver-
sity, in illuminations might at first suggest that the data cannot
be used coherently to form images when only intensities are
recorded.

To consider this issue further, we introduce the row vector

Pj = [P (xj , ω1) P (xj , ω2) . . . P (xj , ωS)] (1)



JOURNAL OF COMPUTATIONAL IMAGING 3

with S components. The entry P (xj , ωl) corresponds to the
signal recorded at xj , including phases, when a unit amplitude
and zero phase signal of frequency ωl is sent from the same
location xj . The full phase retrieval problem consists on
determining, at once, the N × S phases of the phaseless
measurements |P (xj , ωl)| for the N measurement positions
and the S frequencies.

In this paper, we use a different strategy. First, we recover
the field cross-correlation matrices at each receiver, up to a
phase that depends on the receiver location but not on the
frequency. In a second step, all these phases are referred to a
single one; and this allows for coherent imaging.

Specifically, the first step of the proposed methodology
consists on recovering, at every fixed location xj , the field
cross-correlation matrix

[M j ]ll′ ≡ mj
ll′ = P (xj , ωl)P (xj , ωl′), (2)

for l, l′ = 1, . . . , S. To do so, we use the diversity over
illuminations with different frequencies, and the inner product
polarization identity

Re(mj
ll′) =

1

2

(
|Pj · el+l′ |2 − |Pj · el|2 − |Pj · el′ |2

)
, (3)

Im(mj
ll′) =

1

2

(
|Pj · el−ıl′ |2 − |Pj · el|2 − |Pj · el′ |2

)
. (4)

Here, el ∈ CS is the vector with 1 in the l-th coordinate and
0’s elsewhere. It represents a signal of unit amplitude and zero
phase at frequency ωl. In (3)-(4), ı =

√
−1, el+l′ = el + el′ ,

and el−ıl′ = el − ıel′ . The vector el+l′ = el + el′ refers
to sending simultaneously signals of unit amplitude and zero
phase at two frequencies ωl and ωl′ , while the vector −ıel′
denotes a −π/2 phase shift in the signal of frequency ωl′ .

When two signals of distinct frequencies ωl and ωl′ are
sent simultaneously to probe the medium, the intensity at
the receivers oscillates at the difference frequency ωl − ωl′ .
Therefore, our imaging system should be able to resolve
intensities that oscillate at frequencies of the order of the
total bandwidth B, which determines the range resolution
c/B of the imaging system, where c is the signal speed. In
Appendix B, we describe in detail the measurement process
with which we recover all the elements of the cross-correlation
matrix M j . We do not assume, however, cross-correlation
measurements between different positions xj and, hence, we
recover M j up to an unknown global phase θj , i.e., a factor
of the form eiθj , with θj depending on xj .

This means that, in principle, we can only recover asyn-
chronized signals between the measurement locations. We
remark that synchronization is needed regardless of whether
the elements in M j are obtained through (3)-(4). It is a
problem that arises due to the lack of information between
signals sent and received at different positions. Hence, the
cross-correlations over frequencies need to be synchronized
or aligned over the receiver positions to image coherently.

This is the main difficulty in synthetic aperture imaging
when the phases are not measured. We explain in the next
subsection how to synchronize the signals in the frequency
domain, i.e., how to recover N individual phases from phase

difference measurements of the form (2). Once all the signals
are synchronized, the imaging problem is trivial as we show
in Section III.

We describe in Appendix A an illumination strategy that
requires 3S−2 illuminations to recover all the entries in M j .
This is the minimum number of measurements needed per
receiver location.

B. Location-dependent phase recovery

As discussed above, we can recover, up to a global
phase that depends on the receiver location xj , field cross-
correlations of the form (2) using the frequency diversity in
the illuminations. Since the amplitudes |P (xj , ωl)| are known
at every location xj for all the frequencies ωl, we can compute

mj
ll′

|P (xj , ωl)|
= P (xj , ωl′)

P (xj , ωl)

|P (xj , ωl)|
, l′ = 1, . . . , S.

This means that full data can be recovered at each measure-
ment location xj up to a global phase θj which is unknown.
In other words,

bjl = P (xj , ωl)e
ıθj , for l = 1, . . . , S (5)

is known to us. To image coherently, we have to refer
all the unknown phases θj to a single location. This is a
synchronization problem with N unknown phases instead of
N×S unknown phases as for the full phase retrieval problem.
We next explain how to solve this problem.

Remark 1: We assume here that the measurements
|P (xj , ωl)| are kept only when they are above some threshold
determined by the noise level. Otherwise, they are not used. In
the numerical simulations discussed below it was not necessary
to discard any measurements, even in the 0dB case.

By linearizing the scattering problem and assuming that
multiple scattering is negligible, the data is given by

P (xj , ωl) =

Q∑
q=1

ρ̃qe
ı2

ωl
c r

j
q , (6)

where c is the velocity in a homogeneous medium, and ρ̃q
is the integral of the reflectivity on the sphere of radius rjq
centered at xj ; see Figure 2. Typically for sparse ρ, ρ̃q is
a reflectivity of a single scatterer. We assume here that the
reflectivity is frequency independent. It follows from (6) that
the data P (xj , ωl) is the Fourier coefficient of the reflectivity
ρ̃ corresponding to wavenumber κl = 2ωl

c , i.e.,

ρ̂j(κl) =

Q∑
q=1

ρ̃qe
ıκlr

j
q .

Therefore, at each source-receiver position we have to solve
a one dimensional problem to recover ρ̃q , q = 1, . . . , Q, from
the processed data (5). Again, these are data with phases that
are well defined up to global phases θj that are not known.
This means that the data are trains of asynchronous spikes,
each train corresponding to a measurement location xj .



JOURNAL OF COMPUTATIONAL IMAGING 4

xj

IW

ρ̃q

rjq

Fig. 2. The data (with phases) P (xj , ωl) recorded at transducer xj when a
unit amplitude signal with zero phase at frequency ωl is emitted from the same
location is given by the model (6) where ρ̃q is the integral of the unknown
reflectivity on the sphere centered at xj of radius rjq .

Still, we can determine the vector ρ̃ = [ρ̃1, ρ̃2, . . . , ρ̃Q] by
solving the following linear system

Ajρ̃j = bj , (7)

with sensing matrix

Aj =


eı2

ω1
c r

j
1 eı2

ω1
c r

j
2 · · · eı2

ω1
c r

j
Q

eı2
ω2
c r

j
1 eı2

ω2
c r

j
2 · · · eı2

ω2
c r

j
Q

...
...

eı2
ωS
c rj1 eı2

ωS
c rj2 · · · eı2

ωS
c rjQ

 , (8)

and data vector bj with components given by (5). The super-
script j is used to stress that the linear systems (7) uses data
recovered at location xj .

These linear systems are underdetermined and, hence, there
are infinitely many scatterer’s configurations that match the
data. However, if the true reflectivity ρ0 is sparse, with only
a few components different than zero, an `1-minimization
approach can find their unique sparse solution. Exact recovery
is guaranteed under the assumption that the mutual coherence1

of the matrices Aj are smaller than 1/(2M), where M is the
number of non zero components in a vector ρ̃j . For more
details about `1-minimization methods we refer to [9], [3],
[10], [2]. In the simulations shown below, we use a generalized
lagrangian multiplier algorithm (GeLMA) [22], described in
Algortihm 1, to find the sparsest solution to (7).

The matrix Aj defined in (8) depends on the radii rji , i =
1, . . . , Q, which are computed in the following way. Given an
IW with discretization points yk, k = 1, . . . ,K , we compute
the distances from all points yk to the receiver location xj ,

Rjk = |yk − xj |. (9)

These form the components of a vector in RK . We then sort
the components of this vector in ascending order and keep

1The mutual coherence of A is defined as maxi 6=j |〈ai,aj〉| with ai ∈
CN the columns of A normalized to one, so that ‖ai‖`2 = 1 ∀ i = 1, . . . ,K.

only the entries that appear with multiplicity larger than one.
In practice, we only keep the entries that differ from each
other by at least a level ε. The value of ε should be small
enough so we do not disregard many components since that
would affect the accuracy of the reconstruction, but it cannot
be very close to zero because we do not want the columns of
Aj to be almost parallel. Note that ε has units of length and
should be chosen to be small with respect to the wavelength
and the pixel size, so that neglecting distances that differ less
than ε does not affect the accuracy of the recovered phases.
Assuming the Rjk are ordered then this can be done as follows,

set i = 1 and rji = Rji
for k=2 to K

if |Rjk −R
j
k−1| > ε

set i = i+ 1 and rji = Rjk
end

end

(10)

This process generates the radii rji , i = 1, . . . , Q, with Q ≤ K,
that depend on the receiver locations xj , j = 1, . . . , N .

Once the solution vectors ρ̃j have been found, we compute
the total reflectivity within the IW by summing all the com-
ponents of the vectors ρ̃j . That is, for each receiver location
we compute the scalar

Q∑
q=1

ρ̃jq ≈ eıθj
1

hc

∫
IW

ρ0d~y, (11)

with hc a constant that depends on the discretization. The key
point here is that for all receiver positions we can compute
an approximation to the total reflectivity

∫
IW
ρ0d~y, up to

unknown phase factors eıθj , j = 1, . . . , N .
Thus, we can refer all the recovered quantities (5) to a same

global phase with no physical meaning for imaging purposes.
Indeed, let us define the quantities

cj =

∑Q
q=1 ρ̃

j
q∑Q

q=1 ρ̃
1
q

(11)
= eı(θj−θ1), j = 1, . . . , N, (12)

by dividing the total reflectivities associated to every location
xj by the total reflectivity obtained from the measurements
recorded at x1. The choice of j = 1 in the denominator in
(12) is, of course, arbitrary. With this choice, c1 = 1. Then,
by multiplying the recovered data (5) by cj we get

cjb
j
l = P (xj , ωl)e

ıθ1 , ∀ j = 2, . . . , N and ∀ l = 1, . . . , S.
(13)

This defines the holographic data

Ph(x1, ωl) = b1l , ∀ l = 1, . . . , S.

Ph(xj , ωl) = cjb
j
l , ∀ j = 2, . . . , N and l = 1, . . . , S.

(14)
The phases in (14) are now coherent over different receiver
positions and frequencies! Thus, the unknown reflectivity ρ
can be reconstructed as if data with phases were recorded.

We want to emphasize that the proposed methodology al-
lows one to produce holographic data from intensity measure-
ments. This is of considerable importance since: i) intensity
data are much easier to obtain, and can be recorded with
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less expensive equipment (sensors) than data obtained with
holographic techniques, ii) holographic data contain coherent
phase information and allow us to obtain depth resolved
reconstructions, and iii) the proposed methodology does not
need any prior information about the sought reflectivity. We
compare next the performance of different imaging methods
using (14) as data.

III. FULL PHASE SYNTHETIC APERTURE IMAGING
METHODS

Once the holographic data (14) are obtained, the unknown
reflectivity can be reconstructed with any imaging method as
if the data with phases were recorded with a synthetic array
aperture. Here we show results obtained with the frequently
used Kirchhoff migration (KM) imaging method and the `1-
optimization approach.

KM is a direct imaging method which can be written as

ρKM (yk) =
N∑
j=1

S∑
l=1

e−ı2
ωl
c |xj−yk|Ph(xj , ωl), (15)

where |xj − yk| is the distance between the measurement
location xj and the search point yk in the IW. The image
ρKM = [ρKM (y1), ρKM (y2) . . . , ρKM (yK)] is an approxi-
mation to the true reflectivity vector ρ0.

We also form an image by promoting a sparse solution to
the linear system

Aρ = b , (16)

where ρ ∈ CK is the sought reflectivity vector,

A =



eı2
ω1
c |x1−y1| eı2

ω1
c |x1−y2| · · · eı2

ω1
c |x1−yK |

eı2
ω1
c |x2−y1| eı2

ω1
c |x2−y2| · · · eı2

ω1
c |x2−yK |

...
...

...
eı2

ω1
c |xN−y1| eı2

ω1
c |xN−y2| · · · eı2

ω1
c |xN−yK |

eı2
ω2
c |x1−y1| eı2

ω2
c |x1−y2| · · · eı2

ω2
c |x1−yK |

...
...

...
eı2

ωS
c |xN−y1| eı2

ωS
c |xN−y2| · · · eı2

ωS
c |xN−yK |


(17)

is the model matrix, and b ∈ CN ·S is the recovered data vector
whose components are

bi = b(l−1)N+j = Ph(xj , ωl), j = 1, . . . , N, l = 1, . . . , S.
(18)

We note that the KM solution (15) can also be written as
ρKM = A∗b, where A∗ is the complex conjugate transpose
of A.

To find the sparsest solution to the system (16), we solve
the `1-minimization problem

min ‖ρ‖`1 subject to Aρ = b , (19)

using GeLMA described in Algorithm 1. This algorithm in-
volves matrix-vector multiplications followed by a shrinkage-
thresholding step defined by the operator

ητ (yi) = sign(yi) max{0, |yi| − τ}.

GeLMA converges to the solution of (19) independently of
the regularization parameter τ , see [22].

Algorithm 1 GeLMA for solving (19)
Require: Set y = 0, z = 0. Pick the step size β, and a

regularization parameter τ .
repeat

Compute the residual r = b−Ay
y ⇐ ητβ(y + βA∗(z + r))
z ⇐ z + βr

until Convergence

As discussed previously, the solution of (19) agrees with
the exact M -sparse solution ρ for noiseless data if the mutual
coherence of the matrix A is smaller than 1/(2M).

IV. NUMERICAL SIMULATIONS

We consider a high frequency microwave scanning regime
with central frequency f0 = 50GHz which corresponds to
λ0 = 6mm. We make measurements for S = 41 equispaced
frequencies covering a total bandwidth of 10GHz using a sin-
gle transmitter/receiver that is moving along a linear trajectory.
The synthetic aperture is a = 20cm, and the distance from its
center to the center of the IW is L = 1m; see Figure 3. We
assume that the medium between the synthetic array and the
IW is homogeneous. The size of the IW is 48cm× 48cm, and
the pixel size is 6mm×6mm. The measurements are gathered
at N = 41 equispaced locations. These parameters are typical
in microwave scanning technology [18].

The numerical simulations are done in 3D, but with a 2D
reflector geometry and a SAR trajectory on the plane of the
scatterers as illustrated in Figure 3. In this configuration, the
horizontal axis shows the range or depth of the scatterers,
and the vertical axis shows their cross-range. Because the
phases of the signals carry the information from the scatterers’
range, it is usually assumed that range cannot be determined
from phaseless data. We see, however, that with the proposed
computational imaging method both range and cross-range are
obtained as if full phase information was available.

We assume that time-resolved intensities can be measured
for a set of pulses of the form exp(ıωlt) exp(−t2/(2σt)2),
ωl = ω1, ω2, . . . , ωS , where σt is the pulsewidth that is
inversely proportional to the available bandwidth B. As dis-
cussed in Appendix A, to retrieve the phases for the S
frequencies we need to measure the intensities for 3S − 2
illuminations. A simple strategy consists of using a sufficient
delay between successive illuminations so that the correspond-
ing echoes are non-overlapping. Given an illumination at time
0, an estimate for the starting time for the scattered signal is
2L
c , while its duration is of the order 2 IWsize

c , where IWsize

is the size of the IW. Thus, an estimate of the acquisition
time per location is (3S − 2)

(
1

2B + 2 IWsize

c + 2L
c

)
. For the

specific parameters used in the simulations this is about
(3S − 2)10ns = 1.2µs.

In our simulations, we add to the signals that arrive to
the receiver, including phases, mean zero gaussian noise
corresponding to a SNR = 10dB. Then, their intensities are
computed and these are the data from which we form the
images
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Fig. 3. The setup used in the numerical simulations. A single transmit/receive
element is moving on a linear trajectory (green stars) and measures the
intensity reflected from the scatterers (red disks). The blue area is the imaging
window IW.

Indeed, following the methodology described in Section
II, we recover from these intensities the holographic data
(14), which have phases that are coherent over frequency and
measurement locations. In our numerical examples, we used
ε = 0.001µm in (10). Note that ε is small with respect to the
wavelength and the pixel size, so that neglecting distances that
differ less than ε does not affect the accuracy of the recovered
phases. The Algortihm 1 is used with τ = 20 〈|A∗b|〉 and
β = 1

2‖A‖2 . Here, A∗ is the complex conjugate transpose of
A and < · > denotes the mean. The termination criterium
is ‖zk−zk−1‖2

‖zk−1‖2 ≤ 1.0e − 13, with zk and zk−1 denoting the
vector z during the current and the previous iteration.

The results are shown in Figure 4. The top row of Figure 4
shows the distribution of targets we seek to find. The bottom
left panel is the KM image, and the right panel is the image
obtained with the `1-minimization algorithm. As expected,
KM shows resolution λ0L/a in the cross-range direction and
c/B in the range direction, which for our imaging setup
corresponds to a resolution of 5λ0 in both directions. On
the other hand, the image obtained with the `1-minimization
algorithm is almost exact.
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Fig. 4. Single transmitter/receiver multifrequency data recovered from in-
tensity measurements with SNR = 10dB. Imaging with KM as defined in
(15) (left) and ρ`1 computed using GeLMA to solve (19) (right). On the top
row the true reflectivity is plotted. In all images we plot the amplitude of the
complex valued reflectivity |ρ|.

To show the robustness of the proposed method when phases
are not recorded, we consider next the same imaging con-
figuration but assuming that the scatterers are displaced with
respect to the grid points of the IW. Note that misplacements

with respect to the grid amounts to a systematic modelling
error that affects the accuracy of the recovered phases and,
thus, deteriorates the image reconstruction. This is due to
errors in the computed distances to the grid points Rjk (see
(9)) used in the definition of the radii rji in the model matrices
(8) and (17).

In Figure 5, we show results for scatterers that are displaced
by λ/8 = 0.75mm (top row) and by λ/2 = 3mm (bottom row)
with respect to the grid points in both range and cross-range
directions. As expected, the reconstructions deteriorate as the
displacement with respect to the grid increases, but they re-
main quite accurate even for the largest possible displacement
value of half the grid size; see the bottom row plots in Figure
5.
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Fig. 5. Single transmitter/receiver multifrequency data recovered from inten-
sity measurements. No additive noise is added to the data. Imaging with KM
as defined in (15) (left) and ρ`1 computed using GeLMA to solve (19) (right).
The scatterers are displaced by λ/8 = 0.75mm (top row) and by λ/2 = 3mm
with respect to the grid points in range and cross-range directions. In all
images we plot the amplitude of the complex valued reflectivity |ρ|.

Finally, we also add to the signals that arrive to the receiver
corresponding to the displacement λ/2 = 3mm, including
phases, mean zero gaussian noise corresponding to a SNR =
0dB. The results shown in Figure 6 are also very good. They
illustrate the robustness of the proposed methodology with
respect to both additive noise and off-grid displacement errors.
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Fig. 6. Single transmitter/receiver multifrequency data recovered from inten-
sity measurements with SNR = 0dB. Imaging with KM as defined in (15)
(left) and ρ`1 computed using GeLMA to solve (19) (right). The scatterers
are displaced by λ/2 = 3mm with respect to the grid points in range and
cross-range directions. In all images we plot the amplitude of the complex
valued reflectivity |ρ|.
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V. SUMMARY AND CONCLUSIONS

We have introduced an approach to synthetic aperture
imaging with intensity-only measurements that exploits the
available diversity in the illuminations. The images have the
same quality as when full phase information is available. There
are two stages in our approach. First, we recover field cross-
correlations over pairs of frequencies at each measurement
location xj using intensity-only data. Thus, the phases are
recovered up to a location dependent factor eıθj , which is
independent of the frequency. In the second stage, which is
the main contribution of this paper, we introduce an algorithm
that recovers the missing phases up to a single global factor
eıθ1 for all locations and all frequencies. We can then image
with any method that uses full (phase and amplitude) data.
We explore this approach with broadband SAR in the 50GHz
regime in an imaging setup that is used in security scanning
equipments.

APPENDIX A
ILLUMINATION STRATEGIES

We discuss here an illumination strategy for recovering the
phase cross-correlations from time-resolved intensity measure-
ments at different frequencies using a single transmit/receiver
element. In this protocol at each transmit/receiver location
we need to record measurements corresponding to 3S − 2
illuminations. We explain next the proposed protocol.

We want to recover the cross-correlation matrix

[M j ]ll′ ≡ mj
ll′ = P (xj , ωl)P (xj , ωl′), l, l′ = 1, . . . , S ,

(20)
using diversity of illuminations and the polarization identity

Re(mj
ll′) =

1

2

(
|Pj · el+l′ |2 − |Pj · el|2 − |Pj · el′ |2

)
(21)

Im(mj
ll′) =

1

2

(
|Pj · el−ıl′ |2 − |Pj · el|2 − |Pjel′ |2

)
. (22)

When intensities are recorded, all the quantities | · |2 in the
right hand side of (21) and (22) are known.

Remarking that

mj
ll′ =

mj
l1m

j
1l′

mj
11

,

we deduce that we only need to compute the phase cross-
correlations mj

l1m
j
1l′ which can be obtained from the polariza-

tion identity (21)-(22) provided 3S− 2 measurements. Indeed
we can determine mj

l1, for l = 2, . . . , S using illuminations
el, el+1 and el−ı1 and we also need to measure mj

11.

APPENDIX B
MEASUREMENT PROCESS

We describe here the measurement process that allows us to
compute the elements mj

ll′ of the cross-correlation matrix M j

corresponding to frequencies ωl and ωl′ . When two signals
of distinct frequencies ωl and ωl′ are sent simultaneously to
probe the medium, the intensity at the receivers oscillates
at the difference frequency ωl − ωl′ . Therefore, our imaging
system should be able to resolve intensities that oscillate at

frequencies of the order of the total bandwidth B. Indeed,
the intensity of the slowly varying terms is of the form

I0 = |P (xj , ωl)|2 + |P (xj , ωl′)|2

+ 2 |P (xj , ωl)| |P (xj , ωl′)| cos[(ωl − ωl′)t+ ∆φjll′ ] ,

Iπ/2 = |P (xj , ωl)|2 + |P (xj , ωl′)|2

+ 2 |P (xj , ωl)| |P (xj , ωl′)| sin[(ωl − ωl′)t+ ∆φjll′ ] .

We remark that both I0 and Iπ/2 oscillate with a slow
frequency ωl−ωl′ . We assume that we can measure the integral
of these terms over some time interval ∆t � 1

B . This leads
to a linear system of the form[

α1 −α2

α2 α1

] [
cos(∆φjll′)

sin(∆φjll′)

]
=

[
β1

β2

]
(23)

with

α1 =

∫ t0+∆t

t0

cos((ωl−ωl′)t)dt, α2 =

∫ t0+∆t

t0

sin((ωl−ωl′)t)dt

β1 =

∫ t0+∆t

t0

I0 − |P (xj , ωl)|2 − |P (xj , ωl′)|2

2 |P (xj , ωl)| |P (xj , ωl′)|
dt

β2 =

∫ t0+∆t

t0

Iπ/2 − |P (xj , ωl)|2 − |P (xj , ωl′)|2

2 |P (xj , ωl)| |P (xj , ωl′)|
dt.

By solving system (23) subject to the constraint

cos2(∆φjll′) + sin2(∆φjll′) = 1

we determine the phases ∆φjll′ of the elements mj
ll′ =

|mj
ll′ |e

∆φj

ll′ , l 6= l′. Then, it is straightforward to obtain the
phase differences
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