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Abstract

We study the following control problem. A fish with bounded aquatic locomo-
tion speed swims in fast waters. Can this fish, under reasonable assumptions,
get to a desired destination? It can, even if the flow is time dependent. More-
over, given a prescribed sufficiently large time t , it can be there at exactly the
time t . The major difference from our previous work is the time dependence
of the flow. We also give an application to homogenization of the G-equation.
© 2019 Wiley Periodicals, Inc.

1 Introduction
Let V D Vt be a time-dependent vector field in Rn, n � 2. We assume that

Vt .x/ is continuous, uniformly bounded, and locally Lipschitz in x. We often
abuse the language and refer to Vt as a flow.

DEFINITION 1.1. An absolutely continuous path 
 W �t0; t1� ! R
n is said to be

admissible if ���� ddt 
.t/ � Vt .
.t//
���� � 1

for a.e. t 2 �t0; t1�.
Let x0; x1 2 Rn, t0; t1 2 R, t0 � t1. We say that a point .x1; t1/ in space-time

is reachable from .x0; t0/ if there exists an admissible path 
 W �t0; t1� ! R
n with


.t0/ D x0 and 
.t1/ D x1.
If .x1; t1/ is reachable from .x0; t0/, we also say that x1 is reachable from

.x0; t0/ at time t1. In what follows we usually assume that the initial conditions
are x0 D 0 and t0 D 0. For brevity, we say that x is reachable at time t if .x; t/ is
reachable from .0; 0/.
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We suggest the following naive interpretation of our setup. The vector field Vt
is the velocity field of waters in an ocean. Fish living in the ocean have bounded
aquatic locomotive speed. We normalize the data so that the maximal speed of the
fish is 1, and the speed of waters can be much larger. Definition 1.1 formalizes the
condition that a fish starting its journey from x0 at time t0 can control its motion
so that it finds itself at x1 at exactly time t1.

A similar problem was considered in [5,10] for time-independent vector fields V
and a weaker reachability result: the fish is not required to arrive at its destination
exactly at a prescribed time.

Handling time dependence of Vt required considerable effort and actually forced
us to prove a stronger result. This reachability problem is directly related to the
G-equation, which in particular models combustion processes in the presence of
turbulence. Therefore another substantial part of this paper is an application to
homogenization of the G-equation. We address this application in Section 6.

Our main result, see Theorem 1.2 below, states that under natural assumptions
on Vt every point is reachable at all sufficiently large times. The assumptions on
Vt are the following:

(i) The field Vt .x/ is bounded:

M WD 1C sup
t;x

jVt .x/j <1

and is locally Lipschitz in x.
(ii) The flow is incompressible: divVt D 0 for all t.

(iii) Small mean drift:

(1.1) lim
L!1

sup
t2R;x2Rn





 1Ln
Z
�0;L�n

Vt .x C y/dy





 D 0:

All assumptions (i)–(iii) are essential. First, the flow might have a sink towards
which the flow runs faster than the maximum possible speed the fish can swim.
This issue is easily resolved by assumption (ii) that the flow is incompressible.
Next, the velocity of the flow might point in one direction and again it may have
speed greater than the maximal speed of the fish. This obstruction is resolved by
condition (iii) of small mean drift on the large scale. Finally, the flow could be so
strong that the fish is carried to infinity in finite time. Condition (i) rules out this
possibility. Condition (i) is also a technical assumption that is needed to be able to
formulate the problem formally.

It was a surprise to us that, under these modest assumptions, the fish can reach
every destination point x 2 Rn. Furthermore, there is some tx such that if t � tx ,
the fish can get to x at exactly time t . We also prove an asymptotically optimal
bounds for the reach time, namely tx grows no faster than jxj as jxj ! 1.

Now we are in a position to formulate our main result.
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THEOREM 1.2. For every flow Vt satisfying (i)–(iii) above and every a > 1, there
exists C > 0 such that for all x0; x 2 R

n and t0 2 R, .x; t/ is reachable from
.x0; t0/ for every t � t0 C ajx � x0j C C .

Remark 1.3. The constant C in Theorem 1.2 depends on a and parameters of the
flow. One can check that C can be determined in terms of a, the parameterM from
(i), and the rate of convergence of the mean drift to zero in (iii).

The small mean drift assumption (iii) may be relaxed at the expense of a weaker
estimate on the reach time. Namely, we have the following:

Corollary 1.4. Let Vt be a flow satisfying (i), (ii), and

(1.2) � WD inf
L>0

sup
t2R;x2Rn





 1Ln
Z
�0;L�n

Vt .x C y/dy





 < 1:
Then for every a > 1

1�� there exists C > 0 such that for all x0; x 2 R
n and

t0 2 R, .x; t/ is reachable from .x0; t0/ for every t � t0 C ajx � x0j C C .

The gist of the proof of Theorem 1.2 is: Fix a flow Vt and assume without loss
of generality that x0 D 0 and t0 D 0. For t; r > 0 let Rt denote the set of points
reachable at time t , and Ir the cube ��r; r�n in Rn. Our goal is to show that, for
every fixed r and for all sufficiently large t the set Rt contains Ir . We do this
analyzing the volume of the intersection Rt \ Ir as a function of t .

The paper is organized as follows. In Section 2 we introduce our notation and
main tools. In particular, there we discuss isoperimetric inequalities, co-area for-
mula, slicing, and certain regularity results such as rectifiability of the boundary
of the reachable set. Several important facts about BV functions can be found in
the Appendix (pp. 33 ff.). In Section 3 we prove Theorem 1.2 and Corollary 1.4.
Sections 4 and 5 provide auxiliary estimates needed in the proof of Theorem 1.2.
In Section 6 we give an application of Theorem 1.2 to the theory of random ho-
mogenization of the G-equation.

Some Further Directions
In a discussion with the first author, Leonid Polterovich suggested to consider

a similar problem where the fish is not a point but rather a region (think of an
amoeba or a jellyfish, for instance). Leonid suggested the following symplectic
formulation. Let us say we are in R2 and the flow is Hamiltonian. This, of course,
means that the area of the fish does not change but its shape may change. The
fish has a fixed amount of Hofer’s energy it can spend to change the flow. In two
dimensions Hofer’s energy is

E.u/ D

Z 1

�1

�
sup
x2R2

. .x; t// � inf
x2R2

. .x; t//
�
dt;

where  .x; t/ is the streamfunction (Hamiltonian) of the flow u.x; t/. Now the
problem in question is as follows: Initially the fish sits in some ball, and it wants to
get to another (destination ball) of the same size. Leonid has made the following
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observation, which at first sounds very counterintuitive. If the flow is constant
(possibly very fast, no small mean drift), the fish can get from any ball to a ball of
the same size located in the direction opposite to the flow and very far. Using the
same amount of Hofer’s energy, the fish can swim against an arbitrarily fast flow
arbitrarily far away!

We do not include a formal proof here. Here is an intuitive description. Assume
that the fish hasM worth of Hofer’s energy, whereM depends on the radius of the
initial ball. It spends M=3 of energy to stretch itself into a needle fish, or perhaps
like an eel. By that time, the flow has carried the fish far away just in the opposite
direction of where it wants to arrive. But now the fish can swim quite fast upstream
(like eels do). Then it spends another M=3 of energy to go back, through the ball
where it wants eventually to end its journey, to a carefully chosen place well behind
the destination ball. After that, the flow carries the fish to where it dreams to arrive
to, and the fish spends the remaining M=3 of energy to reassemble itself back into
a round disc shape at exactly the time when the flow brings it to its destination.

Many open problems are left. First of all, even in dimension 2, this argument
works for a constant flow only. Of course, it suggests that much more is possible,
but in general the flow can have diverging streams, turbulence that may wrinkle the
shape of the fish, etc., and even worse in dimension four. There may be phenomena
related to nonsqueezing and such. We did not invest enough time into thinking
about this.

Furthermore, a rather challenging goal is to find a more physical formulation
for a fish which is a “more material” region of changing shape (and its volume
its almost conserved). The first naive idea that comes to one’s mind is to impose
restrictions on the potential energy of the membrane (to keep the amoeba in one
piece, at least) and on kinetic energy (for it is still “feeble”). We have not made
any progress in this direction so far.

2 Notation and Preliminaries
Let Ir D ��r; r�n denote the cube with edge length 2r centered at 0, Br.x/

the euclidean ball of radius r centered at x 2 Rn, and Vn D jB1.0/j the volume
of the unit ball in Rn. Occasionally we use r D 1, with the convention that
I1 D B1.x/ D R

n.
For x0 2 R

n, t0 2 R, and t � 0, we denote by Rt .x0; t0/ the set of points
reachable from .x0; t0/ at time t0 C t ; see Definition 1.1. For brevity, let Rt D

Rt .0; 0/.
The volume of Rt \ Ir is denoted by w.r; t/:

(2.1) w.r; t/ D jRt \ Ir j D

Z
Ir

�Rt
.x/dx;

where �Rt
is the characteristic function of the reachable set Rt . The volume

w.r; t/ is the main quantity of interest.
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Recall that the maximum control in Definition 1.1 is bounded by 1. Hence
jx � x0j � Mt if x is reachable from .x0; t0/ at time t0 C t , where M is defined
in condition (i) above. Therefore

(2.2) Rt � BtM .0/ � ItM

for all t > 0. Hence Rt \ Ir D Rt if r � tM .
We now define s.r; t/ � 0, the perimeter of Rt inside the cube Ir . As we

discuss below, s.r; t/ is essentially the .n � 1/-dimensional Hausdorff measure of
the set @Rt \ Ir . The formal definition is based on the notion of total variation for
BV functions; see the Appendix, in particular, Definition A.3. Namely,

s.r; t/ WD P.Rt ; I
�
r / D Var.�Rt

; I �r /;

where I �r is the interior of Ir . Here the last expression is the variation of the
characteristic function �Rt

in I �r ; see Definition A.1.
Denote

Dr.t/ WD Rt \ @Ir :

The following lemma estimates the rate of change of the volume of Rt . It is the
main technical tool in our proof.

Lemma 2.1. For any fixed r > 0,

(2.3)
d

dt
w.r; t/ � s.r; t/ � flux.Vt ;Dr.t//

in the sense of distributions (with respect to t ), where flux.Vt ;Dr.t// is the flux
of the vector field Vt through the .n � 1/-dimensional “surface” Dr.t/ � @Ir .
Formally flux.Vt ;Dr.t// is defined by

flux.Vt ;Dr.t// D

Z
Dr .t/

Vt .x/ � �.x/dx;

where �.x/ is the outer normal to the boundary of the cube Ir at a point x 2 @Ir .
In the case r D1 we also have (2.3), in the form

(2.4)
d

dt
w.1; t / � s.1; t /:

Remark 2.2. The inequalities (2.3) and (2.4) are easy to verify in the case when
Vt is smooth and the boundary of Rt is a smooth hypersurface transverse to @Ir .
In fact, in this case the inequalities turn into equalities. Indeed, for a small � > 0

the change from Rt to RtC� is approximately the composition of two operations:
First move the reachable set time � along the flow and then replace the resulting set
by its �-neighborhood. The first operation does not change the volume of the set
since the flow is incompressible. However, the volume of the intersection with Ir
changes; it is reduced by the amount of the flow that leaks out through the boundary
of Ir . This amount is approximately � �flux.Vt ;Dr.t//. On the second step, taking
the �-neighborhood increases the volume by approximately � � s.r; t/, since s.r; t/
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is the area of the relevant part of the boundary of Rt . Passing to the limit as � ! 0

one obtains equalities in (2.3) and (2.4).
This type of argument can be carried over to the general case if one shows

that Rt has a rectifiable topological boundary (compare with [5, §2]). This ap-
proach would be quite technical for a time-dependent flow. To avoid these tech-
nicalities, we use another formalization of the notion of surface area and prove
Lemma 2.1 with appropriate machinery.

PROOF OF LEMMA 2.1. The relation (2.4) follows from (2.3) and (2.2). To
prove (2.3), consider a family of functions u"WRn � RC ! R, " > 0, defined
by

(2.5) u".x; t/ D supfe�jyj=" j y 2 Rn is such that x 2 Rt .y; 0/g:

Equivalently, one can set u"0.x/ D e�jxj=" for all x 2 Rn and define

(2.6) u".x; t/ D supfu"0.
.0// j


 W �0; t �! R
n is an admissible path with 
.t/ D xgI

see Definition 1.1. We need two properties of u": For every fixed " > 0, the func-
tion u" is locally Lipschitz and satisfies the following partial differential equation:

(2.7) @tu
" C Vt � ru

" D jru"j

for a.e. x 2 Rn and t > 0, where ru" denotes the gradient of u" with respect to
the first argument. The equation (2.7) is called the G-equation associated to Vt .

The above properties are not hard to verify directly. Alternatively, one can
prove them using the theory of viscosity solutions, as follows. Equation (2.7) is
a Hamilton-Jacobi equation with the Hamiltonian

H.t; x; p/ D �jpj C Vt � p

and the corresponding Lagrangian

L.t; x; q/ D inf
p2Rn

�p � q �H.t; x; p/� D

(
0 if jq � Vt j � 1;
�1 otherwise.

By, for example, [7, theorem 7.2], the function u" defined by (2.6) is a viscosity
solution of (2.7) with the initial data u".x; 0/ D u"0. For a definition, motivations,
and derivation of viscosity solutions for optimal control problems, see [2]. Since u"0
is bounded and uniformly continuous and Vt is locally Lipschitz and bounded, the
viscosity solution u".x; t/ is locally Lipschitz (by lemma 9.2 in [4]). Furthermore,
a viscosity solution satisfies the equation whenever it is differentiable (see, e.g.,
proposition 1.9 on p. 31 in [2]). Hence by Rademacher’s theorem, u" satisfies (2.7)
almost everywhere.

Formula (2.5) implies that u".x; t/ # �Rt
.x/ as " # 0, where �Rt

is the char-
acteristic function of Rt . HenceZ

Ir

u".x; t/dx ! w.r; t/
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and
flux.Vtu"; @Ir/! flux.Vt ;Dr.t//

as " ! 0. Integrating the G-equation over Ir and taking into account the incom-
pressibility of Vt , we obtain that

@t

Z
Ir

u" dx C flux.Vtu"; @Ir/ D
Z
Ir

jru"jdx:

Hence for any t1 and t2 we haveZ t2

t1

Var.u"; I �r /dt

D

Z t2

t1

Z
Ir

jru"jdx dt

D

Z
Ir

u".x; t2/dx �

Z
Ir

u".x; t1/dx C

Z t2

t1

flux.Vtu"; @Ir/dt:

Note that this quantity is bounded by a constant independent of " since ju"j � 1 and
jVt j � M . By Fatou’s lemma and the lower semicontinuity of the total variation
(see, e.g., remark 3.5 in [1]) it follows thatZ t2

t1

s.r; t/dt �

Z t2

t1

Var.�Rt
; I �r /dt � lim inf

"!0

Z t2

t1

Var.u"; I �r /dx dt:

Thus Z t2

t1

s.r; t/dt � w.r; t2/ � w.r; t1/C

Z t2

t1

flux.Vt ;Dr.t//dt:

This inequality means that (2.3) holds in the sense of distributions. �

Remark 2.3. Since flux.Vt ;Dr.t// is bounded for every fixed r and s.r; t/ � 0,
Lemma 2.1 implies that w.r; � / is the sum of a Lipschitz function and a non-
decreasing function. Therefore, for almost all t > 0 the derivative d

dt
w.r; t/ exists

and satisfies (2.3).

By (2.4) the perimeter P.Rt / D s.1; t / is finite for almost all t > 0. This
and the De Giorgi theorem A.5 imply that the perimeter of Rt equals the .n � 1/-
dimensional Hausdorff measure Hn�1.@�Rt / of a rectifiable set @�Rt , the re-
duced boundary of Rt (see Definition A.4). We define p.r; t/ to be the .n � 2/-
dimensional Hausdorff measure of the slice of @�Rt by @Ir :

(2.8) p.r; t/ D Hn�2.@�Rt \ @Ir/:

Then Corollary A.9 gives us the co-area inequality for this slicing:

(2.9) s.r2; t / � s.r1; t / �

Z r2

r1

p.x; t/dx:
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The quantity p.r; t/ can be thought of as the .n � 2/-dimensional perimeter of the
.n � 1/-dimensional set Dr.t/ D Rt \ @Ir . This is formalized in the Appendix
(see Theorem A.10) and used in the proof of Lemma 4.4 below.

We will need the following isoperimetric inequalities.
The euclidean isoperimetric inequality (theorem 14.1 in [12]) implies that the

volume w.1; t / D jRt j of the entire reachable set Rt and its perimeter s.1; t /
satisfy

(2.10) s.1; t / � �0w.1; t /
n�1
n ;

where �0 D nV
1=n
n is the euclidean isoperimetric constant satisfying

j@Br.0/j D �0 jBr.0/j
n�1
n for all r > 0:

The relative isoperimetric inequality in the cube (Theorem A.6 in the Appendix)
implies that the volume w.r; t/ of Rt \ Ir and its relative perimeter s.r; t/ inside
Ir satisfy

(2.11) s.r; t/ � �1.minfw.r; t/; jIr j � w.r; t/g/
n�1
n ;

where �1 is a positive constant depending only on n.

3 Proof of Theorem 1.2 and Corollary 1.4
In most of this section we spend proving Theorem 1.2. Its most technical stage

(namely the proof of Proposition 3.2) is put off. It is contained in Sections 4 and 5.
Let us say a few words about how the proof of Theorem 1.2 goes. It is easy to

show that the volume of Rt grows to infinity. It is a more delicate task to verify
that the set Rt cannot be carried away from the origin by the flow. Our idea is to
show that, for every r � 0, the set Rt \ Ir fills Ir for all sufficiently large t . Thus
we look at how the volume w.r; t/ D jRt \ Ir j grows. We want it to reach .2r/n,
the volume of Ir . This is done by dividing the filling process into three stages.
During the initial stage we fill in at least �jIr j of the volume of Ir , where � is a
small positive constant defined below. In the next step, which is the key one, we
fill in at least .1� �/jIr j of the volume of Ir . Furthermore, this portion of volume
remains filled forever after a certain time t . Finally, we show that at a later time a
smaller cube Ir=2 is completely filled. Since the choice of r is arbitrary, r=2 is as
good as r .

Our choice of � depends on the maximal speed of the fluid flow and the dimen-
sion. We fix

(3.1) � D
Vn

.4M/n

for the rest of the proof. We assume that r is sufficiently large, more precisely
r � r0 where r0 is a constant depending on Vt . The precise value of r0 is defined
in the course of the proof.
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The initial stage of the filling process is simple. It is analyzed in the following
lemma:

Lemma 3.1. Let r > 0 and T0 D r
2M

. Then

w.r; T0/ � �jIr j:

PROOF. By (2.2) we have RT0 � Ir ; hence w.r; T0/ D jRT0 j. Clearly Rt

has a nonempty interior and hence jRt j > 0 for every t > 0. By (2.4) and the
isoperimetric inequality (2.10) we have

d

dt
jRt j � s.1; t / � nV1=nn jRt j

n�1
n :

Therefore

(3.2) jRt j � Vn � t
n D jBt .0/j:

Hence w.r; T0/ � VnT
n
0 D Vn.2M/�n rn D �jIr j. �

The middle stage of the filling process is the most technical. This is the content
of the next proposition.

Proposition 3.2. There exist constants A D A.n/ � 1 and r0 > 0 such that
w.r; t/ > .1 � �/jIr j for all r � r0 and t � Ar .

We prove Proposition 3.2 in Section 5. For this proof we need to estimate how
much volume of Rt \ Ir can leak out through the boundary of Ir . This estimate is
contained in Section 4; see Proposition 4.1.

The final stage of the filling process is simple again. It is analyzed in Lemma
3.3. We show that, once w.r; t/ exceeds .1 � �/jIr j, then in time T0 the reachable
set covers the smaller cube Ir=2.

Lemma 3.3. Suppose that r > 0 and t1 > 0 are such that w.r; t1/ > .1 � �/jIr j.
As in the previous lemma, let T0 D r

2M
. Then

Ir=2 � Rt1CT0 :

PROOF. Fix p 2 Ir=2 and let t2 D t1 C T0. Let

R�
t D fx 2 Rn W .p; t2/ is reachable from .x; t2 � t /g:

R�
t is the reachable set from p for the reversed flow V �t D �Vt2�t : As in the

previous lemma we can apply (3.2) to V �t to obtain

jR�
T0
j � VnT

n
0 D �jIr jI

hence
jR�

T0
j C w.r; t1/ > jIr j:

By (2.2) applied to V �t we have

R�
T0
� Br=2.p/ � Ir :

Thus R�
T0
\Rt1 ¤ ¿. Hence p 2 Rt2 : �
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Combining the results of the three stages, we obtain the following proposition,
which is essentially Theorem 1.2 with nonoptimal bounds on reach time.

Proposition 3.4. There exist constants � D �.n/ 2 .0; 1/ and C > 0 such that for
every t � C we have B�t .0/ � Rt .

PROOF. By Proposition 3.2 we have w.r; t/ > .1 � �/jIr j for all r � r0 and
t � Ar . By Lemma 3.3 it follows that

Br=2.0/ � Ir=2 � Rt

for all t � Ar C T0 D .AC 1
2M

/r . Applying this to 2r in place of r yields that
Br.0/ � Rt for all r � r0 and t � .2A C 1/r . Hence the statement holds for
� D .2AC 1/�1 and C D .2AC 1/r0. �

Now we are in a position to prove Theorem 1.2 and Corollary 1.4.

PROOF OF THEOREM 1.2. Fix " > 0. Note that Proposition 3.4 (after a suitable
rescaling) holds for controls bounded by " instead of 1. Our plan is to spare a small
part of control to ensure reachability and use the remaining part of control to add
the drift with speed 1 � " in a desired direction.

Without loss of generality, assume that x0 D 0 and t0 D 0. Fix v 2 Rn such
that jvj � 1 � " and apply Proposition 3.4 to the flow eV defined by

eV t .x/ D
1

"
Vt ."x C tv/:

This yields a constant C";v > 0 such that for every t � C";v the reachable set for eV
at time t contains the ball B�t .0/. Here � D �.n/ is the constant from Proposition
3.4. If z
 W �0; t �! R

n is an admissible path for eV , then the path 
 defined by


.�/ D "z
.�/C �v

is admissible for our flow V . Hence the reachable set Rt contains the ballB"�t .tv/.
In particular, the point y D tv can be reached at time t , which satisfies t � jyj=.1�

"/.
It remains to show that the constant C";v can be chosen independently of v. To

show this, let us choose a finite "�-net fv1; : : : ; vmg in the ball B1�".0/ and let
C" D maxfC";vi W 1 � i � mg. Then for every t � C" we have

Rt �

m[
iD1

B"�t .tvi / � B.1�"/t .0/:

Thus every point x 2 Rn is reachable at any moment

t � maxfC"; jxj=.1 � "/g:

To finish the proof of the theorem, set " D 1 � 1
a

and C D C". �
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PROOF OF COROLLARY 1.4. The idea is to use a part of the control to compen-
sate the mean drift at some scale. Fix c 2 .�; 1/. By (1.2) there exists L0 > 0

such that the flow

(3.3) xVt .x/ WD
1

Ln0

Z
�0;L0�n

Vt .x C y/dy

satisfies k xVt .x/k < c for all t and x. Let V 0
t D Vt � xVt . Then

(3.4)




 1Ln

Z
�0;L�n

V 0
t .x C y/dy





 � 2nL0M

L

for all L � L0. Indeed, let �L denote the characteristic function of the cube
��L; 0�n divided by Ln. Then xVt is the convolution Vt � �L0

and the integral in
(3.4) is the value at x of the convolution V 0

t ��L D Vt � .�L ��L0
��L/. The

function j�L ��L0
��Lj is bounded by 1=Ln and its support is contained in the

set ��L�L0; 0�n n ��L;�L0�n of volume .LCL0/n� .L�L0/n � 2nL0Ln�1.
Hence the L1-norm of �L ��L0

��L is bounded by 2nL0=L and (3.4) follows.
Observe that xVt is incompressible and bounded byM . This and (3.4) imply that

V 0
t satisfies the assumptions of Theorem 1.2. We apply Theorem 1.2 to V 0

t with
the maximal fish speed set to 1� c instead of 1. Since k xVtk < c, every admissible
path in this setting is admissible for the original flow Vt D V 0

t C
xVt . Because of

the speed renormalization, the conclusion of the theorem holds for any a > 1
1�c .

Since c 2 .�; 1/ is arbitrary, Corollary 1.4 follows. �

REMARK 3.5. One can see from the proof that the constant C in Corollary 1.4 is
determined by M , �, a, and any value L0 such that xVt .x/ in (3.3) is bounded by
�C1
2

for all t and x.

4 Volume Change Estimate
Throughout the paper we integrate areas and perimeters over time intervals.

Such integrals are indicated by a hat. Namely we define

bs.r; t; T / D Z tCT

t

s.r; �/d� and bp.r; t; T / D Z tCT

t

p.r; �/d�:

The goal of this section is to prove the following proposition:

Proposition 4.1. For every " > 0 there exists r0 > 0 such that for all r � r0, t > 0,
and T 2 �0; r�, we have

(4.1) w.r; t C T / � w.r; t/ �bs.r; t; T / � "rn:
For the proof of Proposition 4.1 we need the following two lemmas.

Lemma 4.2. For all r; t; T > 0,

(4.2) bs.r; t; T / � C1.r C T /rn�1

where C1 D n2nM .
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PROOF. From Lemma 2.1 and a trivial estimate

jflux.Vt ;Dr.t//j �M j@Ir j

we have
d

dt
w.r; t/ � s.r; t/ �M j@Ir j

(in the sense of distributions). By integrating this we obtain

w.r; t C T / � w.r; t/ �bs.r; t; T / �MT j@Ir j:

The left-hand side is bounded above by jIr j. Hencebs.r; t; T / � jIr j CMT j@Ir j:

Since jIr j D 2nrn and j@Ir j D n2nrn�1, (4.2) follows. �

The incompressibility and small mean drift assumptions imply the following
lemma, which we borrow from [5]. This is the only place in the proof where the
small mean drift assumption is used.

Lemma 4.3 (cf. [5, lemma 3.1]). For every " > 0 there exists L0 > 0 such that the
following holds. Let F be an .n � 1/-dimensional cube with edge length L � L0;
then

(4.3) jflux.V; F /j � "Ln�1:

PROOF. This lemma is stated in [5] for a time-independent vector field. We
apply [5, lemma 3.1] to the vector field Vt for every fixed t . The constant L0
(named A0 in [5, lemma 3.1]) depends on the vector field, so we need to make sure
that it can be chosen independently of t . In the proof in [5] one can see that L0
depends only on M and on the rate of convergence of the mean drift to 0. Hence
the proof works for our Lemma 4.3 as well. �

Lemma 4.4 (cf. [5, lemma 3.3]). For every " > 0 there exist r1 > 0 and C0 > 0

such that for almost all t > 0 and r � r1,

(4.4) jflux.Vt ;Dr.t//j � C0p.r; t/C "rn�1:

PROOF. This lemma could also be borrowed from [5] if we had proven cer-
tain regularity properties of Rt . For the sake of completeness we include a proof
here. The proof is essentially the same, but it is based on different foundations in
geometric measure theory.

We fix " > 0 and apply Lemma 4.3. Let L0 be the constant provided by Lemma
4.3. Let t > 0 be such that Rt has finite perimeter. Assume that r � L0 and the
following holds: For every hyperplane� containing one of the .n�1/-dimensional
faces of the cube Ir , the slice Rt \ � has finite perimeter in � � R

n�1, and its
reduced boundary in � coincides with � \ @�Rt up to a set of zero .n � 2/-
dimensional Hausdorff measure. By the boundary slicing theorem A.10, these
conditions are satisfied for almost all r .
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Since r � L0, we have r D mL for some L 2 �L0; 2L0� andm 2 Z. We divide
@Ir into .n�1/-dimensional cubes Fi , i D 1; 2; : : : ; 2nmn�1, with edge length L.
Denote D D Dr.t/ for brevity. For each i , define

si D minfjFi \Rt j; jFi nRt jg D minfjFi \Dj; jFi nDjg

and
pi D Pn�1.D; F

�
i / D Hn�2.F �i \ @

�Rt /

where Pn�1 denotes the perimeter in the respective hyperplane and F �i is the rela-
tive interior of Fi . The last identity follows from the De Giorgi theorem A.5.

The isoperimetric inequality in .n � 1/-dimensional cubes implies that

si � CLpi

where C is a constant depending only on n. For n � 3, we prove this isoperimetric
inequality in the Appendix, Corollary A.7. For n D 2 Corollary A.7 is trivially
true. Therefore, we have��jflux.Vt ; Fi \D/j � jflux.Vt ; Fi nD/j

�� � jflux.Vt ; Fi /j � "Ln�1;

where the second inequality follows from Lemma 4.3. At least one of the quantities
jflux.Vt ; Fi \D/j and jflux.Vt ; Fi nD/j is bounded by Msi , hence both of them
are bounded by Msi C "Ln�1. Thus

jflux.Vt ; Fi \D/j �Msi C "Ln�1 � CMLpi C "Ln�1 � C0pi C "jFi j;

where C0 D 2CML0. Summing up over all i yields that

jflux.Vt ;D/j � C0
X

pi C "j@Ir j � C0p.r; t/C n2n"rn�1

for almost all r � L0. Since " is arbitrary, the lemma follows. �

PROOF OF PROPOSITION 4.1. Fix �; " > 0. We apply Lemma 4.4 to "1 WD

"=2nC1 in place of ". This yields

jflux.Vt ;Dr.t//j � C0p.r; t/C "1r
n�1

for almost all r � r1 and t > 0. This and (2.3) imply
d

dt
w.r; t/ � s.r; t/ � C0p.r; t/ � "1r

n�1

for almost all r > r1 and t > 0. Integration in t yields

(4.5) w.r; t C T / � w.r; t/ �bs.r; t; T / � C0bp.r; t; T / � "1T rn�1
for almost all r > r1 and all t; T > 0.

Define

h WD
2nC1C0C1

"1
;

where C1 is the constant from Lemma 4.2. By the co-area inequality (2.9),

s.r C h; t/ �

Z rCh

0

p.x; t/dx �

Z rCh

r

p.x; t/dx
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for all r > 0 and almost all t > 0. Once again, integration in t yields

(4.6) bs.r C h; t; T / �

Z rCh

r

bp.x; t; T /dx
for all r > 0 and all t; T > 0.

Now let r and t be as in the formulation of Proposition 4.1. Namely t > 0 is
arbitrary, r � r0 where r0 is to be chosen later, and 0 � T � r . We require that
r0 � r1 and r0 � h, the latter ensures that h � r . By Lemma 4.2 applied to r C h

in place of r ,bs.r C h; t; T / � C1.r C hC T /.r C h/n�1 � 2nC1C1r
n

since T � r and h � r . This and (4.6) imply that there exists zr 2 �r; r C h� such
that

(4.7) bp.zr; t; T / � 2nC1C1r
n

h
D C�10 "1r

n;

where the equality follows from the definition of h. Furthermore, the set of zr 2
�r; rCh� satisfying (4.7) has positive measure; hence we can choose zr so that (4.7)
holds and (4.5) applies to zr in place of r :

w.zr; t C T / � w.zr; t/ �bs.zr; t; T / � C0bp.zr; t; T / � "1T zrn�1:
This estimate, (4.7), and the inequalities T � r and zr � 2r imply that

w.zr; t C T / � w.zr; t/ �bs.zr; t; T / � "1rn � 2n�1"1rn
�bs.zr; t; T / � 2n"1rn Dbs.zr; t; T / � 1

2
"rn:

Since zr � r , we havebs.zr; t; T / �bs.r; t; T /. Thus

(4.8) w.zr; t C T / � w.zr; t/ �bs.r; t; T / � 1
2
"rn:

Now we estimate the difference between w.zr; t C T / and w.r; t C T /:

w.zr; t C T / � w.r; t C T / D jRtCT \ .Izr n Ir/j � jIzr n Ir j D 2n.zrn � rn/:

The right-hand side is bounded as follows:

2n.zrn � rn/ � n2n.zr � r/zrn�1 � n2nhzrn�1 � n22n�1hrn�1 � 1
2
"rn

if we require that

(4.9) r � r0 � n2
2n�1h"�1:

Thus

(4.10) w.zr; t C T / � w.r; t C T / � 1
2
"rn:

This and a trivial inequality w.r; t/ � w.zr; t/ imply that

w.r; t C T / � w.r; t/ � w.zr; t C T / � w.zr; t/ � "
2
rn �bs.r; t; T / � "rn;

where the second inequality follows from (4.8). This finishes the proof of Proposi-
tion 4.1. �
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5 Middle Stage. Proof of Proposition 3.2
In this section we prove Proposition 3.2, the last remaining piece of the proof of

Theorem 1.2. The proof is based on Proposition 4.1 and the isoperimetric inequal-
ity (2.11) for subsets of a cube.

To facilitate understanding of the proof, we first give its simplified version as-
suming that the estimate (4.1) from Proposition 4.1 holds without the correction
term �"rn. After this simplification the estimate (4.1) boils down to the differen-
tial inequality

(5.1)
d

dt
w.r; t/ � s.r; t/ � �1 minfw.r; t/; jIr j � w.r; t/g

n�1
n

where the second inequality is the isoperimetric inequality (2.11). This implies that
w.r; t/ � �.t/ where �.t/ > 0 solves the ODE

d

dt
�.t/ D �1 minf�.t/; jIr j � �.t/g

n�1
n

with the initial condition limt!0C �.t/ D 0. The solution is given by

�.t/ D

(
atn; t 2 �0; b�;

jIr j � a.2b � t /
n; t 2 �b; 2b�;

where a D .�1=n/
n and b D . 1

2a
jIr j/

1=n D cr with c D 2
n�1
n n��11 . It reaches

the value �.t/ D jIr j at t D 2b D 2cr , and the coefficient 2c depends only on n.
This proves the main theorem under the above simplifying assumption.

The actual proof of Proposition 3.2 is essentially a discrete version of the above
argument. We apply Proposition 4.1 to T D �r where � 2 .0; 1/ is a carefully
chosen constant (depending on the flow but not depending on r). This yields a
lower bound for w.r; Tk/ where Tk D T0Ck�r , k D 1; 2; : : : . It turns out that for
a sufficiently small " > 0 the termbs.r; t/ dominates the correction term �"rn, and
hence the resulting bound for w.r; Tk/ is similar to the formula for �.Tk/. This
implies the desired conclusion.

Another technical issue is that the isoperimetric inequality (2.11) does not in-
tegrate well over time intervals. This is handled in Lemma 5.1 below, where we
prove a discrete analogue of the differential inequality (5.1).

Now we are back to the formal proof. Recall that we have a fixed � defined by
(3.1). We now choose a small constant � 2 .0; 1/. First we require that � < �

10
.

Second, we require that � be so small that the following holds. For all x 2 ��
2
; 1�

and all � 2 �0; ��

(5.2) .x C �/1=n � x1=n �
1

2n
x

1�n
n �:

Such � exists since the function x 7! x1=n is smooth on ��
2
; 1� and its derivative

equals 1
n
x

1�n
n .
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We fix � and � for the rest of the proof.

Lemma 5.1. There exist � D �.n/ 2 .0; 1� and r0 > 0 such that for every r � r0
and T D �r the following holds.

1. For all t > 0 and � 2 �t; t C T �,

(5.3) w.r; �/ � w.r; t/ � �
10
jIr j:

2. If t > 0 satisfies

(5.4) �
2
jIr j � w.r; t/ � .1 �

�
2
/jIr j;

then

(5.5) w.r; t C T / � w.r; t/C �Tm.t/
n�1
n

where
m.t/ D minfw.r; t/; jIr j � w.r; t/g:

PROOF. Fix a sufficiently small " > 0, namely,

" < min
�
�
10
; 1
16
�1��

	
;

where �1 D �1.n/ is the isoperimetric constant from (2.11). By Proposition 4.1
there exists r0 > 0 such that

(5.6) w.r; �/ � w.r; t/ �bs.r; t; �/ � "rn
for any r � r0, T D �r , and � 2 �t; t C T �. Sincebs.r; t; �/ � 0, this implies that

w.r; �/ � w.r; t/ � �"rn > � �
10
jIr j

due to the choice of ". This proves the first claim of the lemma.
To prove the second one, define

m0 D inffm.�/ W � 2 �t; t C T �g

and consider two cases: m0 <
1
2
m.t/ and m0 �

1
2
m.t/.

Case 1. m0 <
1
2
m.t/. Then m.�/ < 1

2
m.t/ for some � 2 �t; t C T �. The

definition of m.t/ and (5.4) imply that

(5.7) jw.r; �/ � w.r; t/j > �
4
jIr j:

The inequality (5.3) rules out the case w.r; �/ < w.r; t/; hence

w.r; �/ > w.r; t/C �
4
jIr j:

Combining this inequality with (5.3) applied to � and t C T in place of t and � ,
respectively, yields

(5.8) w.r; t C T / � w.r; �/ � �
10
jIr j > w.r; t/C

�
10
jIr j:

On the other hand, by the trivial estimate m.t/ � jIr j D .2r/n we have

Tm.t/
n�1
n � T .2r/n�1 D �r.2r/n�1 D �

2
jIr j <

�
10
jIr j:

This and (5.8) imply (5.5) for any � � 1.
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Case 2. m0 �
1
2
m.t/. By the isoperimetric inequality (2.11) for subsets of the

cube,

s.r; �/ � �1m.�/
n�1
n � �1m

n�1
n

0 � 1
2
�1m.t/

n�1
n

for all � 2 �t; t C T �. Hence

(5.9) bs.r; t; T / � 1
2
�1Tm.t/

n�1
n :

By (5.4), we have m.t/ � �
2
jIr j D

�
2
.2r/n. Thereforebs.r; t; T /

� 1
2
�1Tm.t/

n�1
n D 1

2
�1�rm.t/

n�1
n

� 1
4
�1�r

�
�
2
.2r/n

�n�1
n > 1

8
�1��r

n > 2"rn;

(5.10)

where the last inequality follows from the choice of ". Inequalities (5.10), (5.6),
and (5.9) imply that

(5.11) w.r; t C T / � w.r; t/ �bs.r; t; T / � "rn � 1
2
bs.r; t; T / � 1

4
�1Tm.t/

n�1
n :

The inequality (5.11) implies (5.5) for � D 1
4
�1.

Combining the outcomes of the two cases, one sees that (5.5) holds for � D

minf1; 1
4
�1g. �

Now we are in a position to prove Proposition 3.2. The proof is a straightforward
but technical implication of Lemma 5.1. Nothing beyond basic analysis is used.

PROOF OF PROPOSITION 3.2. Let r0 be such that the assertion of Lemma 5.1
holds. Fix r > r0 and define a function f WRC ! �0; 1� by

f .t/ WD
w.r; t/

jIr j
D
w.r; t/

.2r/n
:

We rewrite some of the previous results in terms of f . First, Lemma 3.1 turns into
the inequality

(5.12) f .T0/ � � where T0 D r
2M

:

By the first statement of Lemma 5.1 we have

(5.13) f .�/ � f .t/ � �
10

if t � � � t C �r:

Finally, the second statement of Lemma 5.1 takes the form

(5.14)
f .t C �r/ � f .t/C 1

2
��minff .t/; 1 � f .t/g

n�1
n

provided that �
2
� f .t/ � 1 � �

2
:

Here � D �.n/ 2 .0; 1� is the constant from Lemma 5.1, and we use this notation
throughout the rest of the proof.

In our new notation the statement of Proposition 3.2 turns into

f .t/ > 1 � � for all t � Ar
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where A is a constant depending only on n.
Now consider a sequence fykg1kD0 defined by yk D f .T0Ck�r/. The relations

(5.12)–(5.14) imply the following properties of this sequence:
(1) y0 � �;

(2) if �
2
� yk �

1
2

, then ykC1 � yk C 1
2
��y

n�1
n

k
;

(3) if 1
2
� yk � 1 �

�
2

then ykC1 � yk C 1
2
��.1 � yk/

n�1
n ;

(4) if yk � 1 � �
2

, then ykC1 � 1 � 6
10
�.

It follows that fykg increases as long as it stays below 1 � �
2

, and if it gets above
1 � �

2
, then after that it is confined to the interval �1 � 6

10
�; 1�. We are going to

prove that yk eventually attains a value greater than 1 � �
2

, and estimate the index
k for which this happens.

If yk � 1
2

, then by (1) and (2) we have yk � y0 � � and ykC1 � yk C �k

where �k D 1
2
��y

n�1
n

k
. Hence

y
1=n

kC1
� .yk C �k/

1=n � y
1=n

k
C

1

2n
y

1�n
n

k
�k D y

1=n

k
C
��

4n
:

Here the second inequality follows from the choice of � (see (5.2)) and the fact
that �k � � since � � 1 and yk � 1. By induction it follows that

y
1=n

k
� y

1=n
0 C

��k

4n
>
��k

4n

as long as y0; : : : ; yk�1 � 1
2

. Hence there exists k1 � 4n
��

such that yk1 �
1
2

.
Now consider k � k1. Note that yk � 1

2
by (2)–(4). As long as yk � 1� �

2
, we

have

(5.15) ykC1 � yk C �k;

where
�k D

1
2
��.1 � yk/

n�1
n :

We rewrite (5.15) as follows:

.1 � ykC1/
1=n � .1 � yk � �k/

1=n � .1 � yk/
1=n �

1

n
.1 � yk/

1�n
n �k

D .1 � yk/
1=n �

��

2n
:

Here the second inequality follows from the concavity of the function t 7! t1=n.
By induction it follows that

.1 � yk/
1=n � .1 � yk1/

1=n �
��

2n
.k � k1/ � 1 �

��

2n
.k � k1/

as long as yk1 ; : : : ; yk�1 � 1 � �
2

. Hence there exists k2 � k1 C
2n
��

� 6n
��

such
that yk2 � 1 �

�
2

. Then (3) and (4) imply that yk � 1 � 6
10
� for all k � k2.
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This and (5.13) imply that f .t/ � 1 � 7
10
� for all t � T0 C �rk2. Since

T0 C �rk2 � T0 C
6n
�
r � .6n

�
C 1/r , the statement of Proposition 3.2 holds for

A D 6n
�
C 1. �

6 Application to Homogenization of the G-equation
In this section we prove a result about the homogenization limit of solutions

to the G-equation with random drift. The proof of this result is a corollary of
Theorem 1.2 combined with standard arguments of the homogenization theory.
We give these arguments here for the convenience of the reader. We start with the
notions needed to formulate our result.

We investigate the asymptotic behavior as " ! 0 of the solutions of the family
of the initial value problems parametrized by ". Namely, we consider the family of
Hamilton-Jacobi equations:

u"t C V t
"

�x
"
; !
�
�Du" D jDu"j; t > 0; x 2 Rn;(6.1)

u" D u0.x/; t D 0; x 2 Rn;

for the unknown u" D u".t; x; !/, where u"t and Du" are the derivatives of u"

with respect to t and x, respectively. Here ! is an elementary event (realization) in
the sample space: ! 2 �. We assume the sample space is a part of the probability
triple .�;F ;P /, where F is the � -algebra of measurable events, and P is the
probability measure. The velocity

Vt WR
nC1 ��! R

n

is a random field, a family of random variables parametrized by x and t . All
random variables are assumed Borel measurable.

If Vt is locally Lipschitz, then, by, e.g., exercise 3.9 in [2], we are guaranteed that
the viscosity solutions of the G-equation (6.1) are unique in the space of bounded
and uniformly continuous functions for every fixed !. These solutions u".t; x; !/
of (6.1) are random functions in x and t . Our objective is to determine assump-
tions on Vt .x; !/ that imply the law of large numbers: u".t; x; !/! xu.t; x/ with
probability 1 as " ! 0, and characterize the deterministic limit xu.t; x/ as a so-
lution of another homogenized initial value problem. In order to determine this
homogenized initial value problem, we will find a deterministic time-independent
function SH WRn ! R

C such that it is positively homogeneous of degree 1, that
is, SH.�p/ D � SH.p/ for all � > 0 and p 2 Rn, and verify that xu is the unique
viscosity solution of the initial value problem

(6.2)
xut D SH.Dxu/; x 2 Rn; t > 0;

xu.0; x/ D u0.x/; x 2 Rn:

The solutions of (6.1) have a control representation formula (2.6). Similarly, solu-
tions of (6.2) are given by the Hopf-Lax formula [8, 11]

(6.3) xu.t; x/ D maxfu0.y/ W xT .x � y/ � tg;
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where
xT .v/ D sup

�
v � q W q 2 Rn; xH.q/ D 1

	
:

The following two definitions are needed to state our assumptions on Vt .x; !/.

DEFINITION 6.1. We say that Vt .x; !/ is space-time stationary if there is an action
of RnC1 on �, denoted by y 7! �y W � ! �, y D .x; t/ 2 RnC1, such that the
action is measure preserving:

(6.4) P .�y.A// D P .A/; 8A 2 F ; y 2 RnC1;

and

(6.5)
Vt0.x0; �y!/ D Vt0Ct .x0 C x; !/;

8x0 2 R
n; t0 2 R; y D .x; t/ 2 RnC1:

DEFINITION 6.2. Define

GtC WD �fVs.x; !/ W s � t; x 2 R
ng;

Gt� WD �fVs.x; !/ W s � t; x 2 R
ng;

(6.6)

where �f � g denotes the � -algebra on � generated by the given family of random
variables. We say Vt has finite range of time dependence if

(6.7) 9@ > 0 such that GtC and Gs� are independent when t � s � @:

We state the result in two essentially equivalent ways.

THEOREM 6.3. Suppose that a random vector field Vt WRnC1 ��! R
n is time-

space stationary (6.4)–(6.5), has finite range of time dependence (6.7), Vt . � ; !/ is
locally Lipschitz and incompressible for all t and !, and has the following uniform
bounds:

M WD 1C sup
t;x;!

jVt .x; !/j <1;(6.8)

� WD inf
L>0

sup
t;x;!





 1Ln
Z
�0;L�n

Vt .x C y; !/dy





 < 1:(6.9)

Then there exists a convex body W � R
n such that B1��.0/ � W � BM .0/ and

lim
t!1

dH .t
�1Rt .!/;W / D 0

for a.e. ! 2 �, where Rt .!/ is the reachable set from .0; 0/ at time t (see Section
2) of the flow Vt .x; !/ and dH denotes the Hausdorff distance.

THEOREM 6.4. Let Vt WRnC1 � � ! R
n be a random vector field satisfying

the same assumptions as in Theorem 6.3. Then there exists a positively one-
homogeneous convex Hamiltonian function SH WRn ! �0;1/ with

1 �� � SH.p/=jpj �M
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such that the following holds with probability 1: For every bounded, uniformly
continuous function u0WRn ! R, one has

(6.10) 8T > 0; 8R > 0 lim
"!0

sup
t2�0;T �

sup
jxj�R

ju".t; x; !/ � xu.t; x/j D 0;

where u" and xu are the unique viscosity solutions of (6.1) and (6.2), respectively.

REMARK 6.5. Theorems 6.3 and 6.4 are also true if we request Vt to be merely
integer stationary. This means that (6.4)–(6.5) holds for y D .x; t/ 2 Z

nC1

only. Here is an example of an integer stationary and finite range dependent flow
Vt .x; !/ that satisfies the conditions of Theorem 6.3. Take any two deterministic
incompressible vector fields V 1

t .x/ and V 2
t .x/with compact support inRnC1. The

incompressibility and compact support imply that

(6.11)
Z
Rn

V i
t .x/dx D 0; i D 1; 2;

for every t . Consider a family of Bernoulli trials �jk.!/, j 2 Zn, k 2 Z, that are
independent identically distributed random variables such that �jk D 1 or �jk D 0

with probability 1=2. Set

Vt .x; !/ D
X

j2Zn;k2Z

�
�jk.!/V

1
tCk.x C j /C .1 � �jk.!//V

2
tCk.x C j /

�
:

The identity (6.11) implies that this random field satisfies (6.9) with � D 0.

REMARK 6.6. Using Theorem 1.2 and Corollary 1.4 we can prove the conclusions
of Theorems 6.3 and 6.4 if, instead of finite range dependence and stationarity, we
impose other assumptions on Vt . We are aware of two approaches.

� If Vt is periodic in x and random, statistically stationary, and ergodic with
respect to t , then the homogenization limit can be proven by an argument
given in [9].

� If Vt is periodic in t and random, statistically stationary, and ergodic with
respect to x, then the homogenization limit can be proven by an argument
given in [13].

Note that the level-set equation (6.1) is used as a model for turbulent combustion
in the regime of thin flames [14, 15]. In this model, the level sets of u" represent
the flame surface, and Vt is the velocity of the underlying fluid (assumed to be
independent of u"). Spatial or temporal periodicity is rarely observed in unsteady
turbulent flows. Thus, in the context of unsteady turbulent flows, it is more relevant
to assume the velocities are time-space stationary and have finite range of time
dependence.

We prove Theorems 6.3 and 6.4 for a time-space stationary random vector field.
Generalization to the integer stationary case is straightforward. We denote by
Rt .x0; t0; !/ the reachable set from .x0; t0/ at time t0 C t of the flow Vt .x; !/.
Note that Rt .!/ D Rt .0; 0; !/.



22 D. BURAGO, S. IVANOV, AND A. NOVIKOV

Observe that

(6.12) Rt .x0; t0; !/ � BMt .x0/ 8t > 0; x0 2 R
n; t0 2 R; ! 2 �:

Define � D 2
1�� . Corollary 1.4 implies that there is a positive integer �0 2 N

such that

(6.13) Bt=�.x0/ � Rt .x0; t0; !/ 8t � �0 � 1; x0 2 R
n; t0 2 R; ! 2 �:

Here we use (6.8), (6.9), and Remark 3.5 to ensure that �0 is independent of !. We
assume that �0 > @ where @ is the range of time dependence from (6.7).

The relation (6.13) implies that x0 2 Rt .x0; t0; !/ for all t � �0� 1. Therefore

(6.14)
Rt1.x0; t0; !/ � Rt1Ct .x0; t0; !/

8t � �0 � 1; t1 � 0; x0 2 R
n; t0 2 R; ! 2 �:

For x0; v 2 Rn, t0 2 R and ! 2 �, define the travel time

(6.15) �.x0; t0; v; !/ D infft 2 N W x0 C v 2 Rt .x0; t0; !/g C �0:

Set �.v; !/ D �.0; 0; v; !/. Note that for any N 2 N the event f! 2 � W

�.x0; t0; v; !/ D N g is determined by the restriction of Vt to the time interval
�t0; t0 CN � �0�.

By (6.12) and (6.13), the random variable �.v; !/ grows linearly in v and more-
over

(6.16)
jvj

M
� �.x0; t0; v; !/ � �jvj C 2�0

for all x0, t0, v, !. This estimate is the main ingredient of the first steps of the
proof. We also need a number of technical estimates. By (6.14) we have

(6.17) x0 C v 2 Rt .x0; t0/ 8t � �.x0; t0; v; !/ � 1

and

(6.18) �.x0; t0; v; !/ � t1 C 2�0 if x0 C v 2 Rt1.x0; t0/:

For any x0; x1; v0; v1 2 Rn and t0 2 R, we have

(6.19)
�.x0; t0; v0; !/ � �.x1; t0 C T; v1; !/C 2T

8T � �jx1 � x0j C�jv1 � v0j C �0:

Indeed, .x1; t0CT / is reachable from .x0; t0/ by (6.13). Then the point x1Cv1 is
reachable from .x1; t0CT / at time t1 D t0CT C �.x1; t0CT; v1; !/� �0. Then,
by (6.13), x0 C v0 is reachable from .x1 C v1; t1/ at any time t2 � t1 C T � 1.
Choosing t2 such that t2 � t0 is an integer and t2 � t1 C T yields (6.19).

Our preliminary goal is to obtain the asymptotic shape of the reachable set. This
is analogous to “shape theorems” for the first-passage time in percolation theory,
and we proceed with similar arguments.
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LEMMA 6.7. There exists a positively 1-homogeneous convex function

ST WRn ! R
C

satisfying

(6.20)
jvj

M
� T .v/ �

jvj

1 ��

for all v 2 Rn and such that the following holds:
i. For any v 2 Rn, x0 2 Rn, t0 2 R,

lim sup
�!1

1

�
�.�x0; �t0; �v; !/ D T .v/ almost surely:

ii. For any v 2 Rn, x0 2 Rn, t0 2 R,
1

�
�.�x0; �t0; �v; !/! T .v/

in probability as �!1, that is,

(6.21) lim
�!1

P

�
! W

���� 1��.�x0; �t0; �v; !/ � T .v/
���� � "� D 0

for every " > 0.

PROOF. Fix x0; v1; v2 2 Rn, t0 2 R, and define �1.!/ D �.x0; t0; v1; !/. By
(6.17) and the definition of � we have the following subadditivity relation:

(6.22) �.x0; t0; v1 C v2; !/ � �1.!/C �.x0 C v1; t0 C �1.!/; v2; !/:

The two terms in the right-hand side of (6.22) are independent random variables,
and they have the same distributions as �.v1; � / and �.v2; � /, respectively. To show
this, fix any N1; N2 2 N and consider events

AN1
D f! W �1.!/ D N1g

and
BN1;N2

D f! W �.x0 C v1; t0 CN1; v2; !/ D N2g:

Their probabilities are equal to those of f�.v1; � / D N1g and f�.v2; � / D N2g,
respectively, due to the space-time stationarity. The event AN1

is determined by
Vt .x; !/ for t � t0 C N1 � �0, and BN1;N2

is determined by Vt .x; !/ for t �
t0 C N1. Since �0 > @, the finite range of time dependence implies that AN2;N1

and BN2
are independent. Thus

P .f! W �1.!/ D N1 and �.x0 C v1; t0 C �1.!/; v2; !/ D N2g/

D P .AN1
\ BN1;N2

/ D P .AN1
/P .BN1;N2

/

D P .f�.v1; � / D N1g/P .f�.v2; � / D N2g/:

(6.23)

By summing over either N2 or N1 we obtain that

�1.!/ and �.x0 C v1; t0 C �1.!/; v2; !/
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have the same distributions as �.v1; � / and �.v2; � /, respectively; furthermore,
(6.23) shows that they are independent.

Therefore, from (6.22) we have

(6.24) E.�.v1 C v2; � // � E.�.v1; � //C E.�.v2; � //:

This implies that there exists a limit

(6.25) T .v/ WD lim
�!1

E.�.�v; � //

�
D inf

�>0

E.�.�v; � //

�
:

The function T is 1-homogeneous by definition. By (6.24), T is subadditive and
hence convex. The inequality (6.16) implies that jvj=M � T .v/ � �jvj. More-
over, by Corollary 1.4 for every a > 1

1�� there is a constant C > 0 such that
�.v; !/ � ajvj C C for all v 2 R

n and ! 2 �. Hence T .v/ � ajvj for all
a > 1

1�� and (6.20) follows.
Fix v 2 R

n and arbitrary sequences fxkg � R
n and ftkg � R, k 2 N. For

each k, define finite sequences �k;m and tk;m, 1 � m � k, of random variables by
induction as follows:

�k;m.!/ D �.xk C .m � 1/v; tk;m.!/; v; !/;

where

tk;m.!/ D tk C

m�1X
iD1

�k;i .!/;

in particular tk;1.!/ D tk . Note that for any N 2 N the event f! W tk;m.!/ D

tkCN g is determined by the values Vt .x; !/ for t 2 �tk; tkCN��0� only. As in the
above discussion of the terms in (6.22), one sees that for each fixed k the random
variables �k;m, 1 � m � k, are independent and have the same distribution as
�.v; � /. Since �k;m are uniformly bounded (see (6.16)), the strong law of the large
numbers for triangular arrays applies to them, and we obtain that

(6.26) lim
k!1

1

k

kX
mD1

�k;m.!/ D E.�.v; � // almost surely.

As in (6.22) we have subadditivity

�.xk; tk; kv; !/ �

kX
mD1

�k;m.!/

for all k 2 N and ! 2 �. This and (6.26) imply that

(6.27) lim sup
k!1

�.xk; tk; kv; !/

k
� E.�.v; � // almost surely:
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Now we prove the two main assertions of the lemma. Fix x0; v 2 Rn, t0 2 R,
and " > 0. By (6.25) there exists �0 > 0 such that

T .v/ �
E.�.�0v; � //

�0
� .1C "/T .v/:

For � � �0 let k 2 N be such that k�0 � � < .k C 1/�0. We apply (6.19)
to �x0, k�0x0, �v, k�0v, �t0 in place of x0, x1, v0, v1, t0, respectively, with
T D T0C .k�0��/t0 where T0 D ��0jx0jC��0jvjC�0jt0jC�0. This implies
that

�.�x0; �t0; �v; !/ � �.k�0x0; k�0t0 C T0; k�0v; !/C 2T0 C 2�0jt0j;

where the last term comes from the estimate jk�0 � �j � �0. Therefore

lim sup
�!1

�.�x0; �t0; �v; !/

�
� lim sup

k!1

�.k�0x0; k�0t0 C T0; k�0v; !/

k�0
:

By (6.27) applied to xk D k�0x0, tk D k�0t0 C T0, and �0v in place of v, the
right-hand side is bounded by E.�.�0v; � //=�0 almost surely. Thus

lim sup
�!1

�.�x0; �t0; �v; !/

�
�
E.�.�0v; � //

�0
� .1C "/T .v/ almost surely:

Since " is arbitrary, it follows that

(6.28) lim sup
�!1

�.�x0; �t0; �v; !/

�
� T .v/ almost surely:

By the space-time stationarity and (6.25),

(6.29) E

�
�.�x0; �t0; �v; � /

�

�
D E

�
�.�v; � /

�

�
� T .v/:

Since �.�x0; �t0; �v; � /=� is bounded above by �jvj C �0 for all � � 1, (6.28),
(6.29), and Fatou’s lemma imply that

lim sup
�!1

�.�x0; �t0; �v; !/

�
D T .v/ almost surely;

and �.�x0; �t0; �v; � /=� converges to T .v/ in probability. �

DEFINITION 6.8. Let T be the function constructed in Lemma 6.7. Define the
effective reachable set

Wt D fv 2 Rn W T .v/ � tg:

Note that Wt D t � W1 and W1 is a convex body satisfying B1��.0/ � W1 �

BM .0/. We are going to show that the reachable set Rt .x0; t0; !/ for large t is
close to the set x0 C Wt in a certain sense. We introduce the following quantity
measuring the difference between these sets.
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DEFINITION 6.9. For x0 2 Rn, t0 2 R, t � �0, and ! 2 � define

�C.x0; t0; t; !/ D inff" > 0 W Rt .x0; t0; !/ � x0 C .1C "/Wtg;

��.x0; t0; t; !/ D inff" > 0 W x0 C .1C "/�1Wt � Rt .x0; t0; !/g

and
�.x0; t0; t; !/ D maxf�C.x0; t0; t; !/; ��.x0; t0; t; !/g:

Note that the statement of Theorem 6.3 is equivalent to the property that

lim
t!1

�.0; 0; t; !/ D 0 almost surely:

LEMMA 6.10. For any fixed R > 0,

(6.30) lim
t!1

sup
jx0j�Rt

��.x0; 0; t; !/ D 0 almost surely

and

(6.31) lim
t!1

sup
jx0j�Rt

�C.x0; 0; t; !/ D 0 in probability,

that is, for any " > 0,

(6.32) Pf! W 8x0 2 BRt .0/;Rt .x0; 0; !/ � x0 C .1C "/Wtg ! 1 as t !1:

PROOF. To prove (6.30), fix R > 0 and " > 0 and choose "-nets fyigNiD1 in the
ballBR.0/ and fvj gKjD1 in the effective 1-reachable setW1. For every x0 2 BRt .0/
and v 2 Wt there exist i and j such that jx0 � tyi j < t" and jv � tvj j < t".
Assuming that t � "�1�0 � 2��1"�1�0, we see from (6.19) that

�.x0; 0; v; !/ � �.tyi ; 3�t"; tvi ; !/C 6�t"

for all ! 2 �. Hence

sup
jx0j�Rt;v2Wt

�.x0; 0; v; !/ � max
i;j

�.tyi ; 3�t"; tvj ; !/C 6�t"

for all t � "�1�0 and ! 2 �. By Lemma 6.7 (part 1)

lim sup
t!1

max
i;j

1

t
�.tyi ; 3�t"; tvj ; !/ D max

j
T .vj / � 1 almost surely:

Thus

lim sup
t!1

sup
jx0j�Rt;v2Wt

1

t
�.x0; 0; v; !/ � 1C 6�" almost surely:

By (6.17) this implies that for every � > 0 there is

s D s.�; !/ > 0

such that
x0 C v 2 Rt.1C6�"C�/.x0; t0/

for all t � s, v 2 Wt and jx0j � Rt . Setting � D �" we obtain that

��.x0; 0; t.1C 7�"/; !/ � 7�"



FEEBLE FISH 27

for all t � s D s.�"; !/ and jx0j � Rt . Therefore

lim sup
t!1

sup
jx0j�R0t

��.x0; 0; t; !/ � 7�" almost surely

where R0 D .1 C 7�"/�1R. Since R and " are arbitrary, (6.30) follows. To
prove (6.31), fix R > 0 and " > 0 and define

�1.t/ D
�
! W 9x0 2 BRt .0/; �

C.x0; 0; t; !/ > "
	
:

Let � D "=32� and choose �-nets fyigNiD1 in BR.0/ and fvj g
K
jD1 in BM .0/.

Consider ! 2 �1.t/ where t � ��1�0. By the definition of �1.t/ there exist
x0 2 BRt .0/ and v 2 Rt .x0; 0; !/ � x0 such that v � .1 C "/Wt . By (6.12)
we have v 2 BMt .0/, hence there exist i and j such that jx0 � tyi j < �t and
jv � tvj j < �t . These inequalities, (6.19), and (6.18) imply that

�.tyi ;�3��t; tvj ; !/ � �.x0; 0; v; !/C 6��t

� t C 2�0 C 6��t � .1C "=4/t:
(6.33)

Since v � .1C "/Wt , we have T .t�1v/ � 1C ". On the other hand,

T .t�1v/ � T .vj /C T .t�1v � vj / � T .vj /C�jt�1v � vj j

� T .vj /C�� � T .vj /C "=4

by the subadditivity of T and (6.20). Therefore T .vj / � 1 C "=2. Hence, by
(6.33),

1

t
�.tyi ;�3��t; tvj ; !/ � 1C "=4 � T .vj / � "=4:

Thus

P .�1.t// �
X
i;j

P

�
! W

1

t
�.tyi ;�3��t; tvj ; !/ � T .vj / � "=4

�
for all t � ��1�0. By Lemma 6.7 (part 2), each summand in the right-hand side
goes to 0 as t !1. Hence P .�1.t//! 0 as t !1 and (6.31) follows. �

DEFINITION 6.11. Define the support function of W1 (also known as the effective
Hamiltonian)

SH.p/ D supfp � y j y 2 W1g:

Since SH.p/ is the supremum of a family of linear functions of p, it is immediate
that SH is convex in p, and positively homogeneous of degree 1. Since B1��.0/ �
W1 � BM .t/, we have .1 � �/jpj � SH.p/ � M jpj. Similarly, we define the
support functions of reachable sets.

DEFINITION 6.12. For p 2 Rn, x0 2 Rn, t0 2 R, and ! 2 � define

Ht .x0; t0; p; !/ D supfp � .y � x0/ j y 2 Rt .x0; t0; !/g

and
Ht .p; !/ D Ht .0; 0; p; !/:
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Due to the space-time stationarity, the random variable Ht .x0; t0; p; � / has the
same distribution as Ht .p; � /.

LEMMA 6.13. For any p 2 Rn and R > 0,

(6.34) lim sup
t!1

sup
jx0j�Rt

Ht .x0; 0; p; !/

t
� xH.p/ almost surely.

Here is an outline of the proof of Lemma 6.13. First we adjust parameters in
(6.34) to define a more manageable random variable h.t; !/; see (6.37) and (6.38)
below. The advantages of h.t; !/ over the original expression are its subadditivity
and independence properties, demonstrated in the course of the proof. With the
new variable h.t; !/ the lemma is reduced to (6.39), which we then prove in four
steps.

In Step 1 we prove the subadditivity (6.43). Unfortunately, this subadditivity
is weaker than the classical one; we only have a bound for h.qt; !/ by a sum of
hq.t; !/ where hq is another random variable parametrized by q 2 N. We over-
come this difficulty by chaining random variables hq.t; !/ to h.t; !/ in Step 2.
Namely, we show in Step 2 that one can control distributions of hq.t; !/ by dis-
tribution of h.t; !/; see (6.45). Step 3 is the key one. There we prove almost
sure convergence for t ranging along a geometric progression; see (6.51). We do
this by analysis of the probability distribution of h.t; !/ using our stationarity and
independence assumptions, subadditivity of h.t; !/, and its convergence in proba-
bility (6.40). In our final Step 4 we show that the linear bound (6.36) on the growth
of Ht .x0; t0; p; !/ is sufficient to deduce the convergence for all t !1.

PROOF OF LEMMA 6.13. We begin with several preliminary observations. By
scaling it is sufficient to consider p 2 Rn with jpj D 1. We may also assume that
R � M . We fix such p and R for the rest of the proof. Since Rt .x0; t0; !/ �

BMt .x0/, we have

(6.35) Ht .x0; t0; p; !/ �Mt:

Moreover,

(6.36) Ht1Ct2.x0; t0; p; !/ � Ht1.x0; t0; p; !/CMt2

for all t1; t2 � 0, since Rt1Ct2.x0; t0/ is contained in the .Mt2/-neighborhood of
Rt1.x0; t0/.

For x0 2 Rn, t0 2 R, t � �0, and ! 2 �, define

(6.37) h.x0; t0; t; !/ D sup
jx�x0j�Rt

Ht��0.x; t0; p; !/CM�0

and, for brevity,

(6.38) h.t; !/ D h.0; 0; t; !/:
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For every x0 2 BRt .0/ we have Ht .x0; 0; p; !/ � h.t; !/ by (6.36) applied to
t1 D t � �0 and t2 D �0. Thus, in order to prove the lemma, it suffices to show that

(6.39) lim sup
t!1

h.t; !/

t
� xH.p/:

Let us now reformulate the convergence in probability from Lemma 6.10 in
terms of h.t; !/. We claim that, for every " > 0,

(6.40) P

�
! W

h.t; !/

t
> SH.p/C "

�
! 0 as t !1:

Indeed, by (6.32) in Lemma 6.10 we have

(6.41) Pf! W 8x0 2 BRt .0/; Rt .x0; 0; !/ � x0 � .1C "/Wtg ! 1 as t !1:

For every ! satisfying the relation Rt .x0; 0; !/ � x0 � .1 C "/Wt in (6.41), we
have

Ht .x0; 0; p; !/ � supfp � y j y 2 .1C "/Wtg D .1C "/t SH.p/:

Therefore, we can conclude from (6.41) that

P

�
! W 8x0 2 BRt .0/;

Ht .x0; 0; p; !/

t
� .1C "/ SH.p/

�
! 1

as t !1 for every " > 0, and (6.40) follows.
In order to state subadditivity properties of h.t; !/, we need one more definition.

Fix q 2 N and define

hq.x0; t0; t; !/ D sup
jx�x0j�2qRt

Ht��0.x; t0; p; !/CM�0

and
hq.t; !/ D hq.0; 0; t; !/

for x0 2 Rn, t0 2 R, t � �0, and ! 2 �. Observe that

(6.42) hq.x0; t0; t; !/ �Mt

by (6.35). We are now ready for our four steps.

Step 1. Subadditivity of h.t; !/. We show here that for every q 2 N, t � �0,
and ! 2 �,

(6.43) h.qt; !/ �

q�1X
kD0

hq.0; kt; t; !/:

Indeed, let 
 W �0; qt � �0�! R
n be an admissible path for Vt .x; !/ with 
.0/ 2

BqRt .0/. To prove (6.43), it suffices to verify that

(6.44) .
.qt � �0/ � 
.0// � p �

q�1X
kD0

hq.0; kt; t; !/ �M�0
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for every such path 
 . Observe that 
.kt/ 2 B2qRt .0/ for k D 0; : : : ; q � 1 since

.0/ 2 BqRt .0/ and j P
 j �M � R. Hence

.
..kC 1/t � �0/� 
.kt// �p � Ht��0.
.kt/; kt; p; !/ � hq.0; kt; t; !/�M�0

for each k D 0; 1; : : : ; q � 1. We also have

.
.kt/ � 
.kt � �0// � p � j
.kt/ � 
.kt � �0/j �M�0

for each k D 1; : : : ; q � 1 . Summing up these 2q � 1 inequalities yields (6.44),
which implies (6.43).

Step 2. Chaining of hq.t; !/. The goal of this step is to show that there exists
N D N.q; n/ 2 N such that

(6.45) Pf! W hq.t; !/ > �g � N � Pf! W h.t; !/ > �g

for all � 2 R, t � �0, and ! 2 �.
To prove this, observe that a ball of radius 2qRt can be covered by N balls of

radius Rt :

B2qRt .0/ �

N[
iD1

BRt .´i /

for some ´1; : : : ; ´N , where N is determined by q and n. Therefore

hq.t; !/ � max
1�i�N

h.´i ; 0; t; !/I

hence

Pf! W hq.t; !/ > �g �

NX
iD1

Pf! W h.´i ; 0; t; !/ > �g:

Due to the space-time stationarity, each summand in the last sum equals Pf! W

h.t; !/ > �g and the inequality (6.45) follows.
Step 3. Convergence along a geometric progression. As we have mentioned

earlier, this is the key step. Recall that our goal is to prove (6.39). Here we prove
that the same inequality with a small error term holds for t ranging along a geo-
metric progression with common ratio q; see (6.51) below.

Fix " > 0 and q 2 N, and let N D N.q; n/ from Step 2. Define

f .t; !/ D
h.t; !/

t
� SH.p/ � " and fk.t; !/ D

hq.0; kt; t; !/

t
� SH.p/ � "

for all t � �0, ! 2 �, and k 2 f1; : : : ; qg. Note that fk.t; !/ �M by (6.42).
With this notation, (6.43) takes the form

(6.46) f .qt; !/ �
1

q

q�1X
kD0

fk.t; !/:

The inequality (6.45) along with the space-time stationarity imply that

(6.47) Pffk.t; !/ > �g � N � Pff .t; !/ > �g

for all � 2 R.
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Fix a positive � < 1
2q2N 2 . By (6.40),

Pf! W f .t; !/ > 0g ! 0 as t !1:

Hence there exists t0 � �0 such that

(6.48) Pf! W f .t; !/ > 0g < � 8t � t0:

Define

(6.49) �.t/ D P

�
! W f .t; !/ >

M

q

�
for all t � �0. We are going to estimate �.qt/ in terms of �.t/ using the above
inequalities.

Assume that t � t0 where t0 is the same as in (6.48). The bound fk.t; !/ �M
and (6.46) imply the following property: For every ! 2 � such that f .qt; !/ >
M
q

, at least two of the terms fk.t; q/ must be positive, and at least one of them

must be greater than M
q

. Therefore

(6.50) �.qt/ �
X
i¤j

P

�
! W fi .t; !/ >

M

q
and fj .t; !/ > 0

�
:

Observe that the random variables fi .t; � / and fj .t; � / are independent if i ¤ j .
This follows from the finite range time dependence and the fact that fk.t; !/ is
determined by the restriction of the flow to the time interval �kt; .k C 1/t � �0�.
Hence (6.50) can be rewritten as

�.qt/ �
X
i¤j

Pf! W fi .t; !/ > M=qg � P
�
fj .t; !/ > 0

	
:

This and (6.47), (6.48), and (6.49) imply that

�.qt/ �
X
i¤j

N�.t/ �N� D q.q � 1/N 2��.t/ �
�.t/

2

where the last inequality follows from the choice of �.
By induction it follows that �.qmt / � 2�m for all t � t0 and m 2 N. By the

Borel-Cantelli lemma and (6.49), this implies that for every t > 0

lim sup
m!1

f .qmt; !/ �
M

q

for a.e. ! 2 �. Substituting the definition of f yields that

(6.51) lim sup
m!1

h.qmt; !/

qmt
� SH.p/C "C

M

q

for a.e. ! 2 �.
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Step 4. Convergence for all t . To finish the proof, choose a partition 1 D t1 �

t2 � � � � � tl D q of �1; q� such that tiC1 < .1C "/ti for all i < l . For every t � q
there exist positive integers m 2 N and i < l such that

qmti � t < q
mtiC1 < q

mti C "t:

These inequalities and (6.36) imply that

h.t; !/ � h.qmti ; !/CM"t;

and hence

lim sup
t!1

h.t; !/

t
� lim sup

m!1
max
1�i<l

h.qmti ; !/

qmti
CM"

D max
1�i<l

lim sup
m!1

h.qmti ; !/

qmti
CM":

for all ! 2 �. This and (6.51) imply that

lim sup
t!1

h.t; !/

t
� SH.p/C

M

q
C .M C 1/"

for a.e. ! 2 �. Since this holds for all " > 0 and q 2 N, the estimate (6.39)
follows. This finishes the proof of the lemma. �

LEMMA 6.14. For any fixed R > 0

(6.52) lim
t!1

sup
jx0j�Rt

�C.x0; 0; t; !/ D 0 almost surely:

PROOF. Fix R > 0 and " 2 .0; 1/. Since W1 is a compact convex set, we have

W1 D fx 2 Rn W x � p � SH.p/; 8p 2 Rng:

Furthermore, there is a finite collection of vectors p1; : : : ; pN 2 Rn with jpi j D 1

such that eW 1 WD fx 2 Rn W x � pi � SH.pi /; 8ig � .1C "/W1:

By Lemma 6.13, for almost every ! 2 � there exists t! > 0 such that for all
t > t! and x0 2 BRt .0/,

.x � x0/ � pi � .1C "/t SH.pi / 8x 2 Rt .x0; 0; !/;8i:

This implies that

Rt .x0; 0; !/ � x0 � .1C "/t eW 1 � .1C "/2Wt

and therefore �C.x0; 0; t; !/ < .1 C "/2 � 1 < 3". Since " is arbitrary, (6.52)
follows. �

PROOF OF THEOREMS 6.3 AND 6.4. Theorem 6.3 follows by setting W D W1

and applying (6.30) and (6.52).
To prove Theorem 6.4 we recall the control representation (2.6) for the solution

of the G-equations. For x 2 Rn, t > 0, and ! 2 �, define

R�
t .x; !/ D fy 2 Rn W x 2 Rt .y; 0; !/g:
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The control representation for the solution of (6.1) and (6.2) have the form

u".t; x; !/ D supfu0.y/ W y 2 "R�
t=".x="; !/g

and
xu.t; x/ D supfu0.y/ W y 2 x �Wtg:

Let � > 0, h > 0, and R > 0. From (6.30) and (6.52) we see that for almost every
! 2 � there exists "0 D "0.�; R; h; !/ > 0 so that for all jxj � R, t � h, and
" � "0, we have

fx �Wt.1��/g � "R�
t=".x="; !/ � fx �Wt.1C�/g;

Therefore

(6.53) xu.t.1 � �/; x/ � u".t; x; !/ � xu.t.1C �/; x/:

Since � > 0 is arbitrary and xu.t; x/ is uniformly continuous, (6.53) implies that
u" ! xu uniformly on compact sets in .0;1/ �Rn. To obtain the locally uniform
convergence down to time t D 0, we need the uniform L1 bound on Vt and
uniform continuity of u0.x/. Observe that

sup
t2�0;h�

ju".t; x; !/�xu.t; x/j � sup
t2�0;h�

ju".t; x; !/�u0.x/jC sup
t2�0;h�

jxu.t; x/�u0.x/j:

For any y 2 "R�
t="
.x="; 0; !/ we have jy � xj � Mt . Thus the first term on the

right is bounded by

(6.54) sup
t2�0;h�

ju".t; x; !/ � u0.x/j � sup
y2Rn

jy�xj�Mh

ju0.y/ � u0.x/j � �.Mh/;

where � is the modulus of continuity of u0.x/. This and a similar bound on
jxu.t; x/ � u0.x/j implies that

(6.55) lim
h!0

h
lim sup
"!0

sup
x2Rn

t2�0;h�

ju".t; x; !/ � xu.t; x/j
i
D 0:

Combining (6.53) and (6.55), we conclude that (6.10) holds with probability 1.
�

Appendix: Functions of Bounded Variation
We collect here needed facts about functions of bounded variation (BV func-

tions) in Rn, n � 2. We followed [1] and [12].

DEFINITION A.1 (Proposition 3.6 and Definition 3.4 in [1]). Let � � R
n be an

open set and u 2 L1.�/. The variation of u in �, denoted by Var.u;�/, is

Var.u;�/ D sup
�Z

�

u div� W � 2
�
C 1
c .�/

�n
; k�kL1 � 1

�
:

Here and below �C 1
c .�/�

n denotes the set of all compactly supported C 1 functions
from � to Rn.
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The space BV.�/ consists of all functions u 2 L1.�/ with Var.u;�/ <1. It
is equipped with the norm

kukBV D

Z
�

jujdx C Var.u;�/:

Remark A.2. The distributional derivative Du of a BV-function u is a (vector-
valued) finite Radon measure, and Var.u;�/ D jDuj.�/. We occasionally write

Var.u;�/ D
Z
�

jruj;

where the right-hand side is understood in the sense of distributions.

DEFINITION A.3 (Definition 3.35 in [1]). The perimeter P.E;�/ of a measurable
set E � R

n in an open set � � R
n is defined by

P.E;�/ D Var.�E ; �/ D sup
�Z

E

div� W � 2
�
C 1
c .�/

�n
; k�kL1 � 1

�
:

We denote P.E/ D P.E;Rn/.

In all cases of interest in this paper the set E is bounded.

DEFINITION A.4 (Reduced boundary, definition 3.54 in [1]). Let E � R
n be a

set of finite perimeter. The reduced boundary @�E of E is the collection of points
x 2 supp.jD�E j/ such that the limit

(A.1) �E .x/ D lim
�!0

R
B�.x/

r�ER
B�.x/

jr�E j

exists in Rn and satisfies j�E .x/j D 1. The integrals here are understood in the
sense of distributions. The function �E W @�E ! S

n�1 is called the generalized
inner normal to E.

Theorem A.5 (De Giorgi theorem, theorem 15.9 in [12]). If E 2 R
n is a set of

finite perimeter, then the reduced boundary @�E is Hn�1-rectifiable and

P.E;�/ D Hn�1.� \ @�E/

for every open set � � R
n.

Recall that Ir D ��r; r�n is a cube with edge length 2r and I �r denotes its
interior.

Theorem A.6 (Relative isoperimetric inequality in the cube). If E is a set of finite
perimeter in Rn, then for every r > 0,

(A.2) min.jE \ Ir j; jIr nEj/
n�1
n � CP

�
E; I �r

�
D CHn�1

�
@�E \ I �r

�
;

where C is a constant depending on n only.
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PROOF. This inequality is standard, but we could not find exactly this formula-
tion in the literature. For the sake of completeness we include a proof here.

Every u 2 BV.I �r / satisfies the following Sobolev inequality (see, e.g., remark
3.50 in [12]): there is a constant C1 D C1.n/ such that

(A.3)
�Z

Ir

ju � uj
n

n�1

�n�1
n

� C1 Var.u; I �r /;

where u denotes the average of u over Ir :

u D
1

jIr j

Z
Ir

u:

The fact that C1 does not depend on r follows from a scaling argument.
Let u D �E , then u D jE\Ir j

jIr j
and 1 � u D jIrnE j

jIr j
; henceZ

It

ju � uj
n

n�1 dx D

�
jIr nEj

jIr j

� n
n�1

jE \ Ir j C

�
jE \ Ir j

jIr j

� n
n�1

jIr nEj:

Therefore�Z
Ir

ju � uj
n

n�1 dx

�n�1
n

�
1

jIr j

�
jE \ Ir j

n
n�1 C jIr nEj

n
n�1

�n�1
n min.jE \ Ir j; jIr nEj/

n�1
n

�
1

2
min.jE \ Ir j; jIr nEj/

n�1
n :

This and the Sobolev inequality (A.3) imply the inequality in (A.2). The equality
in (A.2) holds due to the De Giorgi theorem A.5. �

Corollary A.7. If E is a set of finite perimeter in Rn, then for every r > 0

min.jE \ Ir j; jIr nEj/ � CrP.E; I
�
r / D CrHn�1.@�E \ I �t /

where C is a constant depending only on n.

PROOF. The inequality follows immediately from (A.2) and the trivial estimate

min.jE \ Ir j; jIr nEj/ � jIr j D 2nrn:

(See also [1, remark 3.45] for a different proof.) �

Theorem A.8 (Federer co-area formula, theorem 2.93 in [1]). Let f W Rn ! R

be a Lipschitz function and E � R
n an Hk-rectifiable set. Then the function

t ! Hk�1.E \f �1.t// is Lebesgue measurable, E \f �1.t/ is Hk�1-rectifiable
for almost every t 2 R, andZ

E

jr�f .x/jdHk.x/ D

Z 1

tD0

Hk�1.E \ f �1.t//dt

where r�f .x/ is the component of rf .x/ tangential to E.
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In the next theorem we use the following notation. For t 2 R, we denote by �t

the hyperplane �t WD fx 2 Rn W x1 D tg. For a set E � R
n, we denote by Et the

intersection (“slice”) Et WD E \�t .

Corollary A.9 (Co-area inequality). Let E � R
n be a set with finite perimeter.

Then @�E \ @Ir is Hn�2-rectifiable for almost every r , and

(A.4) Hn�1.@�E/ �

Z 1

0

Hn�2.@�E \ @Ir/dr:

PROOF. By the De Giorgi theorem A.5 the reduced boundary @�E is Hn�1-
rectifiable. We obtain the inequality in (A.4) by applying Theorem A.8 to @�E in
place ofE with k D n�1, f .x/ D kxkl1.Rn/, and using the fact that jr�f .x/j �
1. �

Theorem A.10 (Boundary slicing theorem, Theorem 18.11 in [12]). If E is a set of
finite perimeter in Rn, then for almost every t 2 R the slice Et D E \�t is a set
of finite perimeter in the hyperplane �t � R

n�1 and

Hn�2.@�.Et /�.@
�E/t / D 0;

where � denotes symmetric difference of two sets and @�.Et / is the .n � 2/-
dimensional reduced boundary of Et in �t .
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