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Abstract

We study the following control problem. A fish with bounded aquatic locomo-
tion speed swims in fast waters. Can this fish, under reasonable assumptions,
get to a desired destination? It can, even if the flow is time dependent. More-
over, given a prescribed sufficiently large time ¢, it can be there at exactly the
time . The major difference from our previous work is the time dependence
of the flow. We also give an application to homogenization of the G-equation.
© 2019 Wiley Periodicals, Inc.

1 Introduction

Let V = V; be a time-dependent vector field in R”, n > 2. We assume that
V¢(x) is continuous, uniformly bounded, and locally Lipschitz in x. We often
abuse the language and refer to V; as a flow.

DEFINITION 1.1. An absolutely continuous path y:[tg,;] — R” is said to be
admissible if

d
Ty Vi) <1

fora.e. t € [tg, t1].

Let xg,x1 € R”, 19,11 € R, tp < t;. We say that a point (x1, 1) in space-time
is reachable from (xg, to) if there exists an admissible path y: [tg, ;] — R” with
y(to) = xo and y(f1) = x1.

If (x1,t1) is reachable from (xq,fp), we also say that xy is reachable from
(xo0,t0) at time t1. In what follows we usually assume that the initial conditions
are xo = 0 and t9 = 0. For brevity, we say that x is reachable at time t if (x,t) is
reachable from (0, 0).
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We suggest the following naive interpretation of our setup. The vector field V;
is the velocity field of waters in an ocean. Fish living in the ocean have bounded
aquatic locomotive speed. We normalize the data so that the maximal speed of the
fish is 1, and the speed of waters can be much larger. Definition 1.1 formalizes the
condition that a fish starting its journey from xg at time #y can control its motion
so that it finds itself at x; at exactly time ;.

A similar problem was considered in [5,10] for time-independent vector fields V'
and a weaker reachability result: the fish is not required to arrive at its destination
exactly at a prescribed time.

Handling time dependence of V; required considerable effort and actually forced
us to prove a stronger result. This reachability problem is directly related to the
G-equation, which in particular models combustion processes in the presence of
turbulence. Therefore another substantial part of this paper is an application to
homogenization of the G-equation. We address this application in Section 6.

Our main result, see Theorem 1.2 below, states that under natural assumptions
on V; every point is reachable at all sufficiently large times. The assumptions on
V; are the following:

(i) The field V;(x) is bounded:
M :=1+sup|Vi(x)| < o0

t,x

and is locally Lipschitz in x.
(i) The flow is incompressible: div V; = 0 for all t.
(iii)) Small mean drift:

(1.1) lim sup

L—oo teR,xeR”

)
— V(x—i—y)dyH =0.
Ln [O,L]IZ !

All assumptions (i)—(iii) are essential. First, the flow might have a sink towards
which the flow runs faster than the maximum possible speed the fish can swim.
This issue is easily resolved by assumption (ii) that the flow is incompressible.
Next, the velocity of the flow might point in one direction and again it may have
speed greater than the maximal speed of the fish. This obstruction is resolved by
condition (iii) of small mean drift on the large scale. Finally, the flow could be so
strong that the fish is carried to infinity in finite time. Condition (i) rules out this
possibility. Condition (i) is also a technical assumption that is needed to be able to
formulate the problem formally.

It was a surprise to us that, under these modest assumptions, the fish can reach
every destination point x € R”. Furthermore, there is some ¢, such that if 7 > z,,
the fish can get to x at exactly time 7. We also prove an asymptotically optimal
bounds for the reach time, namely ¢, grows no faster than |x| as |x| — oo.

Now we are in a position to formulate our main result.
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THEOREM 1.2. For every flow V; satisfying (1)—(iii) above and every a > 1, there
exists C > 0 such that for all xg,x € R" and ty € R, (x,t) is reachable from
(xo0.20) foreveryt >ty + alx — xo| + C.

Remark 1.3. The constant C in Theorem 1.2 depends on a and parameters of the
flow. One can check that C can be determined in terms of a, the parameter M from
(i), and the rate of convergence of the mean drift to zero in (iii).

The small mean drift assumption (iii) may be relaxed at the expense of a weaker
estimate on the reach time. Namely, we have the following:

Corollary 1.4. Let V; be a flow satistying (i), (ii), and

1 f
— Vilx + y)dy
Ln [O’L]H t

Then for every a > ﬁ there exists C > 0 such that for all xg,x € R" and
to € R, (x,1) is reachable from (xg, #9) for every t > to + a|x — xo| + C.

(1.2) A :=inf  sup
L>0teR,xeR”?

< 1.

The gist of the proof of Theorem 1.2 is: Fix a flow V; and assume without loss
of generality that xo = 0 and 79 = 0. For 7,r > 0 let R; denote the set of points
reachable at time 7, and I, the cube [—r, r]” in R”. Our goal is to show that, for
every fixed r and for all sufficiently large ¢ the set R, contains /,. We do this
analyzing the volume of the intersection R; N I, as a function of 7.

The paper is organized as follows. In Section 2 we introduce our notation and
main tools. In particular, there we discuss isoperimetric inequalities, co-area for-
mula, slicing, and certain regularity results such as rectifiability of the boundary
of the reachable set. Several important facts about BV functions can be found in
the Appendix (pp. 33 ff.). In Section 3 we prove Theorem 1.2 and Corollary 1.4.
Sections 4 and 5 provide auxiliary estimates needed in the proof of Theorem 1.2.
In Section 6 we give an application of Theorem 1.2 to the theory of random ho-
mogenization of the G-equation.

Some Further Directions

In a discussion with the first author, Leonid Polterovich suggested to consider
a similar problem where the fish is not a point but rather a region (think of an
amoeba or a jellyfish, for instance). Leonid suggested the following symplectic
formulation. Let us say we are in R2 and the flow is Hamiltonian. This, of course,
means that the area of the fish does not change but its shape may change. The
fish has a fixed amount of Hofer’s energy it can spend to change the flow. In two
dimensions Hofer’s energy is

E) = [ s )~ inf (s,

where ¥ (x, ) is the streamfunction (Hamiltonian) of the flow u(x,#). Now the
problem in question is as follows: Initially the fish sits in some ball, and it wants to
get to another (destination ball) of the same size. Leonid has made the following
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observation, which at first sounds very counterintuitive. If the flow is constant
(possibly very fast, no small mean drift), the fish can get from any ball to a ball of
the same size located in the direction opposite to the flow and very far. Using the
same amount of Hofer’s energy, the fish can swim against an arbitrarily fast flow
arbitrarily far away!

We do not include a formal proof here. Here is an intuitive description. Assume
that the fish has M worth of Hofer’s energy, where M depends on the radius of the
initial ball. It spends M /3 of energy to stretch itself into a needle fish, or perhaps
like an eel. By that time, the flow has carried the fish far away just in the opposite
direction of where it wants to arrive. But now the fish can swim quite fast upstream
(like eels do). Then it spends another M /3 of energy to go back, through the ball
where it wants eventually to end its journey, to a carefully chosen place well behind
the destination ball. After that, the flow carries the fish to where it dreams to arrive
to, and the fish spends the remaining M /3 of energy to reassemble itself back into
a round disc shape at exactly the time when the flow brings it to its destination.

Many open problems are left. First of all, even in dimension 2, this argument
works for a constant flow only. Of course, it suggests that much more is possible,
but in general the flow can have diverging streams, turbulence that may wrinkle the
shape of the fish, etc., and even worse in dimension four. There may be phenomena
related to nonsqueezing and such. We did not invest enough time into thinking
about this.

Furthermore, a rather challenging goal is to find a more physical formulation
for a fish which is a “more material” region of changing shape (and its volume
its almost conserved). The first naive idea that comes to one’s mind is to impose
restrictions on the potential energy of the membrane (to keep the amoeba in one
piece, at least) and on kinetic energy (for it is still “feeble””). We have not made
any progress in this direction so far.

2 Notation and Preliminaries

Let I, = [—r,r]" denote the cube with edge length 2r centered at 0, B;(x)
the euclidean ball of radius r centered at x € R”, and v,, = |B1(0)| the volume
of the unit ball in R”. Occasionally we use r = oo, with the convention that
Iso = Boo(x) = R”.

For xg € R”, 79 € R, and ¢t > 0, we denote by R;(x¢, o) the set of points
reachable from (xg, fp) at time #g + ¢; see Definition 1.1. For brevity, let R; =
R¢(0,0).

The volume of R N I, is denoted by w(r, ¢):

@1 w0y = Ry 0 1yl = [, (00

I

where yr, is the characteristic function of the reachable set R,. The volume
w(r, t) is the main quantity of interest.
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Recall that the maximum control in Definition 1.1 is bounded by 1. Hence
|x —xo| < Mt if x is reachable from (xg, #p) at time f9 + ¢, where M is defined
in condition (i) above. Therefore

(2.2) R: CBm(0) C Iy

forallt > 0. Hence R; N [, = Rsifr > tM.

We now define s(r,t) > 0, the perimeter of R; inside the cube I.. As we
discuss below, s(r, t) is essentially the (n — 1)-dimensional Hausdorff measure of
the set 0R; N I. The formal definition is based on the notion of total variation for
BV functions; see the Appendix, in particular, Definition A.3. Namely,

s(r.1) :== P(R¢. 17) = Var(yr,. I;).

where [, is the interior of /.. Here the last expression is the variation of the
characteristic function yx, in /,; see Definition A.1.
Denote
Dy(t) :=R, N dl,.

The following lemma estimates the rate of change of the volume of R;. It is the
main technical tool in our proof.

Lemma 2.1. For any fixed r > 0,
d
(2.3) Ew(r, t) = s(r,t) —flux(Vy, D,(¢))

in the sense of distributions (with respect to ¢), where flux(V;, Dy (¢)) is the flux
of the vector field V; through the (n — 1)-dimensional “surface” D,(t) C 9d1;.
Formally flux(V;, D,(t)) is defined by

fux(Vi. D, 1) = [ Vi) v
D (1)
where v(x) is the outer normal to the boundary of the cube /, at a point x € d/,.
In the case r = oo we also have (2.3), in the form

2.4) iw(oo,t) > s(o0,t).
dt

Remark 2.2. The inequalities (2.3) and (2.4) are easy to verify in the case when
Vy is smooth and the boundary of R; is a smooth hypersurface transverse to d/;.
In fact, in this case the inequalities turn into equalities. Indeed, for a small § > 0
the change from R, to R, ;s is approximately the composition of two operations:
First move the reachable set time § along the flow and then replace the resulting set
by its §-neighborhood. The first operation does not change the volume of the set
since the flow is incompressible. However, the volume of the intersection with I,
changes; it is reduced by the amount of the flow that leaks out through the boundary
of I,. This amount is approximately & - flux(V;, D,(¢)). On the second step, taking
the §-neighborhood increases the volume by approximately & - s(r, t), since s(r, 1)
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is the area of the relevant part of the boundary of R;. Passing to the limit as § — 0
one obtains equalities in (2.3) and (2.4).

This type of argument can be carried over to the general case if one shows
that R; has a rectifiable topological boundary (compare with [5, §2]). This ap-
proach would be quite technical for a time-dependent flow. To avoid these tech-
nicalities, we use another formalization of the notion of surface area and prove
Lemma 2.1 with appropriate machinery.

PROOF OF LEMMA 2.1. The relation (2.4) follows from (2.3) and (2.2). To
prove (2.3), consider a family of functions u®: R"” x Rt — R, & > 0, defined

by
(2.5) u®(x,1) = sup{e V¢ | y € R” is such that x € R,(y,0)}.

Equivalently, one can set ug(x) = e~*/¢ for all x € R” and define

(2.6) u(x,t) = sup{ug(y(0)) |
y:[0,t] — R" is an admissible path with y(¢) = x}:

see Definition 1.1. We need two properties of u¢: For every fixed ¢ > 0, the func-
tion u® is locally Lipschitz and satisfies the following partial differential equation:

(27) 3;u8 + V[ -Vu® = |VM8|

for a.e. x € R” and r > 0, where Vu® denotes the gradient of u® with respect to
the first argument. The equation (2.7) is called the G-equation associated to V.

The above properties are not hard to verify directly. Alternatively, one can
prove them using the theory of viscosity solutions, as follows. Equation (2.7) is
a Hamilton-Jacobi equation with the Hamiltonian

H(t,x,p)=—|pl+V:-p

and the corresponding Lagrangian

Lx.g)= inf [p-g—Hix.py = Hl=Vi=t
PER” —oo otherwise.

By, for example, [7, theorem 7.2], the function u® defined by (2.6) is a viscosity
solution of (2.7) with the initial data u®(x, 0) = u. For a definition, motivations,
and derivation of viscosity solutions for optimal control problems, see [2]. Since u
is bounded and uniformly continuous and V4 is locally Lipschitz and bounded, the
viscosity solution u?(x, ) is locally Lipschitz (by lemma 9.2 in [4]). Furthermore,
a viscosity solution satisfies the equation whenever it is differentiable (see, e.g.,
proposition 1.9 on p. 31 in [2]). Hence by Rademacher’s theorem, u? satisfies (2.7)
almost everywhere.

Formula (2.5) implies that u®(x,¢) | xr,(x) as e | 0, where yg, is the char-
acteristic function of R;. Hence

/ ué(x,Hdx — w(r,t)

r
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and
flux(Vyu®, 1) — flux(Vy, D, (1))

as ¢ — 0. Integrating the G-equation over I, and taking into account the incom-
pressibility of V;, we obtain that

8;/ usdx+ﬂux(Vtu8,8Ir)=/ |Vu®|dx.
r I

Hence for any #; and ¢, we have

123
/ Var(u®, I,)dt
t

1
%)
=/ /|Vu8|dxdt
5] r

15}
= / u®(x, t)dx — / uf(x,t)dx + / flux(V,u®,dl,)dt.
1, I, 5]
Note that this quantity is bounded by a constant independent of ¢ since |u®| < 1 and
|[Vi]| < M. By Fatou’s lemma and the lower semicontinuity of the total variation
(see, e.g., remark 3.5 in [1]) it follows that

153

t2 %)
/ s(r,t)dt E/ Var(yr,, I;.)dt < limi(r)lf/ Var(u®, I.)dx dt.
t t £—>

1 1 n

Thus

5]

/tzs(r, Hyde < w(r,ty) —w(r, ty) + / flux(V;, D, (¢))dt.
!

1 131
This inequality means that (2.3) holds in the sense of distributions. |

Remark 2.3. Since flux(V;, D, (t)) is bounded for every fixed r and s(r,z) > 0,
Lemma 2.1 implies that w(r,-) is the sum of a Lipschitz function and a non-
decreasing function. Therefore, for almost all # > 0 the derivative %w(r, t) exists
and satisfies (2.3).

By (2.4) the perimeter P(R;) = s(o0,t) is finite for almost all # > 0. This
and the De Giorgi theorem A.5 imply that the perimeter of R; equals the (n — 1)-
dimensional Hausdorff measure H"~1(3*R,) of a rectifiable set 9*R;, the re-
duced boundary of R; (see Definition A.4). We define p(r,t) to be the (n — 2)-
dimensional Hausdorff measure of the slice of *R; by d/,:

(2.8) p(r.t) = H'"2(0*R, N 1,).

Then Corollary A.9 gives us the co-area inequality for this slicing:

r

2.9 s(ra,t) —s(ri,t) 2/ p(x,t)dx.

r1
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The quantity p(r, ) can be thought of as the (n — 2)-dimensional perimeter of the
(n — 1)-dimensional set D;(¢t) = Ry N dl,. This is formalized in the Appendix
(see Theorem A.10) and used in the proof of Lemma 4.4 below.

We will need the following isoperimetric inequalities.

The euclidean isoperimetric inequality (theorem 14.1 in [12]) implies that the
volume w(o00,t) = |R¢| of the entire reachable set R; and its perimeter s(00, )
satisfy

(2.10) s(00.1) = Ao w(oo. 1) T,

/

where g = nv,,’" is the euclidean isoperimetric constant satisfying

0B, (0)| = Ao | B, (0)|"7 forall r > 0.

The relative isoperimetric inequality in the cube (Theorem A.6 in the Appendix)
implies that the volume w(r, ) of R; N [, and its relative perimeter s(r, ¢) inside
I, satisty

@2.11) s(r,t) > A(min{w(r,0), |Iy| — w(r, )} ",

where A1 is a positive constant depending only on 7.

3 Proof of Theorem 1.2 and Corollary 1.4

In most of this section we spend proving Theorem 1.2. Its most technical stage
(namely the proof of Proposition 3.2) is put off. It is contained in Sections 4 and 5.

Let us say a few words about how the proof of Theorem 1.2 goes. It is easy to
show that the volume of R, grows to infinity. It is a more delicate task to verify
that the set R, cannot be carried away from the origin by the flow. Our idea is to
show that, for every r > 0, the set R; N I, fills I, for all sufficiently large ¢. Thus
we look at how the volume w(r,t) = |R; N I| grows. We want it to reach (2r)",
the volume of 7,. This is done by dividing the filling process into three stages.
During the initial stage we fill in at least |/, | of the volume of [, where « is a
small positive constant defined below. In the next step, which is the key one, we
fill in at least (1 — «)|/| of the volume of /. Furthermore, this portion of volume
remains filled forever after a certain time ¢. Finally, we show that at a later time a
smaller cube 1/, is completely filled. Since the choice of r is arbitrary, r/2 is as
good as r.

Our choice of o depends on the maximal speed of the fluid flow and the dimen-
sion. We fix

Va

© T @y

for the rest of the proof. We assume that r is sufficiently large, more precisely
r > ro where rg is a constant depending on V;. The precise value of rg is defined
in the course of the proof.

3.1
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The initial stage of the filling process is simple. It is analyzed in the following
lemma:
Lemma 3.1. Letr > 0and Top = 537. Then
w(r, To) = a|l|.

PROOF. By (2.2) we have R, C I; hence w(r,Ty) = |Rr,|. Clearly R,
has a nonempty interior and hence |R;| > 0 for every ¢ > 0. By (2.4) and the
isoperimetric inequality (2.10) we have

d n—1
R = s(00.1) = nv/M R,

dt
Therefore
3.2) |R¢| = Vn - t" = |B/(0)].
Hence w(r, To) > vu T = v, QM) r" = a|l|. O

The middle stage of the filling process is the most technical. This is the content
of the next proposition.

Proposition 3.2. There exist constants A = A(n) > 1 and ro > 0 such that
w(r,t) > (1 —a)|l;|forallr > rgand t > Ar.

We prove Proposition 3.2 in Section 5. For this proof we need to estimate how
much volume of R; N [, can leak out through the boundary of /,. This estimate is
contained in Section 4; see Proposition 4.1.

The final stage of the filling process is simple again. It is analyzed in Lemma
3.3. We show that, once w(r, t) exceeds (1 — «)|I,|, then in time Ty the reachable
set covers the smaller cube 7, /5.

Lemma 3.3. Suppose that r > 0 and #; > 0 are such that w(r,#1) > (1 — a)|I,].
As in the previous lemma, let Tp = 5757. Then

Ir/2 C Rt1+To-
PROOF. Fix p € I,/5 and let 1 = t1 + Tp. Let
R, = {x € R" : (p, 12) is reachable from (x,#; — 1)}.

R; is the reachable set from p for the reversed flow V- = —V;,_;. As in the
previous lemma we can apply (3.2) to V,~ to obtain

R7,| = Va Ty = allrl;
hence
Ry, +w(r.rn) > |Ir].
By (2.2) applied to V,~ we have
R, C Bra(p) C I
Thus Rz, N'Ryy # &. Hence p € Ry,. O
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Combining the results of the three stages, we obtain the following proposition,
which is essentially Theorem 1.2 with nonoptimal bounds on reach time.

Proposition 3.4. There exist constants u = u(n) € (0, 1) and C > 0 such that for
every t > C we have B,,;(0) C R;.

PROOF. By Proposition 3.2 we have w(r,t) > (1 — a)|l,| for all r > ro and
t > Ar. By Lemma 3.3 it follows that

Br/2(0) C Ir/2 C Ry

forallt > Ar + Ty = (A + ﬁ)r. Applying this to 2r in place of r yields that
B:(0) C Rs forallr > rgandt > (24 + 1)r. Hence the statement holds for
n=QRA+ 1)l and C = (24 + Dro. O

Now we are in a position to prove Theorem 1.2 and Corollary 1.4.

PROOF OF THEOREM 1.2. Fix ¢ > 0. Note that Proposition 3.4 (after a suitable
rescaling) holds for controls bounded by ¢ instead of 1. Our plan is to spare a small
part of control to ensure reachability and use the remaining part of control to add
the drift with speed 1 — ¢ in a desired direction.

Without loss of generality, assume that xo = 0 and 79 = 0. Fix v € R" such
that |[v| < 1 — ¢ and apply Proposition 3.4 to the flow V defined by

~ |
VI(X) = g V;(sx + l‘v).

This yields a constant Cg,;, > 0 such that for every ¢ > C; , the reachable set for Vv
at time ¢ contains the ball B;(0). Here u = ,u(rQ is the constant from Proposition
34.Ify : [0,7] — R” is an admissible path for V, then the path y defined by

y(r) =¢ey(r) + v

is admissible for our flow V. Hence the reachable set R, contains the ball By (tv).
In particular, the point y = fv can be reached at time ¢, which satisfies t < |y|/(1—

g).

It remains to show that the constant C; 5, can be chosen independently of v. To
show this, let us choose a finite gu-net {v1,..., Un} in the ball B1_.(0) and let
Ce = max{Ce,y,; : 1 <i < mj. Then forevery t > C, we have

m
R:D U Bs;u‘(tvi) o B(l—s)t(o)-
i=1
Thus every point x € R” is reachable at any moment
t = max{Ce,|x[/(1 —&)}.

To finish the proof of the theorem, set e = 1 — % and C = Cg. O
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PROOF OF COROLLARY 1.4. The idea is to use a part of the control to compen-
sate the mean drift at some scale. Fix ¢ € (A, 1). By (1.2) there exists Ly > 0
such that the flow

— 1
L
0 [OaLO]"
satisfies | V;(x)|| < ¢ for all # and x. Let Vo=V, - V;. Then
1 2" LoM
(3.4) H—/ V2(x + y)dy| <
L™ Jio,L1 ! L

for all L > Lg. Indeed, let ®; denote the characteristic function of the cube
[—L,0]" divided by L". Then V; is the convolution V; * ®, and the integral in
(3.4) is the value at x of the convolution Vt0 * Op =V, x (P, — P, * Pr). The
function |®7, — @, * Py | is bounded by 1/L" and its support is contained in the
set [~L — Lg,0]" \ [-L,—Lg]" of volume (L + Lo)" — (L — L¢)" < 2" LoL" L.
Hence the L!-norm of ®; — @, * @, is bounded by 2" Lo/ L and (3.4) follows.

Observe that V; is incompressible and bounded by M. This and (3.4) imply that
VtO satisfies the assumptions of Theorem 1.2. We apply Theorem 1.2 to Vt0 with
the maximal fish speed set to 1 — ¢ instead of 1. Since || V;|| < ¢, every admissible
path in this setting is admissible for the original flow V; = Vto + V;. Because of

1

the speed renormalization, the conclusion of the theorem holds for any a > 1.

Since ¢ € (A, 1) is arbitrary, Corollary 1.4 follows. Il

REMARK 3.5. One can see from the proof that the constant C in Corollary 1.4 is
determined by M, A, a, and any value L such that V;(x) in (3.3) is bounded by
% for all ¢ and x.

4 Volume Change Estimate

Throughout the paper we integrate areas and perimeters over time intervals.
Such integrals are indicated by a hat. Namely we define

t+T t+T
S(rt, T) = / s(r,r)dt and p(r,t,T) = / p(r.t)dr.
t t
The goal of this section is to prove the following proposition:

Proposition 4.1. For every ¢ > ( there exists 79 > O such thatforall » > rg, ¢ > 0,
and T € [0, r], we have

4.1) w(r,t +T)—w(r,t) =75(r,t,T)—er".
For the proof of Proposition 4.1 we need the following two lemmas.
Lemma 4.2. Forallr,t, T > 0,
4.2) S t.T) < Ci(r + T)r"!
where C; = n2"M.
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PROOF. From Lemma 2.1 and a trivial estimate
[flux(Vz, Dy (1))] = M 01|

we have

%w(r, t) > s(r,t) — M|0l,|
(in the sense of distributions). By integrating this we obtain

w(r,t +T) —w(rt) >S5 t,T)— MT|0l,|.

The left-hand side is bounded above by |/, |. Hence

5 t,T) < |I| + MT|d1,|.
Since |I,| = 2"r" and |31, = n2"r""1, (4.2) follows. 0

The incompressibility and small mean drift assumptions imply the following
lemma, which we borrow from [5]. This is the only place in the proof where the
small mean drift assumption is used.

Lemma 4.3 (cf. [5, lemma 3.1]). For every ¢ > 0 there exists Lg > 0 such that the
following holds. Let F be an (n — 1)-dimensional cube with edge length L. > Lg;
then

4.3) |flux(V, F)| < eL" L.

PROOF. This lemma is stated in [5] for a time-independent vector field. We
apply [5, lemma 3.1] to the vector field V; for every fixed ¢. The constant L
(named Ag in [5, lemma 3.1]) depends on the vector field, so we need to make sure
that it can be chosen independently of ¢. In the proof in [5] one can see that Lg
depends only on M and on the rate of convergence of the mean drift to 0. Hence
the proof works for our Lemma 4.3 as well. U

Lemma 4.4 (cf. [5, lemma 3.3]). For every ¢ > 0 there exist r; > 0 and Cy > 0
such that for almost all # > Qand r > rq,

(4.4) (flux(Ve, Dy (t))| < Cop(r,t) +er™ L.

PROOF. This lemma could also be borrowed from [5] if we had proven cer-
tain regularity properties of ;. For the sake of completeness we include a proof
here. The proof is essentially the same, but it is based on different foundations in
geometric measure theory.

We fix ¢ > 0 and apply Lemma 4.3. Let L¢ be the constant provided by Lemma
4.3. Lett > 0 be such that R; has finite perimeter. Assume that r > Lg and the
following holds: For every hyperplane X containing one of the (7 — 1)-dimensional
faces of the cube I, the slice R; N X has finite perimeter in X = R”1, and its
reduced boundary in X coincides with ¥ N 0*R; up to a set of zero (n — 2)-
dimensional Hausdorff measure. By the boundary slicing theorem A.10, these
conditions are satisfied for almost all r.
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Since r > L, we have r = mL for some L € [Lg,2L¢] and m € Z. We divide
a1, into (n — 1)-dimensional cubes F;,i = 1,2,...,2n m" 1, with edge length L.
Denote D = D, (t) for brevity. For each i, define

s; = min{|F; N R¢|, |F;i \ R¢|} = min{|F; N D|,|F; \ D|}

and
pi = Pn1(D.F) = H"2(F{ N 0"R,)
where P,—1 denotes the perimeter in the respective hyperplane and £}’ is the rela-
tive interior of F;. The last identity follows from the De Giorgi theorem A.S.
The isoperimetric inequality in (n — 1)-dimensional cubes implies that

si < CLp;

where C is a constant depending only on n. For n > 3, we prove this isoperimetric
inequality in the Appendix, Corollary A.7. For n = 2 Corollary A.7 is trivially
true. Therefore, we have

|[flux(Vs, F; N D)| — |flux(Vy, F; \ D)| < [flux(Vy, Fy)| < eL"1,

where the second inequality follows from Lemma 4.3. At least one of the quantities
[flux(V;, F; N D)| and |flux(Vy, F; \ D)| is bounded by M s;, hence both of them
are bounded by Ms; + eL"~!. Thus

flux(Vy, F; N D)| < Ms; +eL™ ' < CMLp; +eL"™' < Cop; + ¢|Fil,
where Cy = 2CM L. Summing up over all i yields that
fux(Vs, D)| < Co Y pi + €ldlr| < Cop(r.1) + n2"er"™"
for almost all » > L. Since ¢ is arbitrary, the lemma follows. O

PROOF OF PROPOSITION 4.1. Fix f,& > 0. We apply Lemma 4.4 to g; :=
£/2"+ 1 in place of e. This yields

[flux(Vy, D,(t))| < Cop(r.t) + e r™!
for almost all » > ry and ¢ > 0. This and (2.3) imply

d
Ew(r, t) > s(r,t) — Cop(r,t) — g™t

for almost all » > ry and ¢ > 0. Integration in ¢ yields
4.5) wr,t +T)—wrt) >3t T)—Cop(r,t,T) —e Tr" !

for almost all r > ryand all ¢, 7 > 0.

Define
2n+1 COCI
hi= ———,
€1
where C is the constant from Lemma 4.2. By the co-area inequality (2.9),
r+h r+h
s(r+h,t) > / p(x,t)dx > / p(x.t)dx
0 r
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for all r > 0 and almost all # > 0. Once again, integration in ¢ yields

r+h
(4.6) S(r+h,t,T)> / p(x,t. T)dx
r

forallr >0andallt,7T > 0.

Now let r and ¢ be as in the formulation of Proposition 4.1. Namely ¢ > 0 is
arbitrary, r > rg where rg is to be chosen later, and 0 < 7" < r. We require that
ro > ry and ro > h, the latter ensures that 4 < r. By Lemma 4.2 applied to r + h
in place of r,

Sr+ht.T)<Ci(r +h+T)r+h)" 1t <2"tiC "
since T < r and & < r. This and (4.6) imply that there exists 7 € [r,r + h] such
that
2n+1C17’n
h

where the equality follows from the definition of 4. Furthermore, the set of 7 €
[r,r + h] satisfying (4.7) has positive measure; hence we can choose 7 so that (4.7)
holds and (4.5) applies to 7 in place of r:

wF t+T)—wF 1) >35F t.T)— Cop(F,t,T) — e TF" L.

4.7) (T, 1.T) < =Cyler”,

This estimate, (4.7), and the inequalities T < r and ¥ < 2r imply that
wF t+T)—wF ) >35F t,.T)—err™ =27 e "
>5(F.t,T)=2"e1r" =57, 1, T) — %ar”.
Since 7 > r, we have 5(7,¢,T) >s(r,t,T). Thus
(4.8) wF t+T)—wF.t) >5rt,T)— %er”.
Now we estimate the difference between w(7,¢ + T) and w(r,t + T):
w@t +T)—wrt +T) = Reyr N U\ Ip)| < |\ I| =2"F" —1").
The right-hand side is bounded as follows:
2VF — ") < n2"(F— ) < n2" W <22 el < %sr”

if we require that

(4.9) r>ro>n2?""he 1,
Thus
(4.10) wF t +T)—w(rt+T) < Ler.

This and a trivial inequality w(r,¢) < w(7,t) imply that
w(rat +T)_w(r7t) Z w(77t +T)_w(;:7t)_%rn ZS‘\(T,LT)_EV”’

where the second inequality follows from (4.8). This finishes the proof of Proposi-
tion 4.1. U
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5 Middle Stage. Proof of Proposition 3.2

In this section we prove Proposition 3.2, the last remaining piece of the proof of
Theorem 1.2. The proof is based on Proposition 4.1 and the isoperimetric inequal-
ity (2.11) for subsets of a cube.

To facilitate understanding of the proof, we first give its simplified version as-
suming that the estimate (4.1) from Proposition 4.1 holds without the correction
term —er”™. After this simplification the estimate (4.1) boils down to the differen-
tial inequality

d n—
(5.1 EwmnzﬂﬁﬂzhmmmOﬁJM—wMHY#

where the second inequality is the isoperimetric inequality (2.11). This implies that
w(r,t) > ¢(t) where ¢(¢) > 0 solves the ODE

d . n—1
L) = M min{g(0), |1, ~ (0}
with the initial condition lim; ¢4+ ¢(¢) = 0. The solution is given by

ar, t €10,5],
o) = |I,|—a@b—1t)", tel[b,2b],

where a = (Ay/n)" and b = (%|I,|)1/” = cr withc = 2”r;zln)ul_1. It reaches
the value ¢ (¢) = |I,| att = 2b = 2cr, and the coefficient 2¢ depends only on 7.
This proves the main theorem under the above simplifying assumption.

The actual proof of Proposition 3.2 is essentially a discrete version of the above
argument. We apply Proposition 4.1 to T = Br where 8 € (0, 1) is a carefully
chosen constant (depending on the flow but not depending on r). This yields a
lower bound for w(r, Ty ) where Ty = To +kfBr,k = 1,2,.... It turns out that for
a sufficiently small & > 0 the term 5(r, ) dominates the correction term —er”, and
hence the resulting bound for w(r, Ty ) is similar to the formula for ¢ (7). This
implies the desired conclusion.

Another technical issue is that the isoperimetric inequality (2.11) does not in-
tegrate well over time intervals. This is handled in Lemma 5.1 below, where we
prove a discrete analogue of the differential inequality (5.1).

Now we are back to the formal proof. Recall that we have a fixed « defined by
(3.1). We now choose a small constant # € (0, 1). First we require that § < 5.
Second, we require that 8 be so small that the following holds. For all x € [, 1]
and all § € [0, B]

1 —_n
(52) (x+5)1/n_xl/n2_x1" 8
2n
Such B exists since the function x > x'/ is smooth on [%. 1] and its derivative

1—n

equals %x no.
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We fix « and S for the rest of the proof.

Lemma 5.1. There exist A = A(n) € (0, 1] and ro > 0 such that for every r > rg
and T = Br the following holds.

1. Forallt >0and t € [t,t + T],

(5.3) w(r,t) = w(rt) — Hlr.
2. If t > O satisfies
(5.4) 2L, < w(rt) < (1= 9L,
then
(5.5) w(r,t +T) > wr, 1) + ATm(t)" "
where

m(t) = minfw(r,0), || — w(r, )}
PROOF. Fix a sufficiently small ¢ > 0, namely,
& < min{%, %/\105,3},

where A; = A1(n) is the isoperimetric constant from (2.11). By Proposition 4.1
there exists ry > 0 such that

(5.6) w(r,t) —w(r,t) >3, t,7) —er”
forany r > ro, T = Br,and t € [t,t + T]. Since 5(r,t, ) > 0, this implies that
w(r,t) —w(rt) > —er" > =511

due to the choice of ¢. This proves the first claim of the lemma.
To prove the second one, define

mo = inf{m(zr):t€t,t + T]}
and consider two cases: mg < %m(t) and mg > %m(t).
Case 1. mp < %m(l). Then m(t) < %m(t) for some t € [t,t + T]. The
definition of m(¢) and (5.4) imply that
(5.7) lw(r,r) —w(r, )] > 1|
The inequality (5.3) rules out the case w(r, t) < w(r,t); hence
w(r,t) > wr.t) + $|

Combining this inequality with (5.3) applied to r and ¢ + 7 in place of ¢ and =,
respectively, yields

(5.8) w(r,t +T) > wr 1) — 5l > w0+ 5511

On the other hand, by the trivial estimate m(¢) < |I,| = (2r)" we have
Tm()" " < TQry"™" = ren" = §i1,| < &L

This and (5.8) imply (5.5) for any A < 1.
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Case 2. mg > %m(l). By the isoperimetric inequality (2.11) for subsets of the
cube,

n—l1 n—1
n

s(rT) = m(@) T = Aimy" > Lm0
forall T € [t,t 4+ T]. Hence

(5.9) S 6, T) = A Tm(n)" 5.
By (5.4), we have m(t) > %|I,| = 5(2r)". Therefore
S(r,t,T)
n=1 n=1
(5.10) > s MTm@)" " = Japrm@)"

n—1
> %Alﬂr(%(%)”) noo> %Alaﬁr” > 2er™,
where the last inequality follows from the choice of ¢. Inequalities (5.10), (5.6),
and (5.9) imply that
GA1) w(rt +T)—w(r 1) > 5.6, T) — er” > 1500, T) = 10, Tm(n)" .

The inequality (5.11) implies (5.5) for A = %/\1.
Combining the outcomes of the two cases, one sees that (5.5) holds for A =
min{1, %M}. O

Now we are in a position to prove Proposition 3.2. The proof is a straightforward
but technical implication of Lemma 5.1. Nothing beyond basic analysis is used.

PROOF OF PROPOSITION 3.2. Let rg be such that the assertion of Lemma 5.1
holds. Fix r > rp and define a function f: R4+ — [0, 1] by

w(r.t) _ w(r.1)
f() = = ot
1] (2r)
We rewrite some of the previous results in terms of f. First, Lemma 3.1 turns into
the inequality

(5.12) f(To) > @ where Tp = 537
By the first statement of Lemma 5.1 we have
(5.13) fo)= f)—{5 ift <t=<t+pr

Finally, the second statement of Lemma 5.1 takes the form

@+ Br) = f@0) + SABmin{ f(). 1~ f(0)} "7

provided that & < f(r) <1—%.

(5.14)

Here A = A(n) € (0, 1] is the constant from Lemma 5.1, and we use this notation
throughout the rest of the proof.
In our new notation the statement of Proposition 3.2 turns into

f(@)>1—«a forallt > Ar



18 D. BURAGO, S. IVANOV, AND A. NOVIKOV

where A is a constant depending only on 7.
Now consider a sequence {yg}7° , defined by yx = f(To +kpr). The relations
(5.12)—(5.14) imply the following properties of this sequence:

(1) yo = a; —1
2) 1f— < Vi < 3.then yp 1 > yp + ’\ﬂyk" ;

n—1
3) lf% < yr < 1 — & then yj41 > yi + ﬂﬂ(l —yi)
4) ifykzl— thenkaZI—I

0
It follows that {y; } increases as long as it stays below 1 — %, and if it gets above
1 — £, then after that it is confined to the interval [1 — 1 Oa 1]. We are going to
prove that y; eventually attains a value greater than 1 — 5, and estimate the index
k for which this happens.

If yp < %, then by (1) and (2) we have y;x > yo > o and yg4+1 > Vi + Ok

n—1

where §; = 318y, " . Hence

27

1 1—n Aﬂ
)1 7 1
yk+n1 > (yi + 80" = /n + o k Sk yk/n + i

Here the second inequality follows from the choice of B (see (5.2)) and the fact
that §; < B since A < 1 and y; < 1. By induction it follows that

ABk  ABk
iz s A

aslong as yg, ..., yg—1 < % Hence there exists k1 < ;L‘Z such that yi, > 5 L
Now consider k > k1. Note that y; > % by (2)—(4). Aslongas y; < 1—%, we
have
(5.15) Yk+1 = Yk + Ok
where
S = $AB( = )" .
We rewrite (5.15) as follows:

1 1—n
1=y D" < (U =y = 8" < (1= yp)V/" — ;(1 —yK) " O

in _ B
on’

Here the second inequality follows from the concavity of the function ¢ +— ¢
By induction it follows that

= (1 —yp)

1/n.

A A
(130 < 1y =Ly <1 Loy
as long as ykl,...,yk 1 <1-¢% 5. Hence there exists k2 <ki+ ig < % such

that yx, > 1 — 5. Then (3) and (4) imply that yp > 1 — a forall k > k».
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This and (5.13) imply that f(r) > 1 — %a for all t > Ty + Prka. Since
To + PBrks < Ty + 67"1’ < (67" + D)r, the statement of Proposition 3.2 holds for
A=+ 1 O

6 Application to Homogenization of the G-equation

In this section we prove a result about the homogenization limit of solutions
to the G-equation with random drift. The proof of this result is a corollary of
Theorem 1.2 combined with standard arguments of the homogenization theory.
We give these arguments here for the convenience of the reader. We start with the
notions needed to formulate our result.

We investigate the asymptotic behavior as ¢ — 0 of the solutions of the family
of the initial value problems parametrized by €. Namely, we consider the family of
Hamilton-Jacobi equations:

6.1) u§+Vé(§,w)-Du8= IDuf|, >0, xeR",
u® = up(x), t=0, xeR"

for the unknown u® = u®(t, x, ), where uj and Du® are the derivatives of u®
with respect to ¢ and x, respectively. Here w is an elementary event (realization) in
the sample space: w € 2. We assume the sample space is a part of the probability
triple (2, F,P), where F is the o-algebra of measurable events, and P is the
probability measure. The velocity

ViR x Q > R”

is a random field, a family of random variables parametrized by x and 7. All
random variables are assumed Borel measurable.

If V; is locally Lipschitz, then, by, e.g., exercise 3.9 in [2], we are guaranteed that
the viscosity solutions of the G-equation (6.1) are unique in the space of bounded
and uniformly continuous functions for every fixed w. These solutions u®(¢, x, @)
of (6.1) are random functions in x and 7. Our objective is to determine assump-
tions on V;(x, w) that imply the law of large numbers: u®(t, x,w) — u(t, x) with
probability 1 as ¢ — 0, and characterize the deterministic limit #(z, x) as a so-
lution of another homogenized initial value problem. In order to determine this
homogenized initial value problem, we will find a deterministic time-independent
function H:R” — R7 such that it is positively homogeneous of degree 1, that
is, H(Ap) = AH(p) forall A > 0 and p € R”, and verify that i is the unique
viscosity solution of the initial value problem

; = H(Du), xeR" t>0,
u(0,x) = up(x), xeR".

The solutions of (6.1) have a control representation formula (2.6). Similarly, solu-
tions of (6.2) are given by the Hopf-Lax formula [8, 11]

(6.3) u(r,x) = max{uo(y) : T(x —y) <1},

(6.2)
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where

T(v)=sup{v-q:q €R".H(g) = 1}.
The following two definitions are needed to state our assumptions on V;(x, w).
DEFINITION 6.1. We say that V; (x, @) is space-time stationary if there is an action
of R"*! on Q, denoted by y > 7y : Q — Q, y = (x,1) € R""! such that the
action is measure preserving:
(6.4) P(my(A)) = P(A), VAeF, yeR"
and

Vio (X0, myw) = Vig+1(xo + X, ®),

6.5
(65) Vxg € R", to € R, y = (x,1) € R"T!,

DEFINITION 6.2. Define
G+ =0{Vs(x,w): s >t, x € R"},

(66) G =o{Vs(x,w) :s <t, x € R"},

where o { -} denotes the o-algebra on 2 generated by the given family of random
variables. We say V; has finite range of time dependence if

(6.7) AR > O such that G,+ and Gs— are independent when ¢t — s > R.
We state the result in two essentially equivalent ways.

THEOREM 6.3. Suppose that a random vector field Vy: R*"T1 x Q — R” is time-
space stationary (6.4)—(6.5), has finite range of time dependence (6.7), Vi(-,w) is
locally Lipschitz and incompressible for all t and w, and has the following uniform
bounds:

(6.8) M =1+ sup |Vi(x,w)| < oo,
1,X,0
1
(6.9) A := inf sup —/ Vi(x —|—y,a))dyH < 1.
L>0tx.0| L" [0,L]"

Then there exists a convex body W C R such that Bi—a(0) C W C By (0) and
lim dy(t™'"Rs(w), W) =0
t—00

fora.e. w € Q, where R¢(w) is the reachable set from (0, 0) at time t (see Section

2) of the flow Vi(x, w) and dp denotes the Hausdorff distance.

THEOREM 6.4. Let V;:R"T1 x Q@ — R” be a random vector field satisfying
the same assumptions as in Theorem 6.3. Then there exists a positively one-
homogeneous convex Hamiltonian function H:R"™ — [0, 0c0) with

I-A<H(p)/lpl =M
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such that the following holds with probability 1: For every bounded, uniformly
continuous function ug: R® — R, one has

(6.10) VT >0, VR>0 lim sup sup |u®(t,x,w)—1u(t,x)| =0,
£—01€[0,T] |x|<R

where u® and u are the unique viscosity solutions of (6.1) and (6.2), respectively.

REMARK 6.5. Theorems 6.3 and 6.4 are also true if we request V; to be merely
integer stationary. This means that (6.4)—(6.5) holds for y = (x,t) € Z"T!
only. Here is an example of an integer stationary and finite range dependent flow
Vi(x, w) that satisfies the conditions of Theorem 6.3. Take any two deterministic
incompressible vector fields V! (x) and V2 (x) with compact support in R”*1. The
incompressibility and compact support imply that

6.11) / Vi(x)dx =0, i=1,2,

for every ¢. Consider a family of Bernoulli trials ;¢ (w), j € Z", k € Z, that are
independent identically distributed random variables such that jz = 1 or {jx =0
with probability 1/2. Set

Vix,o) = Y (Gr@Vie &+ )+ (1= Gr@)Vi(x + ).
JEZ" keZ

The identity (6.11) implies that this random field satisfies (6.9) with A = 0.

REMARK 6.6. Using Theorem 1.2 and Corollary 1.4 we can prove the conclusions
of Theorems 6.3 and 6.4 if, instead of finite range dependence and stationarity, we
impose other assumptions on V;. We are aware of two approaches.

e If V; is periodic in x and random, statistically stationary, and ergodic with
respect to ¢, then the homogenization limit can be proven by an argument
given in [9].
e If V; is periodic in ¢ and random, statistically stationary, and ergodic with
respect to x, then the homogenization limit can be proven by an argument
given in [13].
Note that the level-set equation (6.1) is used as a model for turbulent combustion
in the regime of thin flames [14, 15]. In this model, the level sets of u® represent
the flame surface, and V; is the velocity of the underlying fluid (assumed to be
independent of u®). Spatial or temporal periodicity is rarely observed in unsteady
turbulent flows. Thus, in the context of unsteady turbulent flows, it is more relevant
to assume the velocities are time-space stationary and have finite range of time
dependence.

We prove Theorems 6.3 and 6.4 for a time-space stationary random vector field.
Generalization to the integer stationary case is straightforward. We denote by
R:(x0, 0, w) the reachable set from (xg, fp) at time fg + ¢ of the flow V;(x, w).
Note that R;(w) = R;(0,0, w).
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Observe that
(6.12) Ri(x0, 10, @) C Bys(xo) Vi>0, x0 e R", tp eR, w € Q.

Define A = ﬁ. Corollary 1.4 implies that there is a positive integer 79 € N
such that

(6.13) Bt/A(xo) C Re(xg.t0,w) Vt>19—1, x0 € R", tp €R, w € Q.

Here we use (6.8), (6.9), and Remark 3.5 to ensure that 7 is independent of w. We
assume that g > N where N is the range of time dependence from (6.7).
The relation (6.13) implies that xo € R;(x¢, 9, ®) for all # > 7y — 1. Therefore

R, (x0. 10, @) C Ry +1(X0, 0, @)

6.14
6.14) Vi>19—1,61>0, xgeR”, peR, w e Q.

For xg,v € R", 1o € R and w € Q, define the travel time
(6.15) t(x0,t0,v,w) = inf{t € N : xg + v € R¢(x0, to,w)} + 0.

Set 7(v,w) = 7(0,0,v,w). Note that for any N € N the event {w € Q :
(X0, t0,v,w) = N} is determined by the restriction of V; to the time interval
[to,to + N — 10].

By (6.12) and (6.13), the random variable 7 (v, @) grows linearly in v and more-
over

(6.16) |Av4—| < t(xo0.%0.v,w) < Alv| + 279

for all xg, fg, v, w. This estimate is the main ingredient of the first steps of the
proof. We also need a number of technical estimates. By (6.14) we have

(6.17) Xo + v € Re(xo,t0) Vit > t(xo,t0,v,w)—1
and
(6.18) T(x0,t0,V,w) < 11 + 219 if X9 + v € Ry, (X0, t0).

For any xq, X1, vo, v1 € R” and 7y € R, we have
7(xo, to, Vo, ) < t(x1,t0 + T, v1, @) + 2T

6.19
(6.19) VT > Alx1 — xo| + Alvy — vo| + 10.

Indeed, (x1, to + T") is reachable from (x¢, fg) by (6.13). Then the point x; + v; is
reachable from (xy,t0 + 7) attime ¢ty = to+ 7T + t(x1,%0 + T, v1, w) — 10. Then,
by (6.13), xo + vg is reachable from (x; + vy,#1) at any time t, > ¢; + 7 — 1.
Choosing #, such that r, — tg is an integer and 1, < t1 + 7 yields (6.19).

Our preliminary goal is to obtain the asymptotic shape of the reachable set. This
is analogous to “shape theorems” for the first-passage time in percolation theory,
and we proceed with similar arguments.
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LEMMA 6.7. There exists a positively 1-homogeneous convex function
T:R" - R™*

satisfying

vl _ = vl
_<T <
m=TW=1"4

for all v € R" and such that the following holds:
i. Foranyv € R", xg € R", 1y € R,

(6.20)

1 _
limsup —7(Axg, Afg, Av,w) = T(v) almost surely.
A—o0

ii. Foranyv € R", xg € R”, 1y € R,
1 _
Xr(kxo,)ttg,kv,a)) — T(v)

in probability as A — oo, that is,

1 _
(6.21) lim P{w : ‘—I(Axo,/\to,lv,w) —T(v)
A—00 A

Zs}=0

for every e > 0.

PROOF. Fix xg,v1,v2 € R”?, 9 € R, and define 71 (w) = t(x9, 20, V1, w). By
(6.17) and the definition of 7 we have the following subadditivity relation:
(6.22) 7(X0, %0, v1 + V2, ®) < 11(w) + (X0 + V1. %0 + T1(®), V2, ®).
The two terms in the right-hand side of (6.22) are independent random variables,
and they have the same distributions as t(vy, - ) and 7(v3, - ), respectively. To show
this, fix any N1, N> € N and consider events

AN, ={w:11(w) = Ni}
and
By, N, = {w : t(xo + v1.t0 + N1, v2, 0) = Na}.

Their probabilities are equal to those of {t(v,-) = N1} and {t(v3,) = Nz},
respectively, due to the space-time stationarity. The event Ay, is determined by
Vi(x,w) fort <ty + N1 — 19, and By, n, is determined by V;(x,w) for ¢ >
to + Np. Since 79 > N, the finite range of time dependence implies that A, w,
and B, are independent. Thus

P({w : t11(w) = Ny and t(xo + v1,t0 + 11(®), V2, w) = Na})
(6.23) =P(An, N BN, ,N,) = P(AN,)P (BN, .N,)
=P{r(v1,-) = MPHP{r(v2,-) = Na}).
By summing over either N, or N; we obtain that

71(w) and T(xp + vi,to + 11(w), V2, W)



24 D. BURAGO, S. IVANOV, AND A. NOVIKOV

have the same distributions as 7(vq,-) and 7(va,-), respectively; furthermore,
(6.23) shows that they are independent.
Therefore, from (6.22) we have

(6.24) E(z(v1 +v2.-)) = E(z(v1.-)) + E(z(v2,-)).
This implies that there exists a limit

©29 Ty i SR = SO

The function 7 is 1-homogeneous by definition. By (6.24), T is subadditive and
hence convex. The inequality (6.16) implies that |v|/M < T(v) < A|v|. More-
over, by Corollary 1.4 for every a > ﬁ there is a constant C > 0 such that
t(v,w) < alv| + C forall v € R” and w € Q. Hence T(v) < a|v| for all
a > 715 and (6.20) follows.

Fix v € R” and arbitrary sequences {x;} C R" and {f;} C R, k € N. For
each k, define finite sequences & ,, and f ,,, | < m < k, of random variables by
induction as follows:

Ekem(w) = T(x + (M — D, lg m(0), v, ),

where

m—1

em(@) =tk + ) (@),

i=1
in particular 74 ;(w) = tx. Note that for any N € N the event {w : t p(w) =
tr + N} is determined by the values V;(x, w) fort € [y, tp + N —1¢] only. As in the
above discussion of the terms in (6.22), one sees that for each fixed k the random
variables & ,,, 1 < m < k, are independent and have the same distribution as
7(v,-). Since & , are uniformly bounded (see (6.16)), the strong law of the large
numbers for triangular arrays applies to them, and we obtain that

k
1
(6.26) lim — Z &r.m(w) = E(z(v,-)) almost surely.
k—oo k m=1 ’

As in (6.22) we have subadditivity

k
t(xp, ty, kv, w) < Z Ex,m(®)
m=1

forall k € N and w € 2. This and (6.26) imply that

b t 9 k b
(6.27) fim sup Zk: k- KV. @)

< E(z(v,-)) almost surely.
k—o00 k
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Now we prove the two main assertions of the lemma. Fix xo,v € R”, ¢y € R,
and ¢ > 0. By (6.25) there exists A9 > 0 such that

T(v) < E(z(Aov,-))
Ao

For A > Ag let k € N be such that kAg < A < (k + 1)Ag. We apply (6.19)
to Axg, kAoxg, Av, kAgv, Aty in place of xq, x1, vg, V1, fo, respectively, with

T = To+ (kAo —A)tg where Tg = AAg|xo| + Ado|v| + Aolto| + To. This implies
that

<1+ )T ().

T(Axg, Alg, Av, w) < t(kAgxo, kAoto + To, kAov, w) + 2Ty + 2A0]t0],
where the last term comes from the estimate |kAg — A| < Ag. Therefore

T(Axg, Alg, Av, @) < fimsup t(kAoxo, kAoto + Ty, kAo, w)

lim sup
A—>00 A k—o00 kf\O

By (6.27) applied to x; = kAgxg, tp = kAoto + Tp, and Agv in place of v, the
right-hand side is bounded by E(z(Aqv,-))/A¢ almost surely. Thus
. T(Axo, Alo, Av, ) _ E(z(Aov,-))
lim sup <

< < (14+&)T(v) almost surely.
A—>00 A AO

Since ¢ is arbitrary, it follows that

(6.28) fim sup ZOx0: A0, A, @)

< T(v) almost surely.
A—>00 A

By the space-time stationarity and (6.25),
(6.29) IE(IWO’MO’M")) - E(—f()“:")) > T(v).

A

Since t(Axg, Atg, Av,-)/A is bounded above by A|v| + 7o for all A > 1, (6.28),
(6.29), and Fatou’s lemma imply that

: t(Axg, Alp, Av, @)
lim sup
A—>00 A

= T(v) almost surely,

and t(Axg, Afg, Av,-)/A converges to T (v) in probability. O

DEFINITION 6.8. Let T be the function constructed in Lemma 6.7. Define the
effective reachable set

W; ={veR": T() <t}

Note that W; = ¢ - Wy and W} is a convex body satistfying B1_A(0) C W) C
Bpr(0). We are going to show that the reachable set R (xg, o, w) for large ¢ is
close to the set xg + W; in a certain sense. We introduce the following quantity
measuring the difference between these sets.
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DEFINITION 6.9. For xg € R”?, tp € R, t > 19, and w € Q define
T (x0.t0. 1. ) = inf{e > 0 : R;(x0. 10, w) C x0 + (1 + &)W;},
0 (x0.10.1, @) = inf{e > 0 : xg + (1 + &)1 W; C Ry (x0. 19, )}

and
o(xg,to, t, ) = max{p+ (x0.t0, 1, ), p~ (X0, o, t, w)}.

Note that the statement of Theorem 6.3 is equivalent to the property that

lim p(0,0,7,w) =0 almost surely.
=0

LEMMA 6.10. For any fixed R > 0,

(6.30) lim  sup p (x0,0,t,w) =0 almost surely
t—o0 |xo|<Rt

and

(6.31) lim sup pt(x0.0.t,w) =0 in probability,

t—00 |xp|<Rt

that is, for any ¢ > 0,
(6.32) P{w : Vxo € Bri(0), R¢(x0,0,w) Cxo+ (1 +e&)W;} > 1 ast— oo.

PROOF. To prove (6.30), fix R > 0 and & > 0 and choose &-nets {yi}lNz1 in the
ball Bg(0) and {v; } =1 in the effective 1-reachable set W1. For every xo € Bg, (0)
and v € W; there exist i and j such that |[xo —ty;| < te and |v — tv;| < te.
Assuming that 1 > e lrg > 2A" e~ 11y, we see from (6.19) that

7(x0,0,v,w) < 1(ty;,3Ate, tv;,w) + 6Ate

for all w € Q2. Hence

sup 7(x0,0,v, w) < max t(ty;,3Ate, tvj, w) + 6Ate
|xo|<Rt,veW, LJ

forallt > e lrgand w € Q. By Lemma 6.7 (part 1)

1 _
limsupmax —z(ty;, 3Ate, tv;,w) = max T (vj) <1 almost surely.
t—o0o i,j J

Thus

1
lim sup sup —7(x9,0,v,w) <1+ 6Ae almost surely.
t—o0 |xo|<Rt,veW;

By (6.17) this implies that for every § > 0 there is

s =50, w)>0
such that

Xo+ve Rz(1+6Ae+8)(X0, to)

forallt > s,v € W, and |xg| < Rt. Setting 6 = A& we obtain that

0 (x0,0,t(1 +7Ae),w) < TAe
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forallt > s = s(Ae, w) and |xg| < Rt. Therefore

limsup sup p (x0,0,f,w) < 7Ae almost surely
t—o0  |xo|<R’t

where R’ = (1 + 7A¢)"'R. Since R and ¢ are arbitrary, (6.30) follows. To
prove (6.31), fix R > 0 and ¢ > 0 and define

Qi) = {a) :3xg € Bre(0), pT(x0.0,7, ) > 8}.
Let § = &/32A and choose §-nets {y,-}fv=1 in Bg(0) and {vj}j=1 in Bps(0).
Consider w € Q1(¢) where t > 8§~ '1g. By the definition of Q(¢) there exist
X0 € Br:(0) and v € R¢(x0,0,w) — x¢ such that v ¢ (1 + )W;. By (6.12)
we have v € Bps;(0), hence there exist i and j such that |xg — ¢y;| < 8¢ and
|v —tvj| < &¢. These inequalities, (6.19), and (6.18) imply that

t(ty;, —3A8t, tvj, w) < t(x0.0,v, w) + 6ASt

6.33
(6.33) <t 4219+ 6A8t < (1 +¢/4)t.

Since v ¢ (1 + &)W, we have T (t~'v) > 1 + . On the other hand,
T ) <T@)+T@ v—v;) <T;)+Alt™ v — ]
<T(v) + A8 < T(vj) +¢/4
by the subadditivity of T and (6.20). Therefore T (v;) > 1 + &/2. Hence, by
(6.33),
;r(ty,-, —3Aét, tvj,w) < 1+¢/4 < T(vj) —¢&/4.
Thus

P(Q4(1)) < ZIP’%a) : ;T(Z‘yi, —3A8t. tvj, w) < T(vj) — 8/4}
i,j

for all ¢t > §~179. By Lemma 6.7 (part 2), each summand in the right-hand side
goes to 0 as ¢ — oo. Hence P(21(¢)) — 0 as 1 — oo and (6.31) follows. O
DEFINITION 6.11. Define the support function of W (also known as the effective
Hamiltonian) _

H(p) =sup{p-y |y € Wi}

Since H (p) is the supremum of a family of linear functions of p, it is immediate
that H is convex in p, and positively homogeneous of degree 1. Since B1—a(0) C
W1 C Bpy(t), we have (1 — A)|p| < H(p) < M|p|. Similarly, we define the
support functions of reachable sets.

DEFINITION 6.12. For p € R"?, xg € R”, 19 € R, and w € Q2 define

Hy(x0,10, p,w) = sup{p - (y —xo) | y € R¢(xo.l0, )}

and
H;(p,w) = H/(0,0, p,w).
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Due to the space-time stationarity, the random variable H;(xg, fg, p,-) has the
same distribution as Hy(p, - ).

LEMMA 6.13. Forany p € R” and R > 0,

H kl 07 ’ rr
(6.34) limsup sup M < H(p) almost surely.

t—o0  |xo|<Rt t

Here is an outline of the proof of Lemma 6.13. First we adjust parameters in
(6.34) to define a more manageable random variable 4 (¢, w); see (6.37) and (6.38)
below. The advantages of 4 (¢, w) over the original expression are its subadditivity
and independence properties, demonstrated in the course of the proof. With the
new variable A (z, w) the lemma is reduced to (6.39), which we then prove in four
steps.

In Step 1 we prove the subadditivity (6.43). Unfortunately, this subadditivity
is weaker than the classical one; we only have a bound for 4(g¢, w) by a sum of
hg(t,w) where hy is another random variable parametrized by ¢ € N. We over-
come this difficulty by chaining random variables /4 (¢, w) to h(f,®) in Step 2.
Namely, we show in Step 2 that one can control distributions of /,4(¢, w) by dis-
tribution of h(f, w); see (6.45). Step 3 is the key one. There we prove almost
sure convergence for 7 ranging along a geometric progression; see (6.51). We do
this by analysis of the probability distribution of (¢, @) using our stationarity and
independence assumptions, subadditivity of (¢, @), and its convergence in proba-
bility (6.40). In our final Step 4 we show that the linear bound (6.36) on the growth
of H(xg, tg, p, w) is sufficient to deduce the convergence for all 1 — oo.

PROOF OF LEMMA 6.13. We begin with several preliminary observations. By
scaling it is sufficient to consider p € R” with |p| = 1. We may also assume that
R > M. We fix such p and R for the rest of the proof. Since R;(xyp, o, w) C
B¢ (xg), we have

(635) Ht(xo’to’ psa)) = Mt.
Moreover,
(636) Ht1+t2(x0»t0,p’w) =< Hl[(XOaZOap’a))+Mt2

for all 71,2, > 0, since Ry, 4+, (X0, 7o) is contained in the (M t2)-neighborhood of
R, (X0, 10).
Forxg e R",tg € R, t > 1p, and w € 2, define

(6.37) h(xo.to.t,w) = sup  H;_g(x,10, p.w) + M7g

|x—xo|<Rt
and, for brevity,

(6.38) h(t, w) = h(0,0,1, w).
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For every xo € Bgr:(0) we have H;(x9,0, p,w) < h(t,w) by (6.36) applied to
f1 =t —1p and tp = 1¢. Thus, in order to prove the lemma, it suffices to show that

ht,w
(6.39) lim sup ( ; )

t—>00

< H(p).

Let us now reformulate the convergence in probability from Lemma 6.10 in
terms of A (¢, w). We claim that, for every ¢ > 0,

h(t —
P{w:¥>H(p)+e}—>O ast — oo.

Indeed, by (6.32) in Lemma 6.10 we have
(6.41) P{w : Vxg € Br¢(0), R;(x0,0,0) —xo C (1 +e)W;} > 1 ast — oc.

(6.40)

For every w satisfying the relation R¢(x¢,0,w) — xo C (1 + &)Wy in (6.41), we
have

Hy(x0,0, p.w) <sup{p-y|ye(l+e)Wi}=(1+eH(p).
Therefore, we can conclude from (6.41) that
H(x0,0, p,w)

Plw : Yxo € Br:(0), ;

<(+eH(p)—1

as t — oo for every ¢ > 0, and (6.40) follows.
In order to state subadditivity properties of (¢, @), we need one more definition.
Fix ¢ € N and define

hg(xo.t0.t, @) = sup H;_(x.t0,p,w) + M1
|x—x0|<2qRt

and
hg(t,w) = hy(0,0,t, ®)
for xg € R*, 19 € R, t > 19, and w € Q. Observe that
(6.42) hq (xo,t0,t,0) < Mt
by (6.35). We are now ready for our four steps.
Step 1. Subadditivity of h(t, ). We show here that for every ¢ € N, t > 19,
and w € 2,
qg—1
(6.43) h(gt.w) <Y he(0.kt. 1. 0).
k=0
Indeed, let y: [0, gt — t9] — R” be an admissible path for V;(x, w) with y(0) €
B,g:(0). To prove (6.43), it suffices to verify that
g—1
(6.44) (y(qt —70) —y(0) - p < > hg(0.kt.t,0) — Mo
k=0
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for every such path y. Observe that y(kt) € Bygg(0) fork =0,...,g — 1 since
v(0) € Byr:(0) and |y| < M < R. Hence

(y((k + Dt —70) —y(kt)) - p < Hi—g(y(kt), kt, p,w) < hg(0,kt,t,0) — M7
foreachk =0,1,...,9 — 1. We also have

(y(kt) —y(kt —70)) - p < [y(kr) —y(kt —10)| =< Mo
foreachk = 1,...,q — 1 . Summing up these 2¢q — | inequalities yields (6.44),
which implies (6.43).
Step 2. Chaining of hy(t, ). The goal of this step is to show that there exists
N = N(gq,n) € N such that

(6.45) P{w: hy(t,w) >a} < N -Pl{ow: h(t,0) > o}

forallo € R, f > 19, and w € Q.
To prove this, observe that a ball of radius 2qRt can be covered by N balls of

radius R¢:
N

Bagr:(0) C U BRr:(zi)
i=1
for some z1,...,2Zn, where N is determined by ¢ and n. Therefore

hy(t,w) < max h(z;,0,t,w);
q( )_151'5N (zi )

hence
N

Plo: hg(t.0) > a} <Y Pl h(z;.0.1.0) > a}.
i=1
Due to the space-time stationarity, each summand in the last sum equals P{w :
h(t,w) > a} and the inequality (6.45) follows.

Step 3. Convergence along a geometric progression. As we have mentioned
earlier, this is the key step. Recall that our goal is to prove (6.39). Here we prove
that the same inequality with a small error term holds for ¢ ranging along a geo-
metric progression with common ratio g; see (6.51) below.

Fixe > 0and g € N, andlet N = N(q,n) from Step 2. Define

o) ="C e ana fitt.w) = "OEEO e

forallt > 19, w € Q,and k € {1, ...,q}. Note that f;(z,w) < M by (6.42).
With this notation, (6.43) takes the form

qg—1
(6.46) flato) <+ Y fito).
q k=0

The inequality (6.45) along with the space-time stationarity imply that
(6.47) P{fi(t,w) >a} <N -P{f(t,w) > o}
for all @ € R.
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Fix a positive § < By (6.40),

_1
2g2N?2°
P{w: f(t,w) >0} >0 ast — oo.

Hence there exists fg > 1o such that

(6.48) Plw: f(t,w) >0} <6 Vit =>ty.
Define
(6.49) A =Plo: ft.0) > %

for all ¢+ > 19. We are going to estimate A(g?) in terms of A(z) using the above
inequalities.

Assume that ¢ > f¢ where ¢ is the same as in (6.48). The bound f;(f,w) < M
and (6.46) imply the following property: For every w € 2 such that f(gf,w) >
T least two of the terms f% (¢, ¢) must be positive, and at least one of them
must be greater than %. Therefore

(6.50) Algt) < Z]P’%a) : filt,w) > M nd fi(t,w) > 0}.

i% 7
Observe that the random variables f;(¢,-) and f;(¢,-) are independent if i # j.
This follows from the finite range time dependence and the fact that fi (¢, w) is
determined by the restriction of the flow to the time interval [k, (k + 1)t — 1¢].
Hence (6.50) can be rewritten as

A(gt) =) Plw: fi(t.w) > M/q}-P{f;(t.0) > 0},
i#j
This and (6.47), (6.48), and (6.49) imply that

A0 = 3 NAG) N5 = glg — DN?8A@) = 20

i#j
where the last inequality follows from the choice of 8.

By induction it follows that A(¢g™¢) < 27" for all t > ty and m € N. By the
Borel-Cantelli lemma and (6.49), this implies that for every ¢t > 0

M
limsup f(¢"t, w) < —
m—>00 q

for a.e. w € Q. Substituting the definition of f yields that

h(g™t, — M

m—00 qmt

fora.e. w € Q.
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Step 4. Convergence for all t. To finish the proof, choose a partition 1 = #; <
th <---<t;p=gqof[l,q]suchthatt;;; < (1 +¢)t; foralli <![. Foreveryt > g
there exist positive integers m € N and i < / such that

q"t <t <q™tiv1 < q™t; + st.
These inequalities and (6.36) imply that
h(t,w) < h(g™ti. w) + Met,

and hence
ht, h(q™t;,
lim sup UL < limsup max (q—,a)) + Me
t—00 m—oo 1<i<I qmt;
h(q™t;,
= max limsup (q—,a)) + Me.
1<i<l m—oo qmt,-
for all w € 2. This and (6.51) imply that
h(z, — M
lirnsup(—w) <H(p)+—+ M+ 1)
t—>00 t q
for a.e. w € Q. Since this holds for all ¢ > 0 and ¢ € N, the estimate (6.39)
follows. This finishes the proof of the lemma. U
LEMMA 6.14. For any fixed R > 0
(6.52) tlim sup pt(x0.0.¢,0) =0 almost surely.

T |xol <Rt
PROOF. Fix R > 0 and ¢ € (0, 1). Since W is a compact convex set, we have
Wi={xeR":x-p<H(p). VpeR"}.

Furthermore, there is a finite collection of vectors py, ..., py € R* with |p;| = 1
such that

Wii={xeR":x-p; < H(p;), ¥i} C (1 + &)W,
By Lemma 6.13, for almost every w € € there exists #, > 0 such that for all
t >ty and xg € Bg:(0),
(x —x0)-pi < (1 +e)tH(p;) Vx e Rs(x0,0,0),Vi.
This implies that
Ri(x0.0,0) —xo C (1 + &)t W1 C (1 +¢)*W,

and therefore pT (x9,0,¢,w) < (1 + )2 — 1 < 3e. Since ¢ is arbitrary, (6.52)
follows. O

PROOF OF THEOREMS 6.3 AND 6.4. Theorem 6.3 follows by setting W = W;
and applying (6.30) and (6.52).

To prove Theorem 6.4 we recall the control representation (2.6) for the solution
of the G-equations. For x € R”, ¢t > 0, and w € 2, define

R; (x,w) ={y e R" : x € R;(y,0,w)}.
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The control representation for the solution of (6.1) and (6.2) have the form

ub(t,x,w) = supfup(y) : y € th_/s(x/s, w)}
and
u(t,x) =supfuo(y) : y € x — Wi}
Let§ > 0,h > 0, and R > 0. From (6.30) and (6.52) we see that for almost every

w € Q there exists g = €0(8, R, h,w) > 0 so that for all |[x| < R, t > h, and
e < gg, we have

x —=Wia—s)} C SRI_/S(X/S,a)) C{x = Wia+s))s
Therefore
(6.53) u(t(1—268),x) <u®(t,x,w) <u(t(l+95),x).

Since § > 0 is arbitrary and (¢, x) is uniformly continuous, (6.53) implies that
u® — u uniformly on compact sets in (0, o0) x R”. To obtain the locally uniform
convergence down to time ¢ = 0, we need the uniform L°° bound on V; and
uniform continuity of u¢(x). Observe that

sup |uf(t, x,w)—u(t,x)| < sup |u®(t,x,w)—uog(x)|+ sup |u(t, x)—up(x)|.
t€[0,h] t€0,h] t€[0,h]

(x/e,0,w) we have |y — x| < M¢. Thus the first term on the

For any y € eR

t/e
right is bounded by
(6.54)  sup [ut(t.x,w) —uo(x)| = sup |uo(y) —uo(x)| < ¢(Mh),
t€[0,h] yeR”

|ly—x|<Mh

where ¢ is the modulus of continuity of ug(x). This and a similar bound on
[u(t, x) — ug(x)| implies that

(6.55) lim [lim sup sup |u®(t, x,w) — u(t, x)|] =0.
h—0L o0 xeRr”
t€[0,h]
Combining (6.53) and (6.55), we conclude that (6.10) holds with probability 1.

0

Appendix: Functions of Bounded Variation

We collect here needed facts about functions of bounded variation (BV func-
tions) in R”, n > 2. We followed [1] and [12].

DEFINITION A.1 (Proposition 3.6 and Definition 3.4 in [1]). Let 2 C R” be an
open set and u € L' (). The variation of u in Q, denoted by Var(u, Q), is

Var(u, Q) = sup{/Q udivg : ¢ € [CHD]", @llLe < 1}.

Here and below [C cl (22)]" denotes the set of all compactly supported C! functions
from Q to R”.
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The space BV(2) consists of all functions u € L1() with Var(u, Q) < oo. It
is equipped with the norm

BV =/ luldx + Var(u, Q).
Q

Remark A.2. The distributional derivative Du of a BV-function u is a (vector-
valued) finite Radon measure, and Var(u, Q) = |Du|(£2). We occasionally write

Var(u, Q) = / [Vul,
Q
where the right-hand side is understood in the sense of distributions.
DEFINITION A.3 (Definition 3.35 in [1]). The perimeter P(E, Q) of a measurable
set E C R” in an open set Q C R” is defined by

P(E.Q) = Var(yg. Q) = sup{ /E divg : ¢ e [CL)]" Bl < 1}.
We denote P(E) = P(E,R").
In all cases of interest in this paper the set £ is bounded.

DEFINITION A.4 (Reduced boundary, definition 3.54 in [1]). Let E C R” be a
set of finite perimeter. The reduced boundary 0* E of E is the collection of points
x € supp(| Dy £|) such that the limit

Ve
(A1) vE(x) = lim Jay V£
p—0 pr(x) IVxE]

exists in R” and satisfies |vg (x)| = 1. The integrals here are understood in the
sense of distributions. The function vg : 0*E — S™~! is called the generalized
inner normal to £.

Theorem A.5 (De Giorgi theorem, theorem 15.9 in [12]). If E € R” is a set of
finite perimeter, then the reduced boundary 9* E is H"~!-rectifiable and

P(E,Q) = H" 1 (QNd*E)
for every open set 2 C R”.

Recall that I, = [—r,r]" is a cube with edge length 2r and I, denotes its
interior.

Theorem A.6 (Relative isoperimetric inequality in the cube). If E is a set of finite
perimeter in R”, then for every r > 0,

(A2)  min(|E NI |1, \ ENT < CP(E.I%) = CH" Y(3*E N I?),

where C is a constant depending on n only.
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PROOF. This inequality is standard, but we could not find exactly this formula-
tion in the literature. For the sake of completeness we include a proof here.

Every u € BV(/;) satisfies the following Sobolev inequality (see, e.g., remark
3.50 in [12]): there is a constant C; = Cj(n) such that

n—1

(A3) ( lu —mn’—’l) < Cy Var(u, I?),
I
where u denotes the average of u over [:
_ 1
U= u
|1r| I,

The fact that C; does not depend on r follows from a scaling argument.

Letu = yg,thenu = |E|?I|r| and 1 —u = |I|r1\'|€|,hence

n I, \ E T ENI
/|u—mn—1dx=(|’\ ') |EﬂIr|+(u) 11\ E|.
I | 1| | 1|

Therefore

n—1

(/ e — 7|7 ldx) ’

(|Em1 75T 4 |1, \ E|7T 1)7 min(|E N 1|, |1, \ E)""

1L

1 n—
= 3 min(E 0 L1\ E) i

This and the Sobolev inequality (A.3) imply the inequality in (A.2). The equality
in (A.2) holds due to the De Giorgi theorem A.5. O

Corollary A.7. If E is a set of finite perimeter in R”, then for every r > 0
min([E N I, |, \ E]) < CrP(E,I0) = CrH" Y (*E N 1))
where C is a constant depending only on 7.
PROOF. The inequality follows immediately from (A.2) and the trivial estimate
min(|E O L[, |I; \ E|) < |I| = 2"r".
(See also [1, remark 3.45] for a different proof.) Il

Theorem A.8 (Federer co-area formula, theorem 2.93 in [1]). Let f : R” — R
be a Lipschitz function and £ C R” an HFK-rectifiable set. Then the function
t — H*¥=Y(E N f~(r)) is Lebesgue measurable, E N f~1(¢) is H¥~!-rectifiable
for almost every ¢ € R, and

[ 1verwlart = [ T W NE N S )di
E

t=0
where V; f(x) is the component of V f(x) tangential to E.
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In the next theorem we use the following notation. For t € R, we denote by X;
the hyperplane X, := {x € R" : x; = t}. Foraset E C R", we denote by E; the
intersection (“slice”) E; := E N X;.

Corollary A.9 (Co-area inequality). Let £ C R” be a set with finite perimeter.
Then 8* E N 1, is H"2-rectifiable for almost every r, and

o0
(A4) H (64 E) > [ H'2(0%E O 91, )dr.
0

PROOF. By the De Giorgi theorem A.5 the reduced boundary 9*E is H"~!-
rectifiable. We obtain the inequality in (A.4) by applying Theorem A.8 to d* E in
place of E withk =n—1, f(x) = ”x”loo(R”)’ and using the fact that |V, f(x)| <
1. O

Theorem A.10 (Boundary slicing theorem, Theorem 18.11 in [12]). If E is a set of
finite perimeter in R”, then for almost every ¢ € R the slice £, = £ N X, is a set
of finite perimeter in the hyperplane X; =~ R"~! and

H' (3" (EDNAGBE)) =0,

where A denotes symmetric difference of two sets and 0*(E;) is the (n — 2)-
dimensional reduced boundary of E; in ;.
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