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a b s t r a c t 

This paper is focused on efficient Monte Carlo simulations of Brownian diffusion effects in 

particle-based numerical methods for solving transport equations on a sphere (or a circle). 

Using the heat equation as a model problem, random walks are designed to emulate the 

action of the Laplace–Beltrami operator without evolving or reconstructing the probability 

density function. The intensity of perturbations is fitted to the value of the rotary diffusion 

coefficient in the deterministic model. Simplified forms of Brownian motion generators are 

derived for rotated reference frames, and several practical approaches to generating ran- 

dom walks on a sphere are discussed. The alternatives considered in this work include 

projections of Cartesian random walks, as well as polar random walks on the tangential 

plane. In addition, we explore the possibility of using look-up tables for the exact cumu- 

lative probability of perturbations. Numerical studies are performed to assess the practical 

utility of the methods under investigation. 

© 2019 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

The need for efficient numerical modeling of Brownian diffusion effects on a unit sphere arises, e.g., in fiber suspension

flow models based on the Fokker–Planck equation for the orientation probability density [1,2] . This equation is derived from

the Jeffery equation [3] for a single ellipsoid using (possibly anisotropic) rotary diffusion terms to model fiber interactions

in concentrated suspension models. Direct numerical solution of the Fokker–Plank equation incurs exorbitant computational

cost since the probability density function of fiber orientation depends on two orientation angles in addition to the space

and time variables. Therefore, Eulerian models implemented in most industrial and research codes produce just a few even-

order moments of the probability density function (so-called orientation tensors) [1] . 

Lagrangian methods for simulation of disperse two-phase flows are based on solving individual equations of motion for

each particle or fiber [4–7] . Whereas the cost of evolving a single fiber is negligible compared to that of solving a multi-

dimensional PDE, the large number of fibers that are required for accurate prediction of local orientation states can make

Lagrangian simulations far more expensive than Eulerian tensor evolution models. Additionally, the numerical treatment

of Brownian diffusion effects is more difficult in the Lagrangian framework. Since diffusive fluxes describe changes of the

probability density function due to random microscopic motions, stochastic perturbations must be applied to the spatial
∗ Corresponding author. 
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coordinates and/or orientation angles of moving fibers to emulate the impact of these fine-scale effects on the trajectory

and orientation of Lagrangian particles/fibers [6,7] . 

In this paper, we focus on the derivation and numerical study of random walk methods for the heat equation on a

unit sphere. The ability to obtain accurate solutions to this model problem in an efficient manner is a prerequisite for

achieving high performance when it comes to Lagrangian simulations involving convective transport of fibers in the 3D

space, deterministic changes of their orientation caused by velocity gradients, and a two-way coupling with the generalized

Navier–Stokes equations for the velocity field. 

In Sections 2 and 3 , we introduce deterministic and stochastic approaches to numerical simulation of fiber orientation

dynamics in the context of the spherical heat equation. Section 4 presents stochastic PDE analysis which provides theo-

retical foundations for generating Brownian motions and random walks. In Section 5 , we focus on practical algorithms for

generation of random numbers corresponding to given values of the rotary diffusion coefficient. Some of the methods to be

presented are based on projections of standard Cartesian random walks. Others rotate Brownian fibers by adding perturba-

tions to the polar coordinates in the tangential plane. In the method proposed by Chen and Yu [8] , angular perturbations are

generated using cumulative probability derived from an approximate solution of the spherical heat equation. This approach

produces accurate results as long as the time step is sufficiently small. In computations with larger time steps, we use a

tabulated numerical approximation to the cumulative distribution function given by the exact solution of the spherical heat

equation. After presenting the new algorithms and discussing their properties, we perform numerical studies and compare

the results obtained with different methods. 

2. Deterministic modeling of Brownian diffusion 

The orientation of a rigid rod-like fiber in d = 2 , 3 space dimensions is characterized by a point p ∈ S 
d−1 on the unit

sphere S d−1 := { p ∈ R 
d : ‖ p ‖ = 1 } , where ‖·‖ is the Euclidean vector norm. Let f ( x , p , t ) denote the probability that a fiber

occupying the space location x ∈ R 
d has orientation p ∈ S 

d−1 at time t ∈ R + . In the absence of spatial gradients, the Fokker–
Planck equation for the probability density function f = f (p , t) of a concentrated fiber suspension reduces to the spherical

heat equation 

∂ f 

∂t 
= D �p f on S 2 , (1) 

where D > 0 is a rotary diffusion coefficient and �p is the Laplace–Beltrami operator, i.e., the tangential divergence of the

tangential gradient. 

Written in spherical coordinates, each three-dimensional orientation state p ∈ S 
2 becomes a function of two orientation

angles. We have 

p = 

( 

p 1 
p 2 
p 3 

) 

= 

( 

sin θ cos ϕ 

sin θ sin ϕ 

cos θ

) 

, ϕ ∈ [0 , 2 π) , θ ∈ [0 , π ] . (2)

Using the fact that r := ‖ p ‖ = 1 for p ∈ S 
2 , we restrict the Laplace operator 

� = 

1 

r 2 
∂ 

∂r 

(
r 2 

∂ 

∂r 

)
+ 

1 

r 2 sin θ

∂ 

∂θ

(
sin θ

∂ 

∂θ

)
+ 

1 

r 2 sin 
2 θ

∂ 2 

∂ϕ 
2 

(3) 

to the unit sphere and obtain the formula for �p in spherical coordinates 

�p = 

1 

sin θ

∂ 

∂θ

(
sin θ

∂ 

∂θ

)
+ 

1 

sin 
2 θ

∂ 2 

∂ϕ 
2 
. (4) 

In contrast to the heat equation in R 
3 , its spherical counterpart (1) cannot be readily solved by convolving an arbitrary

initial condition with a Gaussian kernel. However, if the initial condition is given by the δ distribution 

f (p (θ, ϕ) , 0) = δ(p 0 ) , p 0 ∈ S 
2 (5) 

corresponding to the case of full alignment (i.e., of all fibers having the same orientation p 0 at t = 0 ), the exact solution of

the initial value problem for the spherical heat equation can be derived using the change of variables 

(x 1 , x 2 , x 3 ) �→ ( ̂  x 1 , ̂  x 2 , ̂  x 3 ) , (θ, ϕ) �→ ( ̂  θ, ˆ ϕ ) 

such that the unit vector ˆ e 3 = (0 , 0 , 1) T of the rotated Cartesian coordinate system coincides with the direction p 0 of initial

alignment (see Fig. 1 ). In this reference frame, the initial condition (5) is independent of the polar angle ˆ ϕ and so is the

probability density f = f ( ̂  x 3 , t) , ˆ x 3 = cos ˆ θ for t > 0. It follows that: 

ˆ �p f = 

∂ 

∂ ̂  x 3 

(
(1 − ˆ x 2 3 ) 

∂ f 

∂ ̂  x 3 

)
(6) 
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Fig. 1. Coordinate system in which p 0 = (0 , 0 , 1) T , cf. [8] . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and, therefore, the initial value problem at hand simplifies to 

∂ f 

∂t 
= D 

∂ 

∂ ̂  x 3 

(
(1 − ˆ x 2 3 ) 

∂ f 

∂ ̂  x 3 

)
, ( ̂  x 3 , t) ∈ [ −1 , 1] × R + , (7)

f ( ̂  x 3 , 0) = δ(1) , ˆ x 3 ∈ [ −1 , 1] . (8)

The exact solution of problem (7) , (8) is given by [8,9] 

f ( ̂  x 3 , t) = 

∞ ∑ 

n =0 

2 n + 1 

2 
exp ( −n (n + 1) Dt ) P n ( ̂  x 3 ) , (9)

where P n is the n th Legendre polynomial. In what follows, we will use this formula to generate look-up tables for random

walks on S 2 . 

In practice, the evaluation of f ( ̂  x 3 , t) defined by (9) requires approximation of the infinite series by a partial sum. The

number of terms that provide an accurate description of f may be significant. Orientation tensors representing the first even-

order moments of the probability density distribution can be calculated exactly using just a few terms (see Section 6 for

details). 

If the time interval is restricted to [0, �t ] such that D �t �1, then f ( ̂  x 3 , t) can be nonvanishing only for small values of

the azimuthal angle ˆ θ = arccos ̂  x 3 since f ( ̂  x 3 , 0) = 0 for ˆ θ > 0 . Following Chen and Wu [8] , we use the small angle approxi-

mation sin ˆ θ ≈ ˆ θ and consider the simplified problem 

∂ f ( cos ˆ θ, t) 

∂t 
= 

D 

ˆ θ

∂ 

∂ ̂  θ

(
ˆ θ
∂ f ( cos ˆ θ, t) 

∂ ̂  θ

)
, ( ̂  θ, t) ∈ [0 , π ] × R + . (10)

The exact solution corresponding to the initial δ distribution reads [8] 

f ( cos ˆ θ, t) = 

1 

4 πDt 
exp 

(
−

ˆ θ2 

4 Dt 

)
, t ∈ (0 , �t] . (11)

This approximation to (9) can be evaluated efficiently and produces accurate results as long as D �t �1, as assumed in the

derivation of (10) . 

For general initial conditions, no closed-form analytical solutions of (1) are known but numerical solutions of arbitrary

high precision can be obtained using Galerkin methods based on approximations of the form 

f M (p , t) = 

M ∑ 

j=1 

c j (t) ψ j (p ) , (12)

where c j ( t ) is the time-dependent degree of freedom associated with the basis function ψ j ( p ). For example, spherical har-

monics or linear finite elements a cubed sphere grid can be used to discretize the spherical heat equation in this manner.
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However, extensions of such numerical methods to the general Fokker–Planck equation for a space-dependent probability

distribution f ( x , p , t ) would require solution of a three-dimensional evolution equation for each orientation mode c j ( x , t ).

We refer to [10,11] for examples of alternating direction methods based on this computationally intensive Eulerian approach

to numerical treatment of the Fokker–Planck equation. In the remainder of this article, we focus on approaches in which

orientation states are determined using Monte Carlo simulations of individual fibers. 

3. Stochastic modeling of Brownian diffusion 

Instead of evolving the probability density function f ( x , p , t ) of a fiber suspension, the centers of mass x m ( t ) and ori-

entation vectors p m ( t ) of N f representative fibers are evolved in Lagrangian methods [4–6,8] . Brownian diffusion effects are

taken into account by adding random perturbations to x i ( t ) and/or p i ( t ). Restricting our attention to Brownian diffusion on

the unit sphere S 2 , we consider algorithms that lead to updates of the form 

p n +1 
m 

= p n m 
+ �p n m 

, m = 1 , . . . , N f , n = 0 , 1 , . . . , (13)

where �p m is a random perturbation such that p m + �p m ∈ S 
2 for p m ∈ S 

2 . 

For sufficiently large values of N f and n , the probability that some fiber will have orientation p ∈ S 
2 after n steps can be

approximated by 

˜ f n (p ) = 

1 

N f 

N f ∑ 

m =1 

δ(p − p n m 
) . (14) 

Since we are interested in solving the spherical heat equation, this probability distribution should correspond to an approxi-

mate solution of (1) at the time instant t n = n �t, where �t is a constant time step size. To that end, the intensity of random

perturbations should be defined so as to obtain the correct mean squared displacement or correct cumulative probability. 

The following approaches to Monte Carlo simulations based on the addition of perturbations �p n to orientation vectors

p ∈ S 
2 can be envisaged: 

• Construct �p = (�p 1 , �p 2 , �p 3 ) 
T as in the standard random walk method for Brownian diffusion in R 

3 and project

p + �p onto S 2 ; 

• Perform standard random walk on the tangential plane orthogonal to the orientation vector p ∈ S 
2 and project p + �p

onto S 2 ; 

• Perform random walk on S 2 using the fiber-aligned reference frame { ̂ e 1 , ̂  e 2 , ̂  e 3 } in which ˆ p = (0 , 0 , 1) T is the North Pole;

The first approach is described in Section 5.2 . It was used, e.g., by Moosaie and Manhart [6] for direct Monte Carlo sim-

ulations of fiber suspension flows. The third approach was adopted in the work of Chen and Wu [8] who used (11) to con-

struct an approximate inverse of the cumulative probability function and calculate angular perturbations (see Section 5.3 ).

Note that the use of a reference frame aligned with the orientation vector p is consistent with the assumption of a δ distri-

bution for the unperturbed initial state. 

In contrast to the first two approaches, which exploit the knowledge of analytical solutions, the third one requires direct

construction of a Brownian motion associated with the Laplace–Beltrami operator �p . We accomplish this task in the next

section using some basic tools of probability theory and stochastic PDE analysis. Practical implementation of different ran-

dom walks based on the above three approaches is discussed in Section 5 . Projection-based algorithms involving random

walks on S 3 be found in [12,13] . 

4. Brownian motion 

We use uppercase letters for random variables and lowercase letters for their deterministic counterparts. For example, θ
is a deterministic angle, whereas 	 is a random angle. The value of 	 is a set of numbers, the distribution of which de-

pends on random events such as a coin toss. Similarly, b ( t ), t ∈ [0, ∞ ) is a continuous trajectory, whereas a one-dimensional

standard Brownian motion B ( t ), t ∈ [0, ∞ ) is a stochastic process , that, is a set of continuous trajectories such that for any

fixed t and s , the distributions of random variables B (t + s ) − B (t) and B ( t ) are independent, Gaussian (i.e., normal) with

expected value 

E [(B (t + s ) − B (t))] = E [ B (t)] = 0 , 

and variance 

Var [ B (t + s ) − B (s )] = E [(B (t + s ) − B (t)) 2 ] = s, Var [ B (t)] = t. 

4.1. Brownian motion and the Laplacian 

We say that the Laplacian L f = D � f is the generator of a (rescaled) Brownian motion for the following reason. The

solution of the initial value problem 

∂ f 
(x , t) = D � f (x , t) , (x , t) ∈ R 

d × R + , (15)

∂t 
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f (x , 0) = δ(0 ) (16)

is the probability density of a (rescaled) Brownian particle X ( t ) that starts at the origin at t = 0 : X(0) = 0 . This density

corresponds to the Gaussian distribution 

f (x , t) = 

(
1 

2 
√ 

Dtπ

)d 

e 
−‖ x ‖ 2 
4 Dt (17)

and has the variance [7] 

σ 2 
d (t) = 

∫ 
R d 

‖ x ‖ 
2 f (x , t) d x = 2 dDt. (18)

For any t > 0, the position of a Brownian particle is a ( d -dimensional) random variable with mean 0 ∈ R 
d and variance

2 Dt I , where I is the identity matrix. The underlying stochastic process is given by 

X (t) = 

√ 

2 D B (t) , (19)

where B (t) = (B 1 (t) , B 2 (t ) , . . . , B d (t )) contains d copies of independent one-dimensional standard Brownian motions. The

term standard deviation is frequently used to describe the behavior of the particle. Informally, it characterizes how far

the particle may travel from its original position in time t . Formally, the standard deviation is the square root of the trace

of the variance. For X ( t ) defined by (19) the standard deviation is σd (t) = 

√ 

2 dDt . 

4.2. Brownian motion and the random walk 

Donsker’s theorem (also known as the functional central limit theorem) demonstrates rigorously that the one-

dimensional Brownian motion B ( t ) with variance σ 2 t is a limit of a wide class of piecewise-linear random trajectories

Y k ( t ) → B ( t ) as k → ∞ . Such trajectories Y k ( t ) can be constructed using a random walk as follows. Draw countably many in-

dependent random variables X i , i ∈ N using the same distribution with mean zero and variance σ 2 . The associated random

walk is given by 

S n = 

n ∑ 

i =1 

X i , n ∈ N . 

For a fixed time-step �t = 1 /k, define the piecewise-linear random trajectory 

Y k (t) = 

√ 

�t 
(
S � t/ �t � + (t − � t/ �t � �t) X � t/ �t � +1 

)
, 

where the floor function � t / �� returns the largest integer smaller than t / �t . Formally, each random number X i corresponds

to a one-dimensional displacement of a moving particle at a discrete time step �t . The average distance traveled by the

particle per time step in a given space direction is σ
√ 

�t . It follows that the Brownian motion (19) can be generated from

i.i.d. (independent, identically distributed) random numbers with mean zero and standard deviation σ = 

√ 

2 D . 

If a distribution of a random number has a finite variance, it can be normalized to be mean-zero. Therefore, Donsker’s

theorem implies that any i.i.d. random numbers with finite variance can be used to approximate a Brownian motion. In view

of this fact, the practical choice of such distributions is often dictated by the simplicity of their numerical implementation. 

4.3. Brownian motion on a circle 

For any standard (mean-zero, variance-one) one-dimensional Brownian motion B ( t ), a variance- σ 2 Brownian motion on

a circle is defined by 

X (t) = (X 1 (t) , X 2 (t)) = ( cos (σB (t)) , sin (σB (t))) . 

The polar coordinate form of its generator is simply 

L f = 

σ 2 

2 

∂ 2 f 

∂ϕ 
2 
. (20)

The Cartesian representation is 

L f = 

σ 2 

2 

(
−x 1 

∂ f 

∂x 1 
− x 2 

∂ f 

∂x 2 
+ x 2 2 

∂ 2 f 

∂x 2 
1 

− 2 x 1 x 2 
∂ 2 f 

∂x 1 ∂x 2 
+ x 2 1 

∂ 2 f 

∂x 2 
2 

)
. 

Equivalently 

L f = 

σ 2 

2 

(
−x 1 

∂ f 

∂x 1 
− x 2 

∂ f 

∂x 2 
+ � f − x 2 1 

∂ 2 f 

∂x 2 
1 

− 2 x 1 x 2 
∂ 2 f 

∂x 1 ∂x 2 
− x 2 2 

∂ 2 f 

∂x 2 
2 

)
. 
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At the two-dimensional North Pole (x 1 , x 2 ) = (0 , 1) of the unit circle, the Cartesian form representation of Lf reduces to 

L f = 

σ 2 

2 

(
− ∂ f 

∂x 2 
+ 

∂ 2 f 

∂x 2 
1 

)
. (21) 

This formula admits an intuitive and useful interpretation. The term 
σ 2 

2 
∂ 2 f 

∂x 2 
1 

is the generator of a one-dimensional random

walk in the horizontal direction. The term − σ 2 

2 
∂ f 
∂x 2 

is the generator of vertical displacements that project a Brownian particle

moved along the tangent line back to the unit circle. 

4.4. Brownian motion on a sphere 

The generator for Brownian motion on the sphere S d−1 , d ≥ 2 can be constructed using a simple analogy with the ran-

dom walk on the circle S 1 . In view of the above considerations, the expected form of the generator at the d -dimensional

North Pole (x 1 , x 2 , . . . ) = (0 , 0 , . . . , 1) is 

L f = 

σ 2 

2 

d−1 ∑ 

i =1 

(
− ∂ f 

∂x d 
+ 

∂ 2 f 

∂x 2 
i 

)
= 

σ 2 

2 

(
−(d − 1) 

∂ f 

∂x d 
+ �d−1 f 

)
, (22) 

where �d−1 is the Laplacian operator defined on the manifold of the first d − 1 space directions. Since any Brownian motion

is rotationally invariant, the complete Cartesian coordinate form of the generator reads 

L f = 

σ 2 

2 

( 

−(d − 1) 
d ∑ 

i =1 

x i 
∂ f 

∂x i 
+ � f −

d ∑ 

i, j=1 

x i x j 
∂ 2 f 

∂x i ∂x j 

) 

. 

In the three-dimensional case ( d = 3 ), transformation of this differential operator to the spherical coordinates 0 ≤ θ ≤π ,

0 ≤ϕ < 2 π yields 

L f = 

σ 2 

2 

(
1 

sin θ

∂ 

∂θ

(
sin θ

∂ f 

∂θ

)
+ 

1 

sin 
2 θ

∂ 2 f 

∂ϕ 
2 

)
. (23) 

A rigorous derivation of this generator could be found, e.g., in Example 8.5.8 of [14] . 

5. Implementation of random walks 

The reduced form (22) of the generator reveals that an infinitesimal Brownian motion on S d−1 is just the standard ran-

dom walk on the ( d − 1 )-dimensional tangential manifold, followed by a projection onto S d−1 . In this section, we discuss

practical approaches to implementation of random walks on S d−1 . Some of them involve approximations that become exact

as the time step �t goes to zero. Exact random walks lead to more sophisticated numerical algorithms but allow the use of

larger time steps than simplified approaches. 

5.1. Standard random walk in R 
d and on S 1 

The simplest distribution to implement numerically is the uniform one. We, therefore, start with approximating Brownian

motion using Donsker’s theorem and i.i.d. random numbers X i , n uniformly distributed on the interval [ − 1 
2 , 

1 
2 ] . Multiplying

each X i , n by the same scaling factor ξ ∈ R + , the mean squared displacement 

Var 
[‖ X (t) ‖ 

2 
]

= ξ 2 
E 

⎡ 

⎣ 

d ∑ 

i =1 

( 

N ∑ 

n =1 

X i,n 

) 2 
⎤ 

⎦ 

can be fitted to its deterministic counterpart σ 2 
d 
(t) defined by (18) . We have 

E 

⎡ 

⎣ 

( 

N ∑ 

n =1 

X i,n 

) 2 
⎤ 

⎦ = 

N ∑ 

n =1 

E [ X 2 i,n ] + 

N ∑ 

n =1 

N ∑ 

m =1 
m � = n 

E [ X i,n X i,m 
] , 

where E [ X i,n X i,m 
] = E [ X i,n ] E [ X i,m 

] = 0 since the random numbers X i , n are independent with mean zero. The variance of the

uniform distribution on [ − 1 
2 , 

1 
2 ] is 

E [ X 2 i,n ] = 

∫ 1 / 2 
−1 / 2 

x 2 dx = 

1 

12 
. 
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It follows that: 

E 

⎡ 

⎣ 

( 

N ∑ 

n =1 

X i,n 

) 2 
⎤ 

⎦ = E 

[ 

N ∑ 

n =1 

X 2 i,n 

] 

= 

N 

12 
= 

t 

12�t 
, 

and, therefore, Var [ ‖ X(t) ‖ 2 ] = 
dξ2 t 
12�t 

. For this variance to coincide with σ 2 
d 
(t) = 2 dDt, the random numbers X i , n should be

multiplied by 

ξ = 

√ 

24 D �t . 

To simulate the standard Brownian motion on the circle S 
1 , we recall that it is defined by X(t) = (X 1 (t) , X 2 (t)) =

( cos (σB (t)) , sin (σB (t))) and the polar coordinate form of its generator is simply L f = 
σ 2 

2 
∂ 2 f 
∂ϕ 2 

. Hence, a random walk on

S 
1 can be implemented by adding random perturbations of the form �ϕ = ξ� to the polar angle ϕ of the unperturbed

orientation vector 

p = 

(
p 1 
p 2 

)
= 

(
cos ϕ 

sin ϕ 

)
∈ S 

1 . 

As before, the scaling factor ξ = 

√ 

24 D �t should be used if � is generated using the mean-zero variance-one uniform

distribution on [ − 1 
2 , 

1 
2 ] . 

After generating �ϕ, the orientation vector p is to be updated by adding 

�p = 

(
�p 1 
�p 2 

)
= 

(
cos (ϕ + �ϕ) − cos ϕ 

sin (ϕ + �ϕ) − sin ϕ 

)
. 

This perturbation produces p + �p ∈ S 
1 corresponding to the angle ϕ + �ϕ. 

5.2. Projected Cartesian random walks on S 1 and S 2 

An alternative approach to generating a random walk on S 1 is based on the Cartesian form representation (21) of the

generator Lf . The calculation of the perturbation vector �p involves two steps: random walk on the tangential vector and

projection onto S 
1 . The tangential vector is collinear to p ⊥ = (−p 2 , p 1 ) 

T . Therefore, an increment of a Cartesian random

walk in the tangential direction is p ⊥ ξX , where the random variable X is uniformly distributed on [ − 1 
2 , 

1 
2 ] and ξ = 

√ 

24 D �t .

Projecting onto S 1 , we obtain 

p + �p = 

p + p ⊥ ξX 
‖ p + p ⊥ ξX ‖ 

. 

The perturbation vector can now be read off

�p = 

(
�p 1 
�p 2 

)
= 

1 √ 

1 + ξ 2 X 2 

(
p 1 − p 2 ξX 
p 2 + p 1 ξX 

)
−

(
p 1 
p 2 

)
. 

In a similar vein, a random walk on the sphere S 
2 can be implemented as a two-dimensional Cartesian random

walk on the tangential plane followed by a projection onto S 
2 . An orthonormal basis for the plane tangential to S 

2 at

p = (p 1 , p 2 , p 3 ) 
T is given by 

ˆ e 1 = 

1 √ 

p 2 
1 

+ p 2 
3 

( 

p 3 
0 

−p 1 

) 

, ˆ e 2 = 

1 √ 

p 2 
1 

+ p 2 
3 

( −p 1 p 2 
−(p 2 1 + p 2 3 ) 

p 2 p 3 

) 

. (24)

Changing to the polar coordinates, we define an increment of a random walk on the tangential plane as follows: (
ˆ e 1 cos (π�) + ˆ e 2 sin (π�) 

)
ξX, 

where the random variables X and � are uniformly distributed on [ − 1 
2 , 

1 
2 ] , and ξ = 

√ 

48 D �t . Projecting onto S 2 , we obtain 

p + �p = 

p + 

(
ˆ e 1 cos (π�) + ˆ e 2 sin (π�) 

)
ξX 

‖ p + 

(
ˆ e 1 cos (π�) + ˆ e 2 sin (π�) 

)
ξX ‖ 

. 

The perturbation vector can now be read off

�p = 

( 

�p 1 
�p 2 
�p 3 

) 

= 

1 √ 

1 + ξ 2 X 2 

⎛ 

⎜ ⎝ 

p 1 + 
p 3 cos (π�)+ p 1 p 2 sin (π�)) √ 

p 2 
1 
+ p 2 

3 

ξX 

p 2 − sin (π�) 
√ 

p 2 
1 

+ p 2 
3 
ξX 

p 3 − p 1 cos (π�) −p 2 p 3 sin (π�)) √ 

p 2 + p 2 ξX 

⎞ 

⎟ ⎠ −
( 

p 1 
p 2 
p 3 

) 

. 
1 3 
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To avoid computation of the tangent plane, Brownian motion on S d−1 can also be approximated by the Cartesian random

walk in R 
d followed by an orthogonal projection onto S d−1 . In the case d = 3 , this projection-based random walk approach

yields the perturbation vector 

�p = 

( 

�p 1 
�p 2 
�p 3 

) 

= 

1 √ ∑ 3 
i =1 (p i + ξX i ) 2 

( 

p 1 + ξX 1 
p 2 + ξX 2 
p 3 + ξX 3 

) 

−
( 

p 1 
p 2 
p 3 

) 

, 

where the i.i.d random variables X i , i = 1 , 2 , 3 are uniformly distributed on [ − 1 
2 , 

1 
2 ] , and ξ = 

√ 

24 D �t . Moosaie and Manhart

[6] used this random walk approach for Monte Carlo simulations of turbulent drag reduction in fiber suspension flows. 

In order to prove rigorously that these random walks converge to the Brownian motion on the sphere, one can follow

the steps of the proof of Donsker’s theorem. More precisely, one needs to check that the corresponding finite-dimensional

distributions of these random walks converge as �t → 0, and then prove tightness of the family of probability measures

induced by these random walks. We do not elaborate on these arguments here. 

5.3. CDF-fitted spherical random walk on S 2 

In simulations of a Brownian motion on R 
d , it is worthwhile to replace the uniform distribution of the increments of

the random walk with a normal distribution. The main benefit of this approach lies in the fact that the random walk has

the exactly the same distribution as a Brownian motion for times n �t . Therefore, accurate computations can be performed

with relatively large �t . Similarly, we can define a random walk on S 2 . More specifically, suppose that the random variable
ˆ X 3 represents the vertical coordinate of the Brownian motion on a sphere in the rotated frame at t = �t . The corresponding

probability density distribution is given by (9) . Using the tangential basis vectors ˆ e 1 and ˆ e 2 defined by (24) , we update the

orientation vector p = (p 1 , p 2 , p 3 ) 
T by adding perturbations of the form 

�p = ( ̂  X 3 − 1) p + 

√ 

1 + 
ˆ X 2 
3 

(
ˆ e 1 cos (2 π�) + ˆ e 2 sin (2 π�) 

)
, (25) 

where the random variable � is uniformly distributed on [ − 1 
2 , 

1 
2 ] . 

Let F τ (x ) = P ( ̂  X 3 ≤ x ) , x ∈ [ −1 , 1] , τ = D �t denote the cumulative distribution function (CDF). By (9) we have 

F τ (x ) = 

∞ ∑ 

n =0 

2 n + 1 

2 

∫ x 
−1 

P n (y ) dy. (26) 

Since ∫ x 
−1 

P n (y ) dy = 

1 

2 n + 1 
( P n +1 ( x ) − P n −1 (x ) ) , P −1 ≡ 0 , 

formula (26) also could be rewritten as 

F τ (x ) = 

x 

2 
+ 

1 

2 

∞ ∑ 

n =1 

exp ( −n (n + 1) τ ) ( P n +1 ( x ) − P n −1 (x ) ) . (27) 

Then ˆ X 3 can be simulated numerically as 

ˆ X 3 = F −1 
τ (U) , (28) 

where U is uniformly distributed on [0,1]. Unfortunately, the CDF defined by (26) cannot be easily inverted to transform

U ∈ [0, 1] into ˆ X 3 defined by (28) . Using approximation (10) , Chen and Yu [8] replaced F τ ( x ) by 

˜ F τ (x ) = exp 

(
−arccos 2 x 

4 τ

)
. (29) 

The resulting closed-form expression for ˆ X 3 reads 

ˆ X 3 = cos ( 
√ 

−4 τ ln (U) ) . (30) 

Since the derivation of (10) is based on the assumption that τ �1, the cumulative probability ˜ F τ (x ) may become a poor

approximation to F τ ( x ) defined by (26) as τ increases. Accurate results can only be expected for τ ≤0.1 (see Fig. 3 in [8] ).

To avoid large modeling errors, the approximate CDF formula (30) should not be used for τ > 1. 

As an alternative to approximating F τ ( x ) by ˜ F τ (x ) , we calculate the cumulative probabilities F j = F τ (x j ) , x j = j/M for

j = −M, . . . , M off-line and store the results in a look-up table . Since F τ is continuous and increasing on [ −1 , 1] , it attains

each intermediate value. It follows that for any U ∈ [0, 1] there exists an index j such U ∈ 

[
F j−1 , F j 

]
. Let F 

j 
τ (x ) be the linear

interpolant of F j−1 and F j , i.e., 

F j τ (x ) = F j−1 

x j − x + F j 
x − x j−1 

, x ∈ [ x j−1 , x j ] , �x = 

1 
. 
�x �x M 
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Then (F j τ ) −1 : [ F j−1 , F j ] → [ x j−1 , x j ] is linear too and can be used to calculate 

ˆ X 3 = (F j τ ) −1 (U) = x j−1 

F j −U 

F j − F j−1 

+ x j 
U − F j−1 

F j − F j−1 

for our spherical random walk approach based on the use of look-up tables. 

Note that if τ is large enough so that the sum in (27) is negligible and, therefore, 

F τ (x ) ≈ x 

2 
, 

then, by the Archimedean projection property, the new position of the particle is uniformly distributed on a sphere and we

do not need any formulas to simulate it - just pick a new position at random with uniform distribution on the sphere. 

6. Case study: orientation tensors 

In this section, we compare and evaluate different random walk approaches to Monte Carlo simulation of fiber orienta-

tion dynamics. The probability density distribution f : S d−1 → R 
+ can be reconstructed from instantaneous orientations p m

of N f evolving Brownian fibers using (14) or the representation of f ( p , t ) in terms of orientation tensors [15] . In practical

applications, the effective stress of a semi-dilute fiber suspension depends on the orientation tensors corresponding to the

second and fourth-order moments 

A (t) = 

∫ 
S d−1 

p � p f (p , t) d p = 

{
A i j 

}d 

i, j=1 
, (31)

A (t) = 

∫ 
S d−1 

p � p � p � p f (p , t) d p = 

{
A i jkl 

}d 

i, j,k,l=1 
(32)

which provide sufficient information for rheological modeling purposes. 

Substituting reconstruction (14) into (31) and (32) , we obtain 

A = 

1 

N f 

N f ∑ 

m =1 

p m � p m , (33)

A = 

1 

N f 

N f ∑ 

m =1 

p m � p m � p m � p m , (34)

where N f is the number of evolved fibers. Remarkably, the so-defined tensors A and A can be calculated without recon-

structing f . 

The following abbreviations are used for the methods under investigation: 

• RW-CP: Cartesian random walk in R 
3 + projection onto S 2 ( Section 5.2 ); 

• RW-TP: Random walk on the tangential plane + projection onto S 2 ( Section 5.2 ); 

• RW-VH: Random walk in the vertical direction + random walk on the horizontal plane ( Section 5.3 ). 

An additional letter X ∈ {A,E} is used in abbreviations of the form RW-VH-X to distinguish between two different imple-

mentations: 

• RW-VH-A: Approximate random walk method of Chen and Yu [8] ; 

• RW-VH-E: Exact random walk using look-up tables for the CDF. 

Numerical studies of the above methods are performed for the three-dimensional spherical heat equation (1) . In the first

set of numerical experiments, the initial condition is the δ distribution (5) corresponding to 

p 0 = (0 , 0 , 1) T . 

The components of exact orientation tensors are given by 

A i j (t) = 

∫ 2 π
0 

∫ π

0 

p i (θ, ϕ) p j (θ, ϕ) f ( cos θ, t) sin θdθdϕ, (35)

A i jkl (t) = 

∫ 2 π
0 

∫ π

0 

p i (θ, ϕ) p j (θ, ϕ) p k (θ, ϕ) p l (θ, ϕ) f ( cos θ, t) sin θ d θd ϕ, (36)

where f ( ̂  x 3 , t) is the azimuthal probability distribution defined by (9) . The above integrals can be further simplified by

making an appropriate change of variables. For example, A 33 written in terms of u = cos θ becomes 

A 33 (t) = 2 π

∫ 1 
−1 

u 2 g(u, t) du, (37)
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Fig. 2. Dependence of the RW-CP results for A 33 on the number of particles. Test problem: spherical heat equation with the initial condition given by the 

δ distribution. 

Fig. 3. Evolution of A 33 in random walks using τ = 0 . 01 vs. the exact solution. Test problem: spherical heat equation with the initial condition given by 

the δ distribution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where 

g(u, t) = 

1 

4 π

m ∑ 

n =0 

(2 n + 1) exp [ −n (n + 1) Dt] P n (u ) . (38)

The number of terms in the truncated series approximations to f ( θ , t ) must be chosen sufficiently large to obtain the exact

value of the given tensor component. In fact, orientation tensors of any order are uniquely defined by the first coefficients

c j of the truncated sum approximation (12) by a linear combination of spherical harmonics ψ j . Hence, the exact values

of A ij and A ijkl can be calculated using a small number m of terms in (38) . More terms are generally required to calculate

higher-order orientation tensors exactly. 

To obtain a good approximation of orientation tensors in Monte Carlo simulations leading to (33) and (34) , the number

N f of particles to be evolved must be chosen sufficiently large. Fig. 2 illustrates the influence of the number of particles on

the accuracy of numerical results. It can be seen that as many as 30 0 0 particles may be required to capture the evolution of

A 33 with high precision. The results obtained with other approaches exhibit similar dependence on the number of particles.

In the remaining numerical experiments of this section, we perform random walks with 40 0 0 particles. 

The approximations to A 33 presented in Figs. 3 and 4 indicate that all random walk methods under consideration produce

similar results for small values of the scaled time step τ = D �t . Fig. 5 demonstrates that our exact random walk (RW-VH-E)

outperforms RW-CP and RW-TP as the time step increases and the accuracy of projection-based methods deteriorates. 

For further comparison of different methods, we perform Monte Carlo simulations for a randomly chosen initial state. In

this set of experiments, the orientation angles of sample fibers at t = 0 are defined by 

	 = 

π

6 
U, � = 2 πU, 

where U is a random variable uniformly distributed on [0,1]. This variable is generated using an identical seed for all meth-

ods. For each method, we present the results obtained with three different time steps. Since no exact solution is available

for the case of random initial data, the results corresponding to τ = 0 . 01 serve as reference solutions for each method.



A. Novikov, D. Kuzmin and O. Ahmadi / Applied Mathematics and Computation 364 (2020) 124670 11 

Fig. 4. Evolution of A 33 in random walks using τ = 0 . 1 vs. the exact solution. Test problem: spherical heat equation with the initial condition given by the 

δ distribution. 

Fig. 5. Evolution of A 33 in random walks using τ = 1 . 0 vs. the exact solution. Test problem: spherical heat equation with the initial condition given by the 

δ distribution. 

Fig. 6. Evolution of A 33 in random walks using RW-CP. Test problem: spherical heat equation with the random initial condition. 

 

 

 

 

 

 

Indeed, this value of τ was found to produce sufficiently accurate approximations to the known exact solution of the first

test problem (see Fig. 3 ). 

The numerical approximations to the component A 33 of the second-order orientation tensor are shown in Figs. 6 –9 .

Note that the RW-VH-E solution obtained with τ = 1 is as accurate as the reference solution throughout the simulation

run, whereas other methods produce significant errors after the first large time step. As in the first test, all methods yield

accurate predictions for the constant value of A 33 to which the reference solution converges as time goes. Clearly, individ-

ual components of low-order orientation tensors provide limited information about the probability distribution. As another



12 A. Novikov, D. Kuzmin and O. Ahmadi / Applied Mathematics and Computation 364 (2020) 124670 

Fig. 7. Evolution of A 33 in random walks using RW-TP. Test problem: spherical heat equation with the random initial condition. 

Fig. 8. Evolution of A 33 in random walks using RW-VH-A. Test problem: spherical heat equation with the random initial condition. 

Fig. 9. Evolution of A 33 in random walks using RW-VH-E. Test problem: spherical heat equation with the random initial condition. 

 

 

 

quantity of interest, we consider the mean-squared angular displacement 

MSD (t) = 

1 

N f 

N f ∑ 

m =1 

(θm (t) − θm (0)) 2 , 

where N f is the number of samples. The evolution of MSD for the two versions of RW-VH is shown in Figs. 10 and 11 .

The RW-VH-A method produces a significant overshoot after the first time step corresponding to τ = 1 . The random walk

approach using the look-up table (RW-VH-E) is seen to produce excellent results for all three values of τ already at early
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Fig. 10. Evolution of MSD in random walks using RW-VH-A. Test problem: spherical heat equation with the random initial condition. 

Fig. 11. Evolution of MSD in random walks using RW-VH-E. Test problem: spherical heat equation with the random initial condition. 

 

 

 

 

 

 

 

 

 

 

stages. We conclude that it is better suited for simulating dynamic changes of orientation states with large time steps than

any other method considered in this study. 

7. Conclusions 

It is hoped that the presented analysis of spherical Brownian motions gives additional insights into their mathemat-

ical properties and numerical behavior of random walk methods for Monte Carlo simulations. Clearly, the random walk

methodology is not restricted to simulations of pure Brownian diffusion. It can readily be extended to Lagrangian models of

orientation dynamics in which moving fibers may also be advected or rotated by deterministic velocity fields. The presented

methodology is currently being used to simulate Brownian diffusion effects in non-Newtonian models of fiber suspension

flows. Simulation results for the 3D axisymmetric contraction benchmark and numerical studies of closure approximations

will be presented elsewhere. 
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