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Orientation probability density projections of Cartesian random walks, as well as polar random walks on the tangential
Lagrangian modeling plane. In addition, we explore the possibility of using look-up tables for the exact cumu-
Random walk lative probability of perturbations. Numerical studies are performed to assess the practical

utility of the methods under investigation.
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1. Introduction

The need for efficient numerical modeling of Brownian diffusion effects on a unit sphere arises, e.g., in fiber suspension
flow models based on the Fokker-Planck equation for the orientation probability density [1,2]. This equation is derived from
the Jeffery equation [3] for a single ellipsoid using (possibly anisotropic) rotary diffusion terms to model fiber interactions
in concentrated suspension models. Direct numerical solution of the Fokker-Plank equation incurs exorbitant computational
cost since the probability density function of fiber orientation depends on two orientation angles in addition to the space
and time variables. Therefore, Eulerian models implemented in most industrial and research codes produce just a few even-
order moments of the probability density function (so-called orientation tensors) [1].

Lagrangian methods for simulation of disperse two-phase flows are based on solving individual equations of motion for
each particle or fiber [4-7]. Whereas the cost of evolving a single fiber is negligible compared to that of solving a multi-
dimensional PDE, the large number of fibers that are required for accurate prediction of local orientation states can make
Lagrangian simulations far more expensive than Eulerian tensor evolution models. Additionally, the numerical treatment
of Brownian diffusion effects is more difficult in the Lagrangian framework. Since diffusive fluxes describe changes of the
probability density function due to random microscopic motions, stochastic perturbations must be applied to the spatial
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coordinates and/or orientation angles of moving fibers to emulate the impact of these fine-scale effects on the trajectory
and orientation of Lagrangian particles/fibers [6,7].

In this paper, we focus on the derivation and numerical study of random walk methods for the heat equation on a
unit sphere. The ability to obtain accurate solutions to this model problem in an efficient manner is a prerequisite for
achieving high performance when it comes to Lagrangian simulations involving convective transport of fibers in the 3D
space, deterministic changes of their orientation caused by velocity gradients, and a two-way coupling with the generalized
Navier-Stokes equations for the velocity field.

In Sections 2 and 3, we introduce deterministic and stochastic approaches to numerical simulation of fiber orientation
dynamics in the context of the spherical heat equation. Section 4 presents stochastic PDE analysis which provides theo-
retical foundations for generating Brownian motions and random walks. In Section 5, we focus on practical algorithms for
generation of random numbers corresponding to given values of the rotary diffusion coefficient. Some of the methods to be
presented are based on projections of standard Cartesian random walks. Others rotate Brownian fibers by adding perturba-
tions to the polar coordinates in the tangential plane. In the method proposed by Chen and Yu [8], angular perturbations are
generated using cumulative probability derived from an approximate solution of the spherical heat equation. This approach
produces accurate results as long as the time step is sufficiently small. In computations with larger time steps, we use a
tabulated numerical approximation to the cumulative distribution function given by the exact solution of the spherical heat
equation. After presenting the new algorithms and discussing their properties, we perform numerical studies and compare
the results obtained with different methods.

2. Deterministic modeling of Brownian diffusion

The orientation of a rigid rod-like fiber in d = 2,3 space dimensions is characterized by a point p € S~! on the unit
sphere S4-1 := {p e R? : ||p|| = 1}, where ||-|| is the Euclidean vector norm. Let f{x, p, t) denote the probability that a fiber
occupying the space location x € R? has orientation p € S¢-! at time t € R... In the absence of spatial gradients, the Fokker-
Planck equation for the probability density function f = f(p,t) of a concentrated fiber suspension reduces to the spherical
heat equation

g:DApf on 2, (1)
at
where D> 0 is a rotary diffusion coefficient and A, is the Laplace-Beltrami operator, i.e., the tangential divergence of the
tangential gradient.

Written in spherical coordinates, each three-dimensional orientation state p € S becomes a function of two orientation
angles. We have

D1 sinf cos ¢
p=|p:|=|sinbsing |, ¢<[0,27), O<l0, 7] (2)
D3 cos6

Using the fact that r:= ||p|| = 1 for p € S2, we restrict the Laplace operator

19(,0 1 a (. ad 1 92
A_rZE)r(r ar)+r251n989<5m08«9>+r25m298<pz 3)
to the unit sphere and obtain the formula for A, in spherical coordinates
1 9 (. ad 1 09?
Ap = sineae<s'"989) +7sin2037§02' (4)

In contrast to the heat equation in R3, its spherical counterpart (1) cannot be readily solved by convolving an arbitrary
initial condition with a Gaussian kernel. However, if the initial condition is given by the & distribution

f(P(0,9).0)=8(po), PoeS? (5)

corresponding to the case of full alignment (i.e., of all fibers having the same orientation pg at t = 0), the exact solution of
the initial value problem for the spherical heat equation can be derived using the change of variables

(X1,%2,X3) > (R1,%2,%3), (0, 9) > (0, 9)

such that the unit vector é; = (0,0, 1)T of the rotated Cartesian coordinate system coincides with the direction p, of initial
alignment (see Fig. 1). In this reference frame, the initial condition (5) is independent of the polar angle ¢ and so is the
probability density f = f(X3,t), X3 = cos@ for t > 0. It follows that:

Apf = a% ((1 R aaj; ) (6)
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Fig. 1. Coordinate system in which pg = (0,0, 1)7, cf. [8].
and, therefore, the initial value problem at hand simplifies to
af 0 oy 0f .
E_Da}23 <(1_x3)8)?3>’ (X3, t) e [-1,1] x R4, (7)
f(&,0)=48(1), % e[-1,1]. (8)
The exact solution of problem (7), (8) is given by [8,9]
. > 2n+1 .
fGt)=)" 75— exp (=n(n + DO (%3), 9)
n=0

where Py, is the nth Legendre polynomial. In what follows, we will use this formula to generate look-up tables for random
walks on S2.

In practice, the evaluation of f(X3,t) defined by (9) requires approximation of the infinite series by a partial sum. The
number of terms that provide an accurate description of f may be significant. Orientation tensors representing the first even-
order moments of the probability density distribution can be calculated exactly using just a few terms (see Section 6 for
details).

If the time interval is restricted to [0, At] such that DAt « 1, then f(X5,t) can be nonvanishing only for small values of
the azimuthal angle § = arccos&; since f(&;,0) = 0 for > 0. Following Chen and Wu [8], we use the small angle approxi-
mation sind ~ 0 and consider the simplified problem

f(cosf.t) Dﬁ(éaf(cosé,t)
it hab 30

The exact solution corresponding to the initial § distribution reads [8]

), @,t) e[0,7] x R, (10)

~ 1 62
cosf,t) = ——exp|—-= ), te(0, At] 1
fleosd.t) = p( 4Dt) € (0. Af] (1)
This approximation to (9) can be evaluated efficiently and produces accurate results as long as DAt « 1, as assumed in the
derivation of (10).

For general initial conditions, no closed-form analytical solutions of (1) are known but numerical solutions of arbitrary
high precision can be obtained using Galerkin methods based on approximations of the form

M
fu®.t) =) c;(OY;), (12)

j=1

where ¢;(t) is the time-dependent degree of freedom associated with the basis function ¥;(p). For example, spherical har-
monics or linear finite elements a cubed sphere grid can be used to discretize the spherical heat equation in this manner.
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However, extensions of such numerical methods to the general Fokker-Planck equation for a space-dependent probability
distribution f(x, p, t) would require solution of a three-dimensional evolution equation for each orientation mode ¢;(X, t).
We refer to [10,11] for examples of alternating direction methods based on this computationally intensive Eulerian approach
to numerical treatment of the Fokker-Planck equation. In the remainder of this article, we focus on approaches in which
orientation states are determined using Monte Carlo simulations of individual fibers.

3. Stochastic modeling of Brownian diffusion

Instead of evolving the probability density function f{x, p, t) of a fiber suspension, the centers of mass X;(t) and ori-
entation vectors pm(t) of Ny representative fibers are evolved in Lagrangian methods [4-6,8]. Brownian diffusion effects are
taken into account by adding random perturbations to x;(t) and/or p;(t). Restricting our attention to Brownian diffusion on
the unit sphere S%, we consider algorithms that lead to updates of the form

prl=pL+ApY, m=1,... N, n=01,..., (13)

where Apy, is a random perturbation such that py, + Apm € S? for py € S2.
For sufficiently large values of Ny and n, the probability that some fiber will have orientation p € S? after n steps can be
approximated by

N
~ 1
"p)=-—Y S(p-p}). 14
(P me§:1 (P-ph) (14)

Since we are interested in solving the spherical heat equation, this probability distribution should correspond to an approxi-
mate solution of (1) at the time instant t" = nAt, where At is a constant time step size. To that end, the intensity of random
perturbations should be defined so as to obtain the correct mean squared displacement or correct cumulative probability.

The following approaches to Monte Carlo simulations based on the addition of perturbations Ap" to orientation vectors
p € S? can be envisaged:

- Construct Ap = (Ap;, Apy, Ap3)T as in the standard random walk method for Brownian diffusion in R3 and project
p + Ap onto S?;

« Perform standard random walk on the tangential plane orthogonal to the orientation vector p € S? and project p + Ap
onto S?;

« Perform random walk on S2 using the fiber-aligned reference frame {&;, é,, &3} in which p = (0,0, 1)T is the North Pole;

The first approach is described in Section 5.2. It was used, e.g., by Moosaie and Manhart [6] for direct Monte Carlo sim-
ulations of fiber suspension flows. The third approach was adopted in the work of Chen and Wu [8] who used (11) to con-
struct an approximate inverse of the cumulative probability function and calculate angular perturbations (see Section 5.3).
Note that the use of a reference frame aligned with the orientation vector p is consistent with the assumption of a § distri-
bution for the unperturbed initial state.

In contrast to the first two approaches, which exploit the knowledge of analytical solutions, the third one requires direct
construction of a Brownian motion associated with the Laplace-Beltrami operator A,. We accomplish this task in the next
section using some basic tools of probability theory and stochastic PDE analysis. Practical implementation of different ran-
dom walks based on the above three approaches is discussed in Section 5. Projection-based algorithms involving random
walks on §? be found in [12,13].

4. Brownian motion

We use uppercase letters for random variables and lowercase letters for their deterministic counterparts. For example, 0
is a deterministic angle, whereas ® is a random angle. The value of ® is a set of numbers, the distribution of which de-
pends on random events such as a coin toss. Similarly, b(t), te[0, co) is a continuous trajectory, whereas a one-dimensional
standard Brownian motion B(t), t€[0, oo) is a stochastic process, that, is a set of continuous trajectories such that for any
fixed t and s, the distributions of random variables B(t +s) — B(t) and B(t) are independent, Gaussian (i.e., normal) with
expected value

E[(B(t +5) — B(t))] = E[B(t)] = 0,
and variance
Var[B(t +5) — B(s)] = E[(B(t +5) — B(t))?)] =s, Var[B(t)]=t.

4.1. Brownian motion and the Laplacian

We say that the Laplacian Lf = DAf is the generator of a (rescaled) Brownian motion for the following reason. The
solution of the initial value problem

of

W(x, t)=DAf(x,t), (xt)eR!xR,, (15)
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f(x.0)=45(0) (16)

is the probability density of a (rescaled) Brownian particle X(t) that starts at the origin at t = 0: X(0) = 0. This density
corresponds to the Gaussian distribution

d
1 —lxJ2
fx ) = (2 m) e (17)

and has the variance [7]
a2(t) =f IX[|2f (%, £) dx = 2dDt. (18)
R4

For any t> 0, the position of a Brownian particle is a (d-dimensional) random variable with mean 0 € R? and variance
2Dtl, where I is the identity matrix. The underlying stochastic process is given by

X(t) = v2DB(t), (19)
where B(t) = (B;(t),By(t),...,B4(t)) contains d copies of independent one-dimensional standard Brownian motions. The

term standard deviation is frequently used to describe the behavior of the particle. Informally, it characterizes how far
the particle may travel from its original position in time t. Formally, the standard deviation is the square root of the trace
of the variance. For X(t) defined by (19) the standard deviation is o4 (t) = v2dDt.

4.2. Brownian motion and the random walk

Donsker’s theorem (also known as the functional central limit theorem) demonstrates rigorously that the one-
dimensional Brownian motion B(t) with variance o2t is a limit of a wide class of piecewise-linear random trajectories
Y, (t)— B(t) as k— oo. Such trajectories Y,(t) can be constructed using a random walk as follows. Draw countably many in-
dependent random variables X;, i € N using the same distribution with mean zero and variance o2. The associated random
walk is given by

n
Sn=Y X, neN.
i=1

For a fixed time-step At = 1/k, define the piecewise-linear random trajectory
Ye(t) = VAL(S i /ae) + (= [t/ AL]ADX ¢ a)11)-

where the floor function [t/A] returns the largest integer smaller than t/At. Formally, each random number X; corresponds
to a one-dimensional displacement of a moving particle at a discrete time step At. The average distance traveled by the
particle per time step in a given space direction is o+/At. It follows that the Brownian motion (19) can be generated from
i.i.d. (independent, identically distributed) random numbers with mean zero and standard deviation o = +/2D.

If a distribution of a random number has a finite variance, it can be normalized to be mean-zero. Therefore, Donsker’s
theorem implies that any i.i.d. random numbers with finite variance can be used to approximate a Brownian motion. In view
of this fact, the practical choice of such distributions is often dictated by the simplicity of their numerical implementation.

4.3. Brownian motion on a circle

For any standard (mean-zero, variance-one) one-dimensional Brownian motion B(t), a variance-o2 Brownian motion on
a circle is defined by
X(t) = (X (£),X2(t)) = (cos(aB(t)), sin(oB(t))).

The polar coordinate form of its generator is simply

o2 9%f
Lf = —+=. 2
f =% 542 (20)
The Cartesian representation is

o2 af af  ,0%f 3% f 282f>

Lf=Z (- 2L 2 2%y ]
f 2 ( *1 9x1 X2 0X7 % ax? X1%2 0X10X7 X ax2
Equivalently

02 f
+ Af*X%* — 2X1X3
ax?

O'Z(X af of

9% f 2 0%f
Lf_7 187)(17)(287)(2 .

— X —_
Ox10x; 2 0x2
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At the two-dimensional North Pole (xq,x,) = (0, 1) of the unit circle, the Cartesian form representation of Lf reduces to

o2 df 9f
Lf = 2(—8X2+ 8x2>' (21)

. . s . . 2 92f . . .
This formula admits an intuitive and useful mterpretatlon. The term "7% is the generator of a one-dimensional random
1

walk in the horizontal direction. The term —7— is the generator of vertical displacements that project a Brownian particle

moved along the tangent line back to the unit c1rcle

4.4. Brownian motion on a sphere

The generator for Brownian motion on the sphere S%-1, d > 2 can be constructed using a simple analogy with the ran-
dom walk on the circle S'. In view of the above considerations, the expected form of the generator at the d-dimensional
North Pole (x{,x5,...) =(0,0,..., 1) is

2 d-1 2 2
Lf=022< a;i*?x{) g ( d-1 f+Ad 1f) (22)
i=1 i

where A,_; is the Laplacian operator defined on the manifold of the first d — 1 space directions. Since any Brownian motion
is rotationally invariant, the complete Cartesian coordinate form of the generator reads

af 9

Lf = 5 (d_l)lea +Af— Zxxjaxax

In the three-dimensional case (d = 3), transformation of this differential operator to the spherical coordinates 0<6 <,
0 <@ <2m yields

o2 1 af 1 8°f
Lf= 2(sin9 70 (5‘“939) + SmZQagoz)' (23)

A rigorous derivation of this generator could be found, e.g., in Example 8.5.8 of [14].

5. Implementation of random walks

The reduced form (22) of the generator reveals that an infinitesimal Brownian motion on $¢-! is just the standard ran-
dom walk on the (d — 1)-dimensional tangential manifold, followed by a projection onto S9-!. In this section, we discuss
practical approaches to implementation of random walks on S¢-!. Some of them involve approximations that become exact
as the time step At goes to zero. Exact random walks lead to more sophisticated numerical algorithms but allow the use of
larger time steps than simplified approaches.

5.1. Standard random walk in RY and on S!

The simplest distribution to implement numerically is the uniform one. We, therefore, start with approximating Brownian
motion using Donsker’s theorem and i.i.d. random numbers X;, uniformly distributed on the interval [—%, %]. Multiplying
each X;, by the same scaling factor £ € R, the mean squared displacement

2

Var[||X(t)||] Z len
i=1 \n=1

can be fitted to its deterministic counterpart adz (t) defined by (18). We have

2

N N N N
El (D Xin ] | =D EX2]+D ) ElXinXiml.
n=1 n=1

n=1 m=1
m#n

where E[X; ,X; ] = E[X; ,]JE[X; ] = O since the random numbers X;, are independent with mean zero. The variance of the
uniform distribution on [-1, 3] is

) 1/2 ) 1
EIXZ,] = ./_1/2X dx= 5.
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It follows that:

N 2 N N t
2
B\ LXin | | =B LX0 | =13 = 127

n=1

and, therefore, Var[||X(t)||?] = %. For this variance to coincide with 05 (t) = 2dDt, the random numbers X;, should be
multiplied by

£ = v24DAt.

To simulate the standard Brownian motion on the circle S!, we recall that it is defined by X(t) = (X;(t),Xx(t)) =
(cos(oB(t)), sin(oB(t))) and the polar coordinate form of its generator is simply Lf = %2327{ Hence, a random walk on

S! can be implemented by adding random perturbations of the form Ag = £® to the polar angle ¢ of the unperturbed
orientation vector

p— (m) _ (cst) el
D2 sing

As before, the scaling factor & = v24DAt should be used if & is generated using the mean-zero variance-one uniform

distribution on [-1, 1].

After generating A, the orientation vector p is to be updated by adding
Ap — Api1\ _ (cos(¢ + Ap) —cosg
p= Apy ]~ \sin(p + Ap) —sing J°
This perturbation produces p + Ap € S! corresponding to the angle ¢ + Ag.

5.2. Projected Cartesian random walks on S! and S2

An alternative approach to generating a random walk on S! is based on the Cartesian form representation (21) of the
generator Lf. The calculation of the perturbation vector Ap involves two steps: random walk on the tangential vector and
projection onto S!. The tangential vector is collinear to pt = (—p,, p;)7. Therefore, an increment of a Cartesian random
walk in the tangential direction is p£X, where the random variable X is uniformly distributed on [—%, %] and & = v24DAt.
Projecting onto S!, we obtain
PHPEX
Ip+p-&XI°
The perturbation vector can now be read off

Ap = Apr) _ 1 p1—p8bX\ _ (P
Ap; /1+&2x2 \P2 + P1€X p2)
In a similar vein, a random walk on the sphere S? can be implemented as a two-dimensional Cartesian random

walk on the tangential plane followed by a projection onto S2. An orthonormal basis for the plane tangential to S2 at
p = (p1, p2, p3)7 is given by

1 ( D3 ) 1 ( (—511’22) o4
bi=—— 0 ), &=——=-(p7+D13) | 24
v p% + p% —D1 p% + p% D2P3

Changing to the polar coordinates, we define an increment of a random walk on the tangential plane as follows:
(81 cos( @) + &, sin( P))EX,

p+Ap=

where the random variables X and & are uniformly distributed on [—%, %], and & = V48DAt. Projecting onto S2, we obtain
P+ (& cos(r ®) + & sin(rr @) )EX
P+ (& cos(m @) + & sin(w ®))EX||’

p+ Ap

The perturbation vector can now be read off

+ P3 cos(r @)+p; p, sin(wr P))

X
Ap; 1 P NERT 5 pi
Ap=|Ap; | = ———=| p2—sin(n®),/pi+p3EX | —|P2)
Ap3 Jv1+ %'ZXZ D3 — p1cos(Td)—p,ps }in(nd;)) éX P3

N
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To avoid computation of the tangent plane, Brownian motion on S¢-! can also be approximated by the Cartesian random
walk in RY followed by an orthogonal projection onto S?1. In the case d = 3, this projection-based random walk approach
yields the perturbation vector

Apy 1 p1+§X P
Ap=|Apy ]| = T—_ p2+éEX2 ) — | p2 ).
Aps Vi (pi+8X)? \ps + £X3 P3
where the i.i.d random variables X;, i = 1, 2, 3 are uniformly distributed on [—%, %], and & = v24DAt. Moosaie and Manhart
[6] used this random walk approach for Monte Carlo simulations of turbulent drag reduction in fiber suspension flows.

In order to prove rigorously that these random walks converge to the Brownian motion on the sphere, one can follow
the steps of the proof of Donsker’s theorem. More precisely, one needs to check that the corresponding finite-dimensional
distributions of these random walks converge as At— 0, and then prove tightness of the family of probability measures
induced by these random walks. We do not elaborate on these arguments here.

5.3. CDF-fitted spherical random walk on S2

In simulations of a Brownian motion on RY, it is worthwhile to replace the uniform distribution of the increments of
the random walk with a normal distribution. The main benefit of this approach lies in the fact that the random walk has
the exactly the same distribution as a Brownian motion for times nAt. Therefore, accurate computations can be performed
with relatively large At. Similarly, we can define a random walk on S2. More specifically, suppose that the random variable
X5 represents the vertical coordinate of the Brownian motion on a sphere in the rotated frame at t = At. The corresponding
probability density distribution is given by (9). Using the tangential basis vectors é; and é, defined by (24), we update the
orientation vector p = (p1, py, p3)T by adding perturbations of the form

Ap= (X3 — 1)p+/1+X3 (81 cos2r ®) + & sin(27 D)), (25)

where the random variable @ is uniformly distributed on [—3. 1].
Let F; (x) = P(X3 <x), xe [-1,1], T = DAt denote the cumulative distribution function (CDF). By (9) we have

Reo=Y 20 [ noay (26)

n=0

Since
X 1
| Py = 5o Bea (0~ P (0), P =0,

formula (26) also could be rewritten as

R = 5 423 exp (- + DT) (Pt ()~ Bos (9). (27)

n=1
Then X3 can be simulated numerically as
X =F'(U), (28)

where U is uniformly distributed on [0,1]. Unfortunately, the CDF defined by (26) cannot be easily inverted to transform
U<|[0, 1] into X5 defined by (28). Using approximation (10), Chen and Yu [8] replaced F.(x) by

arccos? x)

4T (29)

E (x) = exp (—

The resulting closed-form expression for X; reads

X5 = cos(y/—4t In(U)). (30)

Since the derivation of (10) is based on the assumption that T « 1, the cumulative probability F; (x) may become a poor
approximation to F;(x) defined by (26) as 7 increases. Accurate results can only be expected for t <0.1 (see Fig. 3 in [8]).
To avoid large modeling errors, the approximate CDF formula (30) should not be used for 7 > 1.

As an alternative to approximating F;(x) by F;(x), we calculate the cumulative probabilities Fj=FE(xj), xj = j/M for
j=-M,....M off-line and store the results in a look-up table. Since F; is continuous and increasing on [—1,1], it attains
each intermediate value. It follows that for any U<|[0, 1] there exists an index j such U e [Fj_1,Fj]. Let E/ (x) be the linear
interpolant of F;_; and F;, i.e,,

X X—Xj_1

R0 =Fa g 58

1
xXel[xi_q1,X; Ax = —
e[ j—1 j]7 M



A. Novikov, D. Kuzmin and O. Ahmadi/Applied Mathematics and Computation 364 (2020) 124670 9

Then (Frj)‘1 s [Fi_1, F;] = [xj_1,x;] is linear too and can be used to calculate
hi-U +X;j U= Fp
Fi—Fa  "F—F

for our spherical random walk approach based on the use of look-up tables.
Note that if 7 is large enough so that the sum in (27) is negligible and, therefore,

X =EDTU) =%,

X
Fr(x) ~ 7

then, by the Archimedean projection property, the new position of the particle is uniformly distributed on a sphere and we
do not need any formulas to simulate it - just pick a new position at random with uniform distribution on the sphere.

6. Case study: orientation tensors

In this section, we compare and evaluate different random walk approaches to Monte Carlo simulation of fiber orienta-
tion dynamics. The probability density distribution f: S%! — R* can be reconstructed from instantaneous orientations py;
of N evolving Brownian fibers using (14) or the representation of f(p, t) in terms of orientation tensors [15]. In practical
applications, the effective stress of a semi-dilute fiber suspension depends on the orientation tensors corresponding to the
second and fourth-order moments

d
AO = [ pep f.0dp={A)], (31)
d
At) = /S pepepep f(p.0dp={Aj}, (32)
which provide sufficient information for rheological modeling purposes.
Substituting reconstruction (14) into (31) and (32), we obtain

1
Azﬁfzpm®pm, (33)

m=1

Ny
A=N*fmz::]l)m®l)m®l)m®l)m, (34)

where Ny is the number of evolved fibers. Remarkably, the so-defined tensors A and A can be calculated without recon-
structing f.
The following abbreviations are used for the methods under investigation:

« RW-CP: Cartesian random walk in R3 + projection onto S2 (Section 5.2);
« RW-TP: Random walk on the tangential plane + projection onto S (Section 5.2);
« RW-VH: Random walk in the vertical direction + random walk on the horizontal plane (Section 5.3).

An additional letter X e {A,E} is used in abbreviations of the form RW-VH-X to distinguish between two different imple-
mentations:

« RW-VH-A: Approximate random walk method of Chen and Yu [8];
« RW-VH-E: Exact random walk using look-up tables for the CDF.

Numerical studies of the above methods are performed for the three-dimensional spherical heat equation (1). In the first
set of numerical experiments, the initial condition is the § distribution (5) corresponding to

Po = (O, O, ])T.
The components of exact orientation tensors are given by
2m pm
Ay (0) =f0 /O pi@.9)p; (0. 9)f(cosb. t) sinOdddg, (35)
2w T .
Aiga© = [ [ pi0.0)p,(0.0)pi8. )18, 9 (cos8. 0 sin6 dbd, (36)

where f(X3,t) is the azimuthal probability distribution defined by (9). The above integrals can be further simplified by
making an appropriate change of variables. For example, A33 written in terms of u = cos@ becomes

As3(t) =27 /11 u?g(u, t)du, (37)
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1 —  exact
Ny =30
0.8 --- Ny =300
. 0.6
%
0.4
0.2
0
0 2 4 6 8 10

t

Fig. 2. Dependence of the RW-CP results for A;3 on the number of particles. Test problem: spherical heat equation with the initial condition given by the
8 distribution.

1 T awer

RW-TP

. _ RW-VH-A

0.8 . _RW-VH-E
= 06
0.4
0.2

0 2 4 6 8 10
¢

Fig. 3. Evolution of As3 in random walks using T = 0.01 vs. the exact solution. Test problem: spherical heat equation with the initial condition given by
the § distribution.

where

m
glu,t) = 4i > (@2n+ 1) exp[—n(n+ 1)Dt]P(u). (38)

T n=0
The number of terms in the truncated series approximations to f{6, t) must be chosen sufficiently large to obtain the exact
value of the given tensor component. In fact, orientation tensors of any order are uniquely defined by the first coefficients
¢; of the truncated sum approximation (12) by a linear combination of spherical harmonics ;. Hence, the exact values
of A;; and Ay can be calculated using a small number m of terms in (38). More terms are generally required to calculate

higher-order orientation tensors exactly.

To obtain a good approximation of orientation tensors in Monte Carlo simulations leading to (33) and (34), the number
Ny of particles to be evolved must be chosen sufficiently large. Fig. 2 illustrates the influence of the number of particles on
the accuracy of numerical results. It can be seen that as many as 3000 particles may be required to capture the evolution of
A3z with high precision. The results obtained with other approaches exhibit similar dependence on the number of particles.
In the remaining numerical experiments of this section, we perform random walks with 4000 particles.

The approximations to As3 presented in Figs. 3 and 4 indicate that all random walk methods under consideration produce
similar results for small values of the scaled time step 7 = DAt. Fig. 5 demonstrates that our exact random walk (RW-VH-E)
outperforms RW-CP and RW-TP as the time step increases and the accuracy of projection-based methods deteriorates.

For further comparison of different methods, we perform Monte Carlo simulations for a randomly chosen initial state. In
this set of experiments, the orientation angles of sample fibers at t = 0 are defined by

@:%u ® = 27U,
where U is a random variable uniformly distributed on [0,1]. This variable is generated using an identical seed for all meth-
ods. For each method, we present the results obtained with three different time steps. Since no exact solution is available
for the case of random initial data, the results corresponding to T = 0.01 serve as reference solutions for each method.
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RW-TP

— — -~ RW-VH-A

0.8 .~ _RW-VH-E
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0.4
0.2

0 2 4 6 8 10
t

Fig. 4. Evolution of As; in random walks using T = 0.1 vs. the exact solution. Test problem: spherical heat equation with the initial condition given by the
§ distribution.

1 —_— exact
! RW-CP
RW-TP

- - - RW-VH-A
— - - RW-VH-E

0.2

0 2 4 6 8 10

Fig. 5. Evolution of A33 in random walks using t = 1.0 vs. the exact solution. Test problem: spherical heat equation with the initial condition given by the
¢ distribution.

T = 0.01
--- 7=0.1

T=1

Fig. 6. Evolution of A33 in random walks using RW-CP. Test problem: spherical heat equation with the random initial condition.

Indeed, this value of T was found to produce sufficiently accurate approximations to the known exact solution of the first
test problem (see Fig. 3).

The numerical approximations to the component As; of the second-order orientation tensor are shown in Figs. 6-9.
Note that the RW-VH-E solution obtained with 7 =1 is as accurate as the reference solution throughout the simulation
run, whereas other methods produce significant errors after the first large time step. As in the first test, all methods yield
accurate predictions for the constant value of A3 to which the reference solution converges as time goes. Clearly, individ-
ual components of low-order orientation tensors provide limited information about the probability distribution. As another
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Fig. 7. Evolution of As; in random walks using RW-TP. Test problem: spherical heat equation with the random initial condition.

T = 0.01
--- 7=0.1

0.8

A33

0.6

0.4

Fig. 8. Evolution of As3 in random walks using RW-VH-A. Test problem: spherical heat equation with the random initial condition.

7 = 0.01
--- 7=0.1

T=1

0.8

A33

0.6

0.4

Fig. 9. Evolution of A3; in random walks using RW-VH-E. Test problem: spherical heat equation with the random initial condition.

quantity of interest, we consider the mean-squared angular displacement

Ny
MSD(t) = le 3 On(t) — 6n(0))2,
m=1

where Nf is the number of samples. The evolution of MSD for the two versions of RW-VH is shown in Figs. 10 and 11.
The RW-VH-A method produces a significant overshoot after the first time step corresponding to t = 1. The random walk
approach using the look-up table (RW-VH-E) is seen to produce excellent results for all three values of 7 already at early
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MSD

0.5

0 2 4 6 8 10
t

Fig. 10. Evolution of MSD in random walks using RW-VH-A. Test problem: spherical heat equation with the random initial condition.

T = 0.01

--- T=01 |4

T=1

MSD

8 10

t

Fig. 11. Evolution of MSD in random walks using RW-VH-E. Test problem: spherical heat equation with the random initial condition.

stages. We conclude that it is better suited for simulating dynamic changes of orientation states with large time steps than
any other method considered in this study.

7. Conclusions

It is hoped that the presented analysis of spherical Brownian motions gives additional insights into their mathemat-
ical properties and numerical behavior of random walk methods for Monte Carlo simulations. Clearly, the random walk
methodology is not restricted to simulations of pure Brownian diffusion. It can readily be extended to Lagrangian models of
orientation dynamics in which moving fibers may also be advected or rotated by deterministic velocity fields. The presented
methodology is currently being used to simulate Brownian diffusion effects in non-Newtonian models of fiber suspension
flows. Simulation results for the 3D axisymmetric contraction benchmark and numerical studies of closure approximations
will be presented elsewhere.
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