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Abstract—This paper describes a manifold learning algorithm for
big data classification and parameter identification in real-time
operation of power systems. We assume a black-box setting,
where only SCADA-based measurements at the point of interest
are available. Data classification is based on diffusion maps,
where an improved data-informed metric construction for
partition trees is used. Data reduction is demonstrated on an
hourly measurement tensor example, collected from the power
flow solutions calculated for daily load/generation profiles.
Parameter identification is performed on the same example,
generated via randomly selected input parameters. The proposed
method is illustrated on the case of the static part (ZIP) of a
detailed WECC load model, connected to a single bus of a real-
world 441-bus power system.

Index Terms-- Big data classification, Parameter identification,
Manifold learning, Diffusion maps, WECC load model.

1. INTRODUCTION

Efficient processing of massive high-dimensional data sets
is a contemporary challenge in power systems analytics. Many
classical data processing algorithms have computational
complexity that scales exponentially with the number of
dimensions ("curse of dimensionality") [1]. Researchers have
proposed different methods for quick extraction of useful
information from large datasets to improve the reliability,
efficiency, and flexibility of the grid [2]-[5]. However, most
variables that generate data points are typically correlated
(locally or globally), endowing such data set with low intrinsic
dimensionality. It makes sense then to search for a low-
dimensional representation of observation (measurement)
samples. Correlations between variables might only be local, in
which case classical global dimension reduction methods (such
as Principal Component Analysis and Multidimensional
Scaling) are not suitable for efficient dimension reduction.
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Diffusion maps applied in the context of manifold learning
are increasingly used to overcome such problems [6]. These
nonlinear techniques have the potential to significantly reduce
the data dimensionality. However, they are sensitive to the way
the data points were sampled. More precisely, if the data are
assumed to approximately lie on a manifold, then an eigenmap
representation (which builds a graph from neighborhood
information) depends on the density of the points on the
manifold [6]. This is important when data are produced by the
same source but acquired with different sensors and need to be
merged or when different sampling rates are present. Both
situations are typical in power systems. In these cases, it is
necessary to have a canonical representation of the data that
retains the intrinsic constraints of the samples (for example,
provided by a manifold geometry). Another important issue is
data matching to establish a correspondence between two sets
obtained from the same source. This is performed by creating
partition trees along different axes.

In this paper, data-driven partition trees are used, applying
multilevel partitions along two axes (variable/parameter and
time) with a basis function defined for each folder [7]. The main
assumption in manifold learning and diffusion maps-based
algorithms is that data are constrained to lie on or around a low-
dimensional manifold [7]. Reference [8] presents an application
of diffusion maps to electromagnetic transient analysis in power
systems.

This paper focuses on a black-box setting in which only
SCADA-based measurements are available. These are obtained
from asynchronous remote terminal units (RTUs), typically
collected every 2 to 10 seconds. Real-time variations of input
parameters are unknown. Data classification and parameter
identification (with extension to model reduction) are
considered for the static ZIP load example, which is a part of a
more complex WECC load model [9]-[11]. It is assumed that
only the initial parameters of the ZIP load are known (for
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example, from past load studies), while their real-time
variations are unknown. These parameters are estimated in the
real-time using available measurements.

The paper is organized as follows: Section II provides a
description of the power system model, measurement and
parameter tensors, and the nonlinear optimization for
identifying ZIP load parameters. Section III classifies data
using the manifold learning algorithm. In Section IV, the
proposed method is applied to the ZIP part of a detailed WECC
load model connected to the single bus in a 441-bus real-world
test system in. Finally Section V presents conclusions.

II.  MODEL DESCRIPTION

A data-driven framework for classification of time-
dependent measurements will be demonstrated on a power
system example, described by nonlinear algebraic equations:

_ 0= g(z,p, t) . (1)
where z is the vector of algebraic variables, p is the vector of
parameters, and t is the (scalar) time variable. System
measurements are assumed to be of the form

y=h(zp,t) (2)

The evolution (g) and measurement (h) functions, as well

as algebraic variables (z) in the power system are unknown in

a black-box setting. The only available information are the

measurements (y), which are labeled by time (t), and the initial

values of parameters (p). The goal is to characterize the power

system behavior by systematically organizing the observations
of its outputs (y).

In this paper it is assumed that at the bus where the WECC
model is connected, the SCADA-based measurements are
available. This means that active/reactive (P/Q) load and
voltage magnitude (¥) measurements are recorded with
SCADA-based time stamps. In this local setup the availability
of measurements from the rest of the power system is of no
interest, since there is no available information about the full
power system model (in our black-box environment). Thus, the
available measurements are directly used for optimization of
the ZIP load model. The time frame for data classification can
be, for example, one hour to detect slow variations of daily
load/generation profiles.

A. Measurement and parameter tensors

The measurement (Y)) and parameter (Z) tensors are defined
as follows. Formally, let M' denote an ensemble of N, sets of
observations (measurements) and W denote an ensemble of N,,,
sets of time windows for observations. Also, let P denote an
ensemble of N,, sets of ZIP-based load parameters (p)—see the
Appendix, where P = 0p. D) and Py =
(P1cr P1es P26 P26 Pso)s Pq = (91c: Q16 92¢r G2er so0)- The
active and reactive load-frequency dependencies are neglected
(i.e., Prrq and qprq in (Al1,2) are zero). For each meM and
weW there is an observed trajectory Y (m, w, t) of length N,
of the system variable, where t = 1,2, -+, N; denotes the time
samples.

Let Y denote the entire 3D tensor of observations
(measurements) Y (m,w, t), with dimensions N, X N,, X N,

where N,, denotes the number of measurements and N,

denotes the number of observation time windows (in our case
the hourly load variations). Also, let Z denote the entire 3D
tensor of ZIP-based load parameters, Z(m,w,t), peP with
dimensions N, X N,, X N;, where N,, denotes the number of
parameters (in this case, at most 5 + 5 when considering p,, and
P4 simultaneously).

B. Parameter identification for the ZIP-based load model

Parameters in the ZIP-based active load model are fit to the
observation data based on the optimization for time windows
w=1,2,-+,N, and time stampst = 1, 2,---, N,

’ﬁp,wt = min {”pp,wt - pp”1} (3)
subject to
Piewt P2ewt
Ppwe = Psowt [plc,wt (VVL(:) + Docwe (Vvlot) +
Pscu] )
where

PsO,wt = Plf,wt(]- — Fna — Fiug — Fine — Foup — el) ©)
and the reference parameter values (elements of p,,) are given
in the Appendix. A similar optimization is used for fitting
parameters of the ZIP reactive load model.

III. DATA CLASSIFICATION BY THE MANIFOLD LEARNING
ALGORITHM

For each of the N, vectors in we W, define a trajectory [12]

Yw = {Y(m,w,t) | vw,vt}, wew (6)
Similarly, define y,, and y; to be the samples from the
standpoints of the measurement and time axes, respectively

Ym = {Y(m,w,t)|[vm, vt} meM )
Ye ={Ymw,t)|vmyw} t = 1,2, N, or (teT)  (8)

All data are processed thrice, once for each tensor axis,
using an improved, data-informed metric constructed for data-
driven partition trees [7], [13].

IV. APPLICATION

The proposed algorithm for big data classification and
parameter identification was tested on a real-world test
system—Electric Power Industry of Serbia (a part of the
ENTSO-E interconnection), with 441 buses, 280 load buses,
655 branches (transmission lines and two/three winding
transformers) and 78 production units.

In-field SCADA-based measurements are unavailable and
replaced by solutions to the power flow equations for four
different types of daily generation profiles (thermal, hydro,
wind, and solar units) and load buses. Part of the generation
units (total 14) participate in the Automatic Generation Control
(AGC), depending on their participation factors, to compensate
for an imbalance between the total load and generation obtained
from daily profiles.

Power flow calculations are performed by PSS/E (ver.
33.5.2), in which the WECC load is modeled by the user-
defined CMLDBLU!1 model. Note that the complete WECC
load model is used to calculate the initial conditions of the state
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variables, while only the static part of the WECC model is
analyzed in more details (see the red rectangle in Figure Al).

A. Basic results

The three-dimensional sets of measurements (M) are
generated at the WECC connection point 110 kV (bus 34390,
JBOGATS): active power (Ps), reactive power (Q;r), and bus
voltage (V;¢). From these values, Pjoqq, Qioaas and Vigqq at the
load bus are further calculated. Participation of different
elements in the WECC load model (A3,4) is assumed to be
constant. See Figure Al for clarification. For daily
generation/load profiles, a 24-dimensional set of hourly time
windows (W) are generated. For each meM and weW,
observations are made of hourly trajectories of the WECC load
model outputs at the connection point for N, = 30 time stamps
per hour (sampled in every 120 sec). A case with more samples
will be investigated later in Section IV.B. All of the trajectories
are collected into a single 3D measurement tensor (Y), where
Y € R3*24%30_with the system variable trajectories Y (m, w, t)
of length N, where t =1,2,---,N; = 30 denotes the time
samples. The daily measurement profile (tensor Y) and
extracted hourly profiles are shown in Figure 1.

Similarly, the ten-dimensional set of optimal WECC
parameters (peP) are generated. See section 1A for details.
For each weW, the trajectories of the optimal WECC
parameters for N, = 30 time stamps per hour are observed. All
of the trajectories are collected into a single 3D measurement
tensor (Z), where Z € R19%24X30  The ZIP load parameter
identification of Eqgs. (3)-(4) is performed by adding constraint
(4) as a penalizing term to (3) and optimized using the Matlab
function ‘fminsearch’. Figure 2 shows daily variations of the
optimal ZIP load parameters (due to space limitations, plots for
Pie> Qie> P2¢s Q2¢»> D2es and g, are omitted—their behavior is
similar to that of p;. and q,.). Apart from Py, and Qg, the
variation in all the parameters is small and similar variation for
corresponding elements of the tensor is observed. Py, and Qg
follow their corresponding load profiles.

Pattern classification by manifold learning, which involves
diffusion geometry with data-driven partition trees, is based on
the methodology proposed in [7]. Partition trees and the
dominant elements of the eigenvectors along different tensor
axes (basic case) are shown in Figures 3 and 4, respectively.
From the plot for ‘Time windows (w)’ in Figure 4 one can
conclude that the hourly patterns in the daily diagram are very
different.

B. Large-scale tensors

Decreasing the refreshing time step of the SCADA to 10 s,

increases N; to 360 time stamps per hour and gives a 3D
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measurement tensor ¥ € R3%24%36% The dominant elements of
the eigenvectors for each tensor axis are shown in Figure 5.
Comparing Figures 3 and 5 one sees that the number of time
stamps negligibly influences the shape of these plots. This
suggests that for normal operating conditions (i.e., no major
disturbance and generation and loads are subject to small,
smooth daily variations) the number of saved time snapshots in
the database can be reduced significantly.

C. Parameter identification

For parameter identification (with possible extension to the
parameter reduction), the measurement tensor is defined for one
time window (for example, the first hour from daily
generation/load profiles) as Y'(m, p’, t), where only the active
part of the ZIP load is analyzed. In this case, p’ = (p'p), P'p =
(P1c) P1es P2 D2e)s P €P’, where P’ is the set of uncertain
parameter values. Note that Py, is omitted from the set of
uncertain parameters because it is directly linked to the
measurement set by (A3) and in light of the conclusions from
Figure 2.

For the case of SCADA time sampled every 120 s (N, =
30), a set P’ with N, = 100 randomly selected parameter
values is generated with parameter values drawn from a range
120 % around the values in the Appendix. All the trajectories

are collected into a single 3D measurement tensor (Y'), where
Y' € R3%X100x30

The dominant elements of the eigenvectors for different
tensor axes are shown in Figure 6. Plots of parameters for
random trials (p") and times () show that there are two branches
with clear extrema. Also, the variation of the dominant
elements of the eigenvectors is very large (in both directions).
One can conclude that a relatively small number of random
patterns is sufficient to identify the global behavior of
eigenvector plots.

An information geometry approach to model reduction of
dynamic loads has shown that for a static (ZIP) load model,
several parameters are sloppy and do not affect the model
behavior [14]. Therefore, it is natural to hold these sloppy
parameters fixed. Thus, respecting (AS, 6), three different
scenarios of the reduced parameter vector for the active ZIP
load can be assumed, as shown in Figure 7. Note that in this
figure only plots for the ‘Parameter random trials (p’ e P’)’ axis
are shown (with the same axes ranges as in Figure 6), since plots
for the ‘Measurements (meM’)’ and ‘Times (t€T)’ axes are
similar to those shown in Figure 6.
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V. CONCLUSION

Development of mathematical techniques that operate
directly on observations or measurements (i.e., data-driven
methods) is of increasing relevance for power systems. One
class of such methods by-passes the need to precisely select
variables and parameters as well as the need to derive accurate,
closed-form equations (i.e., white or gray-box approaches).
Initially unorganized measurement data are classified along the
dimensions of measurements (inputs), state variables (time
windows in our case), parameter settings (inputs) and time
snapshot values. Next, a data-informed metric for each type of
variation is iteratively constructed. While construction of the
partition trees considers the coupling among different tensor
axes, the final representation for each entity is separate.

A natural question for this methodology is related to
detecting changes in the embedding dimensions with the
increased temporal sampling rate. Such dimension changes are
important for successful model classification and reduction.
The results presented here show that the embedding plot does
not change significantly with increased number of time stamps.

Extensions to this study could include: 1) gray-box
modeling for SCADA-based measurements, 2) studying the
influence of PMUs on data classification and parameter
identification (black- and gray-box approaches), and 3)
exploring how to enable time-predictive capabilities based on
the agnostically organized measurement database (i.e.,
requiring no knowledge of the mathematical model).
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APPENDIX
The static load is part of WECC load model (Figure A1) is
represented by algebraic equations as follows:

P = Poopic (L) + P2 (2)™ +pac] (1 + prrghf) (AD)

Vo Vo
Qs = Qoo [a1e ()" + e (2)™ + @] (1 + argbD(A2)
where:
PSO=Plf(1_FmA_FmB_FmC_FmD_Fel) (A3)
QsO=Qlf(]-_FmA_FmB_FmC_FmD_Fel) (Ad)
P3c =1 = Dic = P2cs Gac = 1 — q1c — qac (AS)

Af — frequency deviation

where input data are as follows:

Basic power

Sye =5S0MVA ;

Load participations (Motors A, B, C and D, as well as
electronic load, respectively)

Fpa = 0.2; Fpg = 0.2; Fc = 0.1; Fpp = 0.25; F,; = 0.1.
Static load (frequency dependence neglected, or ps.q = 0 and
Afrq = 0)

Pic = 0.452; pi, = 2;
qic = —0.5; g1, =2;

ase

pZC = 0.54‘8, pZE = 1
Gzc = 1.5; Gze = 1.

Substation low Load bus

voltage bus

Distribution feeder
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R X

far fidr
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Figure A1l. WECC load model

Single-phase
motor D

2019 IEEE Milan PowerTech

Authorized licensed use limited to: TUFTS UNIV. Downloaded on June 19,2020 at 02:53:40 UTC from IEEE Xplore. Restrictions apply.



