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Abstract
We consider the problem of imaging sparse scenes from a few noisy data 
using an �1-minimization approach. This problem can be cast as a linear 
system of the form Aρ = b, where A is an N × K  measurement matrix. We 
assume that the dimension of the unknown sparse vector ρ ∈ CK  is much 
larger than the dimension of the data vector b ∈ CN , i.e. K � N. We provide 
a theoretical framework that allows us to examine under what conditions the 
�1-minimization problem admits a solution that is close to the exact one in 
the presence of noise. Our analysis shows that �1-minimization is not robust 
for imaging with noisy data when high resolution is required. To improve the 
performance of �1-minimization we propose to solve instead the augmented 
linear system [A | C]ρ = b, where the N × Σ matrix C  is a noise collector. It 
is constructed so as its column vectors provide a frame on which the noise of 
the data, a vector of dimension N, can be well approximated. Theoretically, 
the dimension Σ of the noise collector should be eN  which would make its use 
not practical. However, our numerical results illustrate that robust results in 
the presence of noise can be obtained with a large enough number of columns 
Σ � 10K .
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1.  Introduction

In this paper, we are interested in imaging problems formulated as

Aρ = b ,� (1)
so the data vector b ∈ CN  is a linear transformation of the unknown vector ρ ∈ CK  that repre-
sents the image. The model matrix A ∈ CN×K, which is given to us, depends on the geometry 
of the imaging system and the sought resolution. Typically, the linear system (1) is underde-
termined because only a few linear measurements are gathered, so N � K. Hence, there exist 
infinitely many solutions to (1) and, thus, it is a priori not possible to find the correct one 
without some additional information.

We are interested, however, in imaging problems with sparse scenes. We seek to locate the 
positions and amplitudes of a small number M of point sources that illuminate a linear array 
of detectors. This means that the unknown vector ρ is M-sparse, with only a few M � K  non-
zero entries. Under this assumption, (1) falls under the compressive sensing framework [10, 
17, 23, 24]. It follows from [17] that the unique M-sparse solution of (1) can be obtained with 
�1-norm minimization when the model matrix A is incoherent, i.e. when its mutual coherence5 
is smaller than 1/(2M). The same result can be obtained assuming A obeys the M-restricted 
isometry property [10], which states that all sets of M-columns of A behave approximately as 
an orthonormal system.

In our imaging problems, these incoherence conditions can be satisfied only for coarse 
image discretizations that imply poor resolution. To retain the resolution and recover the posi-
tion of the sources with higher precision we propose to extend the theory to allow for some 
coherence in A. To this end, we show that uniqueness for the minimal �1-norm solution of 
(1) can be obtained under less restrictive conditions on the model matrix A. More specifi-
cally, given the columns of A that correspond to the support of ρ, we define their vicinities 
as the sets of columns that are almost parallel6 to them. With this definition, our first result 
set out in proposition 1 states that if the sources are located far enough from each other, so 
that their vicinities do not overlap, we can recover their positions exactly with noise-free data. 
Furthermore, in the presence of small noise, their position is still approximately recoverable, 
in the sense that most of the solution vector is supported in the vicinities while some small 
noise (grass) is present away from them.

This result finds interesting applications in imaging. As we explain in section 2, in array 
imaging we seek to find the position of point sources that are represented as the non-zero 
entries of ρ. Our result states under what conditions the location of these objects can be 
determined with high precision. It can be also used to explain super-resolution, i.e. the signifi-
cantly superior resolution that �1-norm minimization provides compared to the conventional 
resolution of the imaging system, i.e. the Rayleigh resolution. For instance, super-resolution 
has been studied using sparsity promotion for sparse spike trains recovery from band-limited 
measurements. Donoho [16] showed that spike locations and their weights can be exactly 
recovered for a cutoff frequency f c if the minimum spacing ∆ between spikes is large enough, 
so ∆ > 1/fc. Candès and Fernandez-Granda [12] showed that �1-norm minimization guaran-
tees the exact recovery if ∆ > 1/2fc. Super-resolution has also been studied for highly coher-
ent model matrices A that arise in imaging under the assumption of well-separated objects 

5 The mutual coherence of A is defined as maxi�=j |〈ai, aj〉|, where the column vectors ai ∈ CN of A are normalized 
to one, so that ‖ai‖�2 = 1 ∀ i = 1, . . . ,K .
6 The vicinity of a column ai is defined as the set of all columns aj such that |〈ai, aj〉| � 1/(3M).
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when the resolution is below the Rayleigh threshold [5, 6, 20, 21, 25]. These works include 
results regarding the robustness of super-resolution in the presence of noise.

Our theory also addresses the robustness to noise of the minimal �1-norm solution. 
Specifically, we show that for noisy data the solution ρ can be separated into two parts: (1) 
the coherent part which is supported inside the vicinities, and (2) the incoherent part, usually 
referred to as grass, that is small and it is present everywhere. A key observation of our work 
is that the �1-images get worse as 

√
N  when there is noise in the data and, thus, �1-norm mini-

mization fails when the number of measurements N is large. This basically follows from (12) 
in proposition 1 which relates the �1 norm of the solution to the �2 norm of the data, so

‖ρ‖�1 � γ ‖b‖�2 .

The key quantity here is the constant γ , which for usual imaging matrices A is proportional 
to 

√
N .

To overcome this problem we introduce in proposition 2 the noise collector matrix 
C ∈ CN×Σ and propose to solve instead of the augmented linear system [A | C]ρ = b. The 
dimension of the unknown vector ρ is, thus, augmented by Σ components which do not have 
any physical meaning. They correspond to fictitious sources that allow us to better approximate 
the noisy data. The natural question is how to build the noise collector matrix. Theoretically, 
the answer is given in the proof of proposition 2 in section 3, which is constructive. The key 
is that the column vectors of [A | C] form now a frame in which the noisy vector b can be well 
approximated. As a consequence, we obtain a bound on the constant γ  (γ < 18M2) which is 
now independent of N. The drawback of this construction is that we need exponentially many 
vectors, that is Σ � eN. This would suggest that the noise collector may not be practical. 
However, the numerical experiments show that with a large enough number of columns in 
C selected at random (as i.i.d. Gaussian random variables with mean zero and variance 1/N) 
the �1-norm minimization problem is regularized and the minimal �1-norm solution is found.

The paper is organized as follows. In section 2, we formulate the array imaging problem. 
In section 3, we present in a abstract linear algebra framework the conditions under which 
�1-minimization provides the exact solution to problem (1) with and without noise. This sec-
tion contains our main results. In section 4, we illustrate with numerical simulations how our 
abstract theoretical results are relevant in imaging sparse sources with noisy data. Section 5 
contains our conclusions.

2.  Passive array imaging

We consider point sources located inside a region of interest called the image window IW. 
The goal of array imaging is to determine their positions and amplitudes using measurements 
obtained on an array of receivers. The array of size a has N receivers separated by a distance 
h located at positions �xr, r = 1, . . . ,N  (see figure 1). They can measure single or multifre-
quency signals with frequencies ωl , l = 1, . . . , S. The M point sources, whose positions �zj and 
complex-valued amplitudes αj ∈ C, j = 1, . . . ,M , we seek to determine, are at a distance L 
from the array. The ambient medium between the array and the sources can be homogeneous 
or inhomogeneous.

In order to form the images we discretize the IW using a uniform grid of points �yk, 
k = 1, . . . ,K , and we introduce the true source vector

ρ = [ρ1, . . . , ρK ]ᵀ ∈ CK ,

such that

M Moscoso et alInverse Problems 36 (2020) 035010
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ρk =

{
αj, if ‖�zj −�yk‖∞ < grid-size, for some j = 1, . . . ,M,
0, otherwise.

We will not assume that the sources lie on the grid, i.e. typically �zj �= �yk  for all j  and k. To 
write the data received on the array in a compact form, we define the Green’s function vector

g(�y;ω) = [G(�x1,�y;ω),G(�x2,�y;ω), . . . ,G(�xN ,�y;ω)]ᵀ� (2)

at location �y  in the IW, where G(�x,�y;ω) denotes the free-space Green’s function of the homo-
geneous medium. This function characterizes the propagation of a signal of angular frequency 
ω  from point �y  to point �x , so (2) represents the signal received at the array due to a point 
source of amplitude one, phase zero, and frequency ω  at �y . If the medium is homogeneous

G(�x,�y;ω) =
exp

(
iω|�x−�y|

c0

)

4π|�x−�y|
.� (3)

The signal received at �xr at frequency ωl  is given by

b(�xr,ωl) =

M∑
j=1

αjG(�xr,�zj;ωl).� (4)

If we normalize the columns of A to one and stack the data in a column vector

b =
1√
NS

[b(�x1,ω1), b(�x2,ω1), . . . , b(�xN ,ωS)]
ᵀ,� (5)

then the source vector ρ solves the system Aρ = b, with the (N · S)× K  matrix

xr
L

a

h

zj

x1

λ

Figure 1.  General setup of a passive array imaging problem. The sources located at �zj, 
j = 1, . . . ,M  are at distance L from the array and inside the image window IW. They 
emit a signal and the response is recorded at all array elements �xr, r = 1, . . . ,N .

M Moscoso et alInverse Problems 36 (2020) 035010
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A =
1√
NS




↑ ↑ ↑
g(�y1;ω1) g(�y2;ω1) . . . g(�yK ;ω1)

↓ ↓ ↓
↑ ↑ ↑

g(�y1;ω2) g(�y2;ω2) . . . g(�yK ;ω2)

↓ ↓ ↓
...

...
...

↑ ↑ ↑
g(�y1;ωS) g(�y2;ωS) . . . g(�yK ;ωS)

↓ ↓ ↓




:=




↑ ↑ ↑
a1 a2 .. aK
↓ ↓ ↓


 .

� (6)
The system Aρ = b relates the unknown vector ρ ∈ CK  to the data vector b ∈ C(N·S). This 
system of linear equations can be solved by appropriate �2 and �1 methods.

Remark 1.  For simplicity of the presentation, we restricted ourselves to the passive array 
imaging problem where we seek to determine a distribution of sources. The active array im-
aging problem can be cast under the same linear algebra framework assuming the linearized 
Born approximation for scattering [13]. In that case, we still obtain a system of the form 
As ρ = b, where ρ is the reflectivity of the scatterers, b is the data, and As is a model matrix 
for the scattering problem defined similarly to (6). Even more, when multiple scattering is not 
negligible the problem can also be cast as in (1); see [14] for details. Therefore, the theory pre-
sented in the next sections can be applied to the scattering problems provided that the matrix 
As satisfies the assumptions of propositions 1 and 2.

3.  �1 minimization-based methods

In the imaging problems considered here we assume that the sources occupy only a small 
fraction of the image window IW. This means that the true source vector ρ is sparse, so the 
number of its entries that are different than zero, denoted by M, is much smaller than its 
length K. Thus, we assume M = |supp(ρ)| � K. This prior knowledge changes the imaging 
problem substantially because we can exploit the sparsity of ρ by formulating it as an optim
ization problem which seeks the sparsest vector in CK  that equates model and data. Thus, for 
a measurement vector b we solve

ρ�1 = argmin ‖ρ‖�1 , subject to Aρ = b.� (7)

Above, and in the sequel, we denote by ‖ · ‖�2, ‖ · ‖�1 and ‖ · ‖�∞ the �2, �1 and �∞ norms of a 
vector, respectively.

In the literature of compressive sensing, we find the following theoretical justification of 
the �1-norm minimization approach. If we assume decoherence of the columns of A, so

|〈ai, aj〉| <
1
2M

, ∀i �= j,� (8)

then the M-sparse solution of Aρ = b is unique, and it can be found as the solution of (7) [17, 
23, 24]. Numerically, the �1-norm minimization approach works under less restrictive condi-
tions than the decoherence condition (8) suggests. In fact, our imaging matrices almost never 
satisfy (8).

M Moscoso et alInverse Problems 36 (2020) 035010
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Consider a typical imaging regime with the central wavelength λ0. Assume we use S  =  36 
equally spaced frequencies covering a bandwidth that is 10% of the central frequency. The 
size of the array is a and the distance between the array and the IW is L  =  a. An IW of size 
is 30λ0 × 30λ0  is discretized using a uniform grid with mesh size λ0/2× λ0/2. For such 
parameters, every column vector ai has at least sixty two other column vectors aj so that 
|〈ai, aj〉| � 1/16. Thus, our matrices are fairly far from satisfying the decoherence condition 
(8) if we want to recover, say, 8 sources. Numerically, however, the �1 minimization works 
flawlessly.

Physically, a pair of columns ai and aj are coherent, so |〈ai, aj〉| ≈ 1, if the corresponding 
grid-points in the image are close to each other. In other words, when ai lies in a vicinity 
of aj (and vice versa). We assume, though, that the sources are far apart and, thus, the set 
of columns indexed by the support of the true source vector ρ does satisfy the decoherence 
condition (8). The above observation motivates the following natural conjecture. Perhaps, the 
�1 minimization works well because it suffices to satisfy (8) only on the support of ρ. Our 
theoretical results support this conjecture.

3.1.  Main results

When data is perturbed by small noise, the following qualitative description of the �1 image 
(7) could be observed. Firstly, some pixels close to the points where the sources are located 
become visible. Secondly, a few pixels away from the sources are also visible. The latter is 
usually referred to as grass. In order to quantify the observed results we need to modify the 
decoherence condition (8) and introduce the vicinities.

Definition 1.  Let ρ ∈ CK  be an M-sparse solution of Aρ = b, with support T = {i : ρi �= 0}7.  
For any j ∈ T  define the corresponding vicinity of aj as

Sj =
{
k : |〈ak, aj〉| �

1
3M

}
.� (9)

For any vector η ∈ CK its coherent misfit to ρ is

Co(ρ,η) =
∑
j∈T

∣∣∣∣∣∣
ρj −

∑
k∈Sj

〈aj, ak〉ηk

∣∣∣∣∣∣
,� (10)

whereas its incoherent remainder with respect to ρ is

In(ρ,η) =
∑
k �∈Υ

|ηk|, Υ = ∪j∈TSj.� (11)

Proposition 1.  Let ρ be an M-sparse solution of Aρ = b, and let T be its support. Suppose 
the vicinities Sj  from definition 1 do not overlap, and let γ > 0 be defined as

γ = sup
c

‖ξ‖�1
‖c‖�2

, where ξ is the minimal �1-norm solution of A ξ = c.� (12)

7 Below and in the rest of the paper the notation ρi  means the ith entry of the vector ρ. In contrast, we use the nota-
tion ρi to represent the ith vector of a set of vectors.

M Moscoso et alInverse Problems 36 (2020) 035010
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Let ρδ be the minimal �1-norm solution of the noisy problem

min ‖ρδ‖�1 , subject to Aρδ = bδ ,� (13)

with ‖b− bδ‖�2 � δ . Then,

Co(ρ,ρδ) � 3γδ,� (14)

and

In(ρ,ρδ) � 5γδ.� (15)

If δ = 0, and Υ does not contain collinear vectors, we have exact recovery: ρδ = ρ.

Proposition 1 is proved in appendix. As it follows from this proof, our pessimistic bound 
1/(3M) could be sharpened to the usual bound (8) found in the literature. We did not strive to 
obtain sharper results because it will make the proofs more technical and, more importantly, 
because the concept of vicinities describes well the observed phenomena in imaging with this 
bound.

When there is no noise so δ = 0, proposition 1 tells us that the M-sparse solution of Aρ = b 
can be recovered exactly by solving the �1 minimization problem under a less stringent condi-
tion than (8). Note that we allow for the columns of A to be close to collinear. When there is 
noise so δ �= 0, this proposition shows that if the data b is not exact but it is known up to some 
bounded vector, the solution ρδ of the minimization problem (13) is close to the solution of 
the original (noiseless) problem in the following sense. The solution ρδ can be separated into 
two parts: the coherent part supported in the vicinities Sj  of the true solution, j ∈ T , and the 
incoherent part, which is small for low noise, and that is supported away from these vicinities. 
Other stability results can be found in [5, 10, 11, 18, 20, 21, 25, 33].

Let us now make some comments regarding the relevance of this result in imaging. 
Vicinities, as defined in (9), are related to the classical �2-norm resolution theory. Indeed, 
recall Kirchhoff migration imaging given by the �2-norm solution

ρ�2 = A∗b,� (16)

where A∗ is the conjugate transpose of A. Note that (16) is an �2 solution because it is an 
approximation of the least-squares solution obtained via the normal equations  [3, 4]. The 
approximation consists in assuming that A∗A is close to the identity matrix. Typically A∗A 
is close to a diagonal matrix in which case (16) has to be modified accordingly to provide the 
correct amplitude of ρ�2. Since b = Aρ the resolution analysis of KM relies on studying the 
behaviour of the inner products |〈ai, ak〉|. We know from classical resolution analysis [7] that 
the inner products |〈ai, ak〉| are large for points yk that fall inside the support of the KM point 
spread function, whose size is λL/a in cross-range (parallel to the array) and c/B in range 
(perpendicular to the array). Given the definition of the vicinities (9), we expect the size of 
the vicinities to be proportional to these classical resolution limits, with an appropriate scal-
ing factor that is inversely proportional to the sparsity M. This intuition is confirmed by our 
numerical simulations in section 4 (see figure 4).

Under this perspective, one could argue that proposition 1 tells us the well-known result 
that a good reconstruction can be obtained for well-separated sources. Proposition 1, however, 
gives us more information, it provides an �1-norm resolution theory for imaging: when vicini-
ties do not overlap, there is a single non-zero element of the source associated within each 
vicinity. Permitting the columns of A to be almost collinear inside the vicinities allows for 

M Moscoso et alInverse Problems 36 (2020) 035010
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a fine discretization inside the vicinities and therefore the source can be recovered with very 
high precision. Furthermore, recovery is exact for noiseless data.

The assumptions in proposition 1 are sufficient conditions but not necessary. Our numerical 
simulations illustrate exact recovery in more challenging situations, where the vicinities are 
not well separated (see figure 3).

For noisy data, proposition 1 says that it is the concept of vicinities that provides an ade-
quate framework to look at the error between the true solution and the one provided by the 
�1-norm minimization approach. Specifically, the error is controlled by the coherent misfit (10) 
and the incoherent remainder (11), which are shown to be small when the noise is small in �2. 
This means that the reconstructed source is supported mainly in the vicinities Sj  of the true 
solution, j ∈ T , and the grass in the image is low, i.e. the part of the solution supported away 
from the vicinities Sj  is small.

Proposition 1 implies that a key to control the noise is the constant γ  defined in (12). In 
general, we have γ = O(

√
N). Indeed, let y be the minimum �2-norm solution of the problem 

Aρ = b such that its support has at most size N. Let Ay be the submatrix of A that contains 
the columns that correspond to the non-zero entries of y. Then, the minimum �1 solution ρ 
satisfies (by Cauchy–Schwartz ‖x‖�1 �

√
N‖x‖�2 , ∀x ∈ CN)

‖ρ‖�1 � ‖y‖�1 �
√
N‖y‖�2 �

√
N
∥∥(A∗

yAy)
−1A∗

y

∥∥
�2
‖b‖�2 .

Assuming decoherence of the columns of Ay, we conclude that 
∥∥(A∗

yAy)
−1A∗

y

∥∥
�2
� C, with 

C independent of N. Thus ‖ρ‖�1 � C
√
N‖b‖�2. A similar lower bound arises if, for example, 

A is invertible. This means that typically the quality of the image deteriorates as the number of 
measurements N → ∞. The remedy that we propose to this is to augment the imaging matrix 
A with a ‘noise collector’ C as described in the following proposition.

Proposition 2.  There exists a N × Σ noise collector matrix C, with Σ � eN, such that the 
columns of the augmented matrix D = [A | C] satisfy ‖dj‖ = 1,

|〈ai, cj〉| <
1
3M

∀i and j ,� (17)

|〈ci, cj〉| <
1
3M

∀i �= j,� (18)

and there is a positive constant

γ � 18M2 ,� (19)

such that

∀ b, ∃ ρ such that Dρ = b and ‖ρ‖�1 � γ‖b‖�2 .� (20)

Proof.  Let di = ai, for i = 1, . . . ,K. We will construct iteratively a sequence of vectors 
dK+1 = c1, dK+2 = c2, …, dK+Σ = cΣ such that for each s = 1 . . .Σ

|〈dk, dK+s〉| �
1
3M

, ∀k < s+ K.

M Moscoso et alInverse Problems 36 (2020) 035010
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The iteration will terminate at a finite step, say, Σ. At the termination step we will have that 
for any b, ‖b‖�2 = 1 there exists k � Σ+ K  such that

|〈dk, b〉| >
1
3M

.� (21)

The finite time termination is a consequence of a volume growth estimate. Namely, if (18) 
holds for all i �= j � Σ, then the points ci, i = 1, 2, . . .Σ are centers of non-overlapping balls 
of radius r. The radius is bounded below:

r >
1
2
α, where α =

√
1− 1

9M2 .

Thus the iteration will terminate at a finite step. Furthermore, if r <
√
2 then the number 

Σ � eN log
√

2
r  as the dimension N → ∞, because (r/

√
2)NΣ ∼ 1.

Let us finally estimate γ  in (19). Without loss of generality, we may assume ‖b‖�2 = 1. 
By our construction, there exists k � Σ+ K  such that (21) holds. Thus we can choose dn1 
and c1 so that |c1| � 1 and b1 = b− c1dn1 satisfies ‖b1‖�2 � α. Using (21) inductively we 
can find a sequence {dni}∞i=1, and a sequence {ci}∞i=1, so that |ci| � αi−1 and the vectors 
bn = b−

∑n
i=1 cidni satisfy ‖bn‖�2 � αn. Therefore,

b =

∞∑
i=1

cidni� (22)

and

‖ρ‖�1 �
∞∑
i=1

|ci| �
∞∑
i=1

αi−1 =
1

1− α
� 18M2

� (23)

by the triangle inequality.� □ 

Proposition 2 is an important result as it shows that the constant γ  in (12) can be made 
independent of N by augmenting the columns of the linear system with columns of a noise 
collector matrix C. The columns of C are required to be decoherent to the columns of A (see 
(17)), and decoherent between them (see (18)). Recalling that the columns of A for the imag-
ing problem are Green’s vectors corresponding to points in the imaging window, we stress that 
the columns of C do not admit a physical interpretation. They do not correspond to any points 
in the imaging window or elsewhere. Similarly, the Σ last components of the augmented 
unknown vector ρ in (20) do not have a physical meaning. They correspond to fictitious auxil-
iary unknowns that are introduced to regularize the �1-norm minimization problem.

The drawback of this theory is that the size of the noise collector is exponential Σ � eN. 
This makes it impractical. Our numerical experiments, however, indicate great improvement in 
the performance of �1-norm minimization with Σ � 10K  when the columns of C are selected 
at random (its entries are i.i.d. Gaussian random variables with mean zero and variance 1/N). 
This works well for additive mean zero uncorrelated noise. For other types of noise, the idea 
is to construct a library that represents the values that the noise vector δb takes. It is the ele-
ments of this library that should be used as columns of the noise collector matrix C. A different 
approach can be followed when the noise δb is sparse so its �1-norm is small. Then, C could be 
simply taken as the N × N  identity matrix I. This approach has been proposed and analyzed 
in [26] and provides exact recovery for sparse noise vectors δb.
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In the next section, we present numerical results to illustrate the relevance of our theory in 
imaging sparse sources. We focus our attention in the case of additive mean zero uncorrelated 
noise which is not sparse. The results show a dramatic improvement using the noise collector.

4.  Imaging results in the framework of propositions 1 and 2

We illustrate here the relevance of propositions 1 and 2 in imaging. We compare ρ�1, the �1-norm 
solution of (7) and the �2-norm Kirchhoff migration solution (16). Our results illustrate:

	 (i)	�The well-known super-resolution for �1, meaning that ρ�1 determines the support of the 
unknown ρ with higher accuracy than the conventional resolution limits, provided the 
assumptions of proposition 1 are satisfied.

	(ii)	�The equally well known sensitivity of �1 to additive noise. This is made more precise in 
the imaging context where the constant γ  in (12) grows with the number of measure-
ments as 

√
NS , where NS is the total number of measurements acquired by N receivers 

at S frequencies. We observe that, for a given level of noise, the �1-norm reconstruction 
deteriorates as the number of measurements increases.

	(iii)	�The noise collector matrix C stabilizes �1-norm minimization in the presence of noise.

We also show how the bandwidth, the array size, and the number of sources affect the vicinities 
defined in (9). The numerical results are not specialized to a particular physical regime. They 
illustrate only the role of the propositions 1 and 2 in solving the associated linear systems.

4.1.  Numerical method to solve the �1 minimization problem (7)

The solution of (7) can be found accurately and efficiently by many numerical minimiza-
tion techniques. Here are some of them: orthogonal matching pursuit [9], homotopy [19, 31, 
32], interior-point methods [1, 34], gradient projection [22], sub-gradient descent methods in 
primal and dual spaces [8, 28], and proximal gradient in combination with iterative shrinkage-
thresholding [2, 29, 30]. In this work we chose to solve (7) using the Generalized Lagrange 
Multiplier Algorithm (GeLMA) [27], a semi-implicit version of the primal-dual method [15].

The formulation of GeLMA starts with a standard optimization argument that the solution 
of (7) equals the solution of the following min-max problem. Define the function

F(ρ, z) = τ‖ρ‖�1 +
1
2
‖Aρ− b‖2�2 + 〈z, b−Aρ〉

� (24)
for ρ ∈ CK  and z ∈ CN , and determine the solution of (7) as

ρ�1 = argρ max
z

min
ρ

F(ρ, z).� (25)

Solutions of (24), (25) and (7) agree for any value of the regularization parameter τ  in (24) 
(see [27]). In practice, τ  is used to adjust the thresholding level τ∆t of the semi-implicit dis-
cretization of (24) and (25)

ρk+1 = Sτ∆t (ρk +∆tA∗(zk + b−Aρk)) ,
zk+1 = zk +∆t (b−Aρk) .
� (26)

Here, St  is the component-wise shrinkage-thresholding operator: for any y = reiφ ∈ C we have 
St(reiφ) = eiφ max{0, |r| − t}. GeLMA sets ρ0 = 0, z0 = 0, and ∆t = min{2/‖A‖2, τ/‖A‖}, 
and iterates (26) till convergence to (7).
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4.2.  Imaging setup

The images are obtained in a homogeneous medium with an active array of N  =  25 transduc-
ers. We collect measurements corresponding to S  =  25 frequencies equispaced in the band-
width. Thus, the length of the data vector b is NS  =  625. The ratios between the array size a 
and the distance L to IW, and between the bandwidth 2B and the central frequency ω0 vary in 
the numerical experiments, so the classical Rayleigh resolution limits change. The size of the 
IW is fixed. It is discretized using a uniform grid of K  =  3721 points of size λ0/2 in range and 
cross-range directions.

The images have been formed by solving the �1-norm minimization problem (7) using the 
algorithm GeLMA (26).

4.3.  Results for noiseless data. Super-resolution and �1-reconstructions

Figures 2 and 3 show the results obtained for a relatively large array and a relatively large 
bandwidth corresponding to ratios a/L  =  1/2 and (2B)/ω0 = 1/2 when the data is noiseless. 
On the top row, from left to right we show the ρ�2 solution (16) and the ρ�1 solution obtained 
from (7). On the bottom row, the comparison between ρ�1 (red stars) and the true solution ρ 
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Figure 2.  Imaging with no noise M  =  4 sources. On the top row we show the �2 image, 
ρ�2, on the left and the �1 image, ρ�1, on the right. On the bottom row left image we 
plot the solution vector ρ�1 with red stars and compare it with the true solution vector 
ρ plotted with green circles. The vicinities Sj , j = 1, . . . ,M  for the four targets are 
plotted with different colors in the bottom right image. In this example we use large 
array aperture and large bandwidth; a/L  =  1/2 and (2B)/ω0 = 1/2.
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(green circles) is shown on the left and the vicinities Sj  defined in (9) are plotted with differ-
ent colors on the right. Figure 2 (resp. figure 3) is for M  =  4 (resp. M  =  8) sources. The exact 
locations of the sources are indicated with white crosses in the top row images. The M  =  4 
sources in figure 2 are very far apart: their vicinities do not overlap as it can be seen in the bot-
tom right image. In this case, all the conditions of proposition 1 are satisfied and we find the 
exact source distribution by �1-norm minimization. The M  =  8 sources in figure 3 are closer, 
and their vicinities are larger; according to (9) the size of the vicinities increases with M. In 
fact, their vicinities overlap as it can be seen in the bottom right image. Still, the �1-norm mini-
mization algorithm finds the exact solution.

The classical resolution limits for this setup are c0/(2B) = 2λ0 in range and λ0L/a = 2λ0 
in cross-range. This means that the resolution of the �2-norm solutions is of the order O(2λ0); 
see the top left image of figures 2 and 3. Recall that our discretization is λ0/2, that is four 
times finer than the classical resolution limit. Thus, each source roughly corresponds to a 
four-by-four-pixel square, which is what the ρ�2 solutions show. Note that for M  =  8, because 
two sources are quite close, the ρ�2 solution only displays 7 sources. The ability of �1-norm 
minimization to determine the location of the sources with better accuracy than the classical 
resolution limits is referred to as super-resolution.

We stress that if the IW is discretized using a very fine grid, with a grid size smaller 
than the classical resolution limit, then the columns of the matrix A are almost parallel and 
the decoherence condition (8) is violated. The columns that are almost parallel to those 
indexed by the support of the true solution are contained in the vicinities (9). The number 
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Figure 3.  Same as figure 2 but for M  =  8 sources.
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of columns that belong to the vicinities depends on the imaging system. To illustrate the 
effect of the array and bandwidth sizes on the size of the vicinities we plot in figure 4 the 
vicinity of one source for M  =  4. From left to right and top to bottom we plot the vicini-
ties for [a/L, 2B/ω0] = [1/2, 1/2], [a/L, 2B/ω0] = [1/2, 1/4], [a/L, 2B/ω0] = [1/4, 1/2], and 
[a/L, 2B/ω0] = [1/4, 1/4]. As expected, the size of the vicinity is proportional to the resolu-
tion estimates λ0L/a and c0/(2B) in cross-range and range, respectively.

4.4.  Results for noisy data. Stabilization of �1-norm minimization using the noise collector 
matrix C

We add now mean zero uncorrelated noise to the data. We examine the results for different 
values of the signal-to-noise ratio (SNR). As we specify in the captions, our SNR is either 0 
dB (100% of noise) or 4 dB (40% of noise). We consider first the same imaging configura-
tion as in figure 2 with M  =  4 sources. The number of data is NS  =  625 and the number of 
unknowns is K  =  3721. In the top row of figure 5 we plot the minimal �1-norm image obtained 
by solving problem (7) when the SNR is 4 dB. The true solution is shown with white crosses. 
It is apparent that, even for this moderate level of noise, �1-norm minimization fails to give a 
good image.

a/L=1/2, (2B)/ω0=1/2 a/L=1/4, (2B)/ω0=1/2
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Figure 4.  Vicinities (9) for different array and bandwidth sizes. From left to right 
and top to bottom the ratios (a/L, 2B/ω0) are: (1/2, 1/2), (1/2, 1/4), (1/4, 1/2) and 
(1/4, 1/4).
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Figure 5.  Imaging with noisy data, SNR  =4 dB. The top and the bottom rows show 
the results without and with the noise collector, respectively. The left columns show 
the ρ�1 images (the true solution is displayed with white crosses) and the right columns 
show the comparison (red stars) with the true solution (green circles). In the bottom 
right image, the first K  =  3721 components of the solution corresponding to the IW are 
plotted with red stars, and the Σ = 12 000 next components corresponding to the noise 
collector are plotted with black stars.
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Figure 6.  Low resolution images with a moderate level of noise in the data so SNR  =4 
dB. NS  =  625 measurements. K  =  1681 pixels in the images.
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The problem can be alleviated using the noise collector matrix C, as it can be seen in the 
results shown in the bottom row of figure 5. To construct the noise collector matrix C that 
verifies the assumptions of proposition 2, we take its columns cj to be random vectors in CNS 
with mean zero and variance 1/(NS). Their �2-norm tends to one as NS → ∞, and we check 
that conditions (17) and (18) are satisfied. In theory, the number of columns Σ should be very 
large, of the order of eNS, but in practice, we obtain stable results with Σ of the order of 104, 
which is roughly 3K.

The solution ρ�1 ∈ CK+Σ obtained with the noise collector can be decomposed into two 
vectors; the vector ρiw ∈ CK  corresponding to the sought solution in the IW, and the vector 
ρnoise ∈ CΣ that absorbs the noise. We display these two vectors in the bottom right plot of 
figure 5. The first K components correspond to ρiw and the remaining Σ components to ρnoise. 
It is remarkable that the vector ρiw is very close to the true solution and that it contains only 
some small grass. This means that both the coherent misfit (14) and the incoherent remainder 
(15) are now small. This is in accordance with the theoretical error estimates (14) and (15), 
where γ  is now independent of the dimension of the data vector NS; see (19).

In the next figures, we consider an imaging setup with a large aperture a/L  =  1 and a 
large bandwidth (2B)/ω0 = 1. Moreover, we increase the pixel size to λ0 in both range and 
cross-range directions, so the Rayleigh resolution is of the order of a pixel. With this imag-
ing configuration, the columns of the model matrix A are less coherent than in the previous 
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Figure 7.  Low resolution images with a high level of noise in the data so SNR  =0 dB. 
Top row: NS  =  625 measurements. Bottom row: NS  =  1369 measurements. K  =  1681 
pixels in the images.
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numerical experiments. We plot in figure 6 the �1-norm image for a SNR  =4 dB. With a less 
coherent matrix A the results are very good. This highlights the inherent difficulty in imaging 
when high resolution is required as in figure 5 .

For the particular low imaging resolution configuration considered in figure 6 we obtain 
good results for a large noise level corresponding to SNR  =0 dB; see the top row of fig-
ure 7 where NS  =  625 as before. However, when we increase the number of measurements 
to NS  =  1369, the image obtained with �1-norm minimization turns out to be useless; see the 
bottom row of figure 7. This illustrates the counter-intuitive fact that �1-norm minimization 
does not always benefit from more data, at least if the data is highly contaminated with noise. 
This is so because the constant γ  in (12) depends on the length of the data vector b as 

√
NS .

As before, this problem can be fixed with the noise collector as we illustrate in figure 8. 
Again, the noise is effectively absorbed for both NS  =  625 (top row) and NS  =  1369 (bottom 
row) measurements using a matrix collector with a relatively small number of columns, many 
less than eNS as proposition 2 suggests.

We finish with one last example that shows that the use of the noise collector makes �1-norm 
minimization competitive for imaging sparse scenes because it provides stable results with 
super-resolution even for highly corrupted data. We consider the example with M  =  8 sources 
and SNR  =0 dB. The array and the bandwidth are relatively large (a/L  =  1/2, (2B)/ω0 = 1/2), 
so the classical �2-norm resolution is of the order O(2λ0), as in figure 5. In figure 9 we show, 
from left to right, (i) the minimal �1-norm solution without noise collector, which fails to give 
a good image, (ii) the �2-norm solution (16), which is stable to additive noise but does not 

-20 -10 0 10 20
range in 0

-20

-15

-10

-5

0

5

10

15

20
cr

os
s-

ra
ng

e 
in

 
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2000 4000 6000 8000 10000 12000
0

0.2

0.4

0.6

0.8

1

1.2
iw

n

-20 -10 0 10 20
range in 0

-20

-15

-10

-5

0

5

10

15

20

cr
os

s-
ra

ng
e 

in
 

0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2000 4000 6000 8000 10000 12000
0

0.2

0.4

0.6

0.8

1

1.2
iw

n

Figure 8.  Same as figure 7 but with a noise collector matrix C with Σ = 12 000 columns.
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resolve nearby sources, and (iii) the minimal �1-norm solution with the noise collector, which 
provides a very precise and stable image.

5.  Discussion

In this paper, we consider imaging problems that can be formulated as underdetermined linear 
systems of the form Aρδ = bδ, where A is an N × K  model matrix with N � K, and bδ is 
the N-dimensional data vector contaminated with noise. We assume that the solution is an 
M-sparse vector in CK , corresponding to the K pixels of the IW. We consider additive noise in 
the data, so the data vector can be decomposed as bδ = b+ δb, where b is the data vector in 
the absence of noise and δb is the noise vector. We provide a theoretical framework that allows 
us to examine under what conditions the �1-minimization problem admits a solution that is 
close to the exact one. We also have shown that, for our imaging problems, �1-minimization 
fails when the noise level is high and the dimension N of the data vector bδ increases. The 
reason is that the error is proportional to the square root of N.

To alleviate this problem and increase the robustness of �1-minimization, we propose a 
regularization strategy. In particular, we seek the solution of [A | C]ρδ = bδ, where the N × Σ 
matrix C is a noise collector. Thus, the unknown ρδ is now a vector in CK+Σ. The first K 
components of the unknown correspond to the distribution of sources in the IW, while the Σ 
next components do not correspond to any physical quantity. They are introduced to provide 
a fictitious source distribution given by an appropriate linear combination of the columns of C 
that produces a good approximation to δb. The main idea is to create a library of noises. The 
columns of the noise collector matrix are elements of this library and they are constructed to 
be incoherent with respect to the columns of A. Theoretically, the dimension Σ of the noise 
collector increases exponentially with N, which suggests that it may not be useful in practice. 
Our numerical results show, however, robustness for �1-minimization in the presence of noise 
when a large enough number of columns Σ � 10K  is used to build the noise collector matrix.

Our first findings on the noise collector are very encouraging. We have shown that its use 
improves dramatically the robustness of �1-norm reconstructions when the data are corrupted 
with additive uncorrelated noise. Many other questions ought to be addressed. Some direc-
tions of our future research concern the following aspects: what happens with other types of 
noise?, can we design noise collectors adaptively depending on the noise in the data?, what if 
the noise comes from wave propagation in a random medium?, can we design a noise collec-
tor for this case?, how much do we need to know about the noise so as to design a good noise 
collector?, can we retrieve this information from the data? Some of these questions will be 
addressed somewhere else.
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Figure 9.  High resolution images with a high level of noise in the NS  =  625 data, so 
SNR  =0 dB. From left to right: plain ρ�1 without noise collector, ρ�2, and ρ�1 using a 
noise collector. K  =  3721 pixels in the images.
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Appendix.  Proof of proposition 1

We will now prove auxiliary lemmas that we will use in the proof of proposition 1.

Lemma A.1.  Let B be an M ×M  Hermitian matrix such that bii  =  1, and |bij| � c for all 
i �= j. Assume (M − 1)c < 1, then any eigenvalue λ of B satisfies

1− (M − 1)c � λ � 1+ (M − 1)c.� (A.1)

Proof.  Suppose Bρ = λρ. By the triangle inequality for any row i we have

|ρi| −

∣∣∣∣∣∣
∑
j �=i

bijρj

∣∣∣∣∣∣
� |λρi| � |ρi|+

∣∣∣∣∣∣
∑
j�=i

bijρj

∣∣∣∣∣∣
.

Since 
∣∣∣∑j �=i bijρj

∣∣∣ � (M − 1)c, we obtain (A.1).� □ 

Lemma A.2.  Suppose γ  is defined by (12). Let ρ1 and ρ2 be minimizers of ‖η‖�1, subject to 
Aη = b1 and Aη = b2, respectively. Then, there exists ξ such that Aξ = b1,

‖ξ‖�1 � ‖ρ1‖�1 + 2γ‖b1 − b2‖�2 ,� (A.2)

and

‖ξ − ρ2‖�1 � γ‖b1 − b2‖�2 .� (A.3)

Proof.  Let us first show that

|‖ρ1‖�1 − ‖ρ2‖�1 | � γ‖b1 − b2‖�2 .� (A.4)

Assume, for definiteness, that ‖ρ1‖�1 > ‖ρ2‖�1. Then,

|‖ρ1‖�1 − ‖ρ2‖�1 | = ‖ρ1‖�1 − ‖ρ2‖�1 .

Suppose ρ3 is a minimizer of ‖η‖�1, subject to Aη = b1 − b2 . Since A(ρ2 + ρ3) = b1, and 
ρ1 is a minimizer of ‖η‖�1, subject to Aη = b1, it follows ‖ρ1‖�1 � ‖ρ2 + ρ3‖�1. By (12) and 
the triangle inequality

‖ρ2 + ρ3‖�1 � ‖ρ2‖�1 + γ‖b1 − b2‖�2 .

Thus, (A.4) holds.
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Let ξ = ρ2 + ρ3, where ρ3 is a minimizer of ‖η‖�1, subject to Aη = b1 − b2 . Then, 
Aξ = b1, and inequality (A.3) follows from (12). Using (A.4) and (A.3), and the triangle 
inequality we obtain

‖ξ‖�1 � ‖ρ2‖�1 + ‖ξ − ρ2‖�1 � ‖ρ1‖�1 + 2γ‖b1 − b2‖�2 .� □ 

Lemma A.3.  Suppose Aρ = Aξ = b, where ρ is M-sparse, and ξ is arbitrary. Assume 
vicinities (9) do not overlap. Then,

Co(ρ, ξ) �
1
2
In(ρ, ξ).� (A.5)

In particular,

‖ρ‖�1 � ‖ξ‖�1 .� (A.6)

Proof.  For any µ ∈ CM , we have

0 = 〈AT (A∗
TAT)

−1
µ,A(ρ− ξ)〉 = 〈µ, (A∗

TAT)
−1 A∗

TA(ρ− ξ)〉

since 0 = A(ρ− ξ). By lemma A.1, the largest eigenvalue of (A∗
TAT)

−1 is smaller than 3/2. 
Thus,

∣∣∣∣∣∣
∑
j∈T

µ̄jρj −
∑
j∈T

∑
k∈Sj

〈aj, ak〉µ̄jξk

∣∣∣∣∣∣
�

3
2

∑
j∈T

∑
k �∈Υ

|〈aj, ak〉µ̄jξk| , Υ = ∪j∈TSj.

Choose µj, so that |µj| = 1 and
∣∣∣∣∣∣
∑
j∈T

µ̄jρj −
∑
j∈T

∑
k∈Sj

〈aj, ak〉µ̄jξk

∣∣∣∣∣∣
= Co(ρ, ξ).

We can estimate

Co(ρ, ξ) �
3
2

1
3M

∑
j∈T

∑
k �∈Υ

|ξk| �
1
2

∑
k �∈Υ

|ξk| .

which is equivalent to (A.5). Observe that (see (10))

‖ρ‖�1 −
∑
k∈Υ

|ξk| � Co(ρ, ξ).
� □

Proof of proposition 1.  If ρ and ρδ are minimizers of ‖η‖�1, subject to Aη = b and 
Aη = bδ , respectively, we can apply lemma A.2 and conclude there exists ξ such that Aξ = b,

‖ξ‖�1 � ‖ρ‖�1 + 2γδ,� (A.7)

and

‖ξ − ρδ‖�1 � γδ.� (A.8)
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Since

‖ρ‖�1 � Co(ρ, ξ) +
∑
j∈T

|ξj|,

by lemma A.3 we have

‖ρ‖�1 �
1
2

∑
j�∈T

|ξj|+
∑
j∈T

|ξj| = ‖ξ‖�1 −
1
2
In(ρ, ξ).� (A.9)

Comparing (A.9) and (A.7) we conclude

In(ρ, ξ) � 4γδ.� (A.10)

By the triangle inequality and (A.8), we have

In(ρ,ρδ) � In(ρ, ξ) + ‖ξ − ρδ‖�1 � 5γδ.

Hence, we have obtained (15). From (A.5) and (A.10), we obtain

Co(ρ, ξ) � 2γδ.

By the triangle inequality and (A.8), we have

Co(ρ,ρδ) � Co(ρ, ξ) + ‖ξ − ρδ‖�1 � 3γδ.

If the noise level δ = 0, then Co(ρ, ξ) = In(ρ, ξ) = 0. It means supp(ρδ) ⊂ Υ. Since 
Aρδ = Aρ, we can use (A.6). Note that the inequality (A.6) becomes strict if Υ does not 
contain collinear vectors. Thus, we conclude ρδ = ρ.� □ 
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