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Abstract
We consider the problem of imaging sparse scenes from a few noisy data
using an ¢;-minimization approach. This problem can be cast as a linear
system of the form A p = b, where A is an N x K measurement matrix. We
assume that the dimension of the unknown sparse vector p € CX is much
larger than the dimension of the data vector b € CV, i.e. K > N. We provide
a theoretical framework that allows us to examine under what conditions the
£;-minimization problem admits a solution that is close to the exact one in
the presence of noise. Our analysis shows that £-minimization is not robust
for imaging with noisy data when high resolution is required. To improve the
performance of ¢;-minimization we propose to solve instead the augmented
linear system [A|C]p = b, where the N x 3 matrix C is a noise collector. It
is constructed so as its column vectors provide a frame on which the noise of
the data, a vector of dimension N, can be well approximated. Theoretically,
the dimension ¥ of the noise collector should be eV which would make its use
not practical. However, our numerical results illustrate that robust results in
the presence of noise can be obtained with a large enough number of columns
¥ 2 10K.
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1. Introduction

In this paper, we are interested in imaging problems formulated as
Ap=b, M

so the data vector b € CY is a linear transformation of the unknown vector p € CX that repre-
sents the image. The model matrix A € C¥*X_ which is given to us, depends on the geometry
of the imaging system and the sought resolution. Typically, the linear system (1) is underde-
termined because only a few linear measurements are gathered, so N < K. Hence, there exist
infinitely many solutions to (1) and, thus, it is a priori not possible to find the correct one
without some additional information.

We are interested, however, in imaging problems with sparse scenes. We seek to locate the
positions and amplitudes of a small number M of point sources that illuminate a linear array
of detectors. This means that the unknown vector p is M-sparse, with only a few M < K non-
zero entries. Under this assumption, (1) falls under the compressive sensing framework [10,
17,23, 24]. It follows from [17] that the unique M-sparse solution of (1) can be obtained with
¢,-norm minimization when the model matrix A is incoherent, i.e. when its mutual coherence’
is smaller than 1/(2M). The same result can be obtained assuming A obeys the M-restricted
isometry property [10], which states that all sets of M-columns of A behave approximately as
an orthonormal system.

In our imaging problems, these incoherence conditions can be satisfied only for coarse
image discretizations that imply poor resolution. To retain the resolution and recover the posi-
tion of the sources with higher precision we propose to extend the theory to allow for some
coherence in A. To this end, we show that uniqueness for the minimal £;-norm solution of
(1) can be obtained under less restrictive conditions on the model matrix .A. More specifi-
cally, given the columns of A that correspond to the support of p, we define their vicinities
as the sets of columns that are almost parallel® to them. With this definition, our first result
set out in proposition 1 states that if the sources are located far enough from each other, so
that their vicinities do not overlap, we can recover their positions exactly with noise-free data.
Furthermore, in the presence of small noise, their position is still approximately recoverable,
in the sense that most of the solution vector is supported in the vicinities while some small
noise (grass) is present away from them.

This result finds interesting applications in imaging. As we explain in section 2, in array
imaging we seek to find the position of point sources that are represented as the non-zero
entries of p. Our result states under what conditions the location of these objects can be
determined with high precision. It can be also used to explain super-resolution, i.e. the signifi-
cantly superior resolution that £;-norm minimization provides compared to the conventional
resolution of the imaging system, i.e. the Rayleigh resolution. For instance, super-resolution
has been studied using sparsity promotion for sparse spike trains recovery from band-limited
measurements. Donoho [16] showed that spike locations and their weights can be exactly
recovered for a cutoff frequency f, if the minimum spacing A between spikes is large enough,
so A > 1/f.. Candés and Fernandez-Granda [12] showed that ¢;-norm minimization guaran-
tees the exact recovery if A > 1/2f.. Super-resolution has also been studied for highly coher-
ent model matrices A that arise in imaging under the assumption of well-separated objects

5 The mutual coherence of A is defined as max;; |{a;, a;)|, where the column vectors a; € CV of A are normalized
to one, so that ||a;||, =1Vi=1,...,K.
®The vicinity of a column a; is defined as the set of all columns a; such that |(a;,a;)| > 1/(3M).
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when the resolution is below the Rayleigh threshold [5, 6, 20, 21, 25]. These works include
results regarding the robustness of super-resolution in the presence of noise.

Our theory also addresses the robustness to noise of the minimal ¢;-norm solution.
Specifically, we show that for noisy data the solution p can be separated into two parts: (1)
the coherent part which is supported inside the vicinities, and (2) the incoherent part, usually
referred to as grass, that is small and it is present everywhere. A key observation of our work
is that the /;-images get worse as /N when there is noise in the data and, thus, /1-norm mini-
mization fails when the number of measurements N is large. This basically follows from (12)
in proposition 1 which relates the ¢; norm of the solution to the ¢, norm of the data, so

[olle, < Bl

The key quantity here is the constant v, which for usual imaging matrices A is proportional
to v/N.

To overcome this problem we introduce in proposition 2 the noise collector matrix
C € CV*¥ and propose to solve instead of the augmented linear system [A|C]p = b. The
dimension of the unknown vector p is, thus, augmented by > components which do not have
any physical meaning. They correspond to fictitious sources that allow us to better approximate
the noisy data. The natural question is how to build the noise collector matrix. Theoretically,
the answer is given in the proof of proposition 2 in section 3, which is constructive. The key
is that the column vectors of [ A | C] form now a frame in which the noisy vector b can be well
approximated. As a consequence, we obtain a bound on the constant  (y < 18M?) which is
now independent of N. The drawback of this construction is that we need exponentially many
vectors, that is ¥ < eV. This would suggest that the noise collector may not be practical.
However, the numerical experiments show that with a large enough number of columns in
C selected at random (as i.i.d. Gaussian random variables with mean zero and variance 1/N)
the ¢;-norm minimization problem is regularized and the minimal ¢;-norm solution is found.

The paper is organized as follows. In section 2, we formulate the array imaging problem.
In section 3, we present in a abstract linear algebra framework the conditions under which
£;-minimization provides the exact solution to problem (1) with and without noise. This sec-
tion contains our main results. In section 4, we illustrate with numerical simulations how our
abstract theoretical results are relevant in imaging sparse sources with noisy data. Section 5
contains our conclusions.

2. Passive array imaging

We consider point sources located inside a region of interest called the image window IW.
The goal of array imaging is to determine their positions and amplitudes using measurements
obtained on an array of receivers. The array of size a has N receivers separated by a distance

h located at positions X,, r = 1,...,N (see figure 1). They can measure single or multifre-
quency signals with frequencies w;, I = 1,. .., S. The M point sources, whose positions z; and
complex-valued amplitudes o; € C, j=1,...,M, we seek to determine, are at a distance L

from the array. The ambient medium between the array and the sources can be homogeneous
or inhomogeneous.

In order to form the images we discretize the IW using a uniform grid of points y,
k=1,...,K, and we introduce the true source vector

p=Ilp1,-..px]T € CK,
such that
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Figure 1. General setup of a passive array imaging problem. The sources located at Zj,
j=1,...,M are at distance L from the array and inside the image window IW. They
emit a signal and the response is recorded at all array elements ¥, r = 1,...,N.

oy, if |7 = ¥illeo < grid-size, for somej = 1,...,M,
10, otherwise.

We will not assume that the sources lie on the grid, i.e. typically Z; # y, for all j and k. To

write the data received on the array in a compact form, we define the Green’s function vector

gViw) = [G(X1,¥,w), G(¥2, ¥ w), . .., G(Xy, ¥ w)]T )

at location y in the IW, where G(¥,¥; w) denotes the free-space Green’s function of the homo-
geneous medium. This function characterizes the propagation of a signal of angular frequency
w from point y to point ¥, so (2) represents the signal received at the array due to a point
source of amplitude one, phase zero, and frequency w at y. If the medium is homogeneous

exp (iiwlf_y ‘)
N <o 3)
G(x,y,(U) = m .

The signal received at X, at frequency wy is given by

M
b w) =Y 0G(¥,. 7 w). (4)
j=1
If we normalize the columns of A to one and stack the data in a column vector
1 . N o
b: 7[b(x1,w1),b(x2,w1),...,b(xN,OJS)]T, (5)

VNS

then the source vector p solves the system A p = b, with the (N - S) x K matrix



Inverse Problems 36 (2020) 035010 M Moscoso et al

) 0 0
gisw) ghsw) ... g0xiwi)
{ 4 1
) 0 0
AL |g0uwn) gGe) . glicen) Tt T
- l, ~L \L = ag a) . ag
S | : LoL
T 0 0
g(,ﬂ;ws) g(iﬁwS) g()TK;WS)
4 i 1

(6)
The system A p = b relates the unknown vector p € CX to the data vector b € C5), This
system of linear equations can be solved by appropriate ¢, and ¢; methods.

Remark 1. For simplicity of the presentation, we restricted ourselves to the passive array
imaging problem where we seek to determine a distribution of sources. The active array im-
aging problem can be cast under the same linear algebra framework assuming the linearized
Born approximation for scattering [13]. In that case, we still obtain a system of the form
Ay p = b, where p is the reflectivity of the scatterers, b is the data, and A is a model matrix
for the scattering problem defined similarly to (6). Even more, when multiple scattering is not
negligible the problem can also be cast as in (1); see [14] for details. Therefore, the theory pre-
sented in the next sections can be applied to the scattering problems provided that the matrix
A, satisfies the assumptions of propositions 1 and 2.

3. £ minimization-based methods

In the imaging problems considered here we assume that the sources occupy only a small
fraction of the image window IW. This means that the true source vector p is sparse, so the
number of its entries that are different than zero, denoted by M, is much smaller than its
length K. Thus, we assume M = |supp(p)| < K. This prior knowledge changes the imaging
problem substantially because we can exploit the sparsity of p by formulating it as an optim-
ization problem which seeks the sparsest vector in CX that equates model and data. Thus, for
a measurement vector b we solve

p,, = argmin [|p||,,, subject to Ap = b. (7

Above, and in the sequel, we denote by || - ||e, || - [|¢, and || - ||¢.. the €5, £; and £, norms of a
vector, respectively.

In the literature of compressive sensing, we find the following theoretical justification of
the £;-norm minimization approach. If we assume decoherence of the columns of A, so

1 L.
M Vi #J, (8)

then the M-sparse solution of 4p = b is unique, and it can be found as the solution of (7) [17,
23, 24]. Numerically, the #;-norm minimization approach works under less restrictive condi-
tions than the decoherence condition (8) suggests. In fact, our imaging matrices almost never
satisfy (8).

(@i aj)| <
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Consider a typical imaging regime with the central wavelength A\g. Assume we use S = 36
equally spaced frequencies covering a bandwidth that is 10% of the central frequency. The
size of the array is a and the distance between the array and the IW is L = a. An IW of size
is 30Ag x 30X is discretized using a uniform grid with mesh size Ag/2 X A¢/2. For such
parameters, every column vector a; has at least sixty two other column vectors a; so that
|{ai,a;)| > 1/16. Thus, our matrices are fairly far from satisfying the decoherence condition
(8) if we want to recover, say, 8 sources. Numerically, however, the ¢; minimization works
flawlessly.

Physically, a pair of columns a; and a; are coherent, so |{a;,a;)| =~ 1, if the corresponding
grid-points in the image are close to each other. In other words, when q; lies in a vicinity
of a; (and vice versa). We assume, though, that the sources are far apart and, thus, the set
of columns indexed by the support of the true source vector p does satisfy the decoherence
condition (8). The above observation motivates the following natural conjecture. Perhaps, the
£, minimization works well because it suffices to satisfy (8) only on the support of p. Our
theoretical results support this conjecture.

3.1. Main results

When data is perturbed by small noise, the following qualitative description of the ¢; image
(7) could be observed. Firstly, some pixels close to the points where the sources are located
become visible. Secondly, a few pixels away from the sources are also visible. The latter is
usually referred to as grass. In order to quantify the observed results we need to modify the
decoherence condition (8) and introduce the vicinities.

Definition1. Letp € CXbeanM-sparsesolutionof Ap = b, withsupport T = {i : p; # 0}".
For any j € T define the corresponding vicinity of a; as

1
S; = {k : ar.a5)| > 3M} )

For any vector 7 € CK its coherent misfit to p is
Co(p,n) =Y |5 — D> (@ a)m|, (10)

jer keS;

whereas its incoherent remainder with respect to p is

In(p,n) =) |ml, T =UerS;. (1)
kgT

Proposition 1. Let p be an M-sparse solution of Ap = b, and let T be its support. Suppose
the vicinities S; from definition I do not overlap, and let v > 0 be defined as

R (3
Y = sup
e lelle,

, where € is the minimal £;-norm solution of A& = ¢. (12)

"Below and in the rest of the paper the notation p; means the ith entry of the vector p. In contrast, we use the nota-
tion p; to represent the ith vector of a set of vectors.
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Let ps be the minimal {1-norm solution of the noisy problem

min || ps|le,, subject to Aps = bs, (13)

with||b — bs||¢, < 6. Then,

Co(p, ps) < 370, (14)
and

In(p, ps) < 570. (15)

If 6§ =0, and Y does not contain collinear vectors, we have exact recovery: ps = p.

Proposition 1 is proved in appendix. As it follows from this proof, our pessimistic bound
1/(3M) could be sharpened to the usual bound (8) found in the literature. We did not strive to
obtain sharper results because it will make the proofs more technical and, more importantly,
because the concept of vicinities describes well the observed phenomena in imaging with this
bound.

When there is no noise so § = 0, proposition 1 tells us that the M-sparse solution of Ap = b
can be recovered exactly by solving the ¢; minimization problem under a less stringent condi-
tion than (8). Note that we allow for the columns of A to be close to collinear. When there is
noise so 0 # 0, this proposition shows that if the data b is not exact but it is known up to some
bounded vector, the solution ps of the minimization problem (13) is close to the solution of
the original (noiseless) problem in the following sense. The solution p; can be separated into
two parts: the coherent part supported in the vicinities S; of the true solution, j € T', and the
incoherent part, which is small for low noise, and that is supported away from these vicinities.
Other stability results can be found in [5, 10, 11, 18, 20, 21, 25, 33].

Let us now make some comments regarding the relevance of this result in imaging.
Vicinities, as defined in (9), are related to the classical ¢,-norm resolution theory. Indeed,
recall Kirchhoff migration imaging given by the #,-norm solution

py, = A’b, (16)

where A" is the conjugate transpose of .A. Note that (16) is an ¢, solution because it is an
approximation of the least-squares solution obtained via the normal equations [3, 4]. The
approximation consists in assuming that A*A is close to the identity matrix. Typically A*A
is close to a diagonal matrix in which case (16) has to be modified accordingly to provide the
correct amplitude of p,,. Since b = Ap the resolution analysis of KM relies on studying the
behaviour of the inner products |{a;,a;)|. We know from classical resolution analysis [7] that
the inner products |(a;, a;)| are large for points y, that fall inside the support of the KM point
spread function, whose size is AL/a in cross-range (parallel to the array) and ¢/B in range
(perpendicular to the array). Given the definition of the vicinities (9), we expect the size of
the vicinities to be proportional to these classical resolution limits, with an appropriate scal-
ing factor that is inversely proportional to the sparsity M. This intuition is confirmed by our
numerical simulations in section 4 (see figure 4).

Under this perspective, one could argue that proposition 1 tells us the well-known result
that a good reconstruction can be obtained for well-separated sources. Proposition 1, however,
gives us more information, it provides an ¢;-norm resolution theory for imaging: when vicini-
ties do not overlap, there is a single non-zero element of the source associated within each
vicinity. Permitting the columns of A to be almost collinear inside the vicinities allows for
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a fine discretization inside the vicinities and therefore the source can be recovered with very
high precision. Furthermore, recovery is exact for noiseless data.

The assumptions in proposition 1 are sufficient conditions but not necessary. Our numerical
simulations illustrate exact recovery in more challenging situations, where the vicinities are
not well separated (see figure 3).

For noisy data, proposition 1 says that it is the concept of vicinities that provides an ade-
quate framework to look at the error between the true solution and the one provided by the
£;-norm minimization approach. Specifically, the error is controlled by the coherent misfit (10)
and the incoherent remainder (11), which are shown to be small when the noise is small in £5.
This means that the reconstructed source is supported mainly in the vicinities S; of the true
solution, j € T, and the grass in the image is low, i.e. the part of the solution supported away
from the vicinities S; is small.

Proposition 1 implies that a key to control the noise is the constant  defined in (12). In
general, we have v = 0(\/]V ). Indeed, let y be the minimum ¢;-norm solution of the problem
Ap = b such that its support has at most size N. Let A, be the submatrix of A that contains
the columns that correspond to the non-zero entries of y. Then, the minimum ¢; solution p
satisfies (by Cauchy—Schwartz ||x||¢, < v/N||x]|¢,, Vx € CV)

lpller < llylles < VNIlle, < VN [[(ATA) A

8],

Assuming decoherence of the columns of .4,, we conclude that H (A;k .Ay)_lA;‘ | o < C, with
C independent of N. Thus ||p|l¢, < CV/N/||b||¢,. A similar lower bound arises if, for example,
A is invertible. This means that typically the quality of the image deteriorates as the number of
measurements N — co. The remedy that we propose to this is to augment the imaging matrix
A with a ‘noise collector’ C as described in the following proposition.

Proposition 2. There exists a N x ¥ noise collector matrix C, with ¥ < eV, such that the
columns of the augmented matrix D = [A|C] satisfy ||d;|| = 1,

1 . .
[{ai,c;)| < M Viandj, 17)
1 .,
[{eire))] < i Vi# ], (18)
and there is a positive constant
v < 18M%, (19)
such that
Vb, 3 psuch that Dp = b and ||p|l;, < 7||D|le,- (20)
Proof. Let d; =a; fori=1,...,K. We will construct iteratively a sequence of vectors
dgi1=c,dgip=cy, ..., dgiy =cxsuchthatforeachs =1...%

1
|(di.dis)| < ETR Vk <s+K.
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The iteration will terminate at a finite step, say, 2. At the termination step we will have that
for any b, ||b||s, = 1 there exists k < ¥ + K such that

1
di,b —. 21
|(di. b)| > Vi 2D
The finite time termination is a consequence of a volume growth estimate. Namely, if (18)

holds for all i # j < %, then the points ¢;, i = 1,2, ... X are centers of non-overlapping balls
of radius r. The radius is bounded below:

1

r> Ea,wherea = 1-— m

Thus the iteration will terminate at a finite step. Furthermore, if r < v/2 then the number
% < eV1og 2 a5 the dimension N — oo, because (r/v2)VS ~ 1.

Let us finally estimate  in (19). Without loss of generality, we may assume ||b||¢, = 1.
By our construction, there exists k < ¥ + K such that (21) holds. Thus we can choose d,,
and ¢ so that |¢;| < 1 and b; = b — ¢d,, satisfies ||b;||¢, < . Using (21) inductively we
can find a sequence {d, }>°,, and a sequence {c;}2°,, so that |¢;| < o/~! and the vectors

i=0 =1

b, =b— ", cd, satisty ||b,||s, < o". Therefore,

b— f: cd, (22)
i=1
and
ol <3 lel < o = —— < s @
i=1 i=1
by the triangle inequality. O

Proposition 2 is an important result as it shows that the constant v in (12) can be made
independent of N by augmenting the columns of the linear system with columns of a noise
collector matrix C. The columns of C are required to be decoherent to the columns of A (see
(17)), and decoherent between them (see (18)). Recalling that the columns of A for the imag-
ing problem are Green’s vectors corresponding to points in the imaging window, we stress that
the columns of C do not admit a physical interpretation. They do not correspond to any points
in the imaging window or elsewhere. Similarly, the > last components of the augmented
unknown vector p in (20) do not have a physical meaning. They correspond to fictitious auxil-
iary unknowns that are introduced to regularize the ¢;-norm minimization problem.

The drawback of this theory is that the size of the noise collector is exponential ¥ < eV,
This makes it impractical. Our numerical experiments, however, indicate great improvement in
the performance of ¢;-norm minimization with ¥ < 10K when the columns of C are selected
at random (its entries are i.i.d. Gaussian random variables with mean zero and variance 1/N).
This works well for additive mean zero uncorrelated noise. For other types of noise, the idea
is to construct a library that represents the values that the noise vector b takes. It is the ele-
ments of this library that should be used as columns of the noise collector matrix C. A different
approach can be followed when the noise 6b is sparse so its £;-norm is small. Then, C could be
simply taken as the N x N identity matrix /. This approach has been proposed and analyzed
in [26] and provides exact recovery for sparse noise vectors db.
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In the next section, we present numerical results to illustrate the relevance of our theory in
imaging sparse sources. We focus our attention in the case of additive mean zero uncorrelated
noise which is not sparse. The results show a dramatic improvement using the noise collector.

4. Imaging results in the framework of propositions 1 and 2

We illustrate here the relevance of propositions 1 and 2 inimaging. We compare p,,, the £;-norm
solution of (7) and the ¢,-norm Kirchhoff migration solution (16). Our results illustrate:

(i) The well-known super-resolution for £;, meaning that p, determines the support of the
unknown p with higher accuracy than the conventional resolution limits, provided the
assumptions of proposition 1 are satisfied.

(ii) The equally well known sensitivity of ¢, to additive noise. This is made more precise in
the imaging context where the constant  in (12) grows with the number of measure-
ments as v/NS, where NS is the total number of measurements acquired by N receivers
at S frequencies. We observe that, for a given level of noise, the £;-norm reconstruction
deteriorates as the number of measurements increases.

(iii) The noise collector matrix C stabilizes £;-norm minimization in the presence of noise.

We also show how the bandwidth, the array size, and the number of sources affect the vicinities
defined in (9). The numerical results are not specialized to a particular physical regime. They
illustrate only the role of the propositions 1 and 2 in solving the associated linear systems.

4.1. Numerical method to solve the ¢y minimization problem (7)

The solution of (7) can be found accurately and efficiently by many numerical minimiza-
tion techniques. Here are some of them: orthogonal matching pursuit [9], homotopy [19, 31,
32], interior-point methods [1, 34], gradient projection [22], sub-gradient descent methods in
primal and dual spaces [8, 28], and proximal gradient in combination with iterative shrinkage-
thresholding [2, 29, 30]. In this work we chose to solve (7) using the Generalized Lagrange
Multiplier Algorithm (GeLMA) [27], a semi-implicit version of the primal-dual method [15].

The formulation of GeLMA starts with a standard optimization argument that the solution
of (7) equals the solution of the following min-max problem. Define the function

1
F(p.z) = 7llplle, + 5IlA4p = BlI7, + (z.b — Ap)
(24)

for p € CX and z € CV, and determine the solution of (7) as
py, = arg, mzaxm;nF(p,z). (25)

Solutions of (24), (25) and (7) agree for any value of the regularization parameter 7 in (24)
(see [27]). In practice, T is used to adjust the thresholding level 7Af¢ of the semi-implicit dis-
cretization of (24) and (25)

Prep1 = Srar (p + At A"z +b — Apy)), (26)
eyt =2k + A1 (b — Apy).

Here, S, is the component-wise shrinkage-thresholding operator: for any y = re’? € C we have
S/(re'?) = e'® max{0, |r| — t}.GeLMAsets p, = 0,79 = 0,and At = min{2/||A||%, 7/||Al|},
and iterates (26) till convergence to (7).

10
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Figure 2. Imaging with no noise M = 4 sources. On the top row we show the ¢, image,
Py, on the left and the ¢, image, Py,» on the right. On the bottom row left image we
plot the solution vector p,, with red stars and compare it with the true solution vector
p plotted with green circles. The vicinities Sj, j=1,...,M for the four targets are
plotted with different colors in the bottom right image. In this example we use large
array aperture and large bandwidth; a/L = 1/2 and (2B) /wy = 1/2.

4.2. Imaging setup

The images are obtained in a homogeneous medium with an active array of N = 25 transduc-
ers. We collect measurements corresponding to S = 25 frequencies equispaced in the band-
width. Thus, the length of the data vector b is NS = 625. The ratios between the array size a
and the distance L to IW, and between the bandwidth 2B and the central frequency wy vary in
the numerical experiments, so the classical Rayleigh resolution limits change. The size of the
IW is fixed. It is discretized using a uniform grid of K = 3721 points of size \g/2 in range and
cross-range directions.

The images have been formed by solving the ¢-norm minimization problem (7) using the
algorithm GeLMA (26).

4.3. Results for noiseless data. Super-resolution and (+reconstructions

Figures 2 and 3 show the results obtained for a relatively large array and a relatively large
bandwidth corresponding to ratios a/L = 1/2 and (2B)/wy = 1/2 when the data is noiseless.
On the top row, from left to right we show the p,, solution (16) and the p,, solution obtained
from (7). On the bottom row, the comparison between p,, (red stars) and the true solution p

1
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Figure 3. Same as figure 2 but for M = 8 sources.

(green circles) is shown on the left and the vicinities S; defined in (9) are plotted with differ-
ent colors on the right. Figure 2 (resp. figure 3) is for M = 4 (resp. M = 8) sources. The exact
locations of the sources are indicated with white crosses in the top row images. The M = 4
sources in figure 2 are very far apart: their vicinities do not overlap as it can be seen in the bot-
tom right image. In this case, all the conditions of proposition 1 are satisfied and we find the
exact source distribution by ¢;-norm minimization. The M = 8 sources in figure 3 are closer,
and their vicinities are larger; according to (9) the size of the vicinities increases with M. In
fact, their vicinities overlap as it can be seen in the bottom right image. Still, the £;-norm mini-
mization algorithm finds the exact solution.

The classical resolution limits for this setup are ¢o/(2B) = 2)¢ in range and M\L/a = 2X¢
in cross-range. This means that the resolution of the ¢,-norm solutions is of the order O(2X);
see the top left image of figures 2 and 3. Recall that our discretization is \o/2, that is four
times finer than the classical resolution limit. Thus, each source roughly corresponds to a
four-by-four-pixel square, which is what the p,, solutions show. Note that for M = 8, because
two sources are quite close, the p,, solution only displays 7 sources. The ability of £;-norm
minimization to determine the location of the sources with better accuracy than the classical
resolution limits is referred to as super-resolution.

We stress that if the IW is discretized using a very fine grid, with a grid size smaller
than the classical resolution limit, then the columns of the matrix A are almost parallel and
the decoherence condition (8) is violated. The columns that are almost parallel to those
indexed by the support of the true solution are contained in the vicinities (9). The number

12
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Figure 4. Vicinities (9) for different array and bandwidth sizes. From left to right
and top to bottom the ratios (a/L,2B/wy) are: (1/2,1/2), (1/2,1/4), (1/4,1/2) and
(1/4,1/4).

of columns that belong to the vicinities depends on the imaging system. To illustrate the
effect of the array and bandwidth sizes on the size of the vicinities we plot in figure 4 the
vicinity of one source for M = 4. From left to right and top to bottom we plot the vicini-
ties for [a/L,2B/wy| = [1/2,1/2], [a/L,2B/wo] = [1/2,1/4], [a/L,2B/w] = [1/4,1/2], and
[a/L,2B/wo] = [1/4,1/4]. As expected, the size of the vicinity is proportional to the resolu-
tion estimates AgL/a and c¢y/(2B) in cross-range and range, respectively.

4.4. Results for noisy data. Stabilization of ¢+-norm minimization using the noise collector
matrix C

We add now mean zero uncorrelated noise to the data. We examine the results for different
values of the signal-to-noise ratio (SNR). As we specify in the captions, our SNR is either 0
dB (100% of noise) or 4 dB (40% of noise). We consider first the same imaging configura-
tion as in figure 2 with M = 4 sources. The number of data is NS = 625 and the number of
unknowns is K = 3721. In the top row of figure 5 we plot the minimal £;-norm image obtained
by solving problem (7) when the SNR is 4 dB. The true solution is shown with white crosses.
It is apparent that, even for this moderate level of noise, ¢;-norm minimization fails to give a
good image.

13
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The top and the bottom rows show

the results without and with the noise collector, respectively. The left columns show
the p, images (the true solution is displayed with white crosses) and the right columns
show the comparison (red stars) with the true solution (green circles). In the bottom
right image, the first K = 3721 components of the solution corresponding to the IW are
plotted with red stars, and the ¥ = 12 000 next components corresponding to the noise

collector are plotted with black stars.
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Figure 6. Low resolution images with a moderate level of noise in the data so SNR =4
dB. NS = 625 measurements. K = 1681 pixels in the images.
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Figure 7. Low resolution images with a high level of noise in the data so SNR =0 dB.
Top row: NS = 625 measurements. Bottom row: NS = 1369 measurements. K = 1681
pixels in the images.

The problem can be alleviated using the noise collector matrix C, as it can be seen in the
results shown in the bottom row of figure 5. To construct the noise collector matrix C that
verifies the assumptions of proposition 2, we take its columns ¢; to be random vectors in CcNs
with mean zero and variance 1/(NS). Their ¢;-norm tends to one as NS — oo, and we check
that conditions (17) and (18) are satisfied. In theory, the number of columns X should be very
large, of the order of e, but in practice, we obtain stable results with X of the order of 104,
which is roughly 3K.

The solution p,, € CX+% obtained with the noise collector can be decomposed into two
vectors; the vector p;,, € CK corresponding to the sought solution in the /W, and the vector
Proise € CT that absorbs the noise. We display these two vectors in the bottom right plot of
figure 5. The first K components correspond to p;,, and the remaining > components to p, ;-
It is remarkable that the vector p;, is very close to the true solution and that it contains only
some small grass. This means that both the coherent misfit (14) and the incoherent remainder
(15) are now small. This is in accordance with the theoretical error estimates (14) and (15),
where 7y is now independent of the dimension of the data vector NS; see (19).

In the next figures, we consider an imaging setup with a large aperture a/L =1 and a
large bandwidth (2B)/wy = 1. Moreover, we increase the pixel size to )¢ in both range and
cross-range directions, so the Rayleigh resolution is of the order of a pixel. With this imag-
ing configuration, the columns of the model matrix A are less coherent than in the previous
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Figure 8. Same as figure 7 but with a noise collector matrix C with ¥ = 12 000 columns.

numerical experiments. We plot in figure 6 the ¢;-norm image for a SNR =4 dB. With a less
coherent matrix A the results are very good. This highlights the inherent difficulty in imaging
when high resolution is required as in figure 5 .

For the particular low imaging resolution configuration considered in figure 6 we obtain
good results for a large noise level corresponding to SNR =0 dB; see the top row of fig-
ure 7 where NS = 625 as before. However, when we increase the number of measurements
to NS = 1369, the image obtained with #;-norm minimization turns out to be useless; see the
bottom row of figure 7. This illustrates the counter-intuitive fact that £;-norm minimization
does not always benefit from more data, at least if the data is highly contaminated with noise.
This is so because the constant ~y in (12) depends on the length of the data vector b as v/NS.

As before, this problem can be fixed with the noise collector as we illustrate in figure 8.
Again, the noise is effectively absorbed for both NS = 625 (top row) and NS = 1369 (bottom
row) measurements using a matrix collector with a relatively small number of columns, many
less than e™ as proposition 2 suggests.

We finish with one last example that shows that the use of the noise collector makes ¢;-norm
minimization competitive for imaging sparse scenes because it provides stable results with
super-resolution even for highly corrupted data. We consider the example with M = 8 sources
and SNR =0 dB. The array and the bandwidth are relatively large (a/L = 1/2, (2B) /wo = 1/2),
so the classical £,-norm resolution is of the order O(2)), as in figure 5. In figure 9 we show,
from left to right, (i) the minimal #;-norm solution without noise collector, which fails to give
a good image, (ii) the ¢,-norm solution (16), which is stable to additive noise but does not
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Figure 9. High resolution images with a high level of noise in the NS = 625 data, so
SNR =0 dB. From left to right: plain p, without noise collector, p,,, and p,, using a
noise collector. K = 3721 pixels in the images.

resolve nearby sources, and (iii) the minimal ¢;-norm solution with the noise collector, which
provides a very precise and stable image.

5. Discussion

In this paper, we consider imaging problems that can be formulated as underdetermined linear
systems of the form A ps = bs, where A is an N x K model matrix with N < K, and by is
the N-dimensional data vector contaminated with noise. We assume that the solution is an
M-sparse vector in CK, corresponding to the K pixels of the IW. We consider additive noise in
the data, so the data vector can be decomposed as bs = b + 0b, where b is the data vector in
the absence of noise and db is the noise vector. We provide a theoretical framework that allows
us to examine under what conditions the ¢;-minimization problem admits a solution that is
close to the exact one. We also have shown that, for our imaging problems, £;-minimization
fails when the noise level is high and the dimension N of the data vector bs increases. The
reason is that the error is proportional to the square root of N.

To alleviate this problem and increase the robustness of /;-minimization, we propose a
regularization strategy. In particular, we seek the solution of [A | C] ps = bs, where the N X X
matrix C is a noise collector. Thus, the unknown p; is now a vector in CKX*+X= The first K
components of the unknown correspond to the distribution of sources in the IW, while the
next components do not correspond to any physical quantity. They are introduced to provide
a fictitious source distribution given by an appropriate linear combination of the columns of C
that produces a good approximation to 0b. The main idea is to create a library of noises. The
columns of the noise collector matrix are elements of this library and they are constructed to
be incoherent with respect to the columns of A. Theoretically, the dimension X of the noise
collector increases exponentially with N, which suggests that it may not be useful in practice.
Our numerical results show, however, robustness for £;-minimization in the presence of noise
when a large enough number of columns ¥ X 10K is used to build the noise collector matrix.

Our first findings on the noise collector are very encouraging. We have shown that its use
improves dramatically the robustness of ¢;-norm reconstructions when the data are corrupted
with additive uncorrelated noise. Many other questions ought to be addressed. Some direc-
tions of our future research concern the following aspects: what happens with other types of
noise?, can we design noise collectors adaptively depending on the noise in the data?, what if
the noise comes from wave propagation in a random medium?, can we design a noise collec-
tor for this case?, how much do we need to know about the noise so as to design a good noise
collector?, can we retrieve this information from the data? Some of these questions will be
addressed somewhere else.
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Appendix. Proof of proposition 1

We will now prove auxiliary lemmas that we will use in the proof of proposition 1.

Lemma A.1.  Let B be an M x M Hermitian matrix such that b; = 1, and |b;| < ¢ for all
i # j. Assume (M — 1)c < 1, then any eigenvalue X of B satisfies

1—(M—1e< A<+ (M- 1. (A.1)

Proof. Suppose Bp = Ap. By the triangle inequality for any row i we have

ol = > bipi| < [oil < loil + | bany| -
J#i J#i
Since ‘Z#i bijpj‘ < (M — 1)c, we obtain (A.1). O

Lemma A.2. Suppose v is defined by (12). Let p, and p, be minimizers of |n|
An = by and An = by, respectively. Then, there exists & such that A = b,

1€lle, < llpilley +2911b1 — balle,, (A.2)

¢, Subject to

and

1€ = palley < Allb1 — b2, (A.3)

Proof. Let us first show that
loille, = o2l | < AlB1 = b2lles. (A4)

Assume, for definiteness, that ||p,||¢, > ||p,]|¢,- Then,

llorlle, = llo2lle | = llorlle, = llo2lle-

Suppose p5 is a minimizer of ||n||¢,, subject to An = by — b,. Since A(p, + p;) = by, and
p; is a minimizer of ||n||¢,, subject to An = by, it follows ||p; |le, < ||p2 + p3lle. By (12) and
the triangle inequality

102+ pslles < ll2lley + vIIB1 = bafle-

Thus, (A.4) holds.
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Let & = p, + p;, where p; is a minimizer of ||n||,, subject to An = b; — b,. Then,
A& = by, and inequality (A.3) follows from (12). Using (A.4) and (A.3), and the triangle
inequality we obtain

1€lle; < lloalles + 1€ = palley < llerlley + 2711 = balles- =

Lemma A.3. Suppose Ap = AE = b, where p is M-sparse, and £ is arbitrary. Assume
vicinities (9) do not overlap. Then,

Co(p.£) < 3In(p.E). (A5)

In particular,

ol < 11€lle,- (A.6)
Proof. Forany p € CY, we have

0= (Ar (A3 Ar) " . Alp — €)) = (p. (A3 Ar) ' A7 A(p — €))

since 0 = A(p — &). By lemma A.1, the largest eigenvalue of (A%Az) ~!is smaller than 3/2.
Thus,

> e =Y apamé| < % DO e a)mél, © = UierS;.

jer JET kes; JET kg

Choose 1, so that |u;| = 1 and

Z ip;j — Z Z(aj,ak>ﬁj§k = Co(p,§).

jer JET keS;

We can estimate

Colp.&) < 35> lal < 5 3 Jal.

JET kg kgY
which is equivalent to (A.5). Observe that (see (10))

lolle, — Z |&] < Co(p, §).
kex -

Proof of proposition 1. If p and p; are minimizers of |5, subject to Anp = b and
Amn = bs, respectively, we can apply lemma A.2 and conclude there exists £ such that A€ = b,

1€lle, < llplle, + 270, (A7)

and

1€ = pslle, < 6. (A8)
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Since

Iplle, < Co(p.€) + > I&l.

JeT
by lemma A.3 we have
1 1
lelle, < 5> 1g1+ D161 = 1€]le, — SIn(p.€). (A.9)
€T jer

Comparing (A.9) and (A.7) we conclude
In(p. £) < 490. (A.10)

By the triangle inequality and (A.8), we have
In(p, p5) <In(p, &) + € — pslle; < 576.

Hence, we have obtained (15). From (A.5) and (A.10), we obtain
Co(p, &) < 270.

By the triangle inequality and (A.8), we have
CO(p, pé) < CO(p, E) + HE - pé”@l < 375

If the noise level d =0, then Co(p, &) =1In(p, &) =0. It means supp(ps) C Y. Since
Aps = Ap, we can use (A.6). Note that the inequality (A.6) becomes strict if T does not
contain collinear vectors. Thus, we conclude ps = p. O
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