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Abstract—We describe a method for simultaneously identifying
and reducing dynamic power systems models in the form of
differential-algebraic equations. Often, these models are large
and complex, containing more parameters than can be identified
from the available system measurements. We demonstrate our
method on transient stability models, using the IEEE 14-bus test
system. Our approach uses techniques of information geometry to
remove unidentifiable parameters from the model. We examine
the case of a networked system with 58 parameters using full
observations throughout the network. We show that greater
reduction can be achieved when only partial observations are
available, including reduction of the network itself.

Index Terms—Parameter Estimation, Reduced Order Systems,
System Identification.

I. INTRODUCTION

Models of dynamical phenomena in power systems have
grown significantly in size and level of detail. Besides the
need for increased computing power to handle them, such
complicated models are increasingly difficult to interpret in
terms of the system-level behavior. In addition, many models
have trouble reproducing data recorded from actual events
in the grid [1]. Efforts to improve a model through system
identification are inhibited by the difficulty of inferring model
parameters, many of which are not well-constrained by the
data [2]. These efforts could be enhanced by removing from
the model those parameters that are not identifiable from data.
By construction, the remaining parameters are identifiable
from data, thereby reducing statistical uncertainty in their
inferred values and improving model predictivity. This not
only makes models more manageable computationally but also
improves understanding of the relationships between system
components.

In this paper, we use techniques of information theory
combined with differential geometry (together “information
geometry”) to enhance system identification by removing
unidentifiable parameters. From the view of information geom-
etry, a model is seen as a manifold embedded in the space of
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measurement data. This so-called model manifold contains all
information about model predictions. Accordingly, it captures
the global properties of the model, as contrasted with the cost
surface in parameter space which condenses this information
into just a single number [3].

In what follows we give only a few references with direct
connections to our work. An overview of model approximation
methods for dynamical systems, including Krylov methods
for linear systems, is given in [4]. Use of Krylov subspace
methods for reducing linear power systems models is described
in [5]. Modal approaches to model reduction in linear systems
are discussed in [6]. Singular perturbation theory is applied
in nonlinear power systems models to obtain simplified repre-
sentations in [7]. Network identification in dynamic networks
with known topology is discussed in [8]. We assume known
network topology and consider simultaneous identification and
reduction of dynamic and network parameters in nonlinear
power systems models.

This work builds on our prior efforts to explore possible
reductions that can be made in a networked system with 58
unknown parameters [9]. We previously predicted that when
observing only part of the system, additional reduction could
be achieved. Here, we present results of performing model
reduction under the conditions of one such set of reduced
observations and compare the extent of the reduction with
previous estimates. These results serve as a prototype for
network reduction in large power system models where only
parts of the system can be observed. We also consider a
more realistic fault scenario (see Sec. IV-A) and much longer
observation times.

The outline of the paper is as follows. In Sec. II, we formu-
late the system identification problem. We give an overview
of our model reduction procedure in Sec. III. We describe the
test system in which these methods were applied in Sec. IV-A,
followed by some model reduction results for the full set of
observations in Sec. IV-B. Reduction results for the partial
set of observations are given in Sec. IV-C. Section V gives
concluding remarks.978-1-7281-0407-2/19/$31.00 c©2019 IEEE
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II. PROBLEM FORMULATION

Transient stability models of power systems are typically

cast in differential-algebraic form [10]:

ẋ = f(x, z,p, t),

0 = g(x, z,p, t), (1)

y = h(x, z,p, t).

Here x is a vector of (differential) state variables, z are

the algebraic variables, p are parameters, t is the (scalar)

time variable, and y is the vector of system observations

being made. The parameters p are to taken to be unknown

and are to be estimated from measurements y, although

some information, such as plausible ranges for each, may be

available.

Often, available measurements are insufficient to identify all

parameters in a large, complicated model [3]. Even when all of

the parameters are identifiable in principle, the model’s predic-

tions may be insensitive to changes in certain combinations of

parameters, making some parameters practically unidentifiable

[11]. Such models can often be simplified while preserving the

model’s predictive capabilities.

Parameter identifiability can be analyzed using the Fisher

Information Matrix (FIM), which is constructed from the

parametric sensitivities. These, in turn, can be calculated

by solving the sensitivity equations, which are obtained by

differentiating (1):
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The eigenvalues of the FIM measure the sensitivity of model

predictions to coordinated changes in various combinations

of parameters. Figure 1a shows the eigenvalues of the FIM

for the model discussed in Sec. IV-A. Relative sensitivity of

different parameter combinations is seen in the large spread of

eigenvalues; small eigenvalues indicate insensitive parameters.

By systematically removing the associated parameter com-

binations from the model, the insensitivity can be removed

(see Fig. 1b). Our method for removing these parameter

combinations is discussed in the next section.

III. MODEL REDUCTION USING THE MANIFOLD

BOUNDARY APPROXIMATION METHOD

We remove unidentifiable parameter combinations using the

Manifold Boundary Approximation Method (MBAM) [12].

MBAM was first used in the context of power systems in

[13]; here we provide only a brief summary. The model is

reinterpreted as a mapping from the space of parameters to a

second space known as data space (see Fig. 2). This mapping

defines a manifold in data space, with parameters acting as

coordinates on the manifold. Typically, model manifolds are

bounded, with a hierarchical structure like a polygon (faces,

Fig. 1. Eigenvalues of the FIM for a) the original, 58-parameter model,
observing all generator variables and bus voltages and angles (see Sec. IV-B);
b) the 37-parameter reduced model, same observations as a; c) the original
model, observing only generator variables on Bus 1 and voltages and angles on
Buses 1 & 14 (see Sec. IV-C); and d) the 20-parameter reduced model, same
observations as c. Our reduction method (see Sec. III) effectively removes
only the smallest eigenvalues in either case (from a to b or from c to d).
Limiting the region of observation (going from a to c) makes more of the
parameters unidentifiable (note the difference in vertical axes); accordingly,
it allows for additional reduction to be carried out in the model.

edges, etc.). Each boundary cell corresponds to a simplifying

approximation of the model. We identify these approximations

by using computational differential geometry to construct

geodesics on the model manifold (the analogs of straight lines

on curved surfaces).

Fig. 2. Illustration of parameter space (on the left), colored by the objective
function used for system identification, and the model manifold in data
space (on the right). The model itself defines the mapping from parameter
space to data space. The geodesic (red path) marked on the model manifold
corresponds to a particular trajectory through parameter space. When the
geodesic reaches the manifold boundary, some parameter (or perhaps set of
parameters) goes to extreme values (see Fig.3).

When a geodesic encounters a boundary cell, some param-

eters are taken to extreme values (such as infinity or zero;

see Fig. 3). This identifies a limit that can be evaluated in

the equations of the model, removing one parameter and

producing a simplified model. In addition to known limiting

approximations (for example, a singular perturbation in which

a time constant for subtransients is pushed to zero), this allows

us to identify novel reductions that had not previously been



considered, such as merging adjacent buses in a network (see

Sec. IV-C). We construct a new model by evaluating the limit

identified by the geodesic and then tune the parameters of the

new model to match the predictions of the original model. This

process is repeated until the predictions of the reduced model

no longer faithfully reproduce those of the original. In this

way, all behavior of the model that is measurably significant

(e.g., participating modes) is preserved in the reduced model.

Fig. 3. Parameter values along a geodesic in the “supplier-consumer” model
reduction (see Sec. IV-C). Some parameters remain mostly unchanged (black);
others adjust to new values (blue); and one goes to zero (negative infinity in
log values; red), encountering a singularity (dashed line, location approximate)
when the geodesic reaches a manifold boundary. This indicates the limit

T
′′
d0 → 0, which is a singular perturbation removing the d-axis subtransient.

IV. APPLICATION

A. Test system

We use the IEEE 14-bus test system with five synchronous

generators (SG) on Buses 1, 2, 3, 6, and 8 (Fig. 4). The

generator in Bus 1 is implemented with a fourth-order model,

including rotor angle, speed, and transient electromotive forces

in the d- and q-axes. The generators in Buses 2 and 3 are

implemented with a classical, second-order model for the

generator speed and rotor angle. The generators in Buses 6

and 8 are both modeled with a detailed, sixth-order model,

including both transient and subtransient dynamics in the

d- and q-axes. We fix many parameters that are not to be

estimated from transient dynamics (such as rotor moments of

inertia) to predetermined values, leading to a model with 38

tunable parameters for both generator and controller elements.

To allow for network simplification as part of the model

reduction procedure, we take the susceptance of each network

edge as a tunable parameter and model the conductances as

proportional to the susceptances. We motivate this choice by

noting that both would be dependent on the length of the line

being modeled, so this is effectively equivalent to letting the

line lengths be tunable parameters. This produces 20 network

parameters, for a total of 58 parameters in the whole model.

We assume the system is initially in steady state and perturb

it at t = 1 s with a short circuit in Bus 14, which is

subsequently cleared at t = 1.25 s. This is in contrast to

Fig. 4. IEEE 14-bus test system. Branches marked in red were removed by
MBAM (see Sec. IV-B).

[9], where the mechanical power seen by each generator was

simultaneously increased at t = 0. We also consider much

longer observation times (out to t = 100 s) than in [9], allow-

ing us to include the long-time decay of transients. Transients

out to 100 s are not typical in power systems modeling; here

we have very slow dynamics, so long observation times are

needed to capture them.

In this paper, two sets of observations of the resulting

transients are considered. In the first set of observations, we

include rotor angle, speed, and real & reactive powers in all

generators as well as voltage magnitude and angle in all buses.

Our reduction results for this “full” set of observations are

discussed in Sec. IV-B. In the second set, we include the above

four generator variables for the generator on Bus 1 only and

voltage magnitude and angle on Buses 1 & 14 only. These

observations are indicative of a supplier-consumer relationship

and reflect what might be expected for sparse observations in a

very large power system. We discuss these observations further

in Sec. IV-C.

B. Full system identification

We used MBAM to reduce the original model, with the

“full” set of observations, from 58 parameters down to 37.

Most of the reductions we encountered occurred in generator

and controller components on Buses 6 & 8. A complete list

of reduction steps is given in Table I. We found several new

types of limits which were not encountered in [9], including

time constants going to infinity (rather than zero), controller

parameters going to zero, and reactance limits not paired with

a corresponding time constant limit (as would be the case

in a singular perturbation approximation). In addition, this

reduction did not remove the same network branches as in

[9].



TABLE I
MODEL REDUCTION STEPS WITH “FULL” OBSERVATIONS.

Step Reduction Location Step Reduction Location
1 T

′
q0 →∞ Bus 8 12 B2,5 → 0 Line 2-5

2 T
′
q0 →∞ Bus 6 13 T

′
d0 →∞ Bus 6

3 xq →∞ Bus 8 14 xd → x
′
d Bus 6

4 T
′
d0 →∞ Bus 8 15 Ke → 0 Bus 6

5 xq →∞ Bus 6 16 x
′′
q → 0 Bus 6

6 xd →∞ Bus 8 17 Ka → 0 Bus 8
7 Ke → 0 Bus 8 18 Ka → 0 Bus 6
8 B12,13 → 0 Line 12-13 19 x

′′
d → 0 Bus 8

9 x
′′
d → 0 Bus 6 20 xd → x

′
d Bus 1

10 T
′′
q0 → 0 Bus 8 21 T

′′
d0 → 0 Bus 6

11 x
′′
q → x

′
q Bus 8

Transients for both the original and 37-parameter models
are shown in Fig. 5 for Bus 6 (bus and generator variables).
The discrepancy between the reduced and original models
indicates that all parameters are now identifiable and the model
reduction procedure is complete.

We solved the sensitivity equations (2) and calculated the
FIM for this set of observations for both the original and 37-
parameter models; eigenvalues are shown in Fig. 1, a and b.
The large spread of the eigenvalues of the FIM in the original
model, with many being very small, indicated that many of the
parameters in the model were likely to be unidentifiable due
to insensitivity. This is borne out by the eigenvalues calculated
for the reduced model, where it is apparent that MBAM has
effectively removed many of the smallest ones.

C. Partial response matching

In many contexts, only portions of the system being mod-
eled are available for observation. This often makes many
fewer parameters in the model identifiable from the available
observations. In [9], we predicted that under such circum-
stances, additional reduction could be achieved.

Here we present results of continuing the reduction in
Sec. IV-B with only partial observations – specifically, ob-
serving only Buses 1 & 14 (both bus and generator variables),
as opposed to all buses. This set of observations characterizes
a supplier-consumer relationship: a single generator bus and a
single load bus elsewhere in the network. Changing to this
partial set of observations causes many of the eigenvalues
of the FIM to drop significantly (compare Fig. 1, a vs. c),
indicating that many more parameters can be removed. In fact,
we were able to reduce the number of parameters to 20 using
MBAM – as few as predicted in [9]. Using sensitivity analysis
to calculate the FIM and its eigenvalues for the 20-parameter
model, we find that, as before, MBAM has removed only the
smallest eigenvalues (see Fig. 1, c and d).

A full list of reduction steps is shown in Table II. The
most notable difference from the reduction with the “full” set
of observations is in the network reductions. Not only are
many more branches cut, but several buses are also merged
(indicated by the line susceptance going to infinity). This can
be understood intuitively by noting that the limit Bik → ∞

Fig. 5. Transients predicted in generator variables on Bus 6, as well as bus
voltage and angle, following a short circuit in Bus 14 at t = 1 s (cleared at
t = 1.25 s). The shaded regions from the left-hand plots are plotted on the
right for detail.

can be achieved, for example, by letting the line length go to
zero. For a mathematical proof, see the appendix. The resulting
reduced network is shown in Fig. 6. Although many of the
unobserved buses have merged, it is interesting to note that
no buses have merged with the observed Buses 1 & 14.

Transients for all observables in this set are shown in
Fig. 7 for both the 20-parameter and original models. There
is still very good agreement between the two, except for the
reactive power in the generator on Bus 1, which has begun to
deviate significantly (again, indicating that all parameters are
identifiable).

V. CONCLUSION

In this paper, we present results of using the Manifold
Boundary Approximation Method (MBAM) to simultaneously
reduce a dynamic power systems model and perform parameter
identification for two choices of system measurements using
the IEEE 14-bus test system. Compared to previous studies
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TABLE II
MODEL REDUCTION STEPS WITH “SUPPLIER-CONSUMER” OBSERVATIONS.

Step Reduction Location Step Reduction Location

1 T
′
q0 → ∞ Bus 8 20 x

′
q , e

′
d → ∞ Bus 8

2 T
′
q0 → ∞ Bus 6 21 B7,9 → ∞ Line 7-9

3 xq → ∞ Bus 8 22 x
′′
q → 0 Bus 6

4 T
′
d0 → ∞ Bus 8 23 B7,8 → ∞ Line 7-8

5 xq → ∞ Bus 6 24 T
′′
d0, x

′
d, e

′
q → ∞ Bus 8

6 xd → ∞ Bus 8 25 xd → x
′
d Bus 6

7 Ke → 0 Bus 8 26 B9,14 → 0 Line 9-14

8 B12,13 → 0 Line 12-13 27 T
′
d0 → ∞ Bus 6

9 B10,11 → ∞ Line 10-11 28 Ke → 0 Bus 6
10 B9,10 → ∞ Line 9-10 29 Ka → 0 Bus 6
11 B6,12 → ∞ Line 6-12 30 B4,7 → ∞ Line 4-7
12 B2,5 → 0 Line 2-5 31 B6,13 → ∞ Line 6-13

13 T
′′
q0 → 0 Bus 8 32 T

′′
d0 → 0 Bus 6

14 x
′′
q → 0 Bus 8 33 Ke → 0 Bus 3

15 B4,9 → 0 Line 4-9 34 B3,4 → 0 Line 3-4
16 B6,11 → 0 Line 6-11 35 B1,5 → 0 Line 1-5

17 x
′′
d → 0 Bus 6 36 xd → x

′
d Bus 1

18 B4,5 → 0 Line 4-5 37 B5,6 → ∞ Line 5-6

19 Ka → 0 Bus 8 38 x
′
d → 0 Bus 3

Fig. 6. Reduced network for “supplier-consumer” observations (shaded
regions). Components marked in blue are from buses that were merged during
the reduction.

[9], our model includes a more realistic fault scenario and

longer observation times. In addition to implementing a more

realistic model, our results go beyond those of previous studies

in several important ways.

First, we have leveraged the data-driven nature of MBAM

by reducing the system under only partial observations, in

addition to the full set studied previously. We show that when

a sparse set of observations is used, much greater reduction

can be achieved (20 parameters remaining out of 58 for partial

observations, as opposed to 37 out of 58 for full). In particular,

we find that unobserved parts of the network can be greatly

simplified. These results have important implications for large,

networked power system models in which only part of the

system is under observation, where we would expect to see

Fig. 7. Transients predicted in generator variables on Bus 1 as well as voltages
and angles in Buses 1 & 14 (“supplier-consumer” observations; see Sec. IV-C).
The shaded regions from the left-hand plots are plotted on the right for detail.
θ1 has been omitted because it was used as the reference angle.

similar network simplification. This also suggests that the

method could be used to derive dynamic equivalents and other

types of effective models in complex power networks.

We have also identified new types of approximations in the

form of parameter limits that were not encountered in previous

studies. Identifying types of approximations that are amenable

to power systems is an important and necessary step to scaling

up these methods. A catalog of potential parameter limits

(derived from small or moderate-sized systems) can replace

the expensie geodesic calculation on larger models that have

similar mathematical structure [14]. Future work will focus



on scaling up these methods to larger power systems models,
using a combination of network decomposition, computational
improvements, and theoretical insights gained from studies on
smaller models such as this.
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APPENDIX

Here we show that the limit Bik →∞ leads to merging the
two Buses i and k. We begin with the power flow equations
for Bus i:

0 = Pg,i − Pd,i + Pinj,i (3)
0 = Qg,i −Qd,i +Qinj,i, (4)

Pinj,i =
∑
j

ViVj [Gij cos(θi − θj) +Bij sin(θi − θj)] (5)

Qinj,i =
∑
j

ViVj [Gij sin(θi − θj)−Bij cos(θi − θj)]. (6)

With the conductances Gij modeled as proportional to the
susceptances Bij ,

Gij = −cBij , (7)

the injected power becomes

Pinj,i = −
∑
j

ViVjBij [c cos(θi − θj)− sin(θi − θj)] (8)

Qinj,i = −
∑
j

ViVjBij [c sin(θi − θj) + cos(θi − θj)]. (9)

Now, consider the limit Bik →∞. To evaluate this limit, we
first isolate all terms containing Bik. Because

Bii = −
∑
j

Bij = . . .−Bik + . . . , (10)

there are three nonzero terms containing Bik in each of the
power flow equations, one from j = i in the sum and two
from j = k:

{. . .} = cV 2
i Bik − ViVkBik [c cos(θi − θk)− sin(θi − θk)]

{. . .} = V 2
i Bik − ViVkBik [c sin(θi − θk) + cos(θi − θk)] ,

where {. . .} contains all other terms in each equation. Dividing
through by Bik gives

{. . .}
Bik

= Vi [cVi − cVk cos(θi − θk) + Vk sin(θi − θk)] (11)

{. . .}
Bik

= Vi [Vi − cVk sin(θi − θk)− Vk cos(θi − θk)] . (12)

Taking the limit Bik → ∞ eliminates the left-hand side of
both equations. Assuming Vi 6= 0, we have

0 = cVi − cVk cos(θi − θk) + Vk sin(θi − θk) (13)
0 = Vi − cVk sin(θi − θk)− Vk cos(θi − θk). (14)

Rearranging (13) gives

Vk sin(θi − θk) = −c [Vi − Vk cos(θi − θk)] , (15)

which, when substituted into (14), gives

0 = Vi + c2 [Vi − Vk cos(θi − θk)]− Vk cos(θi − θk)
= (c2 + 1) [Vi − Vk cos(θi − θk)]
= Vi − Vk cos(θi − θk). (16)

Plugging (16) back into (15) and assuming Vk 6= 0, we
conclude that

Vk sin(θi − θk) = 0, (17)
θi − θk = nπ (18)

where we need only consider the two cases n = 0 or n = 1.
We will show momentarily that we can exclude the possibility
that n = 1.

We return to (16) and substitute θi − θk = nπ:

0 = Vi − Vk cos(nπ). (19)

If n = 1, cos(π) = −1 and (19) cannot be satisfied (since
both Vi and Vk are positive). Hence,

Vi = Vk, (20)
θi = θk; (21)

that is, Buses i and k have identical voltages and have, in
effect, been merged.
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