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Abstract: In this paper we consider imaging problems that can be cast in the form
of an underdetermined linear system of equations. When a single measurement
vector is available, a sparsity promoting ¢;-minimization based algorithm may
be used to solve the imaging problem efficiently. A suitable algorithm in the case
of multiple measurement vectors would be the MUltiple SIgnal Classification
(MUSIC) which is a subspace projection method. We provide in this work a
theoretical framework in an abstract linear algebra setting that allows us to
examine under what conditions the #;-minimization problem and the MUSIC
method admit an exact solution. We also examine the performance of these two
approaches when the data are noisy. Several imaging configurations that fall under
the assumptions of the theory are discussed such as active imaging with single or
multiple frequency data. We also show that the phase retrieval problem can be
re-cast under the same linear system formalism using the polarization identity
and relying on diversity of illuminations. The relevance of our theoretical analysis
in imaging is illustrated with numerical simulations and robustness to noise is

examined by allowing the background medium to be weakly inhomogeneous.

Keywords: array imaging, phase retrieval, ¢;-minimization, MUSIC

1 Introduction

Imaging is an inverse problem in which we seek to reconstruct a medium’s
characteristics, such as the reflectivity, by recording its response to one or more
known excitations. The output is usually an image giving an estimate of an
unknown characteristic in a bounded domain, the imaging window of interest.
Although this problem is in all generality non-linear, it is often adequately
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formulated as a linear system of the form
Ap=0b, (1)

where the data vector b € C¥ is a linear transformation of the unknown vector
p € CK [13]. A € CV*XK is the model matrix that relates b to p. Typically,
the linear system (1) is underdetermined because the number of unknowns K is
much larger than the number of measurements N, so N < K.

We are interested in this work in imaging problems where the unknown p is
M-sparse with M < K. Under this assumption (1) falls under the compressive
sensing framework [21, 16, 22]. It follows from [16] that the unique M-sparse
solution of (1) can be obtained with ¢1-optimization when the mutual coherence®
of the model matrix A is smaller than 1/(2M). The same result can be obtained
assuming A obeys the M-restricted isometry property [7] which basically states
that all sets of M-columns of A behave approximately as an orthonormal system.

We show that uniqueness for the minimal ¢; solution of (1) can be obtained
under less restrictive conditions on the model matrix A provided that the
unknown p is such that the columns of A that correspond to the support T' of
p are approximately orthogonal, so there exists a small value 0 < ¢ < 1/2 such
that

€
{ai, a;)| < 47
Under this assumption, we associate to each column vector a;, j € T, its vicinity

Vi, jeT,ij.

5= {2 s s e > 5 )
that contains all columns of A that are approximately parallel to a;. This result
finds interesting applications in imaging since it states under what conditions the
location of well separated reflectors can be determined with high precision. It can
be also used to explain super-resolution, i.e., the significantly superior resolution
that ¢;-optimization provides compared to the conventional resolution of the
imaging system, i.e., the Rayleigh resolution. Moreover, we address the robustness
to noise of the minimal ¢; solution and show that for noisy data the solution p
can be decomposed in two parts: the coherent part p., which is supported in T’
or in the vicinities S;, and the incoherent part p;, usually referred to as grass,
that is small. Other stability results can be found in [7, 8, 17, 35, 18, 4].
The notion of vicinities and weak interaction between scatterers has been
considered in [18] and [4]. In [18], several algorithms for imaging well separated

1 The mutual coherence of A is defined as max;; |(a;, a;)| with a; € CV the columns of
A normalized to one, so that ||ai|l,, =1Vi=1,..., K.
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sources were introduced and analyzed. These algorithms address the issue of
high coherence in A using techniques of band exclusion and local optimization.
In [4], a resolution analysis for ¢;-minimization and ¢1-penalty was carried out
for array imaging in the paraxial regime. It was shown that for well separated
sources or clusters of sources the minimal ¢1 solution is supported mainly in the
vicinities of the true sources’ locations.

More recently in [5], the problem of imaging sources in weakly inhomogeneous
media was addressed using Coherent INTerferometry (CINT) followed by ¢
convex optimization for debluring. This is a natural idea since, as it was shown
in [1] (see also [3]), the CINT image is a convolution of the reflectivity with a
Gaussian kernel. Hence, the resolution in CINT images can be refined by debluring
as in [2], where a level set method was used. In [5], debluring was performed with
{1-optimization and its performance was analyzed for well separated sources and
well separated clusters of sources.

We also consider in this paper the more general form that system (1) takes
when S multiple measurement vectors (MMV) are available, so

Alqp:blq7 q:1,...7S. (2)

Here, Uy = [lig,l2gs - - -, qu}T denotes a parameter vector such as the excitation
that we control. To simplify the notation, we will denote the different excitations
by the scalar ¢ and write A,p = b, instead, unless it is necessary to explicitly
state that the model matrix depends on a vector I4. To solve (2) we consider the
MUTtiple SIgnal Classification algorithm [34] which has been used successfully in
signal processing [23] and imaging [15, 25]. For a careful analysis of MUSIC for
single snapshot spectral imaging we refer the reader to [26]. We show here that
MUSIC gives the exact support of the solution of (2) in the noise free case when
the matrices Ag admit the following factorization

Ay = A Agq, with A4 diagonal. (3)
In this case, (2) admits the following MMV formulation
qu = bQ’ pq = qu7

where the multiple unknown vectors p,, ¢ =1,..., S, share the same support.
The main advantage of this formulation is that we can immediately infer that the
data vectors b, are linear combinations of the same M-columns of A, those that
belong to the support of the unknown p. The implication is that the columns of
A indexed by T = supp(p) span the column subspace of B, the ’signal’ subspace
of B. Hence, the support T is the zero set of the orthogonal projections of the
columns of matrix A onto the null space of the data matrix B. Moreover, the
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support is recovered exactly under the assumption that all M-sets of columns
of A are linearly independent. We discuss several imaging configurations for
which the factorization (3) is feasible as well as instances where (3) holds only
approximately and MUSIC is no longer exact even for noise free data.

Let us remark that for different excitations ¢ we obtain multiple measurement
vectors by which correspond to linear transformations of the same unknown vector

CN*S whose columns are the

p. The data can be arranged in a matrix B €
vectors by, and the MMV formulation may be expressed as a matrix-matrix
equation

AP = B,

where the unknown is now the matrix P € CX*5 whose columns are the vectors
Py = Ayp that share the same support. The optimization can therefore be
performed within the MMV formalism as described in [14, 24, 36, 37]. The
main idea is to seek the solution with the minimal (2,1)-norm which consists
in minimizing the ¢; norm of the vector formed by the ¢5 norms of the rows of
the unknown matrix P. This guarantees the common support of the solution’s
columns. We do not pursue this approach here and refer the reader to [12] for an
application of this formalism to imaging strong scattering scenes as well as to
[6] where an MMV formulation for synthetic aperture imaging of frequency and
direction dependent reflectivity was introduced and analyzed.

We present several configurations in array imaging that can be cast under the
general framework discussed here, such as single- and multiple-frequency array
imaging using single- or multiple-receivers. All these problems can be formulated
as (1) for a single measurement vector, or as (2) when multiple measurement
vectors are available. We also consider the non-linear phase retrieval problem,
which according to [31, 28, 29] can be reduced to a linear system of the form
(2). This requires intensity data corresponding to multiple coherent illuminations
which when using the polarization identity are transformed to interferometric
data. We consider multiple frequency intensity data collected at a single receiver
due to multiple coherent illuminations that could be generated by a spatial light
modulator (SLM) [30]. The solution of (2) may then be computed with Single
Receiver INTerferometry (SRINT) as in [29], ¢;-minimization or MUSIC.

The performance of these imaging methods for the non-linear phase retrieval
problem is studied with numerical simulations in an optical digital microscopy
imaging regime. Our simulations allow us to asses the robustness of the different
methods to modeling errors resulting to perturbations in the unknown phases
of the recorded data. We consider phase perturbations that are either due to
grid displacements or to wave propagation in a weakly inhomogeneous medium.
Our conclusions are that SRINT provides the less satisfactory image in terms



Data structures for robust multifrequency imaging == 5

of resolution but it is the more robust method when there are modeling errors,
the /1 method has the best resolution but is not very robust with respect to
noise, while MUSIC seems to be the more competitive method at moderate signal
to noise ratio regimes because it has better resolution than SRINT and is less
sensitive to noise than ¢1-minimization.

The paper is organized as follows. In Section 2 we present in a abstract linear
algebra framework the conditions under which ¢;-minimization and MUSIC
provide the exact solution to problems (1) and (2) respectively. We also analyze
the performance of these methods for noisy data. In Section 3 we formulate the
array imaging problem and consider some common configurations used in active
array imaging. Moreover, we discuss how the imaging problem can be cast under
the abstract framework of Section 2 and what are adequate data-structures to
be used in imaging with ¢;-minimization and MUSIC. In Section 4, we explore
with numerical simulations the robustness of the imaging methods for the phase
retrieval problem in an optical (digital) microscopy regime. In Section 5 we
illustrate with numerical simulations how our abstract theoretical results are

relevant in assessing image resolution. Section 6 contains our conclusions.

2 Linear algebra aspects of imaging algorithms

In this section we discuss under what conditions ¢1-minimization and MUSIC
algorithms provide the exact solution when there is no noise in the data. We
also discuss the performance of these algorithms for noisy data. We assume that
imaging can be formulated as a linear inverse problem of the form

Aip=b, (1)

that is underdetermined. In (1), the model matrix

T T T
A= o &l el | e 2)
+ + i

relates the unknown vector p € C¥, which is the “image” to be constructed, to
the transformed vector b; € CV, which contains the data. This matrix is fixed
by the physical setup of the imaging system and, therefore, it is given to us.
However, the important observation here is that 4; also depends on a parameter
vector 1 = [l1,la,...,1 K]T which may be varied so as several transformed vectors
b; of the same unknown p can be obtained.
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If only one snapshot of array measurements is available for imaging, we
solve (1) for a single measurement vector (SMV) [ using ¢; minimization that
promotes the assumed sparsity of the vector p. In that case, we will write (1)
simply as Ap = b. When several snapshots of array measurements corresponding
to different parameter vectors I, are available, we solve the corresponding MMV
problem using MUSIC. In that case, we will write (1) as Aqp = by.

2.1 /; minimization-based methods

In the imaging problems considered here we assume that the scatterers occupy
only a small fraction of a region of interest called the image window IW. This
means that the true reflectivity vector p, is sparse, so the number of its entries
that are different than zero, denoted by M, is much smaller than its length K.
Thus, M = |supp(py)| < K. This prior knowledge changes the imaging problem
substantially because we can exploit the sparsity of py by formulating (1) as an
optimization problem which seeks the sparsest vector in CK that equates model
and data. Thus, for a single measurement vector b we solve

min ||p|l¢, subject to Ap=b. (3)

In this form, we may be able to pick the true solution pg if the matrix A and
the sparsity of p fulfill certain conditions. In particular, we have the following
four theorems whose proofs are given in Appendix 1. We denote by || - ||¢, and
I lle, the £2 and ¢; norms of a vector, respectively.

Theorem 2.1. M-sparse solutions of Ap = b are unique, if

Vi £ §, (4)

1
l(ai,a;)| < M

where we assume that the columns of matriz A are normalized so that |a;|¢, =1
Vi.

Theorem 2.2. The M -sparse solution of Ap =b can be found as the solution
of

min ||n||¢,, subject to An =b, (5)
if
e Vi (6)
2M’ ’
where we assume that the columns of matriz A are normalized so that ||a;||s, =1
Vi.

l{ai,a;)| <
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Theorem 2.3. Let p be a solution of Ap =b, and let T be the index set of the

support of p, so
T =supp(p), and M =|T]|.

Fiz a positive e < 1/2, and suppose that the matriz A satisfies:
(i) The column vectors are normalized so that ||a;l|e, =1 Vi.
(ii) The column wvectors in the set T are approzimately orthogonal, so

(@i a))l < o7 Vij €T,i#j. (7)
(iii) For any j € T the vicinity
S;={k#i st lawa) > 5 (®)
= st Nag,a;)| =2 —
Ji J S k,Qj oM
has the properties
|<ak,aj)|<1—2€ V/CES]', (9)
and
€
‘<Gk7a]‘>| < M Vk €S, Vi #j. (10)

Then p, the M-sparse solution of Ap = b, can be found as the solution of
min ||9||e,, subject to Anp =b.

Theorem 2.4. Noisy case. Let p be an M -sparse solution of

and let T = supp(p), so M = |T|. Fiz a positive € < 1/2, and suppose that A
satisfies conditions (i), (it), and (iit) of Theorem 2.3.
Furthermore, let ps be the minimal £1-norm solution of the noisy problem

min ||n|¢,, subject to An = b°, (11)

with b° defined by
b® = b+ b, (12)

such that the noise b is bounded for some small positive §, so that
8blle, < 4. (13)
Assume that A has the property that the solution dp to

min ||9||e,, subject to An = b, (14)
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satisfies

Then, we can show that the solution ps of (11) can be decomposed as
Ps = P+ Pis (16)

with p, the coherent part of the solution supported on T or in the vicinities S;
with j € T, and p; the incoherent part of the solution which is supported away
from the vicinities and it is small. Specifically, for p. we have that for any j € T

[ 1(p)il = 1(pe)j + D {aj ) (pe)kl | < do + C4,

kesS,;
with
5 _ 2000=¢)  2(lplle, +C3)
7 M1 -2¢) M '

While for p; we can show that:

[oille, < 61,
with 61 given by
4CH(1 —¢)
0 =C6+ ——m——.
! D)

Theorems 2.1 and 2.2 are well known results in the literature of compressive
sensing [21, 16, 22]. The first theorem tells us that the M-sparse solution of
the linear system Ap = b is unique when the columns of the matrix satisfy
the orthonormality condition (4). This condition is satisfied when the mutual
coherence of the matrix A, defined as max;+; |[(a;, a;)|, is smaller than 1/(2M).
This first theorem is an £o uniqueness result. The second result, Theorem 2.2,
tells us that the unique M-sparse solution of Ap = b can be found by solving
the ¢; minimization problem (5). This is a very useful result because it is the
{1 minimization problem that can be solved efficiently in practice, for example,
by using the algorithm GelMa described in Algorithm 2.1, which involves only
simple matrix-vector multiplications followed by a shrinkage-thresholding step
defined by the operator n,(y;) = sign(y;) max{0, |y;] — 7}. In the noiseless case,
this algorithm converges to the exact solution independently of the value of the
regularization parameter 7. For more details we refer to [27].

Algorithm 2.1 (GelMa for solving (5)).

Require: Sety =0, z = 0. Pick the step size 3, and a regularization parameter
T.
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repeat
Compute the residual 7 = b — Ay
y = 0p(y + LA (2 + 1))
z<=z+fPr

until Convergence

Theorem 2.3 is to the best of our knowledge new. Its proof is given in Appendix
1. This theorem tells us that the M-sparse solution of Ap = b can be recovered
by solving the ¢; minimization problem under a less stringent condition than
(6) provided that the column vectors of the matrix .4 that are in the support
of the true solution p, are approximately orthogonal, that is, they satisfy (7).
Note that we allow for the columns of A to be close to collinear. Moreover, we
define the vicinities S; for the column vectors a; in the support of the true
solution, and we assume that all the column vectors that are in the vicinity of a
support column vector are close enough to it, so (9) holds. We also assume that
the vicinities S; and S, for ¢ # j, are far enough, so (10) holds.

The last result, Theorem 2.4, is the noisy version of Theorem 2.3. It shows
that when the data b is not exact but is known up to some bounded vector b,
the solution ps of the minimization problem (11)-(12) is close to the solution of
the original (noiseless) problem in the following sense. The solution ps can be
decomposed in two parts: the coherent part p. supported in 7" or in the vicinities
S;, j € T, of the true solution, and the incoherent part p; usually referred to as
grass in imaging. The grass is supported away from the vicinities S; and it is
shown to be small assuming that (15) holds for the solution to (14) and assuming
that the norm of the noise is small so (13) holds. Other stability results can be
found in [7, 8, 17, 35, 18, 4].

We will see in Section 5 how Theorems 2.3 and 2.4 can be applied in imaging.

2.2 MUSIC

MUSIC is a subspace imaging algorithm based on the decomposition of the
measurements into two orthogonal domains: the signal and noise subspaces [34].
The key is to be able to form a data matrix

211 212 ZlS +1 1
B = 21 22 25 = bl b2 bS S (CNXS7 (17)

bni bn2 ... bns
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whose column vectors b, are obtained from a family of linear systems Ayp = b,
that can be rewritten in the form

Ahgp=b,, q=1,...,85, (18)

where A, is a diagonal matrix whose entries can be controlled to form the
images. The assumption here is that the model matrices A4 relating the unknown
vector p with the data vectors b, can be factorized into two matrices

lig 0
AR 1 0 b,
A= ELl &2 fLK and Aq: . s (19)
Ll 1 '
0 Ikq
with A € CV*K independent of the parameter vector Uy = [lig logy s lxg) T,

and A, € CE*K diagonal. Under this assumption, the imaging problem (18) can
be reinterpreted in the form of an MMV problem

Ap, = by, (20)

with p, = Agp. Physically, each p, is a transformed version of the same unknown
vector p. The data can be arranged into the data matrix (17), and (20) may be
expressed as a matrix-matrix equation

AP =B, (21)

where the columns of P € CK*S| Py = Agp, share the same support.

The important element of the new formulation (20) (or (21)) is that now
all the data vectors b, are linear combinations of the same M columns of A (or
A), those columns that correspond to T = supp(p), with M = |T'|. Thus, every
column of A indexed by T is contained in the column space of B, the signal
subspace, which is orthogonal to the noise subspace. Hence, one can simply find
the unknown support 7" by projecting the columns of A onto the noise subspace.
Both, the signal and the noise subspaces can be obtained via the singular value
decomposition (SVD) of B.

More precisely, the objective of a MUSIC algorithm is to find the support
T of an unknown sparse vector p = [p1, p2, ..., px]? with a number of nonzero
entries M much smaller than its length K. With a sufficiently diverse number of
experiments S > M we create a data matrix B, and we compute its SVD

K
B=USV* =) oju;v}. (22)
j=1



Data structures for robust multifrequency imaging =—— 11

If the data is noiseless there are M nonzero singular values o1 > g9 > -+ >
om > 0 with corresponding (left) singular vectors w;, j = 1,..., M that span
the signal subspace of CV. The remaining singular values o, j=M+1,... K,

are zero, and the corresponding (left) singular vectors span the noise subspace
of CV. Because the set of columns of A indexed by T = supp(p) also spans
the signal subspace, the sought support T’ corresponds to the zero set of the
orthogonal projections of the columns vectors @; onto the noise subspace. Thus,
it follows that the support of p can be found among the zeros of the imaging
functional

M
ISIGNAL:ZWZuﬂgﬂ k=1,... K, (23)
Jj=1

or, equivalently, among the peaks of the imaging functional

TMUSIC _ __ HakHef L k=1,... K. (24)
Zj:M+1 |a’k uj|2

Furthermore, if all sets of M columns of A are linearly independent, then the
peaks exactly coincide with the support of p in the noiseless case. In (24), the
numerator is a normalization factor.

Once the support is recovered, the problem typically becomes overdetermined
(N > |supp(p)|) and the nonzero values of p can be easily found by solving the
linear system restricted to the given support with an ¢ method [13].

Regarding imaging with noisy data, it follows from Weyl’s theorem [39]
that when noise is added to the data so B — B? = B + E with |E|ls, < 6,

then no singular value ¢

moves more than the norm of the perturbation, i.e.,
|o® —o||¢, < 8. Hence, (i) perturbed and unperturbed singular values are paired,
and (ii) the spectral gap between the zero and the nonzero singular values remains
large if the smallest nonzero unperturbed singular value ojp; > 4. If the noise is
not too large, then the rank of the data matrix B® can be determined, and so is
M =1T)|.

The signal and noise subspaces are also perturbed in the presence of noise.
It can be shown, however, that the perturbed subspaces remain close to the
unperturbed ones, with changes that are proportional to the reciprocal of the

spectral gap 8 = a?\/j — opr+1- This follows from Wedin’s Theorem [38].

Theorem 2.5. (Wedin) Let B have the SVD B = Q + Qo with Q = ULVT
and Qg = UOZOVOT, and let the perturbed matriz B® = B + E have the SVD
B® = Q% + Q) with Q° = UsssveT and Q) = UngVO‘ST. If there exist two
constants o > 0 and B > 0 such that Gmaz(Qo) < a and omin(Q°) > o+ f,
then the distance between the orthogonal projections onto the subspaces R(Q) and
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R(Q®) is bounded by
0
Prgsy — Preg)lle, < R (25)

where § = max(|[EV||g,, [E*Ulle,)-

There is much work done on the robustness of MUSIC with respect to noise.
We refer to [26], and references therein, for a recent discussion about how much
noise the MUSIC algorithm can tolerate. When we apply the Theorem 2.5 to
our imaging problem, where Qg = 0, we obtain the following result whose proof
is in Appendix 2.

Theorem 2.6. Let X =Diag(p) be a diagonal matriz that solves
AXL = B, (26)

where A satisfies conditions (i), (ii), and (iii) of Theorem 2.3 for a fired ¢ < 1/3,

i e lis
I lor 122 las < CKx8
Ik1 k2 lks

and B is the noiseless data matriz (17) with SVD B = Q = USVT. Let the
perturbed matriz B® = Q% + Qg be such that omax(B? — B) < 8. Suppose p,
the vector diagonal entries of X, is sparse with T = supp(p), M = |T|, M <
size(p), and

P = g;%{lpﬂ}

Let Lt be the submatriz of L, formed by the rows corresponding to T, has

U;J;L = Umin(LT)~ (27)
If
20 < pmol (1 - 3e), (28)

the orthogonal projections onto the subspaces R(Q®) and R(B) are close:

0
||PR(Q5) - PR(B)H£2 < m' (29)

To conclude, the main step in setting up MUSIC is to be able to find a suitable
factorization of the model matrix as Ay = AAq, where A, is diagonal. In that
case, the imaging vectors are just the columns of A that are given. We discuss
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Fig. 1: General setup of an array imaging problem. The transducer at &5 emits a probing
signal and the reflected intensities are recorded at &,. The scatterers located at :z_jj, j =
1,..., M are at distance L from the array and inside the image window IW.

next imaging situations in which this factorization is possible and MUSIC can
form form images with high precision. We also discuss applications in which the
factorization is only approximate and, hence, images obtained with MUSIC lose
resolution.

3 Array imaging: data models

The goal of array imaging is to form images inside a region of interest called
the image window IW. In active array imaging the array probes the medium by
sending signals and recording the echoes. Probing of the medium can be done
with many different types of arrays that differ in their number of transmitters and
receivers, their geometric layouts, or the type of signals they use for illumination.
They may use single frequency signals sent from different positions, or multifre-
quency signals sent from one or more positions. Of course, the problem of active
array imaging also depends on the receivers. They can record the intensities and
phases of the signals that arrive to the array or only their intensities.

In this section, we describe some common configurations used in active
array imaging. The array, with N transducers separated by a distance h, has a
characteristic length a (see Fig. 1). The transducers emit signals from positions
Zs and record the echoes at positions &,, s, = 1,2,...,N. They can use
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single or multifrequency signals, with frequencies w;, [ =1,...,S. Our goal is to
reconstruct a sparse scene consisting of M point-scatterers at a distance L from
the array, whose positions Q'nj and reflectivities a,, € C, j =1,..., M, we seek
to determine. The ambient medium between the array and the scatterers can be
homogeneous or inhomogeneous.

In order to form the images we discretize the IW using a uniform grid of
points g, k =1,..., K, and we introduce the true reflectivity vector

Po = [/7017---aP0K}T € CK7

such that pgr = Z]]Vil anjégnjgk, k = 1,...,K, where J.. is the classical
Kronecker delta. We will not assume that the scatterers lie on the grid, i.e.,
Wnyr o YUny } € {1, Y} in general. To write the data received on the
array in a compact form, we define the Green’s function vector

9(Fiw) = [G(&1, §;w), G(&2, G5 0), ..., G(@En, Grw)]" (1)
at location g in the IW, where CA?(:E, 9;w) denotes the free-space Green’s function
of the homogeneous or inhomogeneous medium. This function characterizes the
propagation of a signal of angular frequency w from point § to point &, so (1)
represents the signal received at the array due to a point source of frequency w
at 9. When the medium is homogeneous,

exp(ix|€ — g|)

N o N i o w
G(%?J%‘JJ):GO(%?J%W):W7 1‘6:%-

2)
In this case, the Green’s function vector is
9o(Fiw) = [Go(&1,§; w), Go(@2, Fiw), .., Go(@n. Giw)] "

We assume that the scatterers are far apart or that the reflectivities are
small, so multiple scattering between them is negligible. In this case, the Born
approximation holds and, thus, the response at &, (including phases) due to a
pulse of angular frequency w; sent from &g, and reflected by the M scatterers, is

given by
M

P&y, &siw) = Y a;G(&r, 3 01) G, Taiwr), (3)

J
=1

and the the full response matrix that contains all posible information for imaging
by

M
P(w) = [P(@, &s:wn)] = > ajG(Fin,:91) g (Fn,i01) - (4)
j=1

Next, we describe different situations of interest in active array imaging.



Data structures for robust multifrequency imaging = 15

3.1 Single frequency signals and multiple receivers

Let us first consider the case in which only one illumination of frequency w

is sent using the N sources in the array located at positions &g, s =1,..., N.
The echoes are also recorded at the N receivers located at &, r =1,...,N. If
Fw) =[fi(w),..., fx(w)]T represents the illumination vector whose entries are

the signals sent from the sources in the array, then 'g\%) = 9(Yy; w)Tf(w) is the
w
field at the grid position 4, in the IW. Thus,

f t
o= Y g 32 Gy T NxK
Af(w) o gf(w)g(yl,w) gf(w)g(yQ,w) gf(w)g(yK,w) eC
{ il 1

()
is the model matrix that connects the unknown reflectivity vector p € C¥ to
the data vector b]/;(w) € CV that depends on the illumination f (w).

If a single illumination is used to form an image, then active array imaging
amounts to finding p from the system of linear equations

A}\(w)p = b]/;(w) . (6)

Abusing a little bit the notation used in Section 2, we have indicated in (6) that
the control parameter vector is the illumination f(w). According to (1)-(2), the

parameter vector is I = [ﬁ%) ),ﬁj(?z() N 7§J¥({))}T which depends on the Green’s

function vectors g(#4;w) fixed by the physical layout, and on the illumination
vector f (w) that we control. The system of linear equations (6) can be solved
using appropriate ¢2 or £1 methods. If an ¢;-norm minimization method is chosen,
we would seek the sparsest vector p among all possible vectors satisfying (6).

If, instead, multiple illuminations are used to form the images, then we can
use an MMV approach to find the solution with MUSIC. Indeed, note that the
model matrix (5) can be factorized into two matrices

) T 1
1 N 1
and "
9= 0
95w
0o ¥
T = Fw) KxK
Af(w) . eC , (8)
0o g

fw)
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so that A~ = AA~ . Hence, it follows from the discussion in Section 2 that
fw) f(w)

(6) can be written in the MMV form
Ap,=by, q=1,....5, (9)

and the support of p can be found exactly with MUSIC if enough data vectors

b?q () BT€ available. In (9), b, = bfq(w)’ A)/”;(w

source weighted reflectivity vector with the same support as p, and whose nonzero

and p, = )P represents an effective
entries vary with f ¢(@). We remark that the equivalent source problem (9) can
be used to account for multiple scattering between the scatterers (see [12] for
details).

To show that Theorem 2.6 is relevant for imaging we write (9) as (26) with
the unknown matrix X =Diag(p), the data matrix B formed by the S vectors
by, and the illumination matrix

T T T
L= ATf (w) ATfow) ... ATfg(w) | eCK*S
1 3 \
whose ith column A7 f,(w) = [ﬁ(l) g2 g ]T contains the fields at

Py TR e

all grid positions 4, k = 1,..., K due to the illumination f,(w). Then, condition
(27) can be interpreted as an orthogonality condition on the illuminations. Further-
more, if we suppose that S = N and use the illuminations fq(w) = f(w)é\q (eq is
the vector with a 1 in the gth coordinate and 0’s elsewhere) for all ¢ =1,...,.5,
then L = f(w)/iT In this case, 0, = omin(Lr) > (1 — 35)|]7’\(o.))|7 assuming A
satisfies conditions (i), (ii) and (iii) of Theorem 2.3 (see proof of Theorem 2.6 in
Appendix 2).

3.2 Multifrequency signals and one receiver: the
one-dimensional problem

Consider now a one-dimensional problem with scatterers located at different
ranges. To determine their positions we only use one transducer that emits and
receives multiple frequency signals. We assume that the scatterers are far from
the transducer, but not far from each other so the denominator of the Green’s
function in (2) can be approximated by a constant. In that case, the collected
data are approximately the Fourier transform of the reflectivity vector to be
imaged.
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To fix ideas, denote by z, = L + (n — 1)Az the distance between the single

transducer and the scatterer of reflectivity p,, n =1,..., K. Then,
K
D e = by, m=1,...,28, (10)
n=1

relates the positions and reflectivities of the scatterers to the measurements b,, at
frequencies w,, = Km co, where cg is the wave speed in a homogeneous medium.
In this problem, we seek to recover the unknown vector p = [p1, p2, ..., px| from
the multifrequency data vector b = [by,ba, ..., bag] recorded at a single receiver.

The next assumption allows to succinctly formulate one-dimensional multifre-
quency MUSIC in the form of an MMV problem using the Prony-type argument
(see, for example, [25]). Namely, suppose that the measurements are obtained
at equally spaced (spatial) frequencies k,, = kK1 + (m — 1)Ar, m =1,2,...,2S.
Then, we write (10) in matrix form as

AQS P = b7 (11)
where ) ) )
6221‘6121 eanl 2o o 612111 2K
62’2&221 ei2n222 . ei?l@zk
Azs = (12)
ei2mgsz1 eiQRQSZQ . eiQngszK

is a Vandermonde matrix of dimensions 2.5 x K. Since we only have one data vector
b € C%% we cannot determine from it a signal space of dimension M = [supp(p)|.
However, following the general idea of Prony-type [32] methods we form the
S x S data matrix

by ba ... bg
B ba bs ... bsp 7 (13)
bs bsy1 ... bag
whose rank is M if S > M. If we now set the S x K matrix
pi26121  Gi2k122  i2R1zK
A= g = pi26221  Gi2Kaza  Li2Razk 14)
e i i
and the K x K diagonal matrices
ei2brz g 0 0\’
i2AKz
A, = 0 e 2. eiQASZK_l g 7 (15)

0 0 .. 0 e
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with ¢ = 1,...,5, then it is straightforward to verify that /Iqu = by, where b,
is the gth column of the matrix B in (13). Thus, we obtain the desired structure

Apy = by,
and MUSIC can be applied directly to find the support of p. Subsequently, as
noted above p itself can be determined by solving the linear system restricted
on the support p.

If M < K, so the vector p is M-sparse, then the solution can also be
found directly from (11) by using an ¢;-norm minimization approach. Note that
(11) always has a unique M-sparse solution if M < S. Indeed, we argue by
contradiction that it is not possible to have more than one M-sparse solution if
M < S. Suppose there are two M-sparse solutions p; and p,y. Then, Assy =0
for y = p; — py. Since the support of y is less or equal than 20, we have
2M linearly dependent columns of Asg, which is impossible for Vandermonde
matrices since they are full rank.

3.3 The single frequency phase retrieval problem

In its classical form, the phase retrieval problem consists in finding a function
h from the amplitude of its Fourier transform h. In imaging, it consists in
finding a vector p that is compatible with a set of quadratic equations for
measured amplitudes. This occurs in imaging regimes where only intensity data
is recorded, which means that most of the information encoded in the phases is
lost. Phase retrieval algorithms have been developed over a long time to deal
with this problem [20, 19]. They are flexible and effective but depend on prior
information about the image and can give uneven results. An alternative convex
approach that guarantees exact recovery has been considered in [10, 9] but its
computational cost is extremely high when the problem is large. When, however,
multiple measurements of the object to be imaged are available, we may recover
the missing phase information and image holographically much more efficiently
[31, 28, 29]. By holographic imaging we mean the use of interference patterns
between two or more coherent sources in order to form the images [40].

Indeed, let us consider single frequency imaging with multiple sources and
receivers as in problem (9), where the data vectors by = Ai)q, that depend on the
illumination f ¢(w), contained the amplitudes and phases of the recorded signals
We now, however, assume that only the amplitudes squared of the components
of these data vectors can be measured. Then, the phase retrieval problem is to
find the unknown vector p from a family of quadratic equations

[Agp” =16, g=1,...,Q,
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understood component wise. This problem is nonlinear and nonconvex and, hence,
difficult to solve. In fact, it is in general NP hard [33]. However, if an appropriate
set of illuminations is used, we can take advantage of the polarization identity

2Re <u,v> = |u+v)?—|u? - |v?
2Im < u,v > = |u—iv]? — |u]? — |v|? (16)

to solve a simple linear system of the form
Agp=mi". (17)

The polarization identity allows us to find the inner product between two complex

(r)

numbers and, therefore, its phase differences. In (17), mg ’ is the vector whose

RENE
€q

corresponding to a general illumination f ¢(w) and the other to an illumination

ith component is the correlation between two signals measured at &,., one

€, = [0,0,...,0,1,0,...,0]7 whose entries are all zero except the ith entry
(r)

which is 1. Using the polarization identity (16) we can obtain b(r) b from

linear combinations of the magnitudes (squared) \b(r 12, |b(r) 12, |bg 4 b \2 nd
|bg 4 zb |2 A physical interpretation of (17) is as follows. Send an 111um1nat10n

fq(w), collcct the response at @&,, time reverse the received signal at &,., and send
it back to probe the medium again. Then, mér) represents the signals recorded
at all receivers Z;,i=1,...,N.

To wrap up, if the phases are not measured at the array but we control the
illuminations, the images can be formed by solving (17). We can use ¢1-norm
minimization if only one vector mér) is obtained in the data acquisition process,
or we can use MUSIC if enough vectors of this form are available [31, 28]. Note
that in this approach, where only one frequency w is used, the receiver &, is

fixed.

3.4 Multiple frequency signals and multiple receivers

Finally, we consider the most general case in which multiple frequency signals
are used to probe the medium from several source positions, and the echoes
are measured at several receiver positions. This case considers all the possible
diversity of information that can be obtained from the illuminations. We discuss
first the situation in which the receivers measure amplitudes and phases and,
then, the situation in which they can only measure amplitudes squared.
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3.4.1 Imaging with phases

Assume that the data (including phases)
d(£7‘7£8:wl) :P(fTajs;wl)7 (18)

for all receiver locations &,., source locations s, and frequencies w; are available
for imaging. For an array with N colocated sources and receivers that emit S
different frequencies the number of measurements is then equal to N2 S. To make
use of the coherence of these data over all the frequencies we could stack them
in a column vector b, but then we would have to deal with a huge linear system
Ap =bofsize N2 S x K. To reduce the number of data used in an £; approach,
we consider that the illumination is of separable form, i.e., f(w;) = f(w;)f and
the same vector f is used for all the frequencies wy, [ = 1,...,S. Thus, for an
illumination f = [j/"\(wl)T7 f(wz)T, cey A(wS)T]T we stack the data (including
phases) in a column vector

b~—pL T

=mL L ... pL T 1
I [f(wl)’ Flw)”" " f<ws>] ’ (19)

and we solve the system of equations

App = bs, (20)
with the (N -S) x K matrix
(1) (2) f (K) f
1) o~y ~N2) - NK) =
TrndWwn) g5 GWaiwn) - g5 gGwn)
4 1 1
) t t
A~ ~/ = ~ ~/ > ~K ~/ =
3 Ginwn) 72 GEews) 0 G5 wa)
A= f(wz) f(w2) flw2) (21)
f 1 \ 1
1) (2) (K) !
A1)y ~N2) o~y NE) o~y
Tie)IWiws) 0 GWaiws) o G5 9(Ukiws)
1 \: \
Here, ﬁj(?j() ) = §('§j;wl)Tf(wl) denotes the field with frequency w; at position
wy

y; - The system (20) relates the unknown vector p € CX to the data vector
b-~ec CV'59) in a coherent way. The system of linear equations (20) can, of course,
be solved by appropriate £2 and ¢1; methods.
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However, because (20) cannot be written in the form of an MMV problem,
MUSIC cannot be used to identify the support of p as in the previous imaging
problems. The issue here is that matrix (21) cannot be factorized in the form
AA = AAA because the scalars g(?() N depend on frequency. However, in the

pdraxul reglme where the scatterers are far from the array, and the array and the
IW are small so the wavefronts that illuminate the scatterers are planar, we can
take into account these changes over frequencies explicitly to image coherently
with MUSIC.

Indeed, assume for simplicity that only one source at s = (x4, 0) with cross-
range vector & s = =(z sz, T sy) emits the signals, i.e., for all the frequencies w; we use
the N-vector f(w;) = fz,s =[0,0...,0,1,0,. O] with all the entries equal to
zero except the sth entry which is one. In the parax1a1 regime, where A < a < L
and the IW is small compared to L, the illumination at position ﬂj = (yj, L+mn;)

can be approximated by §) av e T(E=Y;)*/2L)  giri; gire(Ta=Y;)*/2L

l,s

and, thus, AfA ~ AN~ where
Ls

fu
0 ot 1
h(g;w1)  h(gg;w1) h(§p;wi)
4 { {
1 1 1
h(§; R(Go: h(G 5
e (yi w2) (yri wa) (y;i w2) (22)
1t 1 7
h(y;ws) h(Yyws) ... h(§giws)
4 { {

with ﬁ(ﬂj;w) - emmjg(gj;wl), and

ei"%(ms_yl)2/2L 0
0 eire(@s—Y,)? /2L

A = . . (23)

0 ei'ﬁc(ws_yK)z/QL

In this approximation, the nonzero entries of the diagonal matrix (23) are given by
the illumination relative to the central frequency k.. Then, the multiple-frequency
MUSIC formulation is of the MMV form
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with A as in (22), AfA ~as in (23), and the (N - 5) x N matrix
B=P°=[P(w)",P(w)",..., Pws)"]" (25)

corresponding to stacking the array response data matrices (4) for multiple
frequencies in a column. With this data structure, multiple-frequency imaging
can be carried out coherently using MUSIC with the column vectors of (22) as
the imaging vectors.

We could have used instead the alternative data structure

Pw)) ... 0 0
0 0 0 Pws)

to image with MUSIC. However, that would be as if imaging with each frequency
separately and summing up the resulting images incoherently, so there would be
no significant improvement over single frequency imaging.

To summarize, multiple frequency imaging with phases can be done in
all regimes by solving (20) with suitable fo-norm or ¢;-norm methods. The
matrix-matrix formulation (24) can be used to form the images with MUSIC or
using (2,1)-matrix minimization as in [12]. Recall that (24) is an approximate
formulation, which is valid for the paraxial regime.

3.4.2 Imaging without phases

Assume now that only the intensities can be recorded at the array. In subsection
3.3 we showed that with multiple sources and multiple receivers, but a single
frequency, we could recover cross correlated data from intensity-only measure-
ments if we control the illuminations and, then, we could image holographically.
In general, if several frequencies are used for imaging, we can fix one of the three
possible variables (&,,Zs,w) and proceed similarly. For example, we can fix the
receiver position &,, and recover the multifrequency interferometric data

d((Z,, Z,), (Bs, Ts), (W, ")) = P(&,, Bs;w)P(B,, Tgr;w') (27)

for all pairs of frequencies (w,w’) and source locations (&4, ).
To understand the type of data that we can use in this situation, let us
consider one row of the N x (N - S) full response matrix for multiple frequencies

P" =[P(w1), P(w2),...,P(ws)], (28)
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and denote the r-th row of this matrix by

pr:Lp’r‘lvaQM"vaN-S]' (29)

Here, py; with j = j(s,1) = s+ (I — 1) - N, denotes the received signal at &,
when the source at Z4 sends a signal of frequency w;. With this notation, and
denoting by the superscript -* the conjugate transpose of a vector,

M" = p.p, (30)

is the rank-one matrix whose jth column corresponds to the vector m~ in the
o

right hand side of the linear system (17), introduced in subsection 3.3 fojr single
frequency imaging, but generalized here so as to account for multiple frequencies,
ie., for I =1,...,5. That is, the jth column of (30) contains the correlations
of the response received at &, when a signal of unit amplitude and frequency
wy is sent from &4 to probe the medium (j = s+ (I — 1)N), with all the other
responses received also at @, when unit amplitude signals are sent from all the
sources with all the different frequencies. In short,

[M")ij = Priprj = (D,€i)" P€j - (31)

Since M" is rank one, all the columns are linearly dependent, so we can only
use one of its columns to solve the imaging problem

_ r
Aejp =mz (32)

for one €j, and form the images with an ¢o-norm or ¢;-norm method. The matrix
A;j is given by (21) and, hence, the model (32) is exact.

Alternatively, once the matrix M" has been obtained from intensity-only
measurements, imaging can be done using the Kirchhoff migration functional

TEM — diag(AX M" Az ). (33)

The ¢ images (33) are very robust with respect to additive measurement noise,
but they are statistically unstable when imaging is done in a randomly inhomo-
geneous medium or when there are modeling errors due to off-grid scatterers.
Both situations lead to perturbations in the (unknown) phases that may make
the ZX¥M images dependent on the particular realization of the medium and/or
the positions of the scatterers. In [29], we showed that statistical stability can be
enhanced by masks that limit the frequency and source offsets of the measure-
ments used in (33). Hence, if the perturbations of the phases are important, we
can use the Single Receiver INTerferometric (SRINT) imaging functional given
by

TSRINT _ diag(Aé ZOMA). (34)
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In (34), the mask Z is a matrix composed by zeros and ones restricting the data
to coherent nearby source locations and frequencies, and ® denotes component-
wise multiplication. The same idea can be used for stabilizing the #¢;-norm
minimization method if the perturbation of the phases are important. We can
just replace the jth column of the matrix M" by the jth column of the masked
data Z ® M", and remove the corresponding rows from the model matrix A’e} .

On the other hand, as noted in [31, 28], the support of the reflectivity p
can be recovered exactly by using the MUSIC algorithm on the single frequency
interferometric matrix M (w) = P*(w)P(w). Once the support of p is found, we
can estimate the reflectivities by solving a trace minimization problem restricted
to the support of p (see [10, 31] for details).

For multiple frequencies, multiple sources and multiple receivers one can use

the data structure
P(wi)*P(w1)

P(wz)*P(w1)

M® = (35)

Plus) Plen)

for pairs of frequencies (wj,w1), I =1,...,5, to image coherently using MUSIC.
Indeed, the matrices M€ as in (35) and P¢ defined in (25) have the same column
space and, therefore, MUSIC can form the images using the SVD of M¢ and the
column vectors of (22) as imaging vectors. We denote these data structures with
the superscript ¢ to point out that we have stacked the one frequency matrices
P(w;) and the two frequencies matrices P(w;)* P(w1) in a column.

As noted in the previous section we could have used instead the alternative
data structure

P(wl)*P(wl) 0 0
Md _ 0 P(CUQ)*P(UJQ) 0 (36)
) 00 Plus)Plus)

to image using MUSIC. However, as we have already explained, if we used the
SVD of M? to obtain the signal and noise subspaces, then the frequencies are
not used coherently and there is no improvement over single frequency imaging.

In summary, multiple frequency imaging with intensity-only can be done in
all regimes by solving (32) with appropriate £3-norm or ¢1-norm methods or, in
the paraxial regime, by forming the images using MUSIC on the data structure
(35) with imaging vectors given by the column vectors of the matrix (22). MUSIC
on the data structure (36) should not be used since multiple frequencies are
not processed coherently. The performance of these methods will be assessed in
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Section 4, where we show numerical experiments in homogeneous and weakly
inhomogeneous media.

4 Numerical Simulations

We present here numerical simulations that illustrate the performance of the
different imaging methods discussed in the previous sections. Specifically, we
consider multifrequency interferometric imaging without phases discussed in
subsection 3.4.2, and we present the images obtained with £1-norm minimization,
SRINT, and MUSIC using the data structures M¢ and M¢?. Our objective is to
study the robustness of these imaging methods in the presence of noise, that
is perturbations in the unknown phases of the collected signals. Two types of
phase perturbations are considered, systematic due to off-grid placement of the
scatterers and random resulting from wave propagation in an inhomogeneous
ambient medium.

4.1 Imaging setup

We consider a typical imaging regime in optics, with a central frequency fo = 600
THz corresponding to a central wavelength Ag = 500nm. We use S = 12 equally
spaced frequencies covering a total bandwidth of 30THz. In this regime, the
decoherence frequency of the data € is equal to the total bandwidth. All
considered wavelengths are in the visible spectrum of green light.

The size of the array is a = 500, and the distance between the array and
the IW is L = 10000Ag. The IW, whose size is 120\g x 60\q, is discretized using
a uniform lattice with mesh size 4\g X 2Ag. The medium between the array and
the IW is inhomogeneous, with weak fluctuations and long correlation lengths
with respect to the central wavelength. The propagation distance L is large so
cumulative scattering effects are important, but not too large so the phases of
the signals received at the array still maintain certain degree of coherence. In all
the figures, the true locations of the scatterers are indicated with white crosses,
and the length scales are measured in units of Ag.

Again, we assume that the phases of the signals received at the array cannot
be measured. Hence, only their intensities are available for imaging. These
measurements are collected at only one receiver, so we can use the methods
explained in subsection 3.4.2 to image interferometrically. We consider imaging
in homogeneous and inhomogeneous media.
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Fig. 2: Imaging in a homogeneous medium. There is no noise added to the data and the
scatterers are on the grid. From left to right: SRINT image, MUSIC with M4, MUSIC with
M€ coupling over frequencies, and £1-norm minimization applied on one column of the
masked matrix Z2 ® M".

4.2 Imaging in homogeneous media

Let us first consider imaging in homogeneous media. For the imaging system
described above, we expect cross-range and range resolutions of A\gL/a = 20\
and Cy/B = Ao fo/B = 20\, respectively. In order to keep the resolution fixed
with respect to imaging in inhomogeneous media that we consider afterwards,
we also apply masks to the data used to image in the homogeneous medium.
This reduces the cross-range resolution to A\oL/Xy4 = 32X¢ corresponding to
X4 = 5a/8. The range resolution does not change because the decoherence
frequency €4 is equal to the total bandwidth.

In Figure 2, the scatterers lie on the grid and there is no noise in the data. We
observe that SRINT (left image) provides a quite limited resolution and it cannot
resolve two of the four scatterers. On the other hand, imaging with MUSIC
(two middle images) or imaging using ¢;-norm minimization (right image) give
much better results. MUSIC using the block-diagonal matrix M9 (second image
from the left) gives exact recovery, while MUSIC using the M¢ matrix (third
image from the left), that couples all the frequencies, is less accurate. This is
so because, as we explained in Section 3.4, MUSIC with M€ is not exact as it
provides approximate locations of the scatterers only in the paraxial regime.
Finally, the ¢1-norm approach recovers exactly the four scatterers as can be seen
in the right image of this figure.

Figure 3 shows the same experiment as Figure 2 but with the scatterers
displaced by half the grid size with respect to the grid points in range and
cross-range directions. This produces perturbations in the unknown phases of
the collected signals due to modeling errors. Because the point spread function is,
in this case, much wider (of the order of 20)\g) than the off-grid displacements,
the image formed with SRINT (left plot) is very robust with respect to these
perturbations in the phases. However, the image obtained with MUSIC using the
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data structure M? (second plot from the left) deteriorates dramatically because
the multiple-frequency information contained in the data is not processed in
a coherent way. On the other hand, both MUSIC with the M¢ data structure
(third plot from the left) and ¢;-norm minimization (right plot) are very robust
with respect to the off-grid displacements.

Fig. 3: Same as Figure 2 but with the scatterers off the grid. The scatterers are displaced
by half the grid size in both directions from a grid point.

We study next the performance of the proposed methods for imaging in
inhomogeneous media with weak fluctuations and long correlation lengths with
respect to Ag. The challenge is to obtain similar results in this case.

4.3 Imaging in random inhomogeneous media

Consider the setup displayed in Figure 4 with four scatterers in the right (black
circles) at a distance L = 10000\o from the array (black stars). The data used in
the numerical experiments are generated using the random phase model which is
frequently used to account for weak phase distortions [3, 13, 5, 29]. In this model,
the standard deviation of the perturbations of the phases is given by ov/I1L/)o,
where o and [ denote the strength and the correlation length of the fluctuations of
the medium, respectively. If we introduce the characteristic strength o9 = \o/V/IL,
for which the standard deviation of the random phases is O(1), we can quantify the
perturbations of the unknown phases by the dimensionless parameter e = o /0.

In order to study the effect of phase distortions due to a random medium
on imaging, we consider that the scatterers lie on the grid. Imaging in random
media with ¢;-norm minimization has also been considered in [13, 5].

Figure 5 displays the images obtained in a very weak fluctuating random
medium with € = 0.05. Comparing these images with the ones obtained in a
homogeneous medium with scatterers on and off the grid (see Fig. 2 and Fig. 3,
respectively) we observe that (i) SRINT (left plot), MUSIC using M€ (third plot
from the left) and ¢;-norm minimiation (right plot) are stable, and (ii) MUSIC
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Fig. 4: One realization of the random medium used in the simulations. The correlation
length of the fluctuations is [ = 100A¢.

Fig. 5: Same as Figure 2 but the medium is inhomogeneous. The strength of the fluctua-
tions is & = 0.5 10~% which corresponds to € = 0.05. The scatterers are on-grid.

using M¢ (second plot from the left) is not. Note that off-grid scatterers and
a random medium both induce similar noise in the data, as both occur in the
phases. In the off-grid case, the noise is systematic and similar for all array
elements, while the noise induced by the random phase model depends on the
path that connects the scatterer to each array element. Hence, depending on the
correlation length of the random medium the noise produced in the phases is
more or less correlated over the array elements.

Since MUSIC using M@ is not robust with respect to perturbations in the
phases (see Figures 3 and 5) because the data are not processed coherently over
frequencies, we do not present more results using this method.

To further examine the robustness of the other imaging methods with respect
to random medium fluctuations, we consider in the next figures five noise levels
corresponding to € = 0.1,0.2,0.4,0.6 and 0.8. Each figure presents results for
two realizations of the random medium. In Figure 6 we see that, as expected,
SRINT is highly robust, although its resolution is not very good. Even for ¢ = 0.8
(right column) the images do not change much respect to the ones obtained
in a homogeneous medium. Figure 7 shows the images obtained with ¢;-norm
minimization. The resolution is much better than that provided by SRINT, but
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Fig. 6: Imaging with SRINT in inhomogeneous media illustrating its stability with respect to
the random fluctuations of the media. The strength of the fluctuations increases from left
to right so ¢ = 0.1,0.2,0.4,0.6 and 0.8. The top and bottom rows are two realizations of
the random medium.

it is much more sensitive to noise. Only for fluctuation strengths below or equal
€ = 0.2 the images are good. Above this strength the images are useless. However,
the use of masks on the data effectively removes the distortion imposed by the
medium up to € = 0.4, as it can be seen in Figure 8. This is so because by using
masks we discard the incoherent data and, thus, we improve the robustness of
the ¢1-norm method (even though we reduce the number of equations in the

linear system by about 40%).

Fig. 7: Images obtained with £1-norm minimization without masks in the same media
and the same scatterer’s configuration as in Figure 6. Imaging with £;-norm minimization
without masks is stable only for € < 0.2.

Finally, the images shown in Figure 9 formed using MUSIC with M€ are
also very good. They have significantly better resolution than the SRINT images
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Fig. 8: Same as Figure 7 but using masked data. The results are now stable for ¢ < 0.4.

but not as good as the ones obtained with f;-norm minimization. We stress
that MUSIC with M€ is not exact even for perfect data and, therefore, £1-norm
minimization should be preferred if the fluctuations of the medium are weak.
However, as the strength of the fluctuations increases, MUSIC with M€ becomes
competitive. Observe that at lower SNR, when the ¢;-norm images are not usefull,
MUSIC with M€ is robust and the resolution is better than the one provided
by SRINT. Therefore, it should be the preferred method among the three for
imaging in moderate SNR regimes.

Fig. 9: Images obtained with MUSIC using M€ in the same media and the same scatterer's
configuration as in Figures 6-8. MUSIC using M€ is stable for € < 0.6.
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5 Imaging results in the framework of
Theorems 2.3 and 2.4

To illustrate the relevance of Theorems 2.3 and 2.4 for imaging, we consider in
this section the equivalent source problem of active array imaging with multiple
frequencies and multiple receivers described in subsection 3.4.1. In this setting
we have to solve the linear system

.Ap:b];\

with A the model matrix (22). We compare the corresponding ¢5 and ¢; solutions
of this problem for different imaging configurations. Our results illustrate the
well know super-resolution for /1, meaning that p,, determines the support of
the unknown p with higher accuracy than the conventional resolution limits,
provided the assumptions of Theorem 2.3 for the noiseless case or Theorem 2.4
for the noisy case are satisfied. We also show how the bandwidth, the array size
and the number of scatterers affect the vicinities defined in (8). The numerical
results are not specialized to a paticular physical regime. They illustrate only
the role of the theorems in solving the associated linear systems.

Imaging methods

We compare the solution p,, obtained with the £;-norm minimization algorithm
GelMa described in section 2, and the ¢s-norm solution

where A* is the conjugate transpose of A.

Imaging setup

The images are obtained in a homogeneous medium with an active array of
N = 37 transducers. The ratio between the array aperture a and the distance L
to IW, as well as the ratio between the bandwidth 2B and the central frequency
fo, vary in the numerical experiments. The IW is discretized using a uniform
grid of K = 3721 points of size A\¢/2 in range and cross-range directions. The
classical resolution theory suggests that the range and cross-range resolutions
are ¢o/(2B) and \gL/a, respectively. There is no additive noise in the data, but
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we consider on-grid and off-grid scatterers which produces perturbations in the
recorded phases.

Imaging results

In Figure 10 we show the results obtained for a large array and a large bandwidth
corresponding to a/L = 1 and (2B)/ fo = 1. From left to right we show the p,
solution, the py, solution, and the vicinities S; defined in (8) plotted with different
colors. In the top and bottom rows there are M = 4 and M = 8 scatterers,
respectively. All the scatterers are on the grid and their exact locations are
indicated with white crosses. The four scatterers in the top row are far apart and,
therefore, their vicinities do not overlap as it can be seen in the top right image
of this figure. In this case, all the conditions of Theorem 2.3 are satisfied and we
find the exact locations of scatterers with the £1-norm minimization algorithm.
The eight scatterers in the bottom row are closer and their vicinities are larger
(according to (8) the size of the vicinities increases with M). We observe in the
bottom right image of this figure that the vicinities overlap, so condition (10) is
not satisfied in this case. We still, however, find the exact locations of scatterers
with the ¢1-norm minimization algorithm which means that the conditions of
Theorem 2.3 have pessimistic bounds. Because the array and the bandwidth
are large, the fo-norm solutions also give very good estimates of the scatterer’s
locations (see the left column images).

In Figure 11 we show the results for the same configurations of scatterers
as in Figure 10, but using a smaller array aperture and a smaller bandwidth
so a/L =1/2 and (2B)/fo = 1/2. Thus, the classical resolution limits become
co/(2B) = 2o in range and AgL/a = 2\ in cross-range. Hence, the resolution of
the /o-norm solutions deteriorate, as can be observed in the left column images
of this figure. In fact, we only recover seven scatterers instead of eight for M = 8
(there are two scatterers that are quite close). The ¢1-norm minimization approach,
however, still gives exact recovery for both M =4 and M = 8 scatterers. This is
referred to as super-resolution, which means that we can determine the location
of the scatterers with a better accuracy than the classical resolution limits.

To illustrate the effect of the array and bandwidth sizes on the size of
the vicinities we plot them in Figure 12 for the case M = 4. From left to
right we plot the vicinities for a/L = 1/2 and (2B)/fo = 1/2, a/L = 1/2 and
(2B)/fo = 1/4, and a/L = 1/4 and (2B)/fo = 1/2. As expected, cross-range
and range resolutions deteriorate and consequently vicinity sizes increase as the
ratios a/L and (2B)/ fo decrease.
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cross—ra

Fig. 10: Imaging in a homogeneous medium and scatterers on grid. From left to right:
Piyy Pey» and the vicinities S;, j = 1,..., M, plotted with different colours. Top row
M = 4, bottom row M = 8. Large array aperture and large bandwidth so a/L = 1 and

(2B)/fo = 1.

In Figure 13 we use a relatively small array and bandwidth so a/L = 1/4 and
(2B)/fo = 1/4. In this case, the conditions of Theorem 2.3 are not satisfied for
neither M =4 nor M = 8, but the images obtained with ¢;-norm minimization
are still very good. They are exact for M = 4 and very close to the true image
for M = 8.

By further decreasing the array aperture and the bandwidth so that a/L = 0.1
and (2B)/fo = 0.1, we consider in Figure 14 a very challenging situation even for
well separated scatterers. The fo-norm solutions shown in the left column of this
figure are not able to locate the positions of the scatterers because of the low
resolution of the imaging system. However, when the number of the scatterers
is very small (see the top row corresponding to M = 4) the ¢1-norm approach
provides a precise image even though the discretization of the IW is 20 times
finer than the classical resolution limits of the imaging system. On the other
hand, when we increase the number of scatterers to M = 8 (bottom row) the
interaction between the vicinities is very strong and the ¢;-norm image in not
good neither.

We now consider the same situation as in Figure 10, so the array aperture and
the bandwidth are large, but with scatterers off the grid. This means that there
are modeling errors and, therefore, there is not a vector p for which Ap = b~ In
the case considered next, the scatterers are displaced by A\g/4 from a grid point in
range and cross-range directions. The left column of Figure 15 shows, as expected,
that the ¢2-norm solutions (1) are not affected by off-grid displacements. This is
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cross-range n

Fig. 11: Same as Figure 10 but using a smaller array aperture and a smaller bandwidth so
a/L=1/2and (2B)/fo = 1/2.

Fig. 12: Vicinities S;, j = 1,...,4, for different array and bandwidth sizes. From left to
right: a/L = 1/2 and (2B)/fo =1/2, a/L =1/2 and (2B)/fo = 1/4 and a/L = 1/4 and
(2B)/fo =1/2.
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Fig. 13: Same as Figures 10 and 11 but using a smaller array aperture and a smaller band-
width so a/L =1/4 and (2B)/fo = 1/4.
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Fig. 14: Imaging in a homogeneous medium with a/L = 0.1 and (2B)/fo = 0.1. Top and
bottom rows: M = 4 and M = 8 scatterers, respectively. From left to right: py, as in (1),
py, obtained with GelMa, and the vicinities S;, j = 1,..., M plotted with different colors.
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so because the resolution is larger than the displacements of the scatterers with
respect to the grid points. The right column shows, however, that the ¢;-norm
solutions are sensitive to these displacements. They are no longer exact, although
they remain very close to the true solutions. By carefully examining the results
of this figure we observe that the £1-norm solutions behave as it is predicted by
Theorem 2.4. The coherent part of the solution is supported in the vicinities of
the exact solution while the incoherent part remains very small.

15 ! 15 .
1 " 10} -
£ "o "
g s e
5 s
~10 o [
RE - 3
B -0 s 05 10 15 5 0 5 o5 10 15
rangin rang@in

Fig. 15: Imaging in a homogeneous medium with scatterers off the grid. As in Figure 10, we
use a large array aperture and a large bandwidth so a/L = 1 and (2B)/fo = 1. Top and
bottom rows show the images for M = 4 and M = 8 sactterers, respectively. Left and right
columns show the ¢2-norm and ¢1-norm solutions, respectively.

Figure 16 shows similar results but for a smaller array and a smaller band-
width. We use a/L = 1/4 and (2B)/ fo = 1/4, so the classical resolution limits
increase as can be observed in the ¢5-norm solutions shown in the left column.
As in the previous figure, the £1-norm solutions shown in the right column have a
coherent part whose support is contained in the vicinities of the true solutions and
an incoherent part that is very small. We also refer to [18, 4] for nice discussions
about what to expect from £1-norm minimization when the scatterers do not lie
on the grid.
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Fig. 16: Same as Figure 15 but with a/L = 1/4 and (2B)/fo = 1/4.

6 Conclusions

In this paper we addressed the question of what are appropriate data structures so
as to obtain robust images with two widely used methods: ¢1-norm minimization
and MUSIC. Both methods are well adapted to finding sparse solutions of
linear underdetermined systems of equations of the form A;p = b; where I is a
parameter vector that can be varied, such as the illumination profile in space
and/or frequency. ¢1-norm minimization is well suited for solving problems with
a single measurement vector corresponding to one parameter vector I. On the
other hand, MUSIC requires multiple measurement vectors that are obtained for
several parameter vectors I;, 7 = 1,...,.5. Given the data b;, our first main result
concerns the uniqueness and robustness to noise of the minimal ¢1-norm solution
of A;p = b;. This is the subject of Theorems 2.3 and 2.4. The second important
result is the key observation that MUSIC provides the exact support of the
unknown p when the matrix A; admits a factorization of the form A; = AA,
with A; diagonal. Furthermore, we show in Theorem 2.6 that MUSIC is robust
with respect to noise. Our third main contribution is the formulation of several
common imaging configurations, including multifrequency imaging and imaging
without phases, under a common linear algebra framework. For imaging without
phases (the phase retrieval problem) the robustness of ¢;-norm minimization and
MUSIC is studied with numerical simulations in weakly inhomogeneous media.
Our results suggest that ¢1-norm minimization may be used for low noise levels
while MUSIC should be the method of choice for higher noise levels.
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1 Proofs of theorems 2.1 to 2.4

THEOREM 2.1. M -sparse solutions of Ax = b are unique, if

1 . )
|<ai7aj>‘ < m: VZ#J? (1)

where we assume that the columns of matriz A are normalized so that Vi, ||a;||e, =

1.
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Proof. Assume that there exist two M-sparse solutions x;1 and xo of Ax = b.
Then their difference z = x; — x2 is at most 2M-sparse, and z is in the kernel:
Az = 0. This implies that there exist a 1-sparse vector z1 and a (2M — 1)-sparse
vector zo with disjoint support such that z; — zo = z, and

[Z1lleee = [|Z2]l ¢~ (2)

This means that the vector z; was constructed so as to contain only the largest
in magnitude component of z (one of them if there are several) while zo contains
all the other components of z. Suppose that the unique non-zero coordinate of
z1 is i. Multiplying the identity Az; = Azs by a;, we get

(ai, Az1) = (a;, Az2),

which reduces to

2M

(z1)i = (@i, Azo) = Y (ai,a;)(22);

J=1,5#i

Using now (1) we obtain

1
lz1llie < W(QM— Dllz2lle= < l|22]le=,

which is in contradiction with (2). O
THEOREM 2.2. M -sparse solutions of Ax = b can be found as solutions of
min ||ylle,, subject to Ay =b,
if
1 Vi j
— i
oM’ Js
where we assume that the columns of matriz A are normalized so that Vi, ||a;|e, =
1.

[(ai,a;)| <

Proof. Assume that there exist two solutions x1 and xo of Ax = b. Suppose x1
is M-sparse, and xo is arbitrary. Their difference z = @1 — @5 is in the kernel:
Az = 0. We will show that ||z1]||s, < ||z2]le,. Without loss of generality, we may
assume that x; and xs have disjoint support. Otherwise we decompose z in z;
and zo such that z = 21 — z9 and

supp(z1) C supp(x1),
supp(z2) Nsupp(xy) = 0.
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If we assume
[zalle, < llz1lles (3)

then necessarily
1Z2lle, < [lZ1lle, - (4)

Indeed, if ||z1]l¢, = ||Z1]le,, it is obvious that (3) implies (4). Otherwise, if
1Z1lley < [[®1lle, we have

21 = @1lle, = [[21lle, = [lz1]le, > 0.

Since ¢z = 1 — z = 1 — 21 + 22 we obtain ||z2||s, = ||T1 — 21]e, + ||Z2]|¢, and
from (3) we get

lZ1lle, > llz2lle, = 121 — 21lle, + 226y

which implies
z2lle, <llzille, — 121 — z1lle, < [[21]le; -

This finishes the proof of the statement that (3) implies (4).

We return now in the proof of the theorem and let ¢ be the coordinate of
the component of z = z; — zo with the largest absolute value. Without loss
of generality, we may suppose this component is real and positive. Then by
multiplying the identity Az = 0 by a; we conclude

1 1 1
Il < 57 2l < gl = g (=il + k)
VE?

Since ||z1]l¢, < M||z1]le < M||2]|g, we obtain

Izl < ~lzlle + o122l
[ 9 VAl oM 21014y -

It implies M|/z|lgee < ||Z2]le,. Again using ||z1]l¢, < M| z|/¢~, we obtain
llz1lle, < ||z2lle, which is in contradiction with (4).

O

THEOREM 2.3. Let © be a solution of Ax = b. Let T be the index set of the
support of x:
T =supp(xz), M =|T]|

Fiz a positive e < 1/2 and suppose that A satisfies
i.  The columns of matriz A are normalized so that ¥i, ||a;||e, = 1.
7. The vectors a; in the set T are approximately orthogonal, that is they satisfy

£ .. . .
|<ai7aj>|<M7 VZ,jGT,Z#j.
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iii. For any j € T the vicinity S; defined as

. 1
5= {120 o el > 5y, |
has the properties
l(ak,a;)] <1—2¢, VkeS,

and

an, a;)] < % Vk € Si, Vi #j.

Then x, the M-sparse solution of Ax = b, can be found as the solution of

min ||y|le,, subject to Ay =b.

Proof. Assume y is another solution of Az = b. Then Ax = Ay. As in the proof
of Theorem 2.2 we may suppose that & and y have disjoint support. For any
p € T multiplying the identity Ax = Ay by a, we get

Tp + Z (@i, ap)w; :Z<aiaap>yi+ Z (ai,ap)yi + Z (@i, ap)y:

iGT,i#p ieSp ’L‘QU]‘S]‘ iGSj,j;ép
1 5
<(1_2E)Z‘yi|+m vl + 57 Z |yil.
1€Sy 1¢U; S, 1€S;,j#p

This implies
1 € €
apl < (1=29) 3 lwil+ 37 D Mil+ g7 Do Il + g7llele.
€Sy i€U;S; 1€S;,5#p
Adding up the inequalities for all p € T' we obtain
1
l@lley < (U=e) D0 lyal +ell@lles +5 > luil
ZGU]‘S]‘ iEUij

Thus 1
el < > Wil + 57— 22 Il <lwlle. (5)

1€U;S; 1¢€U;S;
Contradiction. O

THEOREM 2.4. Noisy case Let  be an M -sparse solution of

Ax = b,
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and let as before T' denote the index set of the support of @, that is T = supp(x)
and M = |T|. Fiz a positive ¢ < 1/2 and suppose that A satisfies conditions i, i,
and it of Theorem 2.3.

Furthermore, let s be the £1-norm minimal solution of the noisy problem

min ||ylle,, subject to Ay = b°, (6)

with b defined by
b° = b+ 6b.

We assume that the noise 6b is bounded, that is we have
[[6b][¢, <6,

for some small positive §. We further assume that A has the property that the
solution dx of
min ||yl|¢,, subject to Ay = db, (7

satisfies
10le, < C|6b][e, - (8)

Then we can show that the solution xs of (6) can be decomposed as
T5 = T+ T4, 9)

with x. the coherent part of the solution that is supported on T or in the vicinities
S; with j € T, and x; the incoherent part of the solution which is supported
away from the vicinities and is small. Specifically, for x. we have: for any j € T

[ @)] = @)y + 3 (ag,an) (@)l | < 8o+ Co,

k‘ESj
with
5 = 2000 =) 2e(lzlle, +C9)
07 M(1—2¢) M '

While for x; we can show that:
[ille, <é,

with 61 given by
4C6(1 —¢)

0 =0C6
1=C0+ -2
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Proof. By assumption (7)-(8) there exist dx such that Adx = db, and ||dx||s, <
Cé. Suppose x is the M-sparse solution of Ax = b. Note that

A(xs —dx)=b, A(x+dx)=0b°.
Since both & and x5 are respective minimizers, we obtain
[2lle, < llos — b, , (10)

and
@slle, < [z + dle, .

Using the triangle inequalities
@5 — dxlle, < l@slle, +[102lle,, 2+ 0zlle, <llle, + [0l
we obtain
@5 — 0z|le, < |®slle, + 162]le, <l + 0zlle, + [[62lle, < ([2]e) + 202,

which implies
s — dzle, <[], +2C0. (11)

Combining (10) and (11) we conclude that
lelle, < lws — dalle, < llalle, + 2. (12)
For any p € T, taking the inner product of
Alx —xs +0x) =0
with a, we get

(x— x5 + o), + Z (ak, ap)(x — x5 + o), + Z(ak,ap>(5a:—ac5)k

keT,k#p keS,
+ Z (ak, ap)(0x — z5)) — Z (ak, ap)(dx — z5); = 0.
keS;,j#p kgUS; kgT
(13)
Using properties (ii)-(iii) we obtain
(@—as+02),l <—7 D l@—as+0x)
kET, k#p
+(1 —2¢) Z|m5—6m)k\+ Z |(xs — o)k
) keS, keS;,j#p
top Do (@i swl.
kgUS; kgT
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Summing over all p € T" we get

dl@—ms+0m)y| <) |[(m—as+o)yl+(1-2) > |(@s— ox)l

peT peT keul s,
1
+e Z |(m576w)k|+§ Z [(x; — 6x)g).
ket s, kgUS; kgT
Thus
1
D l@—zs+dapl < D, @ -daltgr—gy DL l@i—dakd
keT keUM 5, k@US; kgT
1—2¢
:Z|(m576m)k\f2(17€) > (@i - dm)i-
kgT k@US; ,kgT

We therefore obtain

1—2¢
lzlle, < lles = Ozl — 5—— Y. (@i — o2l
2(1—¢)
k@US, kT

By (12) we conclude

Z |(m; — 6)y| < w

1—2¢
kgUS; kgT
By the triangle inequality
4C5(1 —¢) 4C6(1 —¢)
ille, < /|0 — 2 L0+ ——— =01 1
lwille, < N2l + o2 <os+ =D —s )

It remains to investigate x., the coherent part of the solution. From (13) we have

(z)p + Z (ak,ap)(dx — x5)k <% Z |(x — xs + 0x) ]

keS,U{p} . kET k#p
a7 > (@s — o)
k€S, . j#p
+m Z \(wz — 5.’1!)k|
kgUS; kgT
< £ o — w5 + Bl + o 200 —E)
S M o b oM 1_3605(1 :
g — &
<< 5 200l —e)
a7 Uzle + llzslle, + 162le,) + M= 20)
€ 206(1 —¢)
< — (2 2 e ST Y
a7 Cllzlle, +2C0) + M= 20) do
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Applying the triangle inequality:

@)y~ Lres,uplaman @] <|@p+ Y (ara,)(6z - o)
keSpU{p}

+ ‘Zkesp (ak,ap)(ém)k.‘
< 6o + C4,

we obtain the result. O

2 Proof of theorem 2.6
THEOREM 2.6. Let X =Diag(x) be a diagonal matrix that solves
AXL = B,

where A satisfies conditions (i), (i), and (iii) of Theorem 2.3 for a fixed € < 1/3,

il lis
I lor 122 las < CKx8
Ik1 k2 lks

and B is the noiseless data matrix (17) with SVD B = Q = UXVT. Let the
perturbed matrix B® = Q% 4+ Qg be such that opax(B® — B) < 6. Suppose x,
the vector diagonal entries of X, is sparse with T' = supp(x), M = |T|, M <
size(x), and

Tm = wr?;%{\:ril}-
Let L7 be the submatrix of L, formed by the rows corresponding to 7', has
O';J;L = Umin(LT)~ (1)

If
20 < Tmok (1 — 3¢), (2)

the orthogonal projections onto the subspaces R(Q?) and R(B) are close:

0
Tmok (1 —3e)

| Prigsy — Pr(B)lle, < 3)
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Proof. Denote by X1 be the submatrix of X where we keep the rows that
correspond to the support of x. Similarly, denote by yr be the subvector of y
where we keep the entries that correspond to the support of . We claim that

(1=3¢)%|12l7, < I(A"2)7ll7, < (1+3¢)?||z], (4)

if z € R(B). Indeed, suppose that
z= Z ;a;.
ieT

Then, defining a as the vector in C¥ whose components are zero except the ith
components with ¢ € T that are equal to «;, we get

Nzl = llellZ,| = | > aiajlai,a))| <elal,
i,J€Ti#]

and

(1= e)llell?, < ll2ll7, < (1 +€)llellZ, -

For any j € T we have

(A"2); =Y ailaj,ai),

€T

and, therefore,

1A 2)rl7, = > djeilar, ai)ax, aj).

1,5,k€T
Hence,
(A 2)7ll7, — llellZ,| < | Y djeilar ai)(ay, a;)
i,J,k€T i#]
oi? +eal* (2 e 2
< Z fs M—i_ﬁ <3€||a||52
1,j €T i#]

Therefore,

(1 =39, < (A 2)rl7, < (1+3¢)|al,,

and we obtain

1-3¢, 9 . 9 14+3e, 9
e E A [ S P AR T

which implies (4).
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In order to compute the smallest nonzero singular value of B we observe
that

2*BB*z = m

_ 1 * *X L L*X V't
B (A*2)p Xr Ly Lp X1 (A" 2)r

min in
ZER(B),||Z]ley=1 [|1Z]]eg=1

>(1-3¢)?  min  y'XpLpLpXry > (1-3e)%22,(ch)?,
YECM||Y]ley=1

where we have used the condition (1). Since oyax(B° — B) < 6, we conclude that
B =Q°% + Qg, where Q° has M nonzero singular values, with smallest nonzero
singular value

Omin(Q%) = zpol (1—3e) — 4,

and Qg has largest singular value

UmaX(Qg) <4

If (2) holds, then we can discard Qg by truncation of the singular values smaller
than the noise level. We now apply Theorem 2.5 to obtain (3). O
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