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Abstract: In this paper we consider imaging problems that can be cast in the form
of an underdetermined linear system of equations. When a single measurement
vector is available, a sparsity promoting ℓ1-minimization based algorithm may
be used to solve the imaging problem efficiently. A suitable algorithm in the case
of multiple measurement vectors would be the MUltiple SIgnal Classification
(MUSIC) which is a subspace projection method. We provide in this work a
theoretical framework in an abstract linear algebra setting that allows us to
examine under what conditions the ℓ1-minimization problem and the MUSIC
method admit an exact solution. We also examine the performance of these two
approaches when the data are noisy. Several imaging configurations that fall under
the assumptions of the theory are discussed such as active imaging with single or
multiple frequency data. We also show that the phase retrieval problem can be
re-cast under the same linear system formalism using the polarization identity
and relying on diversity of illuminations. The relevance of our theoretical analysis
in imaging is illustrated with numerical simulations and robustness to noise is
examined by allowing the background medium to be weakly inhomogeneous.

Keywords: array imaging, phase retrieval, ℓ1-minimization, MUSIC

1 Introduction
Imaging is an inverse problem in which we seek to reconstruct a medium’s
characteristics, such as the reflectivity, by recording its response to one or more
known excitations. The output is usually an image giving an estimate of an
unknown characteristic in a bounded domain, the imaging window of interest.
Although this problem is in all generality non-linear, it is often adequately
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formulated as a linear system of the form

𝒜𝜌 = 𝑏 , (1)

where the data vector 𝑏 ∈ C𝑁 is a linear transformation of the unknown vector
𝜌 ∈ C𝐾 [13]. 𝒜 ∈ C𝑁×𝐾 is the model matrix that relates 𝑏 to 𝜌. Typically,
the linear system (1) is underdetermined because the number of unknowns 𝐾 is
much larger than the number of measurements 𝑁 , so 𝑁 ≪ 𝐾.

We are interested in this work in imaging problems where the unknown 𝜌 is
M-sparse with 𝑀 ≪ 𝐾. Under this assumption (1) falls under the compressive
sensing framework [21, 16, 22]. It follows from [16] that the unique M-sparse
solution of (1) can be obtained with ℓ1-optimization when the mutual coherence1

of the model matrix 𝒜 is smaller than 1/(2𝑀). The same result can be obtained
assuming 𝒜 obeys the M-restricted isometry property [7] which basically states
that all sets of M-columns of 𝒜 behave approximately as an orthonormal system.

We show that uniqueness for the minimal ℓ1 solution of (1) can be obtained
under less restrictive conditions on the model matrix 𝒜 provided that the
unknown 𝜌 is such that the columns of 𝒜 that correspond to the support 𝑇 of
𝜌 are approximately orthogonal, so there exists a small value 0 < 𝜀 < 1/2 such
that

|⟨𝑎𝑖, 𝑎𝑗⟩| <
𝜀

𝑀
, ∀ 𝑖, 𝑗 ∈ 𝑇, 𝑖 ̸= 𝑗.

Under this assumption, we associate to each column vector 𝑎𝑗 , 𝑗 ∈ 𝑇 , its vicinity

𝑆𝑗 =
{︂

𝑘 ̸= 𝑗 s.t. |⟨𝑎𝑘, 𝑎𝑗⟩| ⩾ 1
2𝑀

}︂
that contains all columns of 𝒜 that are approximately parallel to 𝑎𝑗 . This result
finds interesting applications in imaging since it states under what conditions the
location of well separated reflectors can be determined with high precision. It can
be also used to explain super-resolution, i.e., the significantly superior resolution
that ℓ1-optimization provides compared to the conventional resolution of the
imaging system, i.e., the Rayleigh resolution. Moreover, we address the robustness
to noise of the minimal ℓ1 solution and show that for noisy data the solution 𝜌

can be decomposed in two parts: the coherent part 𝜌𝑐, which is supported in 𝑇

or in the vicinities 𝑆𝑗 , and the incoherent part 𝜌𝑖, usually referred to as grass,
that is small. Other stability results can be found in [7, 8, 17, 35, 18, 4].

The notion of vicinities and weak interaction between scatterers has been
considered in [18] and [4]. In [18], several algorithms for imaging well separated

1 The mutual coherence of 𝒜 is defined as max𝑖̸=𝑗 |⟨𝑎𝑖, 𝑎𝑗⟩| with 𝑎𝑖 ∈ C𝑁 the columns of
𝒜 normalized to one, so that ‖𝑎𝑖‖ℓ2 = 1 ∀ 𝑖 = 1, . . . , 𝐾.
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sources were introduced and analyzed. These algorithms address the issue of
high coherence in 𝒜 using techniques of band exclusion and local optimization.
In [4], a resolution analysis for ℓ1-minimization and ℓ1-penalty was carried out
for array imaging in the paraxial regime. It was shown that for well separated
sources or clusters of sources the minimal ℓ1 solution is supported mainly in the
vicinities of the true sources’ locations.

More recently in [5], the problem of imaging sources in weakly inhomogeneous
media was addressed using Coherent INTerferometry (CINT) followed by ℓ1
convex optimization for debluring. This is a natural idea since, as it was shown
in [1] (see also [3]), the CINT image is a convolution of the reflectivity with a
Gaussian kernel. Hence, the resolution in CINT images can be refined by debluring
as in [2], where a level set method was used. In [5], debluring was performed with
ℓ1-optimization and its performance was analyzed for well separated sources and
well separated clusters of sources.

We also consider in this paper the more general form that system (1) takes
when 𝑆 multiple measurement vectors (MMV) are available, so

𝒜𝑙𝑞
𝜌 = 𝑏𝑙𝑞

, 𝑞 = 1, . . . , 𝑆. (2)

Here, 𝑙𝑞 = [𝑙1𝑞, 𝑙2𝑞, . . . , 𝑙𝐾𝑞]𝑇 denotes a parameter vector such as the excitation
that we control. To simplify the notation, we will denote the different excitations
by the scalar 𝑞 and write 𝒜𝑞𝜌 = 𝑏𝑞 instead, unless it is necessary to explicitly
state that the model matrix depends on a vector 𝑙𝑞. To solve (2) we consider the
MUltiple SIgnal Classification algorithm [34] which has been used successfully in
signal processing [23] and imaging [15, 25]. For a careful analysis of MUSIC for
single snapshot spectral imaging we refer the reader to [26]. We show here that
MUSIC gives the exact support of the solution of (2) in the noise free case when
the matrices 𝒜𝑞 admit the following factorization

𝒜𝑞 = 𝒜 Λ𝑞, with Λ𝑞 diagonal. (3)

In this case, (2) admits the following MMV formulation

𝒜𝜌𝑞 = 𝑏𝑞; 𝜌𝑞 = Λ𝑞𝜌 ,

where the multiple unknown vectors 𝜌𝑞, 𝑞 = 1, . . . , 𝑆, share the same support.
The main advantage of this formulation is that we can immediately infer that the
data vectors 𝑏𝑞 are linear combinations of the same M-columns of 𝒜, those that
belong to the support of the unknown 𝜌. The implication is that the columns of
𝒜 indexed by 𝑇 = supp(𝜌) span the column subspace of 𝐵, the ’signal’ subspace
of 𝐵. Hence, the support 𝑇 is the zero set of the orthogonal projections of the
columns of matrix 𝒜 onto the null space of the data matrix 𝐵. Moreover, the
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support is recovered exactly under the assumption that all M-sets of columns
of 𝒜 are linearly independent. We discuss several imaging configurations for
which the factorization (3) is feasible as well as instances where (3) holds only
approximately and MUSIC is no longer exact even for noise free data.

Let us remark that for different excitations 𝑞 we obtain multiple measurement
vectors 𝑏𝑞 which correspond to linear transformations of the same unknown vector
𝜌. The data can be arranged in a matrix 𝐵 ∈ C𝑁×𝑆 whose columns are the
vectors 𝑏𝑞, and the MMV formulation may be expressed as a matrix-matrix
equation

𝒜P = 𝐵 ,

where the unknown is now the matrix P ∈ C𝐾×𝑆 whose columns are the vectors
𝜌𝑞 = Λ𝑞𝜌 that share the same support. The optimization can therefore be
performed within the MMV formalism as described in [14, 24, 36, 37]. The
main idea is to seek the solution with the minimal (2,1)-norm which consists
in minimizing the ℓ1 norm of the vector formed by the ℓ2 norms of the rows of
the unknown matrix P. This guarantees the common support of the solution’s
columns. We do not pursue this approach here and refer the reader to [12] for an
application of this formalism to imaging strong scattering scenes as well as to
[6] where an MMV formulation for synthetic aperture imaging of frequency and
direction dependent reflectivity was introduced and analyzed.

We present several configurations in array imaging that can be cast under the
general framework discussed here, such as single- and multiple-frequency array
imaging using single- or multiple-receivers. All these problems can be formulated
as (1) for a single measurement vector, or as (2) when multiple measurement
vectors are available. We also consider the non-linear phase retrieval problem,
which according to [31, 28, 29] can be reduced to a linear system of the form
(2). This requires intensity data corresponding to multiple coherent illuminations
which when using the polarization identity are transformed to interferometric
data. We consider multiple frequency intensity data collected at a single receiver
due to multiple coherent illuminations that could be generated by a spatial light
modulator (SLM) [30]. The solution of (2) may then be computed with Single
Receiver INTerferometry (SRINT) as in [29], ℓ1-minimization or MUSIC.

The performance of these imaging methods for the non-linear phase retrieval
problem is studied with numerical simulations in an optical digital microscopy
imaging regime. Our simulations allow us to asses the robustness of the different
methods to modeling errors resulting to perturbations in the unknown phases
of the recorded data. We consider phase perturbations that are either due to
grid displacements or to wave propagation in a weakly inhomogeneous medium.
Our conclusions are that SRINT provides the less satisfactory image in terms
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of resolution but it is the more robust method when there are modeling errors,
the ℓ1 method has the best resolution but is not very robust with respect to
noise, while MUSIC seems to be the more competitive method at moderate signal
to noise ratio regimes because it has better resolution than SRINT and is less
sensitive to noise than ℓ1-minimization.

The paper is organized as follows. In Section 2 we present in a abstract linear
algebra framework the conditions under which ℓ1-minimization and MUSIC
provide the exact solution to problems (1) and (2) respectively. We also analyze
the performance of these methods for noisy data. In Section 3 we formulate the
array imaging problem and consider some common configurations used in active
array imaging. Moreover, we discuss how the imaging problem can be cast under
the abstract framework of Section 2 and what are adequate data-structures to
be used in imaging with ℓ1-minimization and MUSIC. In Section 4, we explore
with numerical simulations the robustness of the imaging methods for the phase
retrieval problem in an optical (digital) microscopy regime. In Section 5 we
illustrate with numerical simulations how our abstract theoretical results are
relevant in assessing image resolution. Section 6 contains our conclusions.

2 Linear algebra aspects of imaging algorithms
In this section we discuss under what conditions ℓ1-minimization and MUSIC
algorithms provide the exact solution when there is no noise in the data. We
also discuss the performance of these algorithms for noisy data. We assume that
imaging can be formulated as a linear inverse problem of the form

𝒜𝑙𝜌 = 𝑏𝑙 , (1)

that is underdetermined. In (1), the model matrix

𝒜𝑙 =

⎛⎜⎝ ↑ ↑ ↑
𝑎

(𝑙1)
1 𝑎

(𝑙2)
2 . . . 𝑎

(𝑙𝐾 )
𝐾

↓ ↓ ↓

⎞⎟⎠ ∈ C𝑁×𝐾 (2)

relates the unknown vector 𝜌 ∈ C𝐾 , which is the “image” to be constructed, to
the transformed vector 𝑏𝑙 ∈ C𝑁 , which contains the data. This matrix is fixed
by the physical setup of the imaging system and, therefore, it is given to us.
However, the important observation here is that 𝒜𝑙 also depends on a parameter
vector 𝑙 = [𝑙1, 𝑙2, . . . , 𝑙𝐾 ]𝑇 which may be varied so as several transformed vectors
𝑏𝑙 of the same unknown 𝜌 can be obtained.
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If only one snapshot of array measurements is available for imaging, we
solve (1) for a single measurement vector (SMV) 𝑙 using ℓ1 minimization that
promotes the assumed sparsity of the vector 𝜌. In that case, we will write (1)
simply as 𝒜𝜌 = 𝑏. When several snapshots of array measurements corresponding
to different parameter vectors 𝑙𝑞 are available, we solve the corresponding MMV
problem using MUSIC. In that case, we will write (1) as 𝒜𝑞𝜌 = 𝑏𝑞.

2.1 ℓ1 minimization-based methods

In the imaging problems considered here we assume that the scatterers occupy
only a small fraction of a region of interest called the image window IW. This
means that the true reflectivity vector 𝜌0 is sparse, so the number of its entries
that are different than zero, denoted by 𝑀 , is much smaller than its length 𝐾.
Thus, 𝑀 = |supp(𝜌0)| ≪ 𝐾. This prior knowledge changes the imaging problem
substantially because we can exploit the sparsity of 𝜌0 by formulating (1) as an
optimization problem which seeks the sparsest vector in C𝐾 that equates model
and data. Thus, for a single measurement vector 𝑏 we solve

min ‖𝜌‖ℓ1 subject to 𝒜𝜌 = 𝑏. (3)

In this form, we may be able to pick the true solution 𝜌0 if the matrix 𝒜 and
the sparsity of 𝜌0 fulfill certain conditions. In particular, we have the following
four theorems whose proofs are given in Appendix 1. We denote by ‖ · ‖ℓ2 and
‖ · ‖ℓ1 the ℓ2 and ℓ1 norms of a vector, respectively.

Theorem 2.1. 𝑀 -sparse solutions of 𝒜𝜌 = 𝑏 are unique, if

|⟨𝑎𝑖, 𝑎𝑗⟩| <
1

2𝑀
∀𝑖 ̸= 𝑗, (4)

where we assume that the columns of matrix 𝒜 are normalized so that ‖𝑎𝑖‖ℓ2 = 1
∀𝑖.

Theorem 2.2. The 𝑀 -sparse solution of 𝒜𝜌 = 𝑏 can be found as the solution
of

min ‖𝜂‖ℓ1 , subject to 𝒜𝜂 = 𝑏, (5)

if
|⟨𝑎𝑖, 𝑎𝑗⟩| <

1
2𝑀

, ∀𝑖 ̸= 𝑗, (6)

where we assume that the columns of matrix 𝒜 are normalized so that ‖𝑎𝑖‖ℓ2 = 1
∀𝑖.
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Theorem 2.3. Let 𝜌 be a solution of 𝒜𝜌 = 𝑏, and let 𝑇 be the index set of the
support of 𝜌, so

𝑇 = supp(𝜌), and 𝑀 = |𝑇 |.

Fix a positive 𝜀 < 1/2, and suppose that the matrix 𝒜 satisfies:
(i) The column vectors are normalized so that ‖𝑎𝑖‖ℓ2 = 1 ∀𝑖.
(ii) The column vectors in the set 𝑇 are approximately orthogonal, so

|⟨𝑎𝑖, 𝑎𝑗⟩| <
𝜀

𝑀
, ∀ 𝑖, 𝑗 ∈ 𝑇, 𝑖 ̸= 𝑗. (7)

(iii)For any 𝑗 ∈ 𝑇 the vicinity

𝑆𝑗 =
{︂

𝑘 ̸= 𝑗 s.t. |⟨𝑎𝑘, 𝑎𝑗⟩| ⩾ 1
2𝑀

}︂
(8)

has the properties
|⟨𝑎𝑘, 𝑎𝑗⟩| ⩽ 1 − 2𝜀 ∀𝑘 ∈ 𝑆𝑗 , (9)

and
|⟨𝑎𝑘, 𝑎𝑗⟩| <

𝜀

𝑀
∀𝑘 ∈ 𝑆𝑖, ∀𝑖 ̸= 𝑗. (10)

Then 𝜌, the 𝑀 -sparse solution of 𝒜𝜌 = 𝑏, can be found as the solution of

min ‖𝜂‖ℓ1 , subject to 𝒜𝜂 = 𝑏.

Theorem 2.4. Noisy case. Let 𝜌 be an 𝑀 -sparse solution of

𝒜𝜌 = 𝑏,

and let 𝑇 = supp(𝜌), so 𝑀 = |𝑇 |. Fix a positive 𝜀 < 1/2, and suppose that 𝒜
satisfies conditions (i), (ii), and (iii) of Theorem 2.3.

Furthermore, let 𝜌𝛿 be the minimal ℓ1-norm solution of the noisy problem

min ‖𝜂‖ℓ1 , subject to 𝒜𝜂 = 𝑏𝛿, (11)

with 𝑏𝛿 defined by
𝑏𝛿 = 𝑏 + 𝛿𝑏, (12)

such that the noise 𝛿𝑏 is bounded for some small positive 𝛿, so that

‖𝛿𝑏‖ℓ2 ⩽ 𝛿 . (13)

Assume that 𝒜 has the property that the solution 𝛿𝜌 to

min ‖𝜂‖ℓ1 , subject to 𝒜𝜂 = 𝛿𝑏, (14)
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satisfies
‖𝛿𝜌‖ℓ1 ⩽ 𝐶‖𝛿𝑏‖ℓ2 . (15)

Then, we can show that the solution 𝜌𝛿 of (11) can be decomposed as

𝜌𝛿 = 𝜌𝑐 + 𝜌𝑖, (16)

with 𝜌𝑐 the coherent part of the solution supported on 𝑇 or in the vicinities 𝑆𝑗

with 𝑗 ∈ 𝑇 , and 𝜌𝑖 the incoherent part of the solution which is supported away
from the vicinities and it is small. Specifically, for 𝜌𝑐 we have that for any 𝑗 ∈ 𝑇

| |(𝜌)𝑗 | − |(𝜌𝑐)𝑗 +
∑︁

𝑘∈𝑆𝑗

⟨𝑎𝑗 , 𝑎𝑘⟩(𝜌𝑐)𝑘| | ⩽ 𝛿0 + 𝐶𝛿,

with
𝛿0 = 2𝐶𝛿(1 − 𝜀)

𝑀(1 − 2𝜀) + 2𝜀(‖𝜌‖ℓ1 + 𝐶𝛿)
𝑀

.

While for 𝜌𝑖 we can show that:

‖𝜌𝑖‖ℓ1 ⩽ 𝛿1,

with 𝛿1 given by

𝛿1 = 𝐶𝛿 + 4𝐶𝛿(1 − 𝜀)
(1 − 2𝜀) .

Theorems 2.1 and 2.2 are well known results in the literature of compressive
sensing [21, 16, 22]. The first theorem tells us that the M-sparse solution of
the linear system 𝒜𝜌 = 𝑏 is unique when the columns of the matrix satisfy
the orthonormality condition (4). This condition is satisfied when the mutual
coherence of the matrix 𝒜, defined as max𝑖̸=𝑗 |⟨𝑎𝑖, 𝑎𝑗⟩|, is smaller than 1/(2𝑀).
This first theorem is an ℓ0 uniqueness result. The second result, Theorem 2.2,
tells us that the unique M-sparse solution of 𝒜𝜌 = 𝑏 can be found by solving
the ℓ1 minimization problem (5). This is a very useful result because it is the
ℓ1 minimization problem that can be solved efficiently in practice, for example,
by using the algorithm GelMa described in Algorithm 2.1, which involves only
simple matrix-vector multiplications followed by a shrinkage-thresholding step
defined by the operator 𝜂𝜏 (𝑦𝑖) = sign(𝑦𝑖) max{0, |𝑦𝑖| − 𝜏}. In the noiseless case,
this algorithm converges to the exact solution independently of the value of the
regularization parameter 𝜏 . For more details we refer to [27].

Algorithm 2.1 (GelMa for solving (5)).
Require: Set 𝑦 = 0, 𝑧 = 0. Pick the step size 𝛽, and a regularization parameter

𝜏 .
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repeat
Compute the residual 𝑟 = 𝑏 − 𝒜𝑦

𝑦 ⇐ 𝜂𝜏𝛽(𝑦 + 𝛽𝒜*(𝑧 + 𝑟))
𝑧 ⇐ 𝑧 + 𝛽𝑟

until Convergence

Theorem 2.3 is to the best of our knowledge new. Its proof is given in Appendix
1. This theorem tells us that the M-sparse solution of 𝒜𝜌 = 𝑏 can be recovered
by solving the ℓ1 minimization problem under a less stringent condition than
(6) provided that the column vectors of the matrix 𝒜 that are in the support
of the true solution 𝜌0 are approximately orthogonal, that is, they satisfy (7).
Note that we allow for the columns of 𝒜 to be close to collinear. Moreover, we
define the vicinities 𝑆𝑗 for the column vectors 𝑎𝑗 in the support of the true
solution, and we assume that all the column vectors that are in the vicinity of a
support column vector are close enough to it, so (9) holds. We also assume that
the vicinities 𝑆𝑖 and 𝑆𝑗 , for 𝑖 ̸= 𝑗, are far enough, so (10) holds.

The last result, Theorem 2.4, is the noisy version of Theorem 2.3. It shows
that when the data 𝑏 is not exact but is known up to some bounded vector 𝛿𝑏,
the solution 𝜌𝛿 of the minimization problem (11)-(12) is close to the solution of
the original (noiseless) problem in the following sense. The solution 𝜌𝛿 can be
decomposed in two parts: the coherent part 𝜌𝑐 supported in 𝑇 or in the vicinities
𝑆𝑗 , 𝑗 ∈ 𝑇 , of the true solution, and the incoherent part 𝜌𝑖 usually referred to as
grass in imaging. The grass is supported away from the vicinities 𝑆𝑗 and it is
shown to be small assuming that (15) holds for the solution to (14) and assuming
that the norm of the noise is small so (13) holds. Other stability results can be
found in [7, 8, 17, 35, 18, 4].

We will see in Section 5 how Theorems 2.3 and 2.4 can be applied in imaging.

2.2 MUSIC

MUSIC is a subspace imaging algorithm based on the decomposition of the
measurements into two orthogonal domains: the signal and noise subspaces [34].
The key is to be able to form a data matrix

𝐵 =

⎛⎜⎜⎝
𝑏11 𝑏12 . . . 𝑏1𝑆

𝑏21 𝑏22 . . . 𝑏2𝑆

. . . . . . . . . . . .

𝑏𝑁1 𝑏𝑁2 . . . 𝑏𝑁𝑆

⎞⎟⎟⎠ =

⎛⎝ ↑ ↑ ↑
𝑏1 𝑏2 . . . 𝑏𝑆

↓ ↓ ↓

⎞⎠ ∈ C𝑁×𝑆 , (17)
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whose column vectors 𝑏𝑞 are obtained from a family of linear systems 𝒜𝑞𝜌 = 𝑏𝑞

that can be rewritten in the form

𝒜Λ𝑞𝜌 = 𝑏𝑞 , 𝑞 = 1, . . . , 𝑆, (18)

where Λ𝑞 is a diagonal matrix whose entries can be controlled to form the
images. The assumption here is that the model matrices 𝒜𝑞 relating the unknown
vector 𝜌 with the data vectors 𝑏𝑞 can be factorized into two matrices

𝒜 =

⎛⎝ ↑ ↑ ↑
𝑎̃1 𝑎̃2 . . . 𝑎̃𝐾

↓ ↓ ↓

⎞⎠ and Λ𝑞 =

⎛⎜⎜⎜⎝
𝑙1𝑞 0
0 𝑙2𝑞

. . .
0 𝑙𝐾𝑞

⎞⎟⎟⎟⎠ , (19)

with 𝒜 ∈ C𝑁×𝐾 independent of the parameter vector 𝑙𝑞 = [𝑙1𝑞, 𝑙2𝑞, . . . , 𝑙𝐾𝑞]𝑇 ,
and Λ𝑞 ∈ C𝐾×𝐾 diagonal. Under this assumption, the imaging problem (18) can
be reinterpreted in the form of an MMV problem

𝒜𝜌𝑞 = 𝑏𝑞, (20)

with 𝜌𝑞 = Λ𝑞𝜌. Physically, each 𝜌𝑞 is a transformed version of the same unknown
vector 𝜌. The data can be arranged into the data matrix (17), and (20) may be
expressed as a matrix-matrix equation

𝒜P = 𝐵 , (21)

where the columns of P ∈ C𝐾×𝑆 , 𝜌𝑞 = Λ𝑞𝜌, share the same support.
The important element of the new formulation (20) (or (21)) is that now

all the data vectors 𝑏𝑞 are linear combinations of the same 𝑀 columns of 𝒜 (or
𝒜), those columns that correspond to 𝑇 = supp(𝜌), with 𝑀 = |𝑇 |. Thus, every
column of 𝒜 indexed by 𝑇 is contained in the column space of 𝐵, the signal
subspace, which is orthogonal to the noise subspace. Hence, one can simply find
the unknown support 𝑇 by projecting the columns of 𝒜 onto the noise subspace.
Both, the signal and the noise subspaces can be obtained via the singular value
decomposition (SVD) of 𝐵.

More precisely, the objective of a MUSIC algorithm is to find the support
𝑇 of an unknown sparse vector 𝜌 = [𝜌1, 𝜌2, . . . , 𝜌𝐾 ]𝑇 with a number of nonzero
entries 𝑀 much smaller than its length 𝐾. With a sufficiently diverse number of
experiments 𝑆 ≥ 𝑀 we create a data matrix 𝐵, and we compute its SVD

𝐵 = 𝑈Σ𝑉 * =
𝐾∑︁

𝑗=1
𝜎𝑗𝑢𝑗𝑣*

𝑗 . (22)
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If the data is noiseless there are 𝑀 nonzero singular values 𝜎1 > 𝜎2 > · · · >

𝜎𝑀 > 0 with corresponding (left) singular vectors 𝑢𝑗 , 𝑗 = 1, . . . , 𝑀 that span
the signal subspace of C𝑁 . The remaining singular values 𝜎𝑗 , 𝑗 = 𝑀 + 1, . . . , 𝐾,
are zero, and the corresponding (left) singular vectors span the noise subspace
of C𝑁 . Because the set of columns of 𝒜 indexed by 𝑇 = supp(𝜌) also spans
the signal subspace, the sought support 𝑇 corresponds to the zero set of the
orthogonal projections of the columns vectors 𝑎̃𝑘 onto the noise subspace. Thus,
it follows that the support of 𝜌 can be found among the zeros of the imaging
functional

ℐSIGNAL
𝑘 =

𝑀∑︁
𝑗=1

|𝑎̃*
𝑘 𝑢𝑗 |2, 𝑘 = 1, . . . , 𝐾, (23)

or, equivalently, among the peaks of the imaging functional

ℐMUSIC
𝑘 = ‖𝑎̃𝑘‖ℓ2∑︀𝑁

𝑗=𝑀+1 |𝑎̃*
𝑘 𝑢𝑗 |2

, 𝑘 = 1, . . . , 𝐾. (24)

Furthermore, if all sets of 𝑀 columns of 𝒜 are linearly independent, then the
peaks exactly coincide with the support of 𝜌 in the noiseless case. In (24), the
numerator is a normalization factor.

Once the support is recovered, the problem typically becomes overdetermined
(𝑁 > |supp(𝜌)|) and the nonzero values of 𝜌 can be easily found by solving the
linear system restricted to the given support with an ℓ2 method [13].

Regarding imaging with noisy data, it follows from Weyl’s theorem [39]
that when noise is added to the data so 𝐵 → 𝐵𝛿 = 𝐵 + 𝐸 with ‖𝐸‖ℓ2 < 𝛿,
then no singular value 𝜎𝛿 moves more than the norm of the perturbation, i.e.,
‖𝜎𝛿 − 𝜎‖ℓ2 < 𝛿. Hence, (i) perturbed and unperturbed singular values are paired,
and (ii) the spectral gap between the zero and the nonzero singular values remains
large if the smallest nonzero unperturbed singular value 𝜎𝑀 ≫ 𝛿. If the noise is
not too large, then the rank of the data matrix 𝐵𝛿 can be determined, and so is
𝑀 = |𝑇 |.

The signal and noise subspaces are also perturbed in the presence of noise.
It can be shown, however, that the perturbed subspaces remain close to the
unperturbed ones, with changes that are proportional to the reciprocal of the
spectral gap 𝛽 = 𝜎𝛿

𝑀 − 𝜎𝑀+1. This follows from Wedin’s Theorem [38].

Theorem 2.5. (Wedin) Let 𝐵 have the SVD 𝐵 = 𝑄 + 𝑄0 with 𝑄 = 𝑈Σ𝑉 𝑇

and 𝑄0 = 𝑈0Σ0𝑉 𝑇
0 , and let the perturbed matrix 𝐵𝛿 = 𝐵 + 𝐸 have the SVD

𝐵𝛿 = 𝑄𝛿 + 𝑄𝛿
0 with 𝑄𝛿 = 𝑈𝛿Σ𝛿𝑉 𝛿𝑇 and 𝑄𝛿

0 = 𝑈𝛿
0 Σ𝛿

0𝑉 𝛿
0

𝑇 . If there exist two
constants 𝛼 ≥ 0 and 𝛽 > 0 such that 𝜎𝑚𝑎𝑥(𝑄0) ≤ 𝛼 and 𝜎𝑚𝑖𝑛(𝑄𝛿) ≥ 𝛼 + 𝛽,
then the distance between the orthogonal projections onto the subspaces 𝑅(𝑄) and
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𝑅(𝑄𝛿) is bounded by

‖𝑃𝑅(𝑄𝛿) − 𝑃𝑅(𝑄)‖ℓ2 ⩽
𝛿

𝛽
, (25)

where 𝛿 = max(‖𝐸𝑉 ‖ℓ2 , ‖𝐸*𝑈‖ℓ2).

There is much work done on the robustness of MUSIC with respect to noise.
We refer to [26], and references therein, for a recent discussion about how much
noise the MUSIC algorithm can tolerate. When we apply the Theorem 2.5 to
our imaging problem, where 𝑄0 = 0, we obtain the following result whose proof
is in Appendix 2.

Theorem 2.6. Let 𝑋 =Diag(𝜌) be a diagonal matrix that solves

𝒜𝑋𝐿 = 𝐵, (26)

where 𝒜 satisfies conditions (i), (ii), and (iii) of Theorem 2.3 for a fixed 𝜀 < 1/3,

𝐿 =

⎛⎜⎜⎜⎝
𝑙11 𝑙12 𝑙1𝑆

𝑙21 𝑙22 𝑙2𝑆

...
...

...
𝑙𝐾1 𝑙𝐾2 𝑙𝐾𝑆

⎞⎟⎟⎟⎠ ∈ C𝐾×𝑆 ,

and 𝐵 is the noiseless data matrix (17) with SVD 𝐵 = 𝑄 = 𝑈Σ𝑉 𝑇 . Let the
perturbed matrix 𝐵𝛿 = 𝑄𝛿 + 𝑄0 be such that 𝜎max(𝐵𝛿 − 𝐵) ⩽ 𝛿. Suppose 𝜌,
the vector diagonal entries of 𝑋, is sparse with 𝑇 = supp(𝜌), 𝑀 = |𝑇 |, 𝑀 ≪
size(𝜌), and

𝜌𝑚 = min
𝜌𝑖 ̸=0

{|𝜌𝑖|}.

Let 𝐿𝑇 be the submatrix of 𝐿, formed by the rows corresponding to 𝑇 , has

𝜎𝑇
𝑚 = 𝜎min(𝐿𝑇 ). (27)

If
2𝛿 < 𝜌𝑚𝜎𝑇

𝑚(1 − 3𝜀), (28)

the orthogonal projections onto the subspaces 𝑅(𝑄𝛿) and 𝑅(𝐵) are close:

‖𝑃𝑅(𝑄𝛿) − 𝑃𝑅(𝐵)‖ℓ2 ⩽
𝛿

𝜌𝑚𝜎𝑇
𝑚(1 − 3𝜀)

. (29)

To conclude, the main step in setting up MUSIC is to be able to find a suitable
factorization of the model matrix as 𝒜𝑞 = 𝒜Λ𝑞, where Λ𝑞 is diagonal. In that
case, the imaging vectors are just the columns of 𝒜 that are given. We discuss
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IW

𝑥⃗𝑟

𝜆

𝑥⃗𝑠
𝐿

𝑎

𝑦⃗𝑗

ℎ

Fig. 1: General setup of an array imaging problem. The transducer at 𝑥⃗𝑠 emits a probing
signal and the reflected intensities are recorded at 𝑥⃗𝑟. The scatterers located at 𝑦⃗𝑗 , 𝑗 =

1, . . . ,𝑀 are at distance 𝐿 from the array and inside the image window IW.

next imaging situations in which this factorization is possible and MUSIC can
form form images with high precision. We also discuss applications in which the
factorization is only approximate and, hence, images obtained with MUSIC lose
resolution.

3 Array imaging: data models
The goal of array imaging is to form images inside a region of interest called
the image window IW. In active array imaging the array probes the medium by
sending signals and recording the echoes. Probing of the medium can be done
with many different types of arrays that differ in their number of transmitters and
receivers, their geometric layouts, or the type of signals they use for illumination.
They may use single frequency signals sent from different positions, or multifre-
quency signals sent from one or more positions. Of course, the problem of active
array imaging also depends on the receivers. They can record the intensities and
phases of the signals that arrive to the array or only their intensities.

In this section, we describe some common configurations used in active
array imaging. The array, with 𝑁 transducers separated by a distance ℎ, has a
characteristic length 𝑎 (see Fig. 1). The transducers emit signals from positions
𝑥⃗𝑠 and record the echoes at positions 𝑥⃗𝑟, 𝑠, 𝑟 = 1, 2, . . . , 𝑁 . They can use
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single or multifrequency signals, with frequencies 𝜔𝑙, 𝑙 = 1, . . . , 𝑆. Our goal is to
reconstruct a sparse scene consisting of 𝑀 point-scatterers at a distance 𝐿 from
the array, whose positions 𝑦⃗𝑛𝑗

and reflectivities 𝛼𝑛𝑗 ∈ C, 𝑗 = 1, . . . , 𝑀 , we seek
to determine. The ambient medium between the array and the scatterers can be
homogeneous or inhomogeneous.

In order to form the images we discretize the IW using a uniform grid of
points 𝑦⃗𝑘, 𝑘 = 1, . . . , 𝐾, and we introduce the true reflectivity vector

𝜌0 = [𝜌01, . . . , 𝜌0𝐾 ]𝑇 ∈ C𝐾 ,

such that 𝜌0𝑘 =
∑︀𝑀

𝑗=1 𝛼𝑛𝑗 𝛿𝑦⃗𝑛𝑗
𝑦⃗𝑘

, 𝑘 = 1, . . . , 𝐾, where 𝛿·· is the classical
Kronecker delta. We will not assume that the scatterers lie on the grid, i.e.,
{𝑦⃗𝑛1 , . . . , 𝑦⃗𝑛𝑀

} ̸⊂ {𝑦⃗1, . . . , 𝑦⃗𝐾} in general. To write the data received on the
array in a compact form, we define the Green’s function vector

̂︀𝑔(𝑦⃗; 𝜔) = [ ̂︀𝐺(𝑥⃗1, 𝑦⃗; 𝜔), ̂︀𝐺(𝑥⃗2, 𝑦⃗; 𝜔), . . . , ̂︀𝐺(𝑥⃗𝑁 , 𝑦⃗; 𝜔)]𝑇 (1)

at location 𝑦⃗ in the IW, where ̂︀𝐺(𝑥⃗, 𝑦⃗; 𝜔) denotes the free-space Green’s function
of the homogeneous or inhomogeneous medium. This function characterizes the
propagation of a signal of angular frequency 𝜔 from point 𝑦⃗ to point 𝑥⃗, so (1)
represents the signal received at the array due to a point source of frequency 𝜔

at 𝑦⃗. When the medium is homogeneous,

̂︀𝐺(𝑥⃗, 𝑦⃗; 𝜔) = ̂︀𝐺0(𝑥⃗, 𝑦⃗; 𝜔) = exp(i𝜅|𝑥⃗ − 𝑦⃗|)
4𝜋|𝑥⃗ − 𝑦⃗|

, 𝜅 = 𝜔

𝑐0
. (2)

In this case, the Green’s function vector is

̂︀𝑔0(𝑦⃗; 𝜔) = [ ̂︀𝐺0(𝑥⃗1, 𝑦⃗; 𝜔), ̂︀𝐺0(𝑥⃗2, 𝑦⃗; 𝜔), . . . , ̂︀𝐺0(𝑥⃗𝑁 , 𝑦⃗; 𝜔)]𝑇 .

We assume that the scatterers are far apart or that the reflectivities are
small, so multiple scattering between them is negligible. In this case, the Born
approximation holds and, thus, the response at 𝑥⃗𝑟 (including phases) due to a
pulse of angular frequency 𝜔𝑙 sent from 𝑥⃗𝑠, and reflected by the 𝑀 scatterers, is
given by

𝑃 (𝑥⃗𝑟, 𝑥⃗𝑠; 𝜔𝑙) =
𝑀∑︁

𝑗=1
𝛼𝑗𝐺(𝑥⃗𝑟, 𝑦⃗𝑛𝑗

; 𝜔𝑙) 𝐺(𝑦⃗𝑛𝑗
, 𝑥⃗𝑠; 𝜔𝑙) , (3)

and the the full response matrix that contains all posible information for imaging
by

𝑃 (𝜔𝑙) = [𝑃 (𝑥⃗𝑟, 𝑥⃗𝑠; 𝜔𝑙)] =
𝑀∑︁

𝑗=1
𝛼𝑗 ̂︀𝑔(𝑦⃗𝑛𝑗

; 𝜔𝑙) ̂︀𝑔𝑇 (𝑦⃗𝑛𝑗
; 𝜔𝑙) . (4)

Next, we describe different situations of interest in active array imaging.
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3.1 Single frequency signals and multiple receivers

Let us first consider the case in which only one illumination of frequency 𝜔

is sent using the 𝑁 sources in the array located at positions 𝑥⃗𝑠, 𝑠 = 1, . . . , 𝑁 .
The echoes are also recorded at the 𝑁 receivers located at 𝑥⃗𝑟, 𝑟 = 1, . . . , 𝑁 . If̂︀𝑓(𝜔) = [ ̂︀𝑓1(𝜔), . . . , ̂︀𝑓𝑁 (𝜔)]𝑇 represents the illumination vector whose entries are
the signals sent from the sources in the array, then ̂︀𝑔(𝑘)̂︀𝑓(𝜔)

= ̂︀𝑔(𝑦⃗𝑘; 𝜔)𝑇 ̂︀𝑓(𝜔) is the
field at the grid position 𝑦⃗𝑘 in the IW. Thus,

𝒜̂︀𝑓(𝜔) =

⎛⎜⎝ ↑ ↑ ↑̂︀𝑔(1)̂︀𝑓(𝜔)
̂︀𝑔(𝑦⃗1; 𝜔) ̂︀𝑔(2)̂︀𝑓(𝜔)

̂︀𝑔(𝑦⃗2; 𝜔) . . . ̂︀𝑔(𝐾)̂︀𝑓(𝜔)
̂︀𝑔(𝑦⃗𝐾 ; 𝜔)

↓ ↓ ↓

⎞⎟⎠ ∈ C𝑁×𝐾

(5)
is the model matrix that connects the unknown reflectivity vector 𝜌 ∈ C𝐾 to
the data vector 𝑏̂︀𝑓(𝜔) ∈ C𝑁 that depends on the illumination ̂︀𝑓(𝜔).

If a single illumination is used to form an image, then active array imaging
amounts to finding 𝜌 from the system of linear equations

𝒜̂︀𝑓(𝜔)𝜌 = 𝑏̂︀𝑓(𝜔) . (6)

Abusing a little bit the notation used in Section 2, we have indicated in (6) that
the control parameter vector is the illumination ̂︀𝑓(𝜔). According to (1)-(2), the
parameter vector is 𝑙 = [̂︀𝑔(1)̂︀𝑓(𝜔)

, ̂︀𝑔(2)̂︀𝑓(𝜔)
, . . . , ̂︀𝑔(𝐾)̂︀𝑓(𝜔)

]𝑇 which depends on the Green’s
function vectors ̂︀𝑔(𝑦⃗; 𝜔) fixed by the physical layout, and on the illumination
vector ̂︀𝑓(𝜔) that we control. The system of linear equations (6) can be solved
using appropriate ℓ2 or ℓ1 methods. If an ℓ1-norm minimization method is chosen,
we would seek the sparsest vector 𝜌 among all possible vectors satisfying (6).

If, instead, multiple illuminations are used to form the images, then we can
use an MMV approach to find the solution with MUSIC. Indeed, note that the
model matrix (5) can be factorized into two matrices

𝒜 =

⎛⎝ ↑ ↑ ↑̂︀𝑔(𝑦⃗1; 𝜔) ̂︀𝑔(𝑦⃗2; 𝜔) . . . ̂︀𝑔(𝑦⃗𝐾 ; 𝜔)
↓ ↓ ↓

⎞⎠ ∈ C𝑁×𝐾 (7)

and

Λ̂︀𝑓(𝜔) =

⎛⎜⎜⎜⎜⎜⎜⎝
̂︀𝑔(1)̂︀𝑓(𝜔)

0

0 ̂︀𝑔(2)̂︀𝑓(𝜔)
. . .
0 ̂︀𝑔(𝑘)̂︀𝑓(𝜔)

⎞⎟⎟⎟⎟⎟⎟⎠ ∈ C𝐾×𝐾 , (8)
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so that 𝒜̂︀𝑓(𝜔) = 𝒜 Λ̂︀𝑓(𝜔). Hence, it follows from the discussion in Section 2 that
(6) can be written in the MMV form

𝒜𝜌̃𝑞 = 𝑏𝑞 , 𝑞 = 1, . . . , 𝑆, (9)

and the support of 𝜌 can be found exactly with MUSIC if enough data vectors
𝑏̂︀𝑓𝑞(𝜔) are available. In (9), 𝑏𝑞 = 𝑏̂︀𝑓𝑞(𝜔), and 𝜌̃𝑞 = Λ̂︀𝑓𝑞(𝜔)𝜌 represents an effective
source weighted reflectivity vector with the same support as 𝜌, and whose nonzero
entries vary with ̂︀𝑓𝑞(𝜔). We remark that the equivalent source problem (9) can
be used to account for multiple scattering between the scatterers (see [12] for
details).

To show that Theorem 2.6 is relevant for imaging we write (9) as (26) with
the unknown matrix 𝑋 =Diag(𝜌), the data matrix 𝐵 formed by the 𝑆 vectors
𝑏𝑞, and the illumination matrix

𝐿 =

⎛⎝ ↑ ↑ ↑
𝒜𝑇 ̂︀𝑓1(𝜔) 𝒜𝑇 ̂︀𝑓2(𝜔) . . . 𝒜𝑇 ̂︀𝑓𝑆(𝜔)

↓ ↓ ↓

⎞⎠ ∈ C𝐾×𝑆

whose 𝑖th column 𝒜𝑇 ̂︀𝑓 𝑖(𝜔) = [̂︀𝑔(1)̂︀𝑓𝑖(𝜔)
, ̂︀𝑔(2)̂︀𝑓𝑖(𝜔)

, . . . , ̂︀𝑔(𝐾)̂︀𝑓𝑖(𝜔)
]𝑇 contains the fields at

all grid positions 𝑦⃗𝑘, 𝑘 = 1, . . . , 𝐾 due to the illumination ̂︀𝑓 𝑖(𝜔). Then, condition
(27) can be interpreted as an orthogonality condition on the illuminations. Further-
more, if we suppose that 𝑆 = 𝑁 and use the illuminations ̂︀𝑓𝑞(𝜔) = ̂︀𝑓(𝜔)̂︀𝑒𝑞 (̂︀𝑒𝑞 is
the vector with a 1 in the 𝑞th coordinate and 0’s elsewhere) for all 𝑞 = 1, . . . , 𝑆,
then 𝐿 = ̂︀𝑓(𝜔)𝒜𝑇 . In this case, 𝜎𝑇

𝑚 = 𝜎min(𝐿𝑇 ) ≥ (1 − 3𝜀)| ̂︀𝑓(𝜔)|, assuming 𝒜
satisfies conditions (i), (ii) and (iii) of Theorem 2.3 (see proof of Theorem 2.6 in
Appendix 2).

3.2 Multifrequency signals and one receiver: the
one-dimensional problem

Consider now a one-dimensional problem with scatterers located at different
ranges. To determine their positions we only use one transducer that emits and
receives multiple frequency signals. We assume that the scatterers are far from
the transducer, but not far from each other so the denominator of the Green’s
function in (2) can be approximated by a constant. In that case, the collected
data are approximately the Fourier transform of the reflectivity vector to be
imaged.
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To fix ideas, denote by 𝑧𝑛 = 𝐿 + (𝑛 − 1)Δ𝑧 the distance between the single
transducer and the scatterer of reflectivity 𝜌𝑛, 𝑛 = 1, . . . , 𝐾. Then,

𝐾∑︁
𝑛=1

𝑒𝑖2𝜅𝑚𝑧𝑛𝜌𝑛 = 𝑏𝑚 , 𝑚 = 1, . . . , 2𝑆, (10)

relates the positions and reflectivities of the scatterers to the measurements 𝑏𝑚 at
frequencies 𝜔𝑚 = 𝜅𝑚 𝑐0, where 𝑐0 is the wave speed in a homogeneous medium.
In this problem, we seek to recover the unknown vector 𝜌 = [𝜌1, 𝜌2, . . . , 𝜌𝐾 ] from
the multifrequency data vector 𝑏 = [𝑏1, 𝑏2, . . . , 𝑏2𝑆 ] recorded at a single receiver.

The next assumption allows to succinctly formulate one-dimensional multifre-
quency MUSIC in the form of an MMV problem using the Prony-type argument
(see, for example, [25]). Namely, suppose that the measurements are obtained
at equally spaced (spatial) frequencies 𝜅𝑚 = 𝜅1 + (𝑚 − 1)Δ𝜅, 𝑚 = 1, 2, . . . , 2𝑆.
Then, we write (10) in matrix form as

𝒜2𝑆 𝜌 = 𝑏 , (11)

where

𝒜2𝑆 =

⎛⎜⎜⎝
𝑒𝑖2𝜅1𝑧1 𝑒𝑖2𝜅1𝑧2 . . . 𝑒𝑖2𝜅1𝑧𝐾

𝑒𝑖2𝜅2𝑧1 𝑒𝑖2𝜅2𝑧2 . . . 𝑒𝑖2𝜅2𝑧𝐾

. . . . . . . . . . . .

𝑒𝑖2𝜅2𝑆𝑧1 𝑒𝑖2𝜅2𝑆𝑧2 . . . 𝑒𝑖2𝜅2𝑆𝑧𝐾

⎞⎟⎟⎠ (12)

is a Vandermonde matrix of dimensions 2𝑆×𝐾. Since we only have one data vector
𝑏 ∈ C2𝑆 we cannot determine from it a signal space of dimension 𝑀 = |supp(𝜌)|.
However, following the general idea of Prony-type [32] methods we form the
𝑆 × 𝑆 data matrix

𝐵 =

⎛⎜⎜⎝
𝑏1 𝑏2 . . . 𝑏𝑆

𝑏2 𝑏3 . . . 𝑏𝑆+1
. . . . . . . . . . . .

𝑏𝑆 𝑏𝑆+1 . . . 𝑏2𝑆

⎞⎟⎟⎠ , (13)

whose rank is 𝑀 if 𝑆 > 𝑀 . If we now set the 𝑆 × 𝐾 matrix

𝒜 = 𝒜𝑆 =

⎛⎜⎜⎝
𝑒𝑖2𝜅1𝑧1 𝑒𝑖2𝜅1𝑧2 . . . 𝑒𝑖2𝜅1𝑧𝐾

𝑒𝑖2𝜅2𝑧1 𝑒𝑖2𝜅2𝑧2 . . . 𝑒𝑖2𝜅2𝑧𝐾

. . . . . . . . . . . .

𝑒𝑖2𝜅𝑆𝑧1 𝑒𝑖2𝜅𝑆𝑧2 . . . 𝑒𝑖2𝜅𝑆𝑧𝐾

⎞⎟⎟⎠ (14)

and the 𝐾 × 𝐾 diagonal matrices

Λ𝑞 =

⎛⎜⎜⎝
𝑒𝑖2Δ𝜅𝑧1 0 . . . 0 0

0 𝑒𝑖2Δ𝜅𝑧2 . . . 0 0
. . . . . . . . . 𝑒𝑖2Δ𝜅𝑧𝐾−1 0
0 0 . . . 0 𝑒𝑖2Δ𝜅𝑧𝐾

⎞⎟⎟⎠
𝑞

, (15)
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with 𝑞 = 1, . . . , 𝑆, then it is straightforward to verify that 𝒜 Λ𝑞𝜌 = 𝑏𝑞, where 𝑏𝑞

is the 𝑞th column of the matrix 𝐵 in (13). Thus, we obtain the desired structure

𝒜𝜌𝑞 = 𝑏𝑞,

and MUSIC can be applied directly to find the support of 𝜌. Subsequently, as
noted above 𝜌 itself can be determined by solving the linear system restricted
on the support 𝜌.

If 𝑀 ≪ 𝐾, so the vector 𝜌 is 𝑀 -sparse, then the solution can also be
found directly from (11) by using an ℓ1-norm minimization approach. Note that
(11) always has a unique 𝑀 -sparse solution if 𝑀 < 𝑆. Indeed, we argue by
contradiction that it is not possible to have more than one 𝑀 -sparse solution if
𝑀 < 𝑆. Suppose there are two 𝑀 -sparse solutions 𝜌1 and 𝜌2. Then, 𝒜2𝑆𝑦 = 0
for 𝑦 = 𝜌1 − 𝜌2. Since the support of 𝑦 is less or equal than 2𝑀 , we have
2𝑀 linearly dependent columns of 𝒜2𝑆 , which is impossible for Vandermonde
matrices since they are full rank.

3.3 The single frequency phase retrieval problem

In its classical form, the phase retrieval problem consists in finding a function
ℎ from the amplitude of its Fourier transform ̂︀ℎ. In imaging, it consists in
finding a vector 𝜌 that is compatible with a set of quadratic equations for
measured amplitudes. This occurs in imaging regimes where only intensity data
is recorded, which means that most of the information encoded in the phases is
lost. Phase retrieval algorithms have been developed over a long time to deal
with this problem [20, 19]. They are flexible and effective but depend on prior
information about the image and can give uneven results. An alternative convex
approach that guarantees exact recovery has been considered in [10, 9] but its
computational cost is extremely high when the problem is large. When, however,
multiple measurements of the object to be imaged are available, we may recover
the missing phase information and image holographically much more efficiently
[31, 28, 29]. By holographic imaging we mean the use of interference patterns
between two or more coherent sources in order to form the images [40].

Indeed, let us consider single frequency imaging with multiple sources and
receivers as in problem (9), where the data vectors 𝑏𝑞 = 𝒜𝜌̃𝑞, that depend on the
illumination ̂︀𝑓𝑞(𝜔), contained the amplitudes and phases of the recorded signals
We now, however, assume that only the amplitudes squared of the components
of these data vectors can be measured. Then, the phase retrieval problem is to
find the unknown vector 𝜌 from a family of quadratic equations

|𝒜𝑞𝜌|2 = |𝑏𝑞|2 , 𝑞 = 1, . . . , 𝑄,
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understood component wise. This problem is nonlinear and nonconvex and, hence,
difficult to solve. In fact, it is in general NP hard [33]. However, if an appropriate
set of illuminations is used, we can take advantage of the polarization identity

2 Re < 𝑢, 𝑣 > = |𝑢 + 𝑣|2 − |𝑢|2 − |𝑣|2

2 Im < 𝑢, 𝑣 > = |𝑢 − 𝑖𝑣|2 − |𝑢|2 − |𝑣|2 (16)

to solve a simple linear system of the form

𝒜𝑞𝜌 = 𝑚
(𝑟)
𝑞 . (17)

The polarization identity allows us to find the inner product between two complex
numbers and, therefore, its phase differences. In (17), 𝑚

(𝑟)
𝑞 is the vector whose

𝑖th component is the correlation 𝑏
(𝑟)
𝑞 𝑏

(𝑟)̂︀𝑒𝑖

between two signals measured at 𝑥⃗𝑟, one

corresponding to a general illumination ̂︀𝑓𝑞(𝜔) and the other to an illumination̂︀𝑒𝑖 = [0, 0, . . . , 0, 1, 0, . . . , 0]𝑇 whose entries are all zero except the 𝑖th entry
which is 1. Using the polarization identity (16) we can obtain 𝑏

(𝑟)
𝑞 𝑏

(𝑟)̂︀𝑒𝑖

from

linear combinations of the magnitudes (squared) |𝑏(𝑟)
𝑞 |2, |𝑏(𝑟)̂︀𝑒𝑖

|2, |𝑏(𝑟)
𝑞 + 𝑏

(𝑟)̂︀𝑒𝑖

|2, and

|𝑏(𝑟)
𝑞 + 𝑖𝑏

(𝑟)̂︀𝑒𝑖

|2. A physical interpretation of (17) is as follows. Send an illumination̂︀𝑓𝑞(𝜔), collect the response at 𝑥⃗𝑟, time reverse the received signal at 𝑥⃗𝑟, and send
it back to probe the medium again. Then, 𝑚

(𝑟)
𝑞 represents the signals recorded

at all receivers 𝑥⃗𝑖, 𝑖 = 1, . . . , 𝑁 .
To wrap up, if the phases are not measured at the array but we control the

illuminations, the images can be formed by solving (17). We can use ℓ1-norm
minimization if only one vector 𝑚

(𝑟)
𝑞 is obtained in the data acquisition process,

or we can use MUSIC if enough vectors of this form are available [31, 28]. Note
that in this approach, where only one frequency 𝜔 is used, the receiver 𝑥⃗𝑟 is
fixed.

3.4 Multiple frequency signals and multiple receivers

Finally, we consider the most general case in which multiple frequency signals
are used to probe the medium from several source positions, and the echoes
are measured at several receiver positions. This case considers all the possible
diversity of information that can be obtained from the illuminations. We discuss
first the situation in which the receivers measure amplitudes and phases and,
then, the situation in which they can only measure amplitudes squared.
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3.4.1 Imaging with phases

Assume that the data (including phases)

𝑑(𝑥⃗𝑟, 𝑥⃗𝑠, 𝜔𝑙) = 𝑃 (𝑥⃗𝑟, 𝑥⃗𝑠; 𝜔𝑙) , (18)

for all receiver locations 𝑥⃗𝑟, source locations 𝑥⃗𝑠, and frequencies 𝜔𝑙 are available
for imaging. For an array with 𝑁 colocated sources and receivers that emit 𝑆

different frequencies the number of measurements is then equal to 𝑁2 𝑆. To make
use of the coherence of these data over all the frequencies we could stack them
in a column vector 𝑏, but then we would have to deal with a huge linear system
𝒜 𝜌 = 𝑏 of size 𝑁2 𝑆 × 𝐾. To reduce the number of data used in an ℓ1 approach,
we consider that the illumination is of separable form, i.e., ̂︀𝑓(𝜔𝑙) = 𝑓(𝜔𝑙) ̂︀𝑓 and
the same vector ̂︀𝑓 is used for all the frequencies 𝜔𝑙, 𝑙 = 1, . . . , 𝑆. Thus, for an
illumination ̂︀𝑓 = [ ̂︀𝑓(𝜔1)𝑇 , ̂︀𝑓(𝜔2)𝑇 , . . . , ̂︀𝑓(𝜔𝑆)𝑇 ]𝑇 we stack the data (including
phases) in a column vector

𝑏̂︀𝑓 = [𝑏𝑇̂︀𝑓(𝜔1)
, 𝑏𝑇̂︀𝑓(𝜔2)

, . . . , 𝑏𝑇̂︀𝑓(𝜔𝑆)
]𝑇 , (19)

and we solve the system of equations

𝒜̂︀𝑓 𝜌 = 𝑏̂︀𝑓 , (20)

with the (𝑁 · 𝑆) × 𝐾 matrix

𝒜̂︀𝑓 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

↑ ↑ ↑̂︀𝑔(1)̂︀𝑓(𝜔1)
̂︀𝑔(𝑦⃗1; 𝜔1) ̂︀𝑔(2)̂︀𝑓(𝜔1)

̂︀𝑔(𝑦⃗2; 𝜔1) . . . ̂︀𝑔(𝐾)̂︀𝑓(𝜔1)
̂︀𝑔(𝑦⃗𝐾 ; 𝜔1)

↓ ↓ ↓
↑ ↑ ↑̂︀𝑔(1)̂︀𝑓(𝜔2)

̂︀𝑔(𝑦⃗1; 𝜔2) ̂︀𝑔(2)̂︀𝑓(𝜔2)
̂︀𝑔(𝑦⃗2; 𝜔2) . . . ̂︀𝑔(𝐾)̂︀𝑓(𝜔2)

̂︀𝑔(𝑦⃗𝐾 ; 𝜔2)

↓ ↓ ↓
...

...
...

↑ ↑ ↑̂︀𝑔(1)̂︀𝑓(𝜔𝑆)
̂︀𝑔(𝑦⃗1; 𝜔𝑆) ̂︀𝑔(2)̂︀𝑓(𝜔𝑆)

̂︀𝑔(𝑦⃗2; 𝜔𝑆) . . . ̂︀𝑔(𝐾)̂︀𝑓(𝜔𝑆)
̂︀𝑔(𝑦⃗𝐾 ; 𝜔𝑆)

↓ ↓ ↓

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (21)

Here, ̂︀𝑔(𝑗)̂︀𝑓(𝜔𝑙)
= ̂︀𝑔(𝑦⃗𝑗 ; 𝜔𝑙)𝑇 ̂︀𝑓(𝜔𝑙) denotes the field with frequency 𝜔𝑙 at position

𝑦⃗𝑗 . The system (20) relates the unknown vector 𝜌 ∈ C𝐾 to the data vector
𝑏̂︀𝑓 ∈ C(𝑁 ·𝑆) in a coherent way. The system of linear equations (20) can, of course,
be solved by appropriate ℓ2 and ℓ1 methods.
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However, because (20) cannot be written in the form of an MMV problem,
MUSIC cannot be used to identify the support of 𝜌 as in the previous imaging
problems. The issue here is that matrix (21) cannot be factorized in the form
𝒜̂︀𝑓 = 𝒜 Λ̂︀𝑓 because the scalars ̂︀𝑔(𝑗)̂︀𝑓(𝜔𝑙)

depend on frequency. However, in the
paraxial regime, where the scatterers are far from the array, and the array and the
IW are small so the wavefronts that illuminate the scatterers are planar, we can
take into account these changes over frequencies explicitly to image coherently
with MUSIC.

Indeed, assume for simplicity that only one source at 𝑥⃗𝑠 = (𝑥𝑠, 0) with cross-
range vector 𝑥𝑠 = (𝑥𝑠𝑥, 𝑥𝑠𝑦) emits the signals, i.e., for all the frequencies 𝜔𝑙 we use
the N-vector ̂︀𝑓(𝜔𝑙) ≡ ̂︀𝑓 𝑙,𝑠 = [0, 0 . . . , 0, 1, 0, . . . , 0]𝑇 with all the entries equal to
zero except the 𝑠th entry which is one. In the paraxial regime, where 𝜆 ≪ 𝑎 ≪ 𝐿

and the IW is small compared to 𝐿, the illumination at position 𝑦⃗𝑗 = (𝑦𝑗 , 𝐿+𝜂𝑗)
can be approximated by ̂︀𝑔(𝑗)̂︀𝑓𝑙,𝑠

≈ 𝑒𝑖𝜅𝑙(𝜂𝑗+(𝑥𝑠−𝑦𝑗)2/2𝐿) ≈ 𝑒𝑖𝜅𝑙𝜂𝑗 𝑒𝑖𝜅𝑐(𝑥𝑠−𝑦𝑗)2/2𝐿

and, thus, 𝒜̂︀𝑓𝑙,𝑠
≈ 𝒜Λ̂︀𝑓𝑐,𝑠

where

𝒜 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

↑ ↑ ↑̂︀ℎ(𝑦⃗1; 𝜔1) ̂︀ℎ(𝑦⃗2; 𝜔1) . . . ̂︀ℎ(𝑦⃗𝐾 ; 𝜔1)
↓ ↓ ↓
↑ ↑ ↑̂︀ℎ(𝑦⃗1; 𝜔2) ̂︀ℎ(𝑦⃗2; 𝜔2) . . . ̂︀ℎ(𝑦⃗𝐾 ; 𝜔2)
↓ ↓ ↓
...

...
...

↑ ↑ ↑̂︀ℎ(𝑦⃗1; 𝜔𝑆) ̂︀ℎ(𝑦⃗2; 𝜔𝑆) . . . ̂︀ℎ(𝑦⃗𝐾 ; 𝜔𝑆)
↓ ↓ ↓

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(22)

with ̂︀ℎ(𝑦⃗𝑗 ; 𝜔𝑙) = 𝑒𝑖𝜅𝑙𝜂𝑗 ̂︀𝑔(𝑦⃗𝑗 ; 𝜔𝑙), and

Λ̂︀𝑓𝑐,𝑠
=

⎛⎜⎜⎜⎜⎝
𝑒𝑖𝜅𝑐(𝑥𝑠−𝑦1)2/2𝐿 0

0 𝑒𝑖𝜅𝑐(𝑥𝑠−𝑦2)2/2𝐿

. . .
0 𝑒𝑖𝜅𝑐(𝑥𝑠−𝑦𝐾 )2/2𝐿

⎞⎟⎟⎟⎟⎠ . (23)

In this approximation, the nonzero entries of the diagonal matrix (23) are given by
the illumination relative to the central frequency 𝜅𝑐. Then, the multiple-frequency
MUSIC formulation is of the MMV form

𝒜Λ̂︀𝑓𝑐,𝑠
𝜌 = 𝐵 , (24)
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with 𝒜 as in (22), Λ̂︀𝑓𝑐,𝑠
as in (23), and the (𝑁 · 𝑆) × 𝑁 matrix

𝐵 = 𝑃 𝑐 = [𝑃 (𝜔1)𝑇 , 𝑃 (𝜔2)𝑇 , . . . , 𝑃 (𝜔𝑆)𝑇 ]𝑇 (25)

corresponding to stacking the array response data matrices (4) for multiple
frequencies in a column. With this data structure, multiple-frequency imaging
can be carried out coherently using MUSIC with the column vectors of (22) as
the imaging vectors.

We could have used instead the alternative data structure

𝐵 = 𝑃 𝑑 =

⎛⎜⎜⎝
𝑃 (𝜔1) . . . 0 0

0 𝑃 (𝜔2) . . . 0
. . . . . . . . . . . .

0 0 0 𝑃 (𝜔𝑆)

⎞⎟⎟⎠ (26)

to image with MUSIC. However, that would be as if imaging with each frequency
separately and summing up the resulting images incoherently, so there would be
no significant improvement over single frequency imaging.

To summarize, multiple frequency imaging with phases can be done in
all regimes by solving (20) with suitable ℓ2-norm or ℓ1-norm methods. The
matrix-matrix formulation (24) can be used to form the images with MUSIC or
using (2,1)-matrix minimization as in [12]. Recall that (24) is an approximate
formulation, which is valid for the paraxial regime.

3.4.2 Imaging without phases

Assume now that only the intensities can be recorded at the array. In subsection
3.3 we showed that with multiple sources and multiple receivers, but a single
frequency, we could recover cross correlated data from intensity-only measure-
ments if we control the illuminations and, then, we could image holographically.
In general, if several frequencies are used for imaging, we can fix one of the three
possible variables (𝑥⃗𝑟, 𝑥⃗𝑠, 𝜔) and proceed similarly. For example, we can fix the
receiver position 𝑥⃗𝑟, and recover the multifrequency interferometric data

𝑑((𝑥⃗𝑟, 𝑥⃗𝑟), (𝑥⃗𝑠, 𝑥⃗𝑠′), (𝜔, 𝜔′)) = 𝑃 (𝑥⃗𝑟, 𝑥⃗𝑠; 𝜔)𝑃 (𝑥⃗𝑟, 𝑥⃗𝑠′ ; 𝜔′) (27)

for all pairs of frequencies (𝜔, 𝜔′) and source locations (𝑥⃗𝑠, 𝑥⃗𝑠′).
To understand the type of data that we can use in this situation, let us

consider one row of the 𝑁 × (𝑁 · 𝑆) full response matrix for multiple frequencies

𝑃 𝑟 = [𝑃 (𝜔1), 𝑃 (𝜔2), . . . , 𝑃 (𝜔𝑆)] , (28)
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and denote the r-th row of this matrix by

𝑝𝑟 = [𝑝𝑟1, 𝑝𝑟2, . . . , 𝑝𝑟𝑁 ·𝑆 ] . (29)

Here, 𝑝𝑟𝑗 with 𝑗 ≡ 𝑗(𝑠, 𝑙) = 𝑠 + (𝑙 − 1) · 𝑁 , denotes the received signal at 𝑥⃗𝑟

when the source at 𝑥⃗𝑠 sends a signal of frequency 𝜔𝑙. With this notation, and
denoting by the superscript ·* the conjugate transpose of a vector,

𝑀𝑟 = 𝑝*
𝑟𝑝𝑟 (30)

is the rank-one matrix whose 𝑗th column corresponds to the vector 𝑚𝑟̂︀𝑒𝑗

in the
right hand side of the linear system (17), introduced in subsection 3.3 for single
frequency imaging, but generalized here so as to account for multiple frequencies,
i.e., for 𝑙 = 1, . . . , 𝑆. That is, the 𝑗th column of (30) contains the correlations
of the response received at 𝑥⃗𝑟 when a signal of unit amplitude and frequency
𝜔𝑙 is sent from 𝑥⃗𝑠 to probe the medium (𝑗 = 𝑠 + (𝑙 − 1)𝑁), with all the other
responses received also at 𝑥⃗𝑟 when unit amplitude signals are sent from all the
sources with all the different frequencies. In short,

[𝑀𝑟]𝑖𝑗 = 𝑝𝑟𝑖𝑝𝑟𝑗 = (𝑝𝑟̂︀𝑒𝑖)* 𝑝𝑟̂︀𝑒𝑗 . (31)

Since 𝑀𝑟 is rank one, all the columns are linearly dependent, so we can only
use one of its columns to solve the imaging problem

𝒜̂︀𝑒𝑗
𝜌 = 𝑚𝑟̂︀𝑒𝑗

(32)

for one ̂︀𝑒𝑗 , and form the images with an ℓ2-norm or ℓ1-norm method. The matrix
𝒜̂︀𝑒𝑗

is given by (21) and, hence, the model (32) is exact.
Alternatively, once the matrix 𝑀𝑟 has been obtained from intensity-only

measurements, imaging can be done using the Kirchhoff migration functional

ℐKM = 𝑑𝑖𝑎𝑔(𝒜*̂︀𝑒𝑗
𝑀𝑟𝒜̂︀𝑒𝑗

). (33)

The ℓ2 images (33) are very robust with respect to additive measurement noise,
but they are statistically unstable when imaging is done in a randomly inhomo-
geneous medium or when there are modeling errors due to off-grid scatterers.
Both situations lead to perturbations in the (unknown) phases that may make
the ℐKM images dependent on the particular realization of the medium and/or
the positions of the scatterers. In [29], we showed that statistical stability can be
enhanced by masks that limit the frequency and source offsets of the measure-
ments used in (33). Hence, if the perturbations of the phases are important, we
can use the Single Receiver INTerferometric (SRINT) imaging functional given
by

ℐ𝑆𝑅𝐼𝑁𝑇 = 𝑑𝑖𝑎𝑔(𝒜*̂︀𝑒𝑗
𝒵 ⊙ 𝑀𝑟𝒜̂︀𝑒𝑗

) . (34)
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In (34), the mask 𝒵 is a matrix composed by zeros and ones restricting the data
to coherent nearby source locations and frequencies, and ⊙ denotes component-
wise multiplication. The same idea can be used for stabilizing the ℓ1-norm
minimization method if the perturbation of the phases are important. We can
just replace the 𝑗th column of the matrix 𝑀𝑟 by the 𝑗th column of the masked
data 𝒵 ⊙ 𝑀𝑟, and remove the corresponding rows from the model matrix 𝒜̂︀𝑒𝑗

.
On the other hand, as noted in [31, 28], the support of the reflectivity 𝜌

can be recovered exactly by using the MUSIC algorithm on the single frequency
interferometric matrix 𝑀(𝜔) = 𝑃 *(𝜔)𝑃 (𝜔). Once the support of 𝜌 is found, we
can estimate the reflectivities by solving a trace minimization problem restricted
to the support of 𝜌 (see [10, 31] for details).

For multiple frequencies, multiple sources and multiple receivers one can use
the data structure

𝑀𝑐 =

⎛⎜⎜⎜⎝
𝑃 (𝜔1)*𝑃 (𝜔1)
𝑃 (𝜔2)*𝑃 (𝜔1)

...
𝑃 (𝜔𝑆)*𝑃 (𝜔1)

⎞⎟⎟⎟⎠ (35)

for pairs of frequencies (𝜔𝑙, 𝜔1), 𝑙 = 1, . . . , 𝑆, to image coherently using MUSIC.
Indeed, the matrices 𝑀𝑐 as in (35) and 𝑃 𝑐 defined in (25) have the same column
space and, therefore, MUSIC can form the images using the SVD of 𝑀𝑐 and the
column vectors of (22) as imaging vectors. We denote these data structures with
the superscript 𝑐 to point out that we have stacked the one frequency matrices
𝑃 (𝜔𝑙) and the two frequencies matrices 𝑃 (𝜔𝑙)*𝑃 (𝜔1) in a column.

As noted in the previous section we could have used instead the alternative
data structure

𝑀𝑑 =

⎛⎜⎜⎝
𝑃 (𝜔1)*𝑃 (𝜔1) . . . 0 0

0 𝑃 (𝜔2)*𝑃 (𝜔2) . . . 0
. . . . . . . . . . . .

0 0 0 𝑃 (𝜔𝑆)*𝑃 (𝜔𝑆)

⎞⎟⎟⎠ (36)

to image using MUSIC. However, as we have already explained, if we used the
SVD of 𝑀𝑑 to obtain the signal and noise subspaces, then the frequencies are
not used coherently and there is no improvement over single frequency imaging.

In summary, multiple frequency imaging with intensity-only can be done in
all regimes by solving (32) with appropriate ℓ2-norm or ℓ1-norm methods or, in
the paraxial regime, by forming the images using MUSIC on the data structure
(35) with imaging vectors given by the column vectors of the matrix (22). MUSIC
on the data structure (36) should not be used since multiple frequencies are
not processed coherently. The performance of these methods will be assessed in
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Section 4, where we show numerical experiments in homogeneous and weakly
inhomogeneous media.

4 Numerical Simulations
We present here numerical simulations that illustrate the performance of the
different imaging methods discussed in the previous sections. Specifically, we
consider multifrequency interferometric imaging without phases discussed in
subsection 3.4.2, and we present the images obtained with ℓ1-norm minimization,
SRINT, and MUSIC using the data structures 𝑀𝑐 and 𝑀𝑑. Our objective is to
study the robustness of these imaging methods in the presence of noise, that
is perturbations in the unknown phases of the collected signals. Two types of
phase perturbations are considered, systematic due to off-grid placement of the
scatterers and random resulting from wave propagation in an inhomogeneous
ambient medium.

4.1 Imaging setup

We consider a typical imaging regime in optics, with a central frequency 𝑓0 = 600
THz corresponding to a central wavelength 𝜆0 = 500𝑛𝑚. We use 𝑆 = 12 equally
spaced frequencies covering a total bandwidth of 30THz. In this regime, the
decoherence frequency of the data Ω𝑑 is equal to the total bandwidth. All
considered wavelengths are in the visible spectrum of green light.

The size of the array is 𝑎 = 500𝜆0, and the distance between the array and
the IW is 𝐿 = 10000𝜆0. The IW, whose size is 120𝜆0 × 60𝜆0, is discretized using
a uniform lattice with mesh size 4𝜆0 × 2𝜆0. The medium between the array and
the IW is inhomogeneous, with weak fluctuations and long correlation lengths
with respect to the central wavelength. The propagation distance 𝐿 is large so
cumulative scattering effects are important, but not too large so the phases of
the signals received at the array still maintain certain degree of coherence. In all
the figures, the true locations of the scatterers are indicated with white crosses,
and the length scales are measured in units of 𝜆0.

Again, we assume that the phases of the signals received at the array cannot
be measured. Hence, only their intensities are available for imaging. These
measurements are collected at only one receiver, so we can use the methods
explained in subsection 3.4.2 to image interferometrically. We consider imaging
in homogeneous and inhomogeneous media.
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Fig. 2: Imaging in a homogeneous medium. There is no noise added to the data and the
scatterers are on the grid. From left to right: SRINT image, MUSIC with 𝑀𝑑, MUSIC with
𝑀𝑐 coupling over frequencies, and ℓ1-norm minimization applied on one column of the
masked matrix 𝒵 ⊙𝑀𝑟.

4.2 Imaging in homogeneous media

Let us first consider imaging in homogeneous media. For the imaging system
described above, we expect cross-range and range resolutions of 𝜆0𝐿/𝑎 = 20𝜆0
and 𝐶0/𝐵 = 𝜆0𝑓0/𝐵 = 20𝜆0, respectively. In order to keep the resolution fixed
with respect to imaging in inhomogeneous media that we consider afterwards,
we also apply masks to the data used to image in the homogeneous medium.
This reduces the cross-range resolution to 𝜆0𝐿/𝑋𝑑 = 32𝜆0 corresponding to
𝑋𝑑 = 5𝑎/8. The range resolution does not change because the decoherence
frequency Ω𝑑 is equal to the total bandwidth.

In Figure 2, the scatterers lie on the grid and there is no noise in the data. We
observe that SRINT (left image) provides a quite limited resolution and it cannot
resolve two of the four scatterers. On the other hand, imaging with MUSIC
(two middle images) or imaging using ℓ1-norm minimization (right image) give
much better results. MUSIC using the block-diagonal matrix 𝑀𝑑 (second image
from the left) gives exact recovery, while MUSIC using the 𝑀𝑐 matrix (third
image from the left), that couples all the frequencies, is less accurate. This is
so because, as we explained in Section 3.4, MUSIC with 𝑀𝑐 is not exact as it
provides approximate locations of the scatterers only in the paraxial regime.
Finally, the ℓ1-norm approach recovers exactly the four scatterers as can be seen
in the right image of this figure.

Figure 3 shows the same experiment as Figure 2 but with the scatterers
displaced by half the grid size with respect to the grid points in range and
cross-range directions. This produces perturbations in the unknown phases of
the collected signals due to modeling errors. Because the point spread function is,
in this case, much wider (of the order of 20𝜆0) than the off-grid displacements,
the image formed with SRINT (left plot) is very robust with respect to these
perturbations in the phases. However, the image obtained with MUSIC using the
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data structure 𝑀𝑑 (second plot from the left) deteriorates dramatically because
the multiple-frequency information contained in the data is not processed in
a coherent way. On the other hand, both MUSIC with the 𝑀𝑐 data structure
(third plot from the left) and ℓ1-norm minimization (right plot) are very robust
with respect to the off-grid displacements.
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Fig. 3: Same as Figure 2 but with the scatterers off the grid. The scatterers are displaced
by half the grid size in both directions from a grid point.

We study next the performance of the proposed methods for imaging in
inhomogeneous media with weak fluctuations and long correlation lengths with
respect to 𝜆0. The challenge is to obtain similar results in this case.

4.3 Imaging in random inhomogeneous media

Consider the setup displayed in Figure 4 with four scatterers in the right (black
circles) at a distance 𝐿 = 10000𝜆0 from the array (black stars). The data used in
the numerical experiments are generated using the random phase model which is
frequently used to account for weak phase distortions [3, 13, 5, 29]. In this model,
the standard deviation of the perturbations of the phases is given by 𝜎

√
𝑙𝐿/𝜆0,

where 𝜎 and 𝑙 denote the strength and the correlation length of the fluctuations of
the medium, respectively. If we introduce the characteristic strength 𝜎0 = 𝜆0/

√
𝑙𝐿,

for which the standard deviation of the random phases is 𝑂(1), we can quantify the
perturbations of the unknown phases by the dimensionless parameter 𝜀 = 𝜎/𝜎0.

In order to study the effect of phase distortions due to a random medium
on imaging, we consider that the scatterers lie on the grid. Imaging in random
media with ℓ1-norm minimization has also been considered in [13, 5].

Figure 5 displays the images obtained in a very weak fluctuating random
medium with 𝜀 = 0.05. Comparing these images with the ones obtained in a
homogeneous medium with scatterers on and off the grid (see Fig. 2 and Fig. 3,
respectively) we observe that (i) SRINT (left plot), MUSIC using 𝑀𝑐 (third plot
from the left) and ℓ1-norm minimiation (right plot) are stable, and (ii) MUSIC
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Fig. 4: One realization of the random medium used in the simulations. The correlation
length of the fluctuations is 𝑙 = 100𝜆0.
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Fig. 5: Same as Figure 2 but the medium is inhomogeneous. The strength of the fluctua-
tions is 𝜎 = 0.5 10−4 which corresponds to 𝜀 = 0.05. The scatterers are on-grid.

using 𝑀𝑑 (second plot from the left) is not. Note that off-grid scatterers and
a random medium both induce similar noise in the data, as both occur in the
phases. In the off-grid case, the noise is systematic and similar for all array
elements, while the noise induced by the random phase model depends on the
path that connects the scatterer to each array element. Hence, depending on the
correlation length of the random medium the noise produced in the phases is
more or less correlated over the array elements.

Since MUSIC using 𝑀𝑑 is not robust with respect to perturbations in the
phases (see Figures 3 and 5) because the data are not processed coherently over
frequencies, we do not present more results using this method.

To further examine the robustness of the other imaging methods with respect
to random medium fluctuations, we consider in the next figures five noise levels
corresponding to 𝜀 = 0.1, 0.2, 0.4, 0.6 and 0.8. Each figure presents results for
two realizations of the random medium. In Figure 6 we see that, as expected,
SRINT is highly robust, although its resolution is not very good. Even for 𝜀 = 0.8
(right column) the images do not change much respect to the ones obtained
in a homogeneous medium. Figure 7 shows the images obtained with ℓ1-norm
minimization. The resolution is much better than that provided by SRINT, but
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Fig. 6: Imaging with SRINT in inhomogeneous media illustrating its stability with respect to
the random fluctuations of the media. The strength of the fluctuations increases from left
to right so 𝜀 = 0.1, 0.2, 0.4, 0.6 and 0.8. The top and bottom rows are two realizations of
the random medium.

it is much more sensitive to noise. Only for fluctuation strengths below or equal
𝜀 = 0.2 the images are good. Above this strength the images are useless. However,
the use of masks on the data effectively removes the distortion imposed by the
medium up to 𝜀 = 0.4, as it can be seen in Figure 8. This is so because by using
masks we discard the incoherent data and, thus, we improve the robustness of
the ℓ1-norm method (even though we reduce the number of equations in the
linear system by about 40%).
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Fig. 7: Images obtained with ℓ1-norm minimization without masks in the same media
and the same scatterer’s configuration as in Figure 6. Imaging with ℓ1-norm minimization
without masks is stable only for 𝜀 ≤ 0.2.

Finally, the images shown in Figure 9 formed using MUSIC with 𝑀𝑐 are
also very good. They have significantly better resolution than the SRINT images
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Fig. 8: Same as Figure 7 but using masked data. The results are now stable for 𝜀 ≤ 0.4.

but not as good as the ones obtained with ℓ1-norm minimization. We stress
that MUSIC with 𝑀𝑐 is not exact even for perfect data and, therefore, ℓ1-norm
minimization should be preferred if the fluctuations of the medium are weak.
However, as the strength of the fluctuations increases, MUSIC with 𝑀𝑐 becomes
competitive. Observe that at lower SNR, when the ℓ1-norm images are not usefull,
MUSIC with 𝑀𝑐 is robust and the resolution is better than the one provided
by SRINT. Therefore, it should be the preferred method among the three for
imaging in moderate SNR regimes.
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Fig. 9: Images obtained with MUSIC using 𝑀𝑐 in the same media and the same scatterer’s
configuration as in Figures 6-8. MUSIC using 𝑀𝑐 is stable for 𝜀 ≤ 0.6.
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5 Imaging results in the framework of
Theorems 2.3 and 2.4

To illustrate the relevance of Theorems 2.3 and 2.4 for imaging, we consider in
this section the equivalent source problem of active array imaging with multiple
frequencies and multiple receivers described in subsection 3.4.1. In this setting
we have to solve the linear system

𝒜𝜌 = 𝑏̂︀𝑓
with 𝒜 the model matrix (22). We compare the corresponding ℓ2 and ℓ1 solutions
of this problem for different imaging configurations. Our results illustrate the
well know super-resolution for ℓ1, meaning that 𝜌ℓ1 determines the support of
the unknown 𝜌 with higher accuracy than the conventional resolution limits,
provided the assumptions of Theorem 2.3 for the noiseless case or Theorem 2.4
for the noisy case are satisfied. We also show how the bandwidth, the array size
and the number of scatterers affect the vicinities defined in (8). The numerical
results are not specialized to a paticular physical regime. They illustrate only
the role of the theorems in solving the associated linear systems.

Imaging methods

We compare the solution 𝜌ℓ1 obtained with the ℓ1-norm minimization algorithm
GelMa described in section 2, and the ℓ2-norm solution

𝜌ℓ2 = 𝒜*𝑏̂︀𝑓 . (1)

where 𝒜* is the conjugate transpose of 𝒜.

Imaging setup

The images are obtained in a homogeneous medium with an active array of
𝑁 = 37 transducers. The ratio between the array aperture 𝑎 and the distance 𝐿

to IW, as well as the ratio between the bandwidth 2𝐵 and the central frequency
𝑓0, vary in the numerical experiments. The IW is discretized using a uniform
grid of 𝐾 = 3721 points of size 𝜆0/2 in range and cross-range directions. The
classical resolution theory suggests that the range and cross-range resolutions
are 𝑐0/(2𝐵) and 𝜆0𝐿/𝑎, respectively. There is no additive noise in the data, but
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we consider on-grid and off-grid scatterers which produces perturbations in the
recorded phases.

Imaging results

In Figure 10 we show the results obtained for a large array and a large bandwidth
corresponding to 𝑎/𝐿 = 1 and (2𝐵)/𝑓0 = 1. From left to right we show the 𝜌ℓ2

solution, the 𝜌ℓ1 solution, and the vicinities 𝑆𝑗 defined in (8) plotted with different
colors. In the top and bottom rows there are 𝑀 = 4 and 𝑀 = 8 scatterers,
respectively. All the scatterers are on the grid and their exact locations are
indicated with white crosses. The four scatterers in the top row are far apart and,
therefore, their vicinities do not overlap as it can be seen in the top right image
of this figure. In this case, all the conditions of Theorem 2.3 are satisfied and we
find the exact locations of scatterers with the ℓ1-norm minimization algorithm.
The eight scatterers in the bottom row are closer and their vicinities are larger
(according to (8) the size of the vicinities increases with 𝑀). We observe in the
bottom right image of this figure that the vicinities overlap, so condition (10) is
not satisfied in this case. We still, however, find the exact locations of scatterers
with the ℓ1-norm minimization algorithm which means that the conditions of
Theorem 2.3 have pessimistic bounds. Because the array and the bandwidth
are large, the ℓ2-norm solutions also give very good estimates of the scatterer’s
locations (see the left column images).

In Figure 11 we show the results for the same configurations of scatterers
as in Figure 10, but using a smaller array aperture and a smaller bandwidth
so 𝑎/𝐿 = 1/2 and (2𝐵)/𝑓0 = 1/2. Thus, the classical resolution limits become
𝑐0/(2𝐵) = 2𝜆0 in range and 𝜆0𝐿/𝑎 = 2𝜆0 in cross-range. Hence, the resolution of
the ℓ2-norm solutions deteriorate, as can be observed in the left column images
of this figure. In fact, we only recover seven scatterers instead of eight for 𝑀 = 8
(there are two scatterers that are quite close). The ℓ1-norm minimization approach,
however, still gives exact recovery for both 𝑀 = 4 and 𝑀 = 8 scatterers. This is
referred to as super-resolution, which means that we can determine the location
of the scatterers with a better accuracy than the classical resolution limits.

To illustrate the effect of the array and bandwidth sizes on the size of
the vicinities we plot them in Figure 12 for the case 𝑀 = 4. From left to
right we plot the vicinities for 𝑎/𝐿 = 1/2 and (2𝐵)/𝑓0 = 1/2, 𝑎/𝐿 = 1/2 and
(2𝐵)/𝑓0 = 1/4, and 𝑎/𝐿 = 1/4 and (2𝐵)/𝑓0 = 1/2. As expected, cross-range
and range resolutions deteriorate and consequently vicinity sizes increase as the
ratios 𝑎/𝐿 and (2𝐵)/𝑓0 decrease.
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Fig. 10: Imaging in a homogeneous medium and scatterers on grid. From left to right:
𝜌ℓ2

, 𝜌ℓ1
, and the vicinities 𝑆𝑗 , 𝑗 = 1, . . . ,𝑀 , plotted with different colours. Top row

𝑀 = 4, bottom row 𝑀 = 8. Large array aperture and large bandwidth so 𝑎/𝐿 = 1 and
(2𝐵)/𝑓0 = 1.

In Figure 13 we use a relatively small array and bandwidth so 𝑎/𝐿 = 1/4 and
(2𝐵)/𝑓0 = 1/4. In this case, the conditions of Theorem 2.3 are not satisfied for
neither 𝑀 = 4 nor 𝑀 = 8, but the images obtained with ℓ1-norm minimization
are still very good. They are exact for 𝑀 = 4 and very close to the true image
for 𝑀 = 8.

By further decreasing the array aperture and the bandwidth so that 𝑎/𝐿 = 0.1
and (2𝐵)/𝑓0 = 0.1, we consider in Figure 14 a very challenging situation even for
well separated scatterers. The ℓ2-norm solutions shown in the left column of this
figure are not able to locate the positions of the scatterers because of the low
resolution of the imaging system. However, when the number of the scatterers
is very small (see the top row corresponding to 𝑀 = 4) the ℓ1-norm approach
provides a precise image even though the discretization of the IW is 20 times
finer than the classical resolution limits of the imaging system. On the other
hand, when we increase the number of scatterers to 𝑀 = 8 (bottom row) the
interaction between the vicinities is very strong and the ℓ1-norm image in not
good neither.

We now consider the same situation as in Figure 10, so the array aperture and
the bandwidth are large, but with scatterers off the grid. This means that there
are modeling errors and, therefore, there is not a vector 𝜌 for which 𝒜𝜌 = 𝑏̂︀𝑓 . In
the case considered next, the scatterers are displaced by 𝜆0/4 from a grid point in
range and cross-range directions. The left column of Figure 15 shows, as expected,
that the ℓ2-norm solutions (1) are not affected by off-grid displacements. This is
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Fig. 11: Same as Figure 10 but using a smaller array aperture and a smaller bandwidth so
𝑎/𝐿 = 1/2 and (2𝐵)/𝑓0 = 1/2.

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

range in λ
0

c
ro

s
s
−

ra
n

g
e

 i
n

 λ
0

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

range in λ
0

c
ro

s
s
−

ra
n

g
e

 i
n

 λ
0

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

range in λ
0

c
ro

s
s
−

ra
n

g
e

 i
n

 λ
0

Fig. 12: Vicinities 𝑆𝑗 , 𝑗 = 1, . . . , 4, for different array and bandwidth sizes. From left to
right: 𝑎/𝐿 = 1/2 and (2𝐵)/𝑓0 = 1/2, 𝑎/𝐿 = 1/2 and (2𝐵)/𝑓0 = 1/4 and 𝑎/𝐿 = 1/4 and
(2𝐵)/𝑓0 = 1/2.



Data structures for robust multifrequency imaging 35

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

range in λ
0

c
ro

s
s
−

ra
n

g
e

 i
n

 λ
0

 

 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

range in λ
0

c
ro

s
s
−

ra
n

g
e

 i
n

 λ
0

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

range in λ
0

c
ro

s
s
−

ra
n

g
e

 i
n

 λ
0

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

range in λ
0

c
ro

s
s
−

ra
n

g
e

 i
n

 λ
0

 

 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

range in λ
0

c
ro

s
s
−

ra
n

g
e

 i
n

 λ
0

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

range in λ
0

c
ro

s
s
−

ra
n

g
e

 i
n

 λ
0

Fig. 13: Same as Figures 10 and 11 but using a smaller array aperture and a smaller band-
width so 𝑎/𝐿 = 1/4 and (2𝐵)/𝑓0 = 1/4.
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Fig. 14: Imaging in a homogeneous medium with 𝑎/𝐿 = 0.1 and (2𝐵)/𝑓0 = 0.1. Top and
bottom rows: 𝑀 = 4 and 𝑀 = 8 scatterers, respectively. From left to right: 𝜌ℓ2

as in (1),
𝜌ℓ1

obtained with GelMa, and the vicinities 𝑆𝑗 , 𝑗 = 1, . . . ,𝑀 plotted with different colors.
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so because the resolution is larger than the displacements of the scatterers with
respect to the grid points. The right column shows, however, that the ℓ1-norm
solutions are sensitive to these displacements. They are no longer exact, although
they remain very close to the true solutions. By carefully examining the results
of this figure we observe that the ℓ1-norm solutions behave as it is predicted by
Theorem 2.4. The coherent part of the solution is supported in the vicinities of
the exact solution while the incoherent part remains very small.
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Fig. 15: Imaging in a homogeneous medium with scatterers off the grid. As in Figure 10, we
use a large array aperture and a large bandwidth so 𝑎/𝐿 = 1 and (2𝐵)/𝑓0 = 1. Top and
bottom rows show the images for 𝑀 = 4 and 𝑀 = 8 sactterers, respectively. Left and right
columns show the ℓ2-norm and ℓ1-norm solutions, respectively.

Figure 16 shows similar results but for a smaller array and a smaller band-
width. We use 𝑎/𝐿 = 1/4 and (2𝐵)/𝑓0 = 1/4, so the classical resolution limits
increase as can be observed in the ℓ2-norm solutions shown in the left column.
As in the previous figure, the ℓ1-norm solutions shown in the right column have a
coherent part whose support is contained in the vicinities of the true solutions and
an incoherent part that is very small. We also refer to [18, 4] for nice discussions
about what to expect from ℓ1-norm minimization when the scatterers do not lie
on the grid.
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Fig. 16: Same as Figure 15 but with 𝑎/𝐿 = 1/4 and (2𝐵)/𝑓0 = 1/4.

6 Conclusions
In this paper we addressed the question of what are appropriate data structures so
as to obtain robust images with two widely used methods: ℓ1-norm minimization
and MUSIC. Both methods are well adapted to finding sparse solutions of
linear underdetermined systems of equations of the form 𝒜𝑙𝜌 = 𝑏𝑙 where 𝑙 is a
parameter vector that can be varied, such as the illumination profile in space
and/or frequency. ℓ1-norm minimization is well suited for solving problems with
a single measurement vector corresponding to one parameter vector 𝑙. On the
other hand, MUSIC requires multiple measurement vectors that are obtained for
several parameter vectors 𝑙𝑖, 𝑖 = 1, . . . , 𝑆. Given the data 𝑏𝑙, our first main result
concerns the uniqueness and robustness to noise of the minimal ℓ1-norm solution
of 𝒜𝑙𝜌 = 𝑏𝑙. This is the subject of Theorems 2.3 and 2.4. The second important
result is the key observation that MUSIC provides the exact support of the
unknown 𝜌 when the matrix 𝒜𝑙 admits a factorization of the form 𝒜𝑙 = 𝒜Λ𝑙

with Λ𝑙 diagonal. Furthermore, we show in Theorem 2.6 that MUSIC is robust
with respect to noise. Our third main contribution is the formulation of several
common imaging configurations, including multifrequency imaging and imaging
without phases, under a common linear algebra framework. For imaging without
phases (the phase retrieval problem) the robustness of ℓ1-norm minimization and
MUSIC is studied with numerical simulations in weakly inhomogeneous media.
Our results suggest that ℓ1-norm minimization may be used for low noise levels
while MUSIC should be the method of choice for higher noise levels.
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1 Proofs of theorems 2.1 to 2.4
theorem 2.1. 𝑀 -sparse solutions of 𝒜𝑥 = 𝑏 are unique, if

|⟨𝑎𝑖, 𝑎𝑗⟩| <
1

2𝑀
, ∀𝑖 ̸= 𝑗, (1)

where we assume that the columns of matrix 𝒜 are normalized so that ∀𝑖, ‖𝑎𝑖‖ℓ2 =
1.
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Proof. Assume that there exist two 𝑀 -sparse solutions 𝑥1 and 𝑥2 of 𝒜𝑥 = 𝑏.
Then their difference 𝑧 = 𝑥1 − 𝑥2 is at most 2𝑀 -sparse, and 𝑧 is in the kernel:
𝒜𝑧 = 0. This implies that there exist a 1-sparse vector 𝑧1 and a (2𝑀 − 1)-sparse
vector 𝑧2 with disjoint support such that 𝑧1 − 𝑧2 = 𝑧, and

‖𝑧1‖ℓ∞ ⩾ ‖𝑧2‖ℓ∞ . (2)

This means that the vector 𝑧1 was constructed so as to contain only the largest
in magnitude component of 𝑧 (one of them if there are several) while 𝑧2 contains
all the other components of 𝑧. Suppose that the unique non-zero coordinate of
𝑧1 is 𝑖. Multiplying the identity 𝒜𝑧1 = 𝒜𝑧2 by 𝑎𝑖, we get

⟨𝑎𝑖, 𝒜𝑧1⟩ = ⟨𝑎𝑖, 𝒜𝑧2⟩,

which reduces to

(𝑧1)𝑖 = ⟨𝑎𝑖, 𝒜𝑧2⟩ =
2𝑀∑︁

𝑗=1,𝑗 ̸=𝑖

⟨𝑎𝑖, 𝑎𝑗⟩(𝑧2)𝑗

Using now (1) we obtain

‖𝑧1‖𝑙∞ <
1

2𝑀
(2𝑀 − 1)‖𝑧2‖ℓ∞ < ‖𝑧2‖ℓ∞ ,

which is in contradiction with (2).

theorem 2.2. 𝑀 -sparse solutions of 𝒜𝑥 = 𝑏 can be found as solutions of

min ‖𝑦‖ℓ1 , subject to 𝒜𝑦 = 𝑏,

if
|⟨𝑎𝑖, 𝑎𝑗⟩| <

1
2𝑀

, ∀𝑖 ̸= 𝑗,

where we assume that the columns of matrix 𝒜 are normalized so that ∀𝑖, ‖𝑎𝑖‖ℓ2 =
1.

Proof. Assume that there exist two solutions 𝑥1 and 𝑥2 of 𝒜𝑥 = 𝑏. Suppose 𝑥1
is M-sparse, and 𝑥2 is arbitrary. Their difference 𝑧 = 𝑥1 − 𝑥2 is in the kernel:
𝒜𝑧 = 0. We will show that ‖𝑥1‖ℓ1 < ‖𝑥2‖ℓ1 . Without loss of generality, we may
assume that 𝑥1 and 𝑥2 have disjoint support. Otherwise we decompose 𝑧 in 𝑧1
and 𝑧2 such that 𝑧 = 𝑧1 − 𝑧2 and

supp(𝑧1) ⊂ supp(𝑥1),
supp(𝑧2) ∩ supp(𝑥1) = ∅.
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If we assume
‖𝑥2‖ℓ1 < ‖𝑥1‖ℓ1 (3)

then necessarily
‖𝑧2‖ℓ1 < ‖𝑧1‖ℓ1 . (4)

Indeed, if ‖𝑧1‖ℓ1 ⩾ ‖𝑥1‖ℓ1 , it is obvious that (3) implies (4). Otherwise, if
‖𝑧1‖ℓ1 < ‖𝑥1‖ℓ1 we have

‖𝑧1 − 𝑥1‖ℓ1 ⩾ ‖𝑥1‖ℓ1 − ‖𝑧1‖ℓ1 > 0.

Since 𝑥2 = 𝑥1 − 𝑧 = 𝑥1 − 𝑧1 + 𝑧2 we obtain ‖𝑥2‖ℓ1 = ‖𝑥1 − 𝑧1‖ℓ1 + ‖𝑧2‖ℓ1 and
from (3) we get

‖𝑥1‖ℓ1 > ‖𝑥2‖ℓ1 = ‖𝑥1 − 𝑧1‖ℓ1 + ‖𝑧2‖ℓ1 ,

which implies
‖𝑧2‖ℓ1 < ‖𝑥1‖ℓ1 − ‖𝑧1 − 𝑥1‖ℓ1 ⩽ ‖𝑧1‖ℓ1 .

This finishes the proof of the statement that (3) implies (4).
We return now in the proof of the theorem and let 𝑖 be the coordinate of

the component of 𝑧 = 𝑧1 − 𝑧2 with the largest absolute value. Without loss
of generality, we may suppose this component is real and positive. Then by
multiplying the identity 𝒜𝑧 = 0 by 𝑎𝑖 we conclude

‖𝑧‖𝑙∞ ⩽
1

2𝑀

∑︁
𝑗 ̸=𝑖

|𝑧𝑗 | <
1

2𝑀
‖𝑧‖ℓ1 = 1

2𝑀
(‖𝑧1‖ℓ1 + ‖𝑧2‖ℓ1) .

Since ‖𝑧1‖ℓ1 ⩽ 𝑀‖𝑧1‖ℓ∞ ⩽ 𝑀‖𝑧‖ℓ∞ , we obtain

‖𝑧‖𝑙∞ <
1
2‖𝑧‖ℓ∞ + 1

2𝑀
‖𝑧2‖ℓ1 .

It implies 𝑀‖𝑧‖ℓ∞ < ‖𝑧2‖ℓ1 . Again using ‖𝑧1‖ℓ1 ⩽ 𝑀‖𝑧‖ℓ∞ , we obtain
‖𝑧1‖ℓ1 < ‖𝑧2‖ℓ1 which is in contradiction with (4).

theorem 2.3. Let 𝑥 be a solution of 𝒜𝑥 = 𝑏. Let 𝑇 be the index set of the
support of 𝑥:

𝑇 = supp(𝑥), 𝑀 = |𝑇 |.

Fix a positive 𝜀 < 1/2 and suppose that 𝒜 satisfies
i. The columns of matrix 𝒜 are normalized so that ∀𝑖, ‖𝑎𝑖‖ℓ2 = 1.
ii. The vectors 𝑎𝑖 in the set 𝑇 are approximately orthogonal, that is they satisfy

|⟨𝑎𝑖, 𝑎𝑗⟩| <
𝜀

𝑀
, ∀𝑖, 𝑗 ∈ 𝑇, 𝑖 ̸= 𝑗.
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iii. For any 𝑗 ∈ 𝑇 the vicinity 𝑆𝑗 defined as

𝑆𝑗 =
{︂

𝑘 ̸= 𝑗| |⟨𝑎𝑘, 𝑎𝑗⟩| ⩾ 1
2𝑀

}︂
,

has the properties
|⟨𝑎𝑘, 𝑎𝑗⟩| ⩽ 1 − 2𝜀, ∀𝑘 ∈ 𝑆𝑗

and
|⟨𝑎𝑘, 𝑎𝑗⟩| <

𝜀

𝑀
, ∀𝑘 ∈ 𝑆𝑖, ∀𝑖 ̸= 𝑗.

Then 𝑥, the 𝑀 -sparse solution of 𝒜𝑥 = 𝑏, can be found as the solution of

min ‖𝑦‖ℓ1 , subject to 𝒜𝑦 = 𝑏.

Proof. Assume 𝑦 is another solution of 𝒜𝑥 = 𝑏. Then 𝒜𝑥 = 𝒜𝑦. As in the proof
of Theorem 2.2 we may suppose that 𝑥 and 𝑦 have disjoint support. For any
𝑝 ∈ 𝑇 multiplying the identity 𝒜𝑥 = 𝒜𝑦 by 𝑎𝑝 we get

𝑥𝑝 +
∑︁

𝑖∈𝑇,𝑖 ̸=𝑝

⟨𝑎𝑖, 𝑎𝑝⟩𝑥𝑖 =
∑︁
𝑖∈𝑆𝑝

⟨𝑎𝑖, 𝑎𝑝⟩𝑦𝑖 +
∑︁

𝑖̸∈∪𝑗𝑆𝑗

⟨𝑎𝑖, 𝑎𝑝⟩𝑦𝑖 +
∑︁

𝑖∈𝑆𝑗 ,𝑗 ̸=𝑝

⟨𝑎𝑖, 𝑎𝑝⟩𝑦𝑖

⩽ (1 − 2𝜀)
∑︁
𝑖∈𝑆𝑝

|𝑦𝑖| + 1
2𝑀

∑︁
𝑖̸∈∪𝑗𝑆𝑗

|𝑦𝑖| + 𝜀

𝑀

∑︁
𝑖∈𝑆𝑗 ,𝑗 ̸=𝑝

|𝑦𝑖|.

This implies

|𝑥𝑝| < (1 − 2𝜀)
∑︁
𝑖∈𝑆𝑝

|𝑦𝑖| + 1
2𝑀

∑︁
𝑖̸∈∪𝑗𝑆𝑗

|𝑦𝑖| + 𝜀

𝑀

∑︁
𝑖∈𝑆𝑗 ,𝑗 ̸=𝑝

|𝑦𝑖| + 𝜀

𝑀
‖𝑥‖ℓ1 .

Adding up the inequalities for all 𝑝 ∈ 𝑇 we obtain

‖𝑥‖ℓ1 < (1 − 𝜀)
∑︁

𝑖∈∪𝑗𝑆𝑗

|𝑦𝑖| + 𝜀‖𝑥‖ℓ1 + 1
2

∑︁
𝑖̸∈∪𝑗𝑆𝑗

|𝑦𝑖|.

Thus
‖𝑥‖ℓ1 <

∑︁
𝑖∈∪𝑗𝑆𝑗

|𝑦𝑖| + 1
2(1 − 𝜀)‖

∑︁
𝑖̸∈∪𝑗𝑆𝑗

|𝑦𝑖| ⩽ ‖𝑦‖ℓ1 . (5)

Contradiction.

theorem 2.4. Noisy case Let 𝑥 be an 𝑀 -sparse solution of

𝒜𝑥 = 𝑏,
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and let as before 𝑇 denote the index set of the support of 𝑥, that is 𝑇 = supp(𝑥)
and 𝑀 = |𝑇 |. Fix a positive 𝜀 < 1/2 and suppose that 𝒜 satisfies conditions i, ii,
and iii of Theorem 2.3.
Furthermore, let 𝑥𝛿 be the ℓ1-norm minimal solution of the noisy problem

min ‖𝑦‖ℓ1 , subject to 𝒜𝑦 = 𝑏𝛿, (6)

with 𝑏𝛿 defined by
𝑏𝛿 = 𝑏 + 𝛿𝑏.

We assume that the noise 𝛿𝑏 is bounded, that is we have

‖𝛿𝑏‖ℓ2 ⩽ 𝛿,

for some small positive 𝛿. We further assume that 𝒜 has the property that the
solution 𝛿𝑥 of

min ‖𝑦‖ℓ1 , subject to 𝒜𝑦 = 𝛿𝑏, (7)

satisfies
‖𝛿𝑥‖ℓ1 ⩽ 𝐶‖𝛿𝑏‖ℓ2 . (8)

Then we can show that the solution 𝑥𝛿 of (6) can be decomposed as

𝑥𝛿 = 𝑥𝑐 + 𝑥𝑖, (9)

with 𝑥𝑐 the coherent part of the solution that is supported on 𝑇 or in the vicinities
𝑆𝑗 with 𝑗 ∈ 𝑇 , and 𝑥𝑖 the incoherent part of the solution which is supported
away from the vicinities and is small. Specifically, for 𝑥𝑐 we have: for any 𝑗 ∈ 𝑇

| |(𝑥)𝑗 | − |(𝑥𝑐)𝑗 +
∑︁

𝑘∈𝑆𝑗

⟨𝑎𝑗 , 𝑎𝑘⟩(𝑥𝑐)𝑘| | ⩽ 𝛿0 + 𝐶𝛿,

with
𝛿0 = 2𝐶𝛿(1 − 𝜀)

𝑀(1 − 2𝜀) + 2𝜀(‖𝑥‖ℓ1 + 𝐶𝛿)
𝑀

.

While for 𝑥𝑖 we can show that:

‖𝑥𝑖‖ℓ1 ⩽ 𝛿1,

with 𝛿1 given by

𝛿1 = 𝐶𝛿 + 4𝐶𝛿(1 − 𝜀)
(1 − 2𝜀)
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Proof. By assumption (7)-(8) there exist 𝛿𝑥 such that 𝒜𝛿𝑥 = 𝛿𝑏, and ‖𝛿𝑥‖ℓ1 ⩽
𝐶𝛿. Suppose 𝑥 is the 𝑀 -sparse solution of 𝒜𝑥 = 𝑏. Note that

𝒜 (𝑥𝛿 − 𝛿𝑥) = 𝑏, 𝒜 (𝑥 + 𝛿𝑥) = 𝑏𝛿.

Since both 𝑥 and 𝑥𝛿 are respective minimizers, we obtain

‖𝑥‖ℓ1 ⩽ ‖𝑥𝛿 − 𝛿𝑥‖ℓ1 , (10)

and
‖𝑥𝛿‖ℓ1 ⩽ ‖𝑥 + 𝛿𝑥‖ℓ1 .

Using the triangle inequalities

‖𝑥𝛿 − 𝛿𝑥‖ℓ1 ⩽ ‖𝑥𝛿‖ℓ1 + ‖𝛿𝑥‖ℓ1 , ‖𝑥 + 𝛿𝑥‖ℓ1 ⩽ ‖𝑥‖ℓ1 + ‖𝛿𝑥‖ℓ1

we obtain

‖𝑥𝛿 − 𝛿𝑥‖ℓ1 ⩽ ‖𝑥𝛿‖ℓ1 + ‖𝛿𝑥‖ℓ1 ⩽ ‖𝑥 + 𝛿𝑥‖ℓ1 + ‖𝛿𝑥‖ℓ1 ⩽ ‖𝑥‖ℓ1 + 2‖𝛿𝑥‖ℓ1

which implies
‖𝑥𝛿 − 𝛿𝑥‖ℓ1 ⩽ ‖𝑥‖ℓ1 + 2𝐶𝛿. (11)

Combining (10) and (11) we conclude that

‖𝑥‖ℓ1 ⩽ ‖𝑥𝛿 − 𝛿𝑥‖ℓ1 ⩽ ‖𝑥‖ℓ1 + 2𝐶𝛿. (12)

For any 𝑝 ∈ 𝑇 , taking the inner product of

𝒜(𝑥 − 𝑥𝛿 + 𝛿𝑥) = 0

with 𝑎𝑝 we get

(𝑥 − 𝑥𝛿 + 𝛿𝑥)𝑝 +
∑︁

𝑘∈𝑇,𝑘 ̸=𝑝

⟨𝑎𝑘, 𝑎𝑝⟩(𝑥 − 𝑥𝛿 + 𝛿𝑥)𝑘 +
∑︁

𝑘∈𝑆𝑝

⟨𝑎𝑘, 𝑎𝑝⟩(𝛿𝑥 − 𝑥𝛿)𝑘

+
∑︁

𝑘∈𝑆𝑗 ,𝑗 ̸=𝑝

⟨𝑎𝑘, 𝑎𝑝⟩(𝛿𝑥 − 𝑥𝛿)𝑘 −
∑︁

𝑘 ̸∈∪𝑆𝑗 ,𝑘 ̸∈𝑇

⟨𝑎𝑘, 𝑎𝑝⟩(𝛿𝑥 − 𝑥𝛿)𝑘 = 0.

(13)
Using properties (ii)-(iii) we obtain

|(𝑥 − 𝑥𝛿 + 𝛿𝑥)𝑝| <
𝜀

𝑀

∑︁
𝑘∈𝑇,𝑘 ̸=𝑝

|(𝑥 − 𝑥𝛿 + 𝛿𝑥)𝑘|

+(1 − 2𝜀)
∑︁

𝑘∈𝑆𝑝

|(𝑥𝛿 − 𝛿𝑥)𝑘| + 𝜀

𝑀

∑︁
𝑘∈𝑆𝑗 ,𝑗 ̸=𝑝

|(𝑥𝛿 − 𝛿𝑥)𝑘|

+ 1
2𝑀

∑︁
𝑘 ̸∈∪𝑆𝑗 ,𝑘 ̸∈𝑇

|(𝑥𝑖 − 𝛿𝑥)𝑘|.

(14)
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Summing over all 𝑝 ∈ 𝑇 we get∑︁
𝑝∈𝑇

|(𝑥 − 𝑥𝛿 + 𝛿𝑥)𝑝| < 𝜀
∑︁
𝑝∈𝑇

|(𝑥 − 𝑥𝛿 + 𝛿𝑥)𝑝| + (1 − 2𝜀)
∑︁

𝑘∈∪𝑀
𝑝=1𝑆𝑝

|(𝑥𝛿 − 𝛿𝑥)𝑘|

+𝜀
∑︁

𝑘∈∪𝑀
𝑝=1𝑆𝑝

|(𝑥𝛿 − 𝛿𝑥)𝑘| + 1
2

∑︁
𝑘 ̸∈∪𝑆𝑗 ,𝑘 ̸∈𝑇

|(𝑥𝑖 − 𝛿𝑥)𝑘|.

Thus∑︁
𝑘∈𝑇

|(𝑥 − 𝑥𝛿 + 𝛿𝑥)𝑘| <
∑︁

𝑘∈∪𝑀
𝑝=1𝑆𝑝

|(𝑥𝛿 − 𝛿𝑥)𝑘| + 1
2(1 − 𝜀)

∑︁
𝑘 ̸∈∪𝑆𝑗 ,𝑘 ̸∈𝑇

|(𝑥𝑖 − 𝛿𝑥)𝑘|

=
∑︁
𝑘 ̸∈𝑇

|(𝑥𝛿 − 𝛿𝑥)𝑘| − 1 − 2𝜀

2(1 − 𝜀)
∑︁

𝑘 ̸∈∪𝑆𝑗 ,𝑘 ̸∈𝑇

|(𝑥𝑖 − 𝛿𝑥)𝑘|.

We therefore obtain

‖𝑥‖ℓ1 < ‖𝑥𝛿 − 𝛿𝑥‖ℓ1 − 1 − 2𝜀

2(1 − 𝜀)
∑︁

𝑘 ̸∈∪𝑆𝑗 ,𝑘 ̸∈𝑇

|(𝑥𝑖 − 𝛿𝑥)𝑘|

By (12) we conclude ∑︁
𝑘 ̸∈∪𝑆𝑗 ,𝑘 ̸∈𝑇

|(𝑥𝑖 − 𝛿𝑥)𝑘| ⩽ 4𝐶𝛿(1 − 𝜀)
1 − 2𝜀

.

By the triangle inequality

‖𝑥𝑖‖ℓ1 ⩽ ‖𝛿𝑥‖ℓ1 + 4𝐶𝛿(1 − 𝜀)
1 − 2𝜀

⩽ 𝐶𝛿 + 4𝐶𝛿(1 − 𝜀)
1 − 2𝜀

= 𝛿1. (15)

It remains to investigate 𝑥𝑐, the coherent part of the solution. From (13) we have⃒⃒⃒⃒
⃒⃒(𝑥)𝑝 +

∑︁
𝑘∈𝑆𝑝∪{𝑝}

⟨𝑎𝑘, 𝑎𝑝⟩(𝛿𝑥 − 𝑥𝛿)𝑘

⃒⃒⃒⃒
⃒⃒ <

𝜀

𝑀

∑︁
𝑘∈𝑇,𝑘 ̸=𝑝

|(𝑥 − 𝑥𝛿 + 𝛿𝑥)𝑘|

+ 𝜀

𝑀

∑︁
𝑘∈𝑆𝑗 ,𝑗 ̸=𝑝

|(𝑥𝛿 − 𝛿𝑥)𝑘|

+ 1
2𝑀

∑︁
𝑘 ̸∈∪𝑆𝑗 ,𝑘 ̸∈𝑇

|(𝑥𝑖 − 𝛿𝑥)𝑘|

⩽
𝜀

𝑀
‖𝑥 − 𝑥𝛿 + 𝛿𝑥‖ℓ1 + 1

2𝑀

4𝐶𝛿(1 − 𝜀)
1 − 2𝜀

⩽
𝜀

𝑀
(‖𝑥‖ℓ1 + ‖𝑥𝛿‖ℓ1 + ‖𝛿𝑥‖ℓ1) + 2𝐶𝛿(1 − 𝜀)

𝑀(1 − 2𝜀)
⩽

𝜀

𝑀
(2‖𝑥‖ℓ1 + 2𝐶𝛿) + 2𝐶𝛿(1 − 𝜀)

𝑀(1 − 2𝜀) = 𝛿0.
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Applying the triangle inequality:

⃒⃒⃒
(𝑥)𝑝 −

∑︀
𝑘∈𝑆𝑝∪{𝑝}⟨𝑎𝑘, 𝑎𝑝⟩(𝑥𝛿)𝑘

⃒⃒⃒
⩽

⃒⃒⃒⃒
⃒⃒(𝑥)𝑝 +

∑︁
𝑘∈𝑆𝑝∪{𝑝}

⟨𝑎𝑘, 𝑎𝑝⟩(𝛿𝑥 − 𝑥𝛿)𝑘

⃒⃒⃒⃒
⃒⃒

+
⃒⃒⃒∑︀

𝑘∈𝑆𝑝
⟨𝑎𝑘, 𝑎𝑝⟩(𝛿𝑥)𝑘

⃒⃒⃒
⩽ 𝛿0 + 𝐶𝛿,

we obtain the result.

2 Proof of theorem 2.6
theorem 2.6. Let 𝑋 =Diag(𝑥) be a diagonal matrix that solves

𝒜𝑋𝐿 = 𝐵,

where 𝒜 satisfies conditions (i), (ii), and (iii) of Theorem 2.3 for a fixed 𝜀 < 1/3,

𝐿 =

⎛⎜⎜⎜⎝
𝑙11 𝑙12 𝑙1𝑆

𝑙21 𝑙22 𝑙2𝑆

...
...

...
𝑙𝐾1 𝑙𝐾2 𝑙𝐾𝑆

⎞⎟⎟⎟⎠ ∈ C𝐾×𝑆 ,

and 𝐵 is the noiseless data matrix (17) with SVD 𝐵 = 𝑄 = 𝑈Σ𝑉 𝑇 . Let the
perturbed matrix 𝐵𝛿 = 𝑄𝛿 + 𝑄0 be such that 𝜎max(𝐵𝛿 − 𝐵) ⩽ 𝛿. Suppose 𝑥,
the vector diagonal entries of 𝑋, is sparse with 𝑇 = supp(𝑥), 𝑀 = |𝑇 |, 𝑀 ≪
size(𝑥), and

𝑥𝑚 = min
𝑥𝑖 ̸=0

{|𝑥𝑖|}.

Let 𝐿𝑇 be the submatrix of 𝐿, formed by the rows corresponding to 𝑇 , has

𝜎𝑇
𝑚 = 𝜎min(𝐿𝑇 ). (1)

If
2𝛿 < 𝑥𝑚𝜎𝑇

𝑚(1 − 3𝜀), (2)

the orthogonal projections onto the subspaces 𝑅(𝑄𝛿) and 𝑅(𝐵) are close:

‖𝑃𝑅(𝑄𝛿) − 𝑃𝑅(𝐵)‖ℓ2 ⩽
𝛿

𝑥𝑚𝜎𝑇
𝑚(1 − 3𝜀)

. (3)
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Proof. Denote by 𝑋𝑇 be the submatrix of 𝑋 where we keep the rows that
correspond to the support of 𝑥. Similarly, denote by 𝑦𝑇 be the subvector of 𝑦

where we keep the entries that correspond to the support of 𝑥. We claim that

(1 − 3 𝜀)2‖𝑧‖2
ℓ2

⩽ ‖(𝒜*𝑧)𝑇 ‖2
ℓ2

⩽ (1 + 3 𝜀)2‖𝑧‖2
ℓ2

(4)

if 𝑧 ∈ 𝑅(𝐵). Indeed, suppose that

𝑧 =
∑︁
𝑖∈𝑇

𝛼𝑖𝑎𝑖.

Then, defining 𝛼 as the vector in C𝐾 whose components are zero except the 𝑖th
components with 𝑖 ∈ 𝑇 that are equal to 𝛼𝑖, we get

⃒⃒
‖𝑧‖2

ℓ2
− ‖𝛼‖2

ℓ2

⃒⃒
=

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑖,𝑗∈𝑇,𝑖 ̸=𝑗

𝛼𝑖𝛼𝑗⟨𝑎𝑖, 𝑎𝑗⟩

⃒⃒⃒⃒
⃒⃒ ⩽ 𝜀‖𝛼‖2

ℓ2
,

and
(1 − 𝜀)‖𝛼‖2

ℓ2
⩽ ‖𝑧‖2

ℓ2
⩽ (1 + 𝜀)‖𝛼‖2

ℓ2
.

For any 𝑗 ∈ 𝑇 we have
(𝒜*𝑧)𝑗 =

∑︁
𝑖∈𝑇

𝛼𝑖⟨𝑎𝑗 , 𝑎𝑖⟩ ,

and, therefore,

‖(𝒜*𝑧)𝑇 ‖2
ℓ2

=
∑︁

𝑖,𝑗,𝑘∈𝑇

𝛼𝑗𝛼𝑖⟨𝑎𝑘, 𝑎𝑖⟩⟨𝑎𝑘, 𝑎𝑗⟩ .

Hence,

⃒⃒
‖(𝒜*𝑧)𝑇 ‖2

ℓ2
− ‖𝛼‖2

ℓ2

⃒⃒
⩽

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑖,𝑗,𝑘∈𝑇,𝑖 ̸=𝑗

𝛼𝑗𝛼𝑖⟨𝑎𝑘, 𝑎𝑖⟩⟨𝑎𝑘, 𝑎𝑗⟩

⃒⃒⃒⃒
⃒⃒

⩽
∑︁

𝑖,𝑗∈𝑇,𝑖 ̸=𝑗

|𝛼𝑗 |2 + |𝛼𝑖|2

2 𝜀

(︂
2

𝑀
+ 𝜀

𝑀

)︂
⩽ 3 𝜀‖𝛼‖2

ℓ2
.

Therefore,
(1 − 3 𝜀)‖𝛼‖2

ℓ2
⩽ ‖(𝒜*𝑧)𝑇 ‖2

ℓ2
⩽ (1 + 3 𝜀)‖𝛼‖2

ℓ2
,

and we obtain
1 − 3 𝜀

1 + 𝜀
‖𝑧‖2

ℓ2
⩽ ‖(𝒜*𝑧)𝑇 ‖2

ℓ2
⩽

1 + 3 𝜀

1 − 𝜀
‖𝑧‖2

ℓ2
,

which implies (4).
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In order to compute the smallest nonzero singular value of 𝐵 we observe
that

min
𝑧∈𝑅(𝐵),||𝑧||ℓ2 =1

𝑧*𝐵𝐵*𝑧 = min
𝑧∈𝑅(𝐵),||𝑧||ℓ2 =1

(𝒜*𝑧)*
𝑇 𝑋𝑇 𝐿𝑇 𝐿*

𝑇 𝑋̄𝑇 (𝒜*𝑧)𝑇

⩾ (1 − 3𝜀)2 min
𝑦∈C𝑀 ||𝑦||ℓ2 =1

𝑦*𝑋𝑇 𝐿𝑇 𝐿*
𝑇 𝑋̄𝑇 𝑦 ⩾ (1 − 3𝜀)2𝑥2

𝑚(𝜎𝑇
𝑚)2 ,

where we have used the condition (1). Since 𝜎max(𝐵𝛿 − 𝐵) ⩽ 𝛿, we conclude that
𝐵𝛿 = 𝑄𝛿 + 𝑄𝛿

0, where 𝑄𝛿 has 𝑀 nonzero singular values, with smallest nonzero
singular value

𝜎min(𝑄𝛿) ⩾ 𝑥𝑚𝜎𝑇
𝑚(1 − 3𝜀) − 𝛿 ,

and 𝑄𝛿
0 has largest singular value

𝜎max(𝑄𝛿
0) ⩽ 𝛿.

If (2) holds, then we can discard 𝑄𝛿
0 by truncation of the singular values smaller

than the noise level. We now apply Theorem 2.5 to obtain (3).
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