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We present an efficient method to solve the narrow capture and narrow escape problems 
for the sphere. The narrow capture problem models the equilibrium behavior of a Brownian 
particle in the exterior of a sphere whose surface is reflective, except for a collection of 
small absorbing patches. The narrow escape problem is the dual problem: it models the 
behavior of a Brownian particle confined to the interior of a sphere whose surface is 
reflective, except for a collection of small patches through which it can escape.
Mathematically, these give rise to mixed Dirichlet/Neumann boundary value problems of 
the Poisson equation. They are numerically challenging for two main reasons: (1) the 
solutions are non-smooth at Dirichlet-Neumann interfaces, and (2) they involve adaptive 
mesh refinement and the solution of large, ill-conditioned linear systems when the number 
of small patches is large.
By using the Neumann Green’s functions for the sphere, we recast each boundary value 
problem as a system of first-kind integral equations on the collection of patches. A block-
diagonal preconditioner together with a multiple scattering formalism leads to a well-
conditioned system of second-kind integral equations and a very efficient approach to 
discretization. This system is solved iteratively using GMRES. We develop a hierarchical, 
fast multipole method-like algorithm to accelerate each matrix-vector product. Our method 
is insensitive to the patch size, and the total cost scales with the number N of patches 
as O(N log N), after a precomputation whose cost depends only on the patch size and 
not on the number or arrangement of patches. We demonstrate the method with several 
numerical examples, and are able to achieve highly accurate solutions with 100 000 patches 
in one hour on a 60-core workstation. For that case, adaptive discretization of each patch 
would lead to a dense linear system with about 360 million degrees of freedom. Our 
preconditioned system uses only 13.6 million “compressed” degrees of freedom and a few 
dozen GMRES iterations.
© 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC 

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

We consider the numerical solution of two related problems which arise in the study of Brownian diffusion by a particle 
in the exterior or interior of a porous sphere. We denote the open unit ball centered at the origin in R3 by �, and assume 

* Corresponding author.
E-mail addresses: jkaye@cims.nyu.edu (J. Kaye), greengard@cims.nyu.edu (L. Greengard).
https://doi.org/10.1016/j.jcpx.2019.100047
2590-0552/© 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jcpx.2019.100047
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcpx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcpx.2019.100047&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:jkaye@cims.nyu.edu
mailto:greengard@cims.nyu.edu
https://doi.org/10.1016/j.jcpx.2019.100047
http://creativecommons.org/licenses/by/4.0/


2 J. Kaye, L. Greengard / Journal of Computational Physics: X 5 (2020) 100047
Fig. 1. A sphere partially covered by disk-shaped patches. We assume each patch is of radius ε. We also assume that distinct patches are separated by a 
distance of at least ε. In the figure, this means that the regions bounded by the dashed lines do not overlap.

that the sphere ∂� is partially covered by N small patches of radius ε, measured in arclength (Fig. 1). For the sake of 
simplicity, we assume that the patches are disk-shaped and comment briefly on more general shapes in the conclusion.

The union of the patches is referred to as the absorbing boundary and denoted by �A . The remainder of the boundary, 
�R = ∂�\�A , is referred to as the reflecting boundary. The first problem, called the narrow capture problem, is to calculate 
the concentration ū(x), at equilibrium, of Brownian particles at x ∈ R3\� with a given fixed concentration far from the 
origin, assuming that particles are absorbed (removed) at �A . The second problem, called the narrow escape problem, is to 
calculate the mean first passage time (MFPT) in �, namely the expected time v̄(x) for a Brownian particle released at x ∈ �

to first reach �A . In both settings, particles are reflected from �R . In this paper, we sometimes refer to the narrow capture 
problem as the exterior problem, and the narrow escape problem as the interior problem.

These problems have received quite a lot of attention in the mathematics and biophysics communities since the seminal 
work of Berg and Purcell [1]. We do not seek to review the biophysical background here, but note that the absorbing 
patches serve as a simplified model for either surface receptors (the capture mechanism) or pores (the escape mechanism) 
in an otherwise impermeable membrane. We refer the reader to [1–7] for more detailed discussions of applications and a 
selection of work on related biophysical models.

Standard arguments from stochastic analysis show that ū and v̄ satisfy the Laplace and Poisson equations, respectively, 
with mixed Dirichlet-Neumann boundary conditions [8,9]. More precisely, for the capture problem, if the far-field particle 
concentration is set to be 1, then ū satisfies the exterior Laplace equation:⎧⎪⎪⎪⎨⎪⎪⎪⎩

�ū = 0 x ∈R3\�
ū = 0 x ∈ �A
∂ ū
∂n = 0 x ∈ �R

ū(x) → 1 |x| → ∞.

(1)

A scalar quantity of interest is the total equilibrium flux J of particles through �A :

J =
∫
�A

∂ ū

∂n
dS. (2)

This flux J is related to the so-called capacitance via the formula C = J
4π [10]. For the escape problem, the MFPT v̄ satisfies 

the interior Poisson equation:⎧⎪⎨⎪⎩
�v̄ = −1 x ∈ �

v̄ = 0 x ∈ �A
∂ v̄
∂n = 0 x ∈ �R .

(3)

Here, the quantity of interest is the average MFPT μ – that is the average, over all possible initial particle positions, of the 
expected time to escape from � through �A :

μ = 1

|�|
∫

v̄ dV . (4)
�
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In the above, ∂
∂n refers to the derivative in the outward normal direction; n points towards the interior of � for the exterior 

problem, and towards the exterior of � for the interior problem. In order to understand how the distribution of absorbing 
patches on the surface affects ū(x), v̄(x) and the associated quantities J and μ, a variety of asymptotic and numerical 
methods have been developed (see [1,11,12,10,13,4,5] and the references therein).

Remark 1. The total flux J is computed directly from the Neumann data on �A , as seen from (2). Likewise, the average 
MFPT μ can be computed directly from the Dirichlet data v̄ on �R . For this, we use Green’s second identity,∫

�

(ψ�ϕ − ϕ�ψ) dV =
∫
∂�

(
ψ

∂ϕ

∂n
− ϕ

∂ψ

∂n

)
dS

with ψ(x) ≡ v̄(x) and ϕ(x) ≡ |x|2
6 . Using that � |x|2

6 = 1, 
∫
�

|x|2
6 dV (x) = 2π

15 , and that for |x| = 1, n ≡ x and ∂
∂n

|x|2
6 = 1

3 , we 
obtain∫

�

v̄ dV = 1

3

∫
∂�

v̄ dS − 1

6

∫
∂�

∂ v̄

∂n
dS − 2π

15
.

Applying the divergence theorem to the second term, dividing by |�|, and using that |�| = 4π
3 , |∂�| = 4π gives an alterna-

tive expression for μ:

μ = 1

|∂�|
∫
∂�

v̄ dS + 1

15
≡ 1

|∂�|
∫
�R

v̄ dS + 1

15
. (5)

Thus the average MFPT over � may be obtained from the average MFPT on ∂�.

Given an arrangement of patches, we present here a fast, high-order accurate numerical scheme for the evaluation of ū, 
J , v̄ , and μ, of particular use when N is large and ε is small. Such computations are numerically challenging, partly because 
solutions of elliptic boundary value problems of mixed type are singular near Dirichlet-Neumann interfaces [14,15]. Direct 
discretization, using either PDE-based methods or integral equation methods, would require many degrees of freedom to 
resolve the singularities in ū and v̄ . Further, the resulting linear systems would be large and ill-conditioned, especially in 
cases involving large numbers of small patches.

The formulation presented here is well-conditioned, is nearly identical for the capture and escape problems, and suffers 
no loss in accuracy or increase in computational cost as ε is decreased. To make large-scale problems practical, we have 
developed a fast algorithm, so that the cost per GMRES iteration [16] is of the order O(N log N), rather than O(N2). Our 
method involves the following ingredients:

• We make use of the Neumann Green’s functions for the interior and exterior of the sphere to recast (1) and (3) as 
first-kind integral equations for a density σ on �A .

• Given a patch radius ε, we precompute the solution operator for the corresponding one-patch integral equation, as-
suming smooth Dirichlet data which is expanded in a rapidly converging series of Zernike polynomials. We analytically 
incorporate a square root singularity in the induced density at the Dirichlet/Neumann interface.

• To solve the many-patch integral equation, we use the solution operator for the one-patch integral equation as a block-
diagonal “right preconditioner”. This yields a second-kind Fredholm system of equations which, upon discretization, is 
well-conditioned and has a small number of degrees of freedom per patch.

• We solve the resulting linear system by iteration, using GMRES, and accelerate each matrix-vector product by means of 
a fast algorithm modeled after the fast multipole method (FMM). The fast algorithm uses the interpolative decomposition
[17] to derive a compressed representation of the outgoing field induced by the density on a patch, a hierarchical 
organization of patches into groups at different length scales, and a spectral representation of the smooth incoming 
field due to densities on distant patches.

Though most of the past work on the narrow capture and narrow escape problems is based on asymptotics, we wish 
to highlight the numerical work of Bernoff and Lindsay, who also proposed an integral equation method for the narrow 
capture problem for the sphere and the plane based on the Neumann Green’s function [10]. Our approach to discretization 
shares several characteristics with theirs: both methods incorporate a square root singularity into the density on each 
patch analytically, and both use a representation in terms of Zernike polynomials for smooth Dirichlet data on each patch. 
The solver itself is quite different, incorporating the ingredients listed above as well as adaptive refinement toward the 
Dirichlet/Neumann interfaces.

The paper is organized as follows. In Section 2, we introduce the analytical framework for our method, reformulate the 
boundary value problems as first-kind integral equations using single layer potentials, and explain how to calculate the 
scalar quantities J and μ directly as functionals of the layer potential densities. In Section 3, we show how to transform 
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the first-kind integral equations into Fredholm equations of the second-kind, using the solution operator for the one-patch 
integral equation as a preconditioner. In Sections 4, 5, and 6 we describe our discretization approach for the full system 
of equations, and in Section 7 we introduce the technical tools involved in our fast algorithm. In Section 8 we describe 
the full method, including our fast algorithm to accelerate the application of the system matrix. In Section 9, we provide a 
detailed description of the solver for the one-patch integral equation. We demonstrate the performance of the method with 
numerical experiments in Section 10.

2. Analytical setup

Our approach to solving the exterior and interior problems (1) and (3) uses a representation of each solution as an 
integral involving the corresponding Neumann Green’s function. This representation leads to an integral equation, and the 
scalar quantity of interest – J or μ – can be calculated directly from its solution.

2.1. Neumann Green’s functions for the sphere

Let us first consider the exterior Neumann problem:⎧⎪⎨⎪⎩
�u = 0 x ∈Rn\�
∂u
∂n = g x ∈ ∂�

u(x) → 0 |x| → ∞.

(6)

Here � is a bounded domain, and g a given continuous function on ∂�. This problem has a unique solution, and if � is 
the unit ball in R3, it may be obtained using the exterior Neumann Green’s function G E (x, x′), which is known analytically 
[18,19]. G E is symmetric, and satisfies{

−�G E(x, x′) = 4πδ(x − x′) x, x′ ∈R3\�
∂

∂nx′
G E(x, x′) = 0 x ∈R3\�, x′ ∈ ∂�, x �= x′, (7)

with G E (x, x′) =O
(|x|−1

)
as |x| → ∞ for fixed x′ ∈R3\�. It can be shown, using Green’s second identity, that

u(x) = 1

4π

∫
∂�

G E(x, x′)g(x′)dS(x′) (8)

solves the exterior Neumann problem (6). When x′ ∈ ∂�, G E is given explicitly by

G E(x, x′) = 2

|x − x′| + log

( |x| − x · x′

1 − x · x′ + |x − x′|
)

. (9)

If, in addition, x ∈ ∂�, then

G E(x, x′) = 2

|x − x′| − log

(
2

|x − x′|
)

− log

(
1 + 1

2
|x − x′|

)
. (10)

The interior Neumann problem is given by{
�v = 0 x ∈ �
∂v
∂n = g x ∈ ∂�,

(11)

where � is a bounded domain and g is a continuous function defined on the boundary, with the additional constraint that 
g must satisfy the consistency condition∫

∂�

g dS = 0.

This problem has a solution which is unique up to an additive constant. The consistency condition precludes the existence 
of an interior Green’s function with zero Neumann data. Rather, for � the unit ball in R3, we have an interior Neumann 
Green’s function G I (x, x′), also known analytically [18,19]. It is again symmetric and satisfies{

−�G I (x, x′) = 4πδ(x − x′) x, x′ ∈ �
∂

∂nx′
G I (x, x′) = −1 x ∈ �, x′ ∈ ∂�, x �= x′. (12)

As before,
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Fig. 2. MFPT v̄ plotted just inside the unit sphere for an example with N = 100 000 random well-separated patches of radius ε ≈ 0.00141. The integral 
equation associated with this problem was solved in 63 minutes on a 60-core workstation, to an L2 residual error of approximately 2.2 × 10−8. Further 
details are given in Section 10.2.

v(x) = 1

4π

∫
∂�

G I (x, x′)g(x′)dS(x′) (13)

solves the interior Neumann problem (11). When x′ ∈ ∂�, G I is given by

G I (x, x′) = 2

|x − x′| + log

(
2

1 − x · x′ + |x − x′|
)

. (14)

If, in addition, x ∈ ∂�, this reduces to
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Fig. 3. MFPT v̄ plotted just inside the unit sphere for an example with N = 10 000 uniformly distributed patches of radius ε ≈ 0.00447. The integral equation 
associated with this problem was solved in 114 seconds on a 60-core workstation, and in 15 minutes on a four-core, eight-thread laptop, to an L2 residual 
error of approximately 6.4 × 10−8. Further details are given in Section 10.2.

G I (x, x′) = 2

|x − x′| + log

(
2

|x − x′|
)

− log

(
1 + 1

2
|x − x′|

)
. (15)

This is the same as (10) except for the sign of the second term. In other words, the restrictions of the interior and exterior 
Green’s functions to the boundary ∂� are nearly identical.

The following lemma, which we will require in the next section, follows from the second property in (12) and the 
symmetry of G I .

Lemma 1. Let � be an open subset of ∂� and let σ be continuous on �. Then for x ∈ ∂�\�̄,

∂

∂nx

∫
�

G I (x, x′)σ (x′)dS(x′) = −
∫
�

σ (x′)dS(x′).

2.2. The narrow capture problem

We turn now to the narrow capture problem, which is the simpler of the two. We first modify the BVP (1) by defining 
u = 1 − ū, so that solutions decay as |x| → ∞. The function u satisfies the modified equations⎧⎪⎪⎪⎨⎪⎪⎪⎩

�u = 0 x ∈R3\�
u = 1 x ∈ �A
∂u
∂n = 0 x ∈ �R

u(x) → 0 |x| → ∞.

(16)
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Let us denote the unknown Neumann data on �A by σ(x′). Then (8) implies that for x ∈R3\�, we have

u(x) = 1

4π

∫
�A

G E(x, x′) ∂u

∂n
(x′)dS(x′) ≡

∫
�A

G E(x, x′)σ (x′)dS(x′). (17)

By analogy with classical potential theory, we refer to this as a single layer potential representation with density σ supported 
on �A . Since the dominant singularity of the kernel G E is that of the free-space Green’s function for the Laplace equation, 
this single layer potential is continuous up to ∂�. Taking the limit as x → �A and using the second condition in (16), we 
obtain the first-kind integral equation∫

�A

G E(x, x′)σ (x′)dS(x′) = f (x), x ∈ �A, (18)

where f (x) ≡ 1, with the weakly singular kernel G E . Assuming that we can solve (18) for σ , it follows that u(x), given by 
(17), is the solution to (16), and that ū = 1 − u solves (1). Furthermore, since σ ≡ ∂u

∂n ≡ − ∂ ū
∂n on �A , the total flux J from 

(2) will be given by

J = −Iσ

where we have introduced the shorthand

Iσ :=
∫
�A

σ dS. (19)

We will not prove the existence of a solution to (18), but sketch a possible approach. If we replace the kernel G E in (18)
with its first term 2

|x−x′ | , which is the free-space Green’s function for the Laplace equation (up to a constant scaling factor), 
we obtain the first-kind integral equation for the Dirichlet problem on an open surface, which we can denote in operator 
form by

S0σ = f .

This is a well-studied problem, which has a unique solution in the Sobolev space H− 1
2 (�A) given data in H

1
2 (�A) [20]. 

Writing the full single layer potential operator in the form S0 + K , where K is a compact pseudodifferential operator of 
order −2, we may rewrite (18) in the form of a Fredholm integral equation of the second kind:

(I + S−1
0 K )σ = S−1

0 f . (20)

Thus, to prove existence and uniqueness for the single patch equation, one can apply the Fredholm alternative to (20). 
That is, one need only show that the homogenous version of the single patch equation has no nontrivial solutions. This 
is straightforward to prove when ε is sufficiently small, since the norm of K goes to zero as ε goes to zero and the 
corresponding Neumann series converges. We conjecture that the result holds for any ε.

2.3. The narrow escape problem

The analytical formulation of the narrow escape problem is somewhat more complicated than that of the narrow capture 
problem, largely because of the non-uniqueness of the interior Neumann problem, but it leads to a similar integral equation. 
We first recast the Poisson problem (3) as a Laplace problem with inhomogeneous boundary conditions. Assume that v
satisfies⎧⎪⎨⎪⎩

�v = 0 x ∈ �

v = 1 x ∈ �A
∂v
∂n = D x ∈ �R ,

(21)

for some non-zero constant D . Then v̄ given by

v̄ = v − 1

3D
+ 1 − |x|2

6
(22)

solves (3). We will therefore seek a method to produce a solution of (21) for some D �= 0.
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Fig. 4. MFPT v̄ plotted just inside the unit sphere for an example with N = 10 000 random, clustered patches of radius ε ≈ 0.0035. The integral equation 
associated with this problem was solved in 269 seconds on a 60-core workstation, and in 35 minutes on a four-core, eight-thread laptop, to an L2 residual 
error of approximately 6.5 × 10−8. Further details are given in Section 10.2.

Lemma 2. Let

v(x) =
∫
�A

G I (x, x′)σ (x′)dS(x′), (23)

where σ satisfies the first-kind integral equation∫
�A

G I (x, x′)σ (x′)dS(x′) = 1 (24)

for x ∈ �A . Then v solves (21) with D = −Iσ , for Iσ defined as in (19), and Iσ �= 0.

Proof. The function v(x) is harmonic in �, and by Lemma 1, it satisfies the third condition of (21) with D ≡ −Iσ , as long 
as Iσ �= 0. Taking x to �A and using the continuity of the single layer potential up to �A , we find that v will satisfy the 
second condition of (21) as long as σ satisfies (24).

It remains only to show that if σ satisfies (24), then Iσ �= 0. If not, then v given by (23) satisfies (21) with D = 0, as 
does the constant function 1. It follows from Green’s identity that solutions to (21) with the same value of D are unique, 
so we must have v ≡ 1. The formula (14) for G I shows that if |x′| = 1, then G I (0, x′) = 2, so if v ≡ 1 we have

1 = v(0) = 2
∫
�A

σ(x′)dS(x′) = 2Iσ ,

a contradiction. �
The question of the existence of a solution to (24) is analogous to that for (18), which was discussed in Section 2.2.
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To calculate the average MFPT μ directly from σ , we plug (22) into (5) to obtain

μ = 1

3D|∂�|
∫
∂�

v dS − 1

3D
+ 1

15
. (25)

To calculate 1
|∂�|

∫
∂�

v dS , we use the representation (23):

1

|∂�|
∫
∂�

v dS = 1

|∂�|
∫
∂�

∫
�A

G I (x, x′)σ (x′)dS(x′)dS(x)

=
∫
�A

σ(x′)

⎛⎝ 1

|∂�|
∫
∂�

G I (x, x′)dS(x)

⎞⎠ dS(x′).

A calculation using the explicit form (15) of G I gives

1

|∂�|
∫
∂�

G I (x, x′)dS(x) = 2

for any x′ ∈ ∂�. We therefore have

1

|∂�|
∫
∂�

v dS = 2Iσ .

Plugging this into (25) and replacing D by −Iσ gives

μ = 1

3Iσ
− 3

5
. (26)

3. A multiple scattering formalism

We have shown that the solutions of the two boundary value problems of interest, as well the associated scalars J and 
μ, may be obtained by solving (18) and (24), respectively, on the collection of absorbing patches. These integral equations 
differ only by the sign of one term in their respective kernels, as seen in Section 2.1. Since our treatment of the two cases 
is the same, we drop the subscripts on G E and G I , and discuss the solution of∫

�A

G(x, x′)σ (x′)dS(x′) = 1 x ∈ �A,

where σ is an unknown density on �A . Letting �A = ∪N
i=1�i , where �i is the ith patch, and letting σi be the restriction of 

σ to �i , we write this equation in the form

N∑
j=1

∫
� j

G(x, x′)σ j(x′)dS(x′) = 1 x ∈ �i, i = 1, . . . , N. (27)

For the sake of simplicity, we assume that each patch has the same radius ε. We also assume that the patches are 
well-separated, in the sense that the distance between the centers of any two patches in arc length along the surface of the 
sphere is at least 3ε. That is, any two patches are separated by a distance greater than or equal to their own radius. For 
x ∈ �i , we define Si j by

(Si jσ j)(x) :=
∫
� j

G(x, x′)σ j(x′)dS(x′).

More specifically, we define each such operator in a coordinate system fixed about the center of � j . Since all the patches 
have the same radius, the operators Sii are therefore identical, and we denote Sii by S . Thus we may rewrite the many-
patch integral equation (27) in the form

Sσi +
N∑

j �=i

Si jσ j = 1 i = 1, . . . , N. (28)

The aim of this section is to reformulate (28) as a Fredholm system of the second kind in an efficient basis.
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Definition 1. Let f be a smooth function on some patch �i . The one-patch integral equation with data f is defined by

Sσi = f , (29)

where σi is an unknown density on �i .

Remark 2. Writing (28) in the form

Sσi = 1 −
N∑

j �=i

Si jσ j,

and observing that Si jσ j is a smooth function for � j well-separated from �i , we see that each σi satisfies a one-patch 
integral equation with smooth data. Conversely, if σ1, . . . , σN satisfy (28), then each Sσi is smooth on �i .

It is convenient to make use of an orthonormal basis {q1, q2, . . . } of smooth functions on each patch, so that for smooth 
f on �i we have

f (x) =
∞∑

n=1

f̂nqn(x), (30)

in the usual L2 sense, with

f̂n =
∫
�i

f (x)qn(x)dx.

We postpone until Section 4 a discussion of our particular choice of the basis {qn}, which will be constructed using Zernike 
polynomials. We will denote the vector of the first K coefficients by f̂ K :

f̂ K = ( f̂1, f̂2, . . . , f̂ K )T .

Definition 2. Let f be a smooth function on some patch �i defined by (30), with f̂ , f̂ K computed as above. The projection
operators P and P K are defined by

(P[ f ])n = f̂n,

with P K defined in the same manner for n ≤ K . The synthesis operators Q and QK are defined by

Q[ f̂ ](x) =
∞∑

n=1

f̂nqn(x), QK [ f̂ K ](x) =
K∑

n=1

fnqn(x).

P and P K are left inverses of Q and QK , respectively.
Finally, we define bn to be the solution of the one-patch integral equation with data given by the basis element qn :

bn = S−1qn. (31)

Thus, if a smooth function f on �i is expanded as f = ∑∞
n=1 f̂nqn , then the solution of the one-patch integral equation with 

data f is given by S−1 f = ∑∞
n=1 f̂nbn . This motivates the following definition.

Definition 3. We denote the solution operator of the one-patch integral equation in the basis {qn} by

B = S−1Q.

For f̂ = { f̂1, f̂2, . . .} and f (x) = ∑∞
n=1 f̂nqn(x), B satisfies

B[ f̂ ](x) =
∞∑

n=1

f̂nbn(x).

We denote the solution operator of the one-patch integral equation in the truncated basis {qn}K
n=1 by

BK = S−1QK .
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For f̂ = ( f̂1, f̂2, . . . f̂ K ) and f (x) = ∑K
n=1 f̂nqn(x), BK satisfies

BK [ f̂ ](x) =
K∑

n=1

f̂nbn(x).

Note that the construction of B requires solving the one-patch integral equations with data q1, q2, . . . to obtain b1, b2, . . ., 
and that the construction of BK requires solving the first K of these equations. For a fixed patch radius ε, these solutions 
are universal and do not depend on the number or arrangement of patches in the full problem.

Given B, we are now able to rewrite the integral equation (28) as a well-conditioned Fredholm system of the second 
kind in the basis {qn}. On �i , we define a function f i by

f i = Sσi .

Substituting into (28), we have

f i +
N∑

j �=i

Si jS−1 f j = 1 i = 1, . . . , N.

To transform to the basis {qn}, we write f i in the form f i =Q f̂ i and multiply on the left by P to obtain

f̂ i +P
N∑

j �=i

Si jB f̂ j = P 1 i = 1, . . . , N. (32)

Since the patches �i and � j are well-separated, PSi jB is a compact operator for i �= j, so that (32) is a Fredholm system of 
the second kind. The corresponding truncated system takes the form

f̂ K
i +PK

N∑
j �=i

Si jBK f̂ K
j = PK 1 i = 1, . . . , N, (33)

where we have used the approximation f i ≈QK f̂ K
i .

Remark 3. We refer to the approach described above as a multiple scattering formalism by analogy with the problem of wave 
scattering from multiple particles in a homogeneous medium. In the language of scattering theory, one would say that for 
the ith patch, the boundary data is the known data (Sσi = 1), perturbed by the potential “scattered” from all other patches, 
namely 

∑N
j �=i Si jσ j . Solving the system (28) corresponds to determining how the collection of uncoupled single patch solu-

tions Sσi = 1 needs to be perturbed to account for the “multiple scattering” effects. The approach developed above, where 
f i = Sσi are the unknowns, has many advantages over solving (28) directly, even with S−1 as a left preconditioner. By 
working in the spectral basis, we avoid the need to discretize σi on each patch, the number of degrees of freedom per 
patch is significantly reduced, and the linear system is a well-conditioned Fredholm equation of the second kind.

The multiple scattering framework is used in a variety of contexts. In fracture mechanics, for example, local precondi-
tioners like S−1 play an important role in calculations involving many disjoint cracks [21,22].

Remark 4. The original unknowns σi may be recovered from the solution of (32) or (33) using the formula

σi = B f̂ i ≈ BK f̂ K
i . (34)

Thus, we may think of the unknowns f̂ i as a representation of the unknown density σi in the basis {bn}.

We turn now to the construction of an orthonormal basis {qn} for smooth functions on a patch, the construction of the 
singular solutions bn = S−1qn , and the efficient solution of the discretized multiple scattering system (33).

4. A basis for smooth functions on a patch

It is well-known that the Zernike polynomials are a spectrally accurate, orthogonal basis for smooth functions on the 
disk. For a thorough discussion of these functions, we refer the reader to [23]. Here, we simply summarize their relevant 
properties.

The Zernike polynomials on the unit disk 0 ≤ r ≤ 1, 0 ≤ θ < 2π are given by{
Zm

n (r, θ) = Rm
n (r) cos(mθ)

Z−m
n (r, θ) = Rm

n (r) sin(mθ),
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with 0 ≤ m < ∞, m ≤ n < ∞, and

Rm
n (r) = (−1)(n−m)/2rm Pm,0

(n−m)/2(1 − 2r2),

where Pα,β
n (x) is a Jacobi polynomial on [−1, 1]. The Jacobi polynomials are orthogonal on [−1, 1] with respect to the 

weight function (1 − x)α(1 + x)β . Thus, for fixed m, the functions Rm
n (r) are orthogonal on [0, 1] with respect to the weight 

function r. This gives the orthogonality relation

2π∫
0

1∫
0

Zm1
n1 (r, θ)Zm2

n2 (r, θ)r dr dθ = (1 + δm1,0)π

2n1 + 2
δn1,n2δm1,m2 . (35)

The natural truncation of this basis is to fix a cutoff mode M in both the radial and angular variables, and to let 
0 ≤ m ≤ n ≤ M . This yields K = (M + 1)(M + 2)/2 basis functions. To use this basis on a generic patch �i , we define a 
polar coordinate system (r, θ) about the patch center, for which r is the distance in arc length along the sphere from the 
center, and θ is the polar angle. We rescale the radial variable from [0, 1] to [0, ε], transforming the Zernike polynomials 
to functions on �i . Finally, the basis functions q1, . . . , qK discussed in Section 3 can be defined as the scaled Zernike 
polynomials up to mode M .

From the orthogonality relation (35), the projection operators P and P K are obtained as normalized inner products 
against Zernike polynomials in polar coordinates. This Zernike transform can be implemented numerically using a tensor 
product quadrature with a Gauss-Legendre rule in the radial variable and a trapezoidal rule in the angular variable. The 
number of grid points required to obtain the exact Zernike coefficients of a function in the space spanned by q1, . . . , qK is 
O(K ); we denote this number by K ∗ . We refer to these points as the Zernike sampling nodes xz

1, . . . , x
z
K ∗ (see [23] for further 

details).

Remark 5. Rewriting (33) in the form

f̂ K
i = PK

⎛⎝1 −
∑
j �=i

Si jBK f̂ K
j

⎞⎠ , (36)

we see that the truncation error compared with (32) depends on how well the smooth function

1 −
∑
j �=i

Si jBK f̂ K
j

is represented in the space spanned by q1, . . . , qK . In the one-patch case, the summation term vanishes, and K = 1 is 
sufficient. For multiple patches, the choice of K depends largely on how well-separated the patches are. Since the Zernike 
basis is spectrally accurate, M grows only logarithmically with the desired precision. In practice, a posteriori estimates are 
easily obtained for any fixed configuration by inspection of the decay of the Zernike coefficients f̂ K

i in the computed 
solution.

5. Informal description of the one-patch solver

While the details of our solver for the one-patch integral equation

Sσi = f

are deferred to Section 9, we outline the general approach here. First, we note that in the absence of curvature (i.e. a flat 
disk on a half-space) and with the associated terms of the Green’s function removed, the solution σi is known to have a 
square root singularity at the disk edge [10,14,15,20,24]. In our case, we will explicitly include this square root singularity 
in the representation of σi , but also allow for weaker singularities – which we have observed and will demonstrate in 
Section 9.3 – by using a discretization that is adaptively refined toward the edge ∂�i .

Assume then that we have discretized the patch �i using a suitable polar mesh with n f fine grid points, denoted by 
x f

i,1, . . . , x
f
i,n f

. The fine grid points for different patches are identical relative to the coordinate systems of their own patches. 
We denote the corresponding samples of the right-hand side f and σi by

�f = ( f (x f
i,1), . . . , f (x f

i,n f
))T ,

�σi = ((�σi)1, . . . , (�σi)n f )
T ≈ (σi(x f

i,1), . . . , σi(x f
i,n f

))T .

We assume that S is discretized to high-order accuracy by a matrix S with
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S[σi](x f
i,k) ≈

n f∑
l=1

S(k, l)( �σi)l, (37)

so that the discretized system takes the form

S �σi = �f . (38)

We will also require a set of quadrature weights, denoted by w f
1 , . . . , w f

n f
and identical for each patch, that permit the 

accurate integration over �i of the product of an arbitrary smooth function with the discretized density �σi , taking into 
account the fact that σi has an edge singularity. That is, we assume that∫

�i

g(x)σi(x)dS(x) ≈
n f∑

l=1

g(x f
l )(�σi)l w

f
l (39)

for any smooth g , with high-order accuracy. In the next section, we will use this quadrature to discretize the operators Si j .
The solutions of the K one-patch integral equations (31) may be obtained in a precomputation, after which we have 

access to the functions b1, . . . , bK sampled on the fine grid. We assemble these functions into an n f × K matrix B with

B(n,m) = bm(x f
n ).

B is then the discretization of the operator BK , mapping the first K Zernike coefficients of a smooth function to the 
solution of the corresponding one-patch integral equation sampled on the fine grid. If we denote by Q the discretization of 
the synthesis operator QK as an n f × K matrix,

Q (i, j) = q j(x f
i ),

then we have, as in Definition 3,

S B = Q .

In short, the precomputation amounts to solving this matrix system for B .

6. Discretization of the multiple scattering system

We return now to the multiple scattering system (33). The unknowns on �i are defined in the truncated Zernike basis 
as f̂ K

i . We will need as intermediate variables the fine grid samples of σi(x). From Remark 4, we define the sampling vector 
�σi by

�σi = B f̂ K
i ≈ BK f̂ K

i .

In order to discretize the integral operators Si j for i �= j, we note that G(x, x′) is smooth for x ∈ �i , x′ ∈ � j , and use the 
quadrature (39). This yields∫

� j

G(x, x′)σ j(x′)dS(x′) ≈
n f∑

l=1

G(x, x f
j,l)( �σ j)l w

f
l . (40)

Setting x = xz
i,k to be the kth Zernike sampling node on �i , we define the matrix Sij by

Sij(k, l) = G(xz
i,k, x f

j,l)w f
l .

Thus, Sij maps a density sampled on the fine grid on � j to the smooth field it induces at the Zernike sampling nodes on 
�i . Lastly, we discretize the truncated Zernike transform P K as a K × K ∗ matrix P using the trapezoidal-Legendre scheme 
described in Section 4.

Definition 4. The discrete Zernike transform P is defined to be the mapping of a smooth function sampled on the K ∗ Zernike 
sampling nodes to its K Zernike coefficients.

We can now write the multiple scattering system (33) in a fully discrete form,

f̂ K
i + P

∑
Sij B f̂ K

j = P �1 i = 1, . . . , N, (41)

j �=i
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Fig. 5. For a patch �i , the far field region �i is defined as the complement on the surface of the sphere of a disk of radius 2ε, measured in arclength, about 
the center of �i . The black dots in the figure represent the subset of the fine grid points used to efficiently represent the outgoing field induced by the 
density σi .

where �1 is the vector of length K ∗ with all entries equal to 1 – the discretization of the function f = 1. Since P ∈RK×K ∗
, 

Sij ∈RK ∗×n f , and B ∈Rn f ×K , this is a linear system of dimensions K N × K N , with K << n f degrees of freedom per patch. 
As a discretization of a Fredholm system of the second kind, it is amenable to rapid solution using an iterative method such 
as GMRES [16].

We now describe how to calculate the constants J and μ from the solution of (41). We saw in Sections 2.2 and 2.3 that 
these can be computed directly from Iσ = ∑N

i=1

∫
�i

σi dS . Using the fine grid quadrature (39), we have

Iσ =
N∑

i=1

∫
�i

σi dS ≈
N∑

i=1

n f∑
k=1

(B f̂ K
i )k w f

k = (w f
1 , . . . , w f

n f
)B

N∑
i=1

f̂ K
i . (42)

Since we may precompute the row vector I := (w f
1 , . . . , w f

n f
)B of length K , the cost to compute Iσ is O(N K ).

When the system (41) is solved iteratively, each matrix-vector product is dominated by the computation of the “multiple 
scattering events”

P
∑
j �=i

Si j B f̂ K
j (43)

for i = 1, . . . , N . That is, for each patch �i , we must compute the Zernike coefficients of the field induced on that patch by 
the densities on all other patches. Note that if we were to calculate the above sums by simple matrix-vector products, the 
cost would be O(n f K N2). We turn now to the description of a scheme that permits the computation of these sums using 
O(K N log N) operations, with a constant which depends only on the desired precision, but not on n f .

7. Efficient representation of outgoing and incoming fields

Our fast algorithm relies on what is variously referred to as a compressed, skeletonized, or sparsified representation of 
the far field induced by a source density σi on a single patch �i (Fig. 5). We define the far field region �i for a patch �i
to be the set of points whose distance from the center of �i (measured in arc length along the surface of the sphere) is 
greater than 2ε. In light of our restriction on the minimum patch separation distance, this ensures that the far field region 
of a particular patch contains every other patch.

We start from (40), which was used to define the matrix Sij . We will show that there is a subset of p fine grid points 
with p << n f and modified source strengths �ρi = (ρi,1, ρi,2, . . . , ρi,p)T so that∫

�i

G(x, x′)σi(x′)dS(x′) ≈
n f∑

l=1

G(x, x f
i,l)(�σi)l w

f
l ≈

p∑
m=1

G(x, x f
i,π(m)

)ρi,m, (44)

for any x ∈ �i . Moreover, there is a stable algorithm for obtaining this compressed or skeletonized outgoing representation. 
Here, π(m) is an indexing function which maps {1, . . . , p} → {1, . . . , n f }, and identifies which of the original fine grid 
points are used in the representation. The number p represents the numerical rank, to a specified precision, of the n f

functions {G(x, x f
)} on �i .
i,l
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Remark 6. The existence of such low-rank factorizations is discussed in detail in [25–27]. For the purposes of computa-
tion, we will use the interpolative decomposition (ID) [17,25,28], described briefly below. The ID and related compression 
schemes are essential and widely used in hierarchical, fast algorithms for applying and inverting dense matrices (see for 
example [29–38] and the references therein).

7.1. The interpolative decomposition

We consider a generic patch �i and, for simplicity, drop the patch index i on all quantities. We first discretize � on a 
training grid xt

1, . . . , x
t
nt

of nt points chosen to be sufficiently fine to accurately represent smooth functions on �. We can 
then obtain a matrix A of size nt × n f , with entries A jl = G(xt

j, x
f
l ), so that the lth column of A is a discretization of the 

function G(x, x f
l ) on the training grid. Given a user-specified tolerance ε , the ID takes as input a matrix A, and returns the 

factorization Ã� with

‖A − Ã�‖2 = O (ε), (45)

where Ã is nt × p and � is p × n f . The parameter p is the numerical rank of A determined by the ID as part of the 
factorization. The columns of Ã are a p-column subset of the original matrix A, chosen so that the column space of Ã
approximates that of A. The matrix � contains the coefficients needed to approximately reconstruct the columns of A
from those of Ã. If we define the indexing function π so that the mth column of Ã is the π(m)th column of A, then the 
approximation (45) implies that

G(xt
j, x f

l ) ≈
p∑

m=1

G(xt
j, x f

π(m))�ml

for l = 1, . . . , n f . Since the columns of A represent the functions {G(x, x f
l )} on a fine training grid, the expression above 

holds not just for x ∈ {xt
j}, but more generally for x ∈ �. That is,

G(x, x f
l ) ≈

p∑
m=1

G(x, x f
π(m))�ml.

Summing both sides of this expression against (�σ )l w
f
l and rearranging yields

n f∑
l=1

G(x, x f
l )(�σ)l w

f
l ≈

n f∑
l=1

p∑
m=1

G(x, x f
π(m))�ml(�σ)l w

f
l =

p∑
m=1

G(x, x f
π(m))(�W �σ )m

where W is a diagonal n f × n f matrix with Wll = w f
l . Since �σ = B f̂ K , we let T := �W B to obtain the representation (44)

with

�ρ = T f̂ K . (46)

T is a generic p × K matrix which may be formed and stored once �, W , and B are available. We emphasize that each 
of these matrices is identical for all patches of a given radius ε and may therefore be precomputed. � is obtained from a 
single interpolative decomposition, W is a simply a matrix of quadrature weights, and B is computed by solving a sequence 
of one-patch integral equations as explained in Section 5.

Using this compression scheme alone, it is straightforward to reduce the cost of computing the sums (43) from 
O(Kn f N2) to O(KpN2). The tools introduced in the remainder of this section will allow us to reduce the cost further 
to O(KpN log N).

7.2. Quadtree on the sphere

We now describe a data structure which will enable us to organize groups of patches in a hierarchical fashion. We first 
inscribe the sphere in a cube (see Fig. 6). We then project each patch center onto the surface of the cube via the ray from 
the origin through the patch center (indicated by the arrows in the figure). This defines a set of points on the surface of 
the cube. We then build a quadtree on each face of the cube, subdividing boxes until there is only one point per box, and 
pruning empty boxes in the process. The union of these six quadtrees is an FMM-like full tree data structure, which provides 
a subdivision of the sphere itself into a hierarchy of levels. The patches assigned to a particular box in the full tree will be 
said to form a patch group. Each patch is a member of one patch group at each level of the full tree. At the leaf level, each 
group consists of a single patch.
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Fig. 6. The sphere is inscribed in a cube and each patch center is projected to a face of the cube by a ray emanating from the sphere center (left). An 
adaptive quad tree is then built on each face until, at the finest level, there is one patch in every non-empty leaf node in the quad tree (right).

Fig. 7. For a group of m patches, the field due to well-separated source patches may be captured with high order accuracy on a polar grid which covers all 
m patches.

We define parent, child, and neighbor boxes in the full tree in the same way as in an ordinary quadtree. The only 
modification to the definition of a neighbor box is that it wraps across cube edges and corners. Thus, a box adjacent to 
an edge has eight neighbors (like an interior box) unless it is a corner box, in which case it has seven neighbors. Well-
separatedness and the interaction list for boxes or their corresponding patch groups are defined as in the usual FMM. Two 
boxes at a given level are well-separated if they are not neighbors, and the interaction list for a particular box is comprised 
of the well-separated children of its parent’s neighbors. We will sometimes refer to a patch �i as being in the interaction 
list of some patch group γ , by which we mean that �i is contained in a group which is in the interaction list of γ .

7.3. The representation of incoming fields on patch groups

Since the incoming field due to remote source patches in the interaction list of a patch group γ is smooth, it can be 
efficiently represented on a spectral polar grid (see Fig. 7). This requires the construction of a bounding circle on the surface 
of the sphere, enclosing all of the patches in γ , which circumscribes the grid. Incoming field values can then be obtained 
at arbitrary points inside the bounding circle by interpolation. We refer to the grid samples of the incoming field as an 
incoming representation.

The bounding circle is straightforward to construct using a “smallest circle algorithm” for a collection of points in the 
plane, suitably adapted to the sphere (see [39–41] and the references therein for discussion of the smallest circle problem).

Given a bounding circle for a patch group, we can build a local polar coordinate system (r, θ), for which r = 0 corre-
sponds to the center of the patch group, and r = R corresponds to the bounding circle. We must select an incoming grid in 
these coordinates which can represent a smooth incoming field in a high order manner with as few grid points as possible. 
For this, we will use a parity-restricted Chebyshev-Fourier basis, formed by taking products of scaled Chebyshev polyno-
mials in the radial variable r ∈ [−R, R] with trigonometric functions in the angular variable θ ∈ [0, 2π). The coefficients 
of an expansion in these basis functions corresponding to Chebyshev and Fourier modes of different parity can be shown 
to be zero, hence the name of the basis. This is an efficient and spectrally accurate basis with a simple associated grid 
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[23]. Namely, the coefficients of the expansion may be computed from function samples on a polar grid comprised of the 
scaled Chebyshev nodes in r ∈ [0, R] and equispaced nodes in θ ∈ [0, 2π). The desired field may then be evaluated at any 
point inside a patch group’s bounding circle by evaluating the resulting Chebyshev-Fourier expansion. It is straightforward 
to verify that the number of grid points and coefficients required to obtain an accuracy ε is O(log2(1/ε)).

8. Solution of the multiple scattering system

We now describe our method to solve the discretized many-patch system (41), including the fast algorithm for acceler-
ating the computation of the multiple scattering interactions (43) within a GMRES iteration.

Step 1: Precomputation (for each choice of ε)
Given the patch radius ε, select the Zernike truncation parameter K and form the matrix Q .
(a) Solve the system S B = Q described in Section 9.
(b) Construct the matrix T defined in Section 7.1 by building and composing the matrices �, W , and B . � need not be 

stored after T is formed.
(c) Construct the vector I = (w f

1 , . . . , w f
n f

)B , used to obtain the quantities J and μ in (42). At this point we no longer 
need to store B , only the p × K matrix T and the 1 × K vector I . The storage associated with the outputs of the precompu-
tation phase is therefore negligible.

Step 2: Construction of hierarchical data structure
Let N denote the number of patches on the surface of the sphere, assumed to satisfy the minimum patch separation 

condition introduced in Section 3.
(a) Form the quadtree on the sphere described in Section 7.2. The data structure should associate each patch with its 

group at every level, and identify the interaction list of every patch group.
(b) For each patch group, construct the incoming grid described in Section 7.3. For each patch, construct the Zernike 

sampling grid described in Section 4.

Step 3: Iteration
We use GMRES to solve the system (41). At each iteration, we must apply the system matrix; that is, we must compute

f̂ K
i + P

∑
j �=i

Si j B f̂ K
j (47)

for i = 1, . . . , N , where here ( f̂ K
1 , . . . , f̂ K

N )T ∈RK N is the input vector at a given iteration. The following algorithm computes 
this expression in O(N log N) operations.

1. Compute and store the outgoing coefficients �ρi = T f̂ K
i for each patch, i = 1, . . . , N .

Cost: Approximately pK N.
2. Loop through every patch group in every level. For each patch group γ , loop through all patches in its interaction list. 

For each such patch �i , evaluate the field induced by the density on �i on the incoming grid of γ , using the outgoing 
representation (44). Add together all such field values to obtain the total incoming field on the incoming grid.
Cost: If q is an upper bound on the number of points in each incoming grid, the cost of evaluating a single outgoing representation 
on an incoming grid is at most qp. At each level, the outgoing representation corresponding to each patch must be evaluated on at 
most 27 incoming grids, since the interaction list of each patch’s group at that level contains at most 27 other groups. There are 
approximately log4 N levels. Therefore, the cost of this step is approximately 27qpN log4 N.

3. At the leaf level of the tree, each patch group γ contains a single patch, say �i . Though we have already evaluated the 
outgoing representation for �i on the incoming grids of all (single-patch) groups in the interaction list of γ , we now 
do so also for the neighbors of γ , which are also single-patch groups but are not contained in the interaction list of γ . 
We add these contributions to the field values already stored on the incoming grids of these neighbor patches.
Cost: Since each leaf-level single-patch group has at most 8 neighbors, the cost of this step is approximately 8qpN.
Note: For each patch �i , the incoming field due to every other patch has now been stored in the incoming grid of exactly one 
patch-group of which �i is a member. Indeed, every other patch is either a neighbor of �i at the leaf level, or it is contained in 
exactly one of the interaction lists of the patch groups containing �i .

4. Loop through each patch group. For every patch �i in a group γ , evaluate the interpolant of the incoming field stored 
on the incoming grid of γ at the Zernike sampling nodes on �i .
Cost: There are O(K ) Zernike sampling nodes, so the cost of each interpolation is approximately q2 to form the interpolant and 
Kq to evaluate it. Each patch is a member of a single group at each level, so we must carry out approximately N log4 N such 
interpolations. The total cost is therefore approximately (q2 + Kq)N log4 N. (For large q, this step could be accelerated with fast 
transform methods but q is generally too small for this to provide any significant benefit.)
At this point, we have computed the field due to all other patches on the Zernike sampling grid on each patch. That is, 
we have computed the sums 

∑
j �=i Si j Bσ̂ j for i = 1, . . . , N .
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5. Apply the matrix P to the values stored on the Zernike sampling grid on each patch and add f̂ K
i to the result to obtain 

(47).
Cost: Approximately K 2N.

The total cost of each iteration is therefore O(N log N), with asymptotic constants which involve the parameters K , q, 
and p associated with the resolution of smooth functions on spectral grids. The singular character of the problem is dealt 
with entirely during the precomputation phase.

8.1. Optimizations and parallelization

While the algorithm described above has the desired computational complexity, there are several practical considerations 
that are worth discussing to optimize its performance.

Selection of incoming grid parameters: Rather than making a uniform choice of the radial and azimuthal truncation param-
eters for the incoming grid, we can compute these adaptively as follows. For each patch group γ , we determine the distance 
from its bounding circle to the nearest patch in its interaction list. We then adaptively construct an incoming grid which 
accurately interpolates a collection of point sources G(x, x′) at points x′ this distance away. This adaptive interpolation is 
carried out by increasing the incoming grid truncation parameters until the last few Legendre-Fourier coefficients of the 
interpolant fall below some specified tolerance.

Additional compression of the outgoing representation: Instead of using the same outgoing coefficients �ρi for each level of 
the quadtree, we can associate with each patch a different outgoing representation for each level. Recall that the far field 
regions �i were constructed identically for each patch �i to be as large as possible, consistent with the minimum patch 
separation. This way, one could build a single generic matrix T taking a density on a patch to its outgoing representation. T
was built by compressing the outgoing field due to a generic patch � against a grid on a generic far field region �. Instead, 
we can build one such matrix for each level of the quadtree by constructing a generic far field region for each level. Each 
such far field region is an annulus or disk on the surface of the sphere. For each level, it is taken to be just large enough 
so that for any i = 1, . . . , N , in the coordinate system of �i , it covers the bounding circle of every group γ containing �i in 
its interaction list at that level. Using the interpolative decomposition, we can then recompress the outgoing representation 
for a generic patch against training grids on each of the approximately log4 N new far field regions. We obtain one matrix 
T per level, each of which has fewer rows and therefore yields fewer outgoing coefficients than the original.

Parallelization: Each step of the algorithm to compute (47) may be straightforwardly parallelized. Steps (1) and (5) are 
parallelized over all patches; steps (2) and (4) are parallelized over all patch groups at all levels; step (3) is parallelized over 
all patch groups at the leaf level.

9. The one-patch integral equation

In this section, we describe in detail a solver for the integral equation (29), as well as the construction of the far-field 
quadrature nodes x f

i,1, . . . , x
f
i,n f

and weights w f
1 , . . . , w f

n f
discussed in Section 5.

We assume that a patch � has radius ε and make use of cylindrical coordinates (r, θ, z). If we take the center of the 
patch to be the north pole of the sphere, then r = 0 corresponds to the z-axis, r = 0 and z = ±1 to the north and south 
poles, respectively, and θ = 0 to the x-axis. Following the approach of [42,43], we use the rotational symmetry of � to 
reduce the integral equation over the patch to a sequence of one-dimensional integral equations, each corresponding to a 
Fourier mode in the variable θ . More precisely, we denote by C the arc which generates � via rotation about the z-axis: 
C(t) ≡ (r(t), z(t)) = (sin(t), cos(t)) for t ∈ [0, ε]. In this parametrization, t is simply the arclength along the sphere.

Let x = (r, θ, z) and x′ = (r′, θ ′, z′). Since G E and G I are functions of |x − x′| and

|x − x′| =
√

r2 + r′2 + (z − z′)2 − 2rr′ cos(θ − θ ′),

we can write the dependence of the Green’s function in cylindrical coordinates as G(x − x′) = G(r, r′, z − z′, θ − θ ′). In these 
coordinates, the one-patch integral equation (29) takes the form

ε∫
0

2π∫
0

G(r(t), r′(t′), z(t) − z′(t′), θ − θ ′)σ (r′(t′), z′(t′), θ ′)r′(t′)dt′ dθ ′ = f (r(t), z(t), θ).

Representing σ as a Fourier series in θ ,

σ(r(t), z(t), θ) =
∞∑

n=−∞
σn(t)einθ ,

and taking the Fourier transform of both sides of this equation, upon rearrangement, gives the following integral equation 
for the Fourier modes:
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2π

ε∫
0

Gn(t, t′)σn(t
′) sin(t′)dt′ = fn(t). (48)

Here Gn(t, t′), σn(t), and fn(t) are the Fourier transforms of G(r(t), r′(t′), z(t) − z′(t′), θ), σ(r(t), z(t), θ) and f (r(t), z(t), θ)

with respect to θ . Thus, after solving the one-dimensional modal equations (48), we can recover σ(r(t), z(t), θ) from its 
Fourier series. Note that the Fourier series is spectrally convergent because σ(r(t), z(t), θ) is smooth as a function of θ , even 
though it is singular as a function of t at the edge t = ε.

9.1. Evaluation of the modal kernels

Let

G(1)
n (t, t′) = 1

π

π∫
0

2

|x − x′| cos(nθ̃ )dθ̃

G(2)
n (t, t′) = 1

π

π∫
0

log

(
2

|x − x′|
)

cos(nθ̃ )dθ̃

G(3)
n (t, t′) = 1

π

π∫
0

log

(
1 + 1

2
|x − x′|

)
cos(nθ̃ )dθ̃ .

Then, using the formulae (10) and (15), it is straightforward to show that Gn = G(1)
n + G(2)

n − G(3)
n for G E(x, x′) and Gn =

G(1)
n − G(2)

n − G(3)
n for G I (x, x′). We can write |x − x′| in terms of t , t′ and θ̃ = θ − θ ′ as

|x − x′| =
√

2
(

1 − cos(t) cos(t′) − sin(t) sin(t′) cos(θ̃ )
)
.

The integrands are not smooth at t = t′ , θ̃ = 0, so we must use specialized methods to evaluate each kernel.
G(1)

n (t, t′) is simply the cosine transform of the Coulomb kernel and arises in boundary integral equations for electrostat-
ics on axisymmetric surfaces. In [43], an efficient evaluation algorithm is described which involves writing the modal kernel 
in terms of Legendre functions of half-integer order and using their associated three-term recurrence. We refer the reader 
to this paper for further details.

The kernel G(2)
n (t, t′) is weakly singular and may be evaluated by adaptive Gaussian quadrature. However, the following 

formula, discovered by a combination of analytical manipulation and symbolic calculation with Mathematica, has been 
numerically verified to machine precision on a dense grid of values of t, t′ ∈ [0, ε] and up to n = 1000:

1

π

π∫
0

log

(
2

|x − x′|
)

cos(nθ̃ )dθ̃ =

⎧⎪⎨⎪⎩
− log (cos(t1/2) sin(t2/2)) n = 0
1

2n (tan(t1/2) cot(t2/2))n n > 0

t1 = min(t, t′), t2 = max(t, t′).

The integrand in the expression for G(3)
n (t, t′) is even more weakly singular, so G(3)

n (t, t′) may be evaluated relatively 
quickly by adaptive Gaussian quadrature.

9.2. Discretization of the modal integral equations

Since (48) is a singular integral equation, care must be taken to discretize it accurately. The dominant singularity of the 
kernel Gn(t, t′) at t = t′ is the logarithmic singularity of G(1)

n (t, t′). An analogous classical problem is therefore the first-kind 
integral equation arising from the solution of the Dirichlet problem on an open arc in two dimensions by a single layer 
potential. Stable and accurate numerical schemes for this problem can be found, for example, in [44–46]. As described in 
[46], when the domain is the interval [−1, 1], the solution of

1∫
−1

log |t − s|σ(s)ds = f (t) (49)

can be computed with spectral accuracy in the form σ(t) = g(t)/
√

(1 + t)(1 − t), where g is a smooth function whose 
Chebyshev coefficients depend in a simple manner on those of f . For an open arc, the corresponding integral equation can 
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be preconditioned using the solution of (49). This procedure results in a Fredholm equation of the second kind for which 
the density may be represented as a Chebyshev expansion and computed stably with high order accuracy.

In the present context, the inclusion of the additional weakly singular kernels G(2)
n and G(3)

n cause the singularity of σn(t)
to be more complex, but our numerical evidence suggests that there is still a dominant square root singularity at t = ε. To 
be more precise, if we represent σn by

σn(t) = gn(t)/
√

ε − t (50)

near t = ε, we can investigate the effectiveness of representing gn in a basis of orthogonal polynomials. While the exact 
behavior of gn(t) is not understood analytically, the numerical results presented in Section 9.3 suggest that it is only mildly 
non-smooth. We note that there is no singularity at the endpoint t = 0, since this point corresponds to the patch center, at 
which there is no physical singularity.

To resolve the endpoint singularity of σn , we discretize it on a set of panels [a0, a1], [a1, a2], . . . , [am−1, am] on [0, ε]
which are dyadically refined towards t = ε:

a0 = 0, a1 = ε

2
, a2 = 3ε

4
, . . . , am−1 = (2m−1 − 1)ε

2m−1 , am = ε.

On each panel, except the last, σn is represented as a Legendre series of fixed order k. Since σn is smooth on each such 
panel and separated from its singularity by a distance equal to the panel length, it can be shown that this representation 
has an error of size O(e−k log2(1/ε)). This argument is widely used in handling endpoint and corner singularities in the 
context of boundary integral equations [47–52].

On the last panel, we analytically incorporate a square root singularity into our representation of σn as above, and expand 
gn(t) = σn(t)

√
ε − t as a series of Jacobi polynomials with α = − 1

2 and β = 0. If the singularity of σn at t = ε were exactly 
of square root type, this would yield a spectrally accurate representation of σn . Instead, as we will show in Section 9.3, we 
obtain a representation which is finite order but resolves the solution quite well even for modest truncation parameters.

Thus we have rewritten (48) as

fn(t) = 2π

m−1∑
j=1

a j∫
a j−1

Gn(t, t′)σn(t
′) sin(t′)dt′ + 2π

ε∫
am−1

Gn(t, t′)√
ε − t′

(
σn(t

′)
√

ε − t′
)

sin(t′)dt′

and discretized σn by Legendre polynomials for the first m − 1 panels and by Jacobi polynomials for the last. Sampling the 
resulting equations at the corresponding quadrature nodes – Gauss-Legendre for the first m − 1 panels and Gauss-Jacobi 
for the last – yields a collocation method for σn , in which σn is determined by its piecewise polynomial basis coefficients. 
For each collocation node ti , we compute the system matrix entries by adaptively integrating Gn(ti, t′) in t′ against the 
piecewise polynomial basis functions. We compute the values fn(ti) by discretizing the Fourier transform of f (r(ti), z(ti), θ)

in θ by the trapezoidal rule, which is spectrally accurate for smooth, periodic functions. We solve the resulting set of linear 
systems – one for each Fourier mode – by LU factorization and back substitution. The factorizations may be reused, since 
we must solve a one-patch integral equation for many different right hand sides.

We can now define the fine grid points and the smooth quadrature weights introduced in Section 5. The points 
x f

i,1, . . . , x
f
i,n f

are the tensor products of the collocation nodes in the radial direction with equispaced points – the trape-

zoidal rule quadrature nodes – in the azimuthal direction. w f
1 , . . . , w f

n f
are the corresponding quadrature weights – products 

of the panel-wise Gauss weights with the trapezoidal rule weight.

9.3. Numerical investigation of the singularity of σn

In this section, we contrast two strategies for representing σn in (50). In the first, we use m = 1 panels, and represent 
gn in a basis of Jacobi polynomials, which takes into account the square root singularity in σn . This approach would yield 
spectral accuracy with respect to gn if σn only contained a square root singularity. The second strategy is the one described 
above; we use m > 1 panels with a Jacobi polynomial basis of fixed degree only in the last panel. These experiments give 
us some insight into the nature of the true singularity in σn , and justify our discretization choice.

In both cases, we solve the interior one-patch integral equation by the method described above for a basis of Zernike 
polynomials with truncation parameter M = 15. The results do not change significantly if we solve the exterior equation 
instead. We do this for several different choices of ε. The Fourier series truncation is fixed sufficiently large to resolve the 
highest azimuthal Zernike mode. For each solution, we measure the residual error in L2, normalized by the patch size:

‖Sσ − f ‖L2(�) /|�|. (51)

Here |�| is the surface area of the patch, and f is a Zernike polynomial. This measures the extent to which the computed 
solution of the one-patch BVP satisfies the Dirichlet boundary condition. This solution automatically satisfies the Neumann 
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Fig. 8. Left panel: gn is represented by a basis of Jacobi polynomials on a single panel. We plot the maximum residual error (51) vs. the number of Jacobi 
basis functions. Right panel: gn is represented in a Legendre basis on every panel except the last, where a Jacobi basis is used. We plot the maximum 
residual error vs. the number of panels.

boundary condition and the PDE, because of its representation as a single layer potential with the Neumann Green’s func-
tion, so a small L2 residual error corresponds to a solution which nearly satisfies the boundary value problem. This error is 
computed by quadrature on a Legendre-Fourier grid which does not overlap with the grid on which the integral equation is 
solved, so it is not the same as the residual of the solution to the discrete linear system.

Using the first strategy (m = 1), we measure the error (51) for each Zernike polynomial, as the number of Jacobi basis 
functions is increased. The error is defined to be the maximum taken over all Zernike polynomials. The results are presented 
in the left panel of Fig. 8. We observe an initial regime of rapid convergence, followed by much slower convergence. Indeed, 
15 basis functions are required to resolve the highest Zernike modes we have used as data. Afterward, the slow regime 
of convergence suggests that σn has a dominant square root singularity and a subdominant term which is nonsmooth, but 
much smaller. We also notice that performance improves as ε is decreased, which is not surprising since as ε → 0, we 
approach the flat case in which σn has a pure square root singularity.

The second strategy is explored in the right panel of Fig. 8. Here, we fix 20 basis functions per panel – sufficient to 
begin with a good error constant, according to the first experiment. We then increase the number m of panels. Although 
we can already obtain quite good accuracy using the first strategy, the second allows us to reach near-machine precision. 
The improvement is particularly dramatic for larger choices of ε.

10. Numerical experiments

An important parameter in studying narrow escape and narrow capture problems is the patch area fraction f N,ε . Since 
the surface area of a single patch of radius ε is given by

Aε = 4π sin2(ε/2),

we have

f N,ε = N sin2(ε/2). (52)

Assuming ε is sufficiently small, we may write

f N,ε ≈ ε2N/4. (53)

Given N , we will use (53) to compute the patch radius ε for a given patch area fraction.

10.1. Convergence with respect to the Zernike basis

We first investigate the convergence of the solution with respect to the Zernike truncation parameter M , which deter-
mines the largest radial and azimuthal Zernike modes used to represent the smooth incoming field on each patch. We fix 
the patch area fraction at f N,ε = 0.05 and carry out experiments with N = 10, 100, and 1000 patches. ε is computed from 
(53). The patch locations are drawn from a uniform random distribution on the sphere, with a minimal patch separation 
of 2ε enforced. In each case, we solve the one-patch problems with the truncation parameter M set to 1, 3, 5, . . . , 15. The 
one-patch solutions are obtained, guided by the results in Fig. 8, using 13 panels with 20 basis functions per panel, and the 
number of Fourier modes set equal to the number of azimuthal modes in the Zernike basis. The ID and GMRES tolerances 
are set to 10−15, and the incoming grid tolerance is set to 10−12.
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Fig. 9. L2 residual error and self-consistent convergence error of the average MFPT μ for random patches with f N,ε = 0.05. Left panel: N = 10, ε ≈ 0.141. 
Middle panel: N = 100, ε ≈ 0.0447. Right panel: N = 1000, ε ≈ 0.0141.

We measure error in two ways. The first, as in (51), is to examine the relative L2 residual of the multiple scattering 
system (28) (the discrepancy of the computed boundary values with the Dirichlet data) on a random patch �i :

1

|�i |

∥∥∥∥∥∥
⎛⎝Sσi +

N∑
j �=i

Si jσ j

⎞⎠ − 1

∥∥∥∥∥∥
L2(�i)

. (54)

The second is to examine the difference between the computed average mean first passage time (MFPT) μ and a reference 
value, denoted by μref. We obtain μref by carrying out a more refined simulation, with M = 17 on each patch, while 
also increasing the number of panels and basis functions used to solve the one-patch problem to 19 and 30, respectively, 
and doubling the numbers of both radial and azimuthal modes used in the incoming grids of all patch groups. This is a 
self-consistent convergence test for μ.

The results are presented in Fig. 9. In all cases, we observe the expected spectral convergence with respect to M , and 
can reach errors of approximately 10−12 or less. We also find that the residual error appears to provide a good upper bound 
on the error of μ until convergence is reached.

10.2. Large scale simulations

We next study the performance of our solver as N is increased and ε is decreased. The error is measured by computing 
the L2 residual (54) on a random patch. The parameters for the one-patch solver are set as in the previous section with 
M = 15, but we fix the ID tolerance at 10−11, the GMRES tolerance at 10−10, and the incoming grid truncation tolerance 
at 10−8. This selection of parameters yields errors in range 10−7 − 10−10 for all of our experiments. Our calculations are 
performed on either a laptop with a 4-core Intel i7-3630QM 2.40 GHz processor or a workstation with four Intel Xeon 
E7-4880 2.50 GHz processors. each of which has 15 cores. The algorithm has been implemented in Fortran, and in both 
cases, the hierarchical fast algorithm is parallelized over all available cores using OpenMP.

We consider randomly located patches, uniformly located patches and patches that are highly clustered. For each exper-
iment we report N , ε, the computed value of the average MFPT μ, truncated at 8 significant digits, the L2 residual error 
on a random patch, the total number of GMRES iterations, the total solve time, and the time per GMRES iteration. We also 
compute the parallel scaling factor – namely, the ratio of the time to compute the matrix-vector product (47) using a single 
core to the time required using all cores on the 60-core workstation.

10.2.1. Example 1: random patches with area fraction f N,ε = 0.05
Fixing the patch area fraction at f N,ε = 0.05, we let ε be given by (53) for N = 10, 100, 1000, 10 000, 100 000, with 

patches randomly distributed on the sphere with a minimum patch separation of 2ε. The corresponding results are given 
in Table 1. In the left panel of Fig. 10, we plot the time per GMRES iteration as a function of N using the 4-core laptop and 
the 60-core workstation, as well as a reference curve with O(N log N) scaling. In Fig. 11, we also plot the computed MFPT v̄
just inside the unit sphere – on a sphere of radius 1 − ε/5 – for N = 10, 100, 1000, 10 000. The case N = 100 000 case was 
plotted earlier, in Fig. 2.

Note that the number of GMRES iterations increases with N , as one would expect from the increased complexity of the 
problem, but slowly. The computation with N = 100 000 required just over an hour to complete using the 60-core worksta-
tion. The computation with N = 10 000 required just over 45 minutes to solve on the 4-core laptop, and the computation 
with N = 1000 required approximately one minute. (The case N = 100 000 was not attempted on the laptop because of 
memory requirements.) Note from the data in Table 1 that we achieve approximately 85% parallel efficiency at N = 1000
and an efficiency near 90% for the largest calculation. Note also from Fig. 10 that the complexity of the fast algorithm is 
consistent with the expected O (N log N) scaling.
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Table 1
Narrow escape problem with random patches at patch area fraction f N,ε = 0.05.

N 10 100 1000 10 000 100 000
ε ≈ 0.14 ≈ 0.045 ≈ 0.014 ≈ 0.0045 ≈ 0.0014

Average MFPT μ 0.64277353 0.24999828 0.12308716 0.084405945 0.072275200
L2 residual error 3.6 × 10−9 1.6 × 10−9 5.3 × 10−9 4.8 × 10−8 2.2 × 10−8

# GMRES iterations 7 12 17 25 35
Total iteration time (s) (60 cores) 0.11 0.54 8.9 215 3793
Time per iteration (s) (60 cores) 0.02 0.05 0.5 8.6 108
Total iteration time (s) (laptop) 0.10 2.63 68.9 1731
Time per iteration (s) (laptop) 0.01 0.22 4.1 69

Parallel scaling factor (60 cores) 2.1 25.7 51.4 52.3 53.5

Fig. 10. Time per GMRES iteration for the 4-core laptop and 60-core workstation. A reference curve with O(N log N) scaling is also plotted.

Table 2
Narrow escape problem with uniform patches at patch area fraction f N,ε = 0.05.

N 10 100 1000 10 000 100 000
ε ≈ 0.14 ≈ 0.045 ≈ 0.014 ≈ 0.0045 ≈ 0.0014

Average MFPT μ 0.62771752 0.23201408 0.11813387 0.082870386 0.071784189
L2 residual error 3.0 × 10−9 1.5 × 10−9 3.2 × 10−8 6.4 × 10−8 8.4 × 10−8

# GMRES iterations 6 9 11 16 20
Total iteration time (s) (60 cores) 0.10 0.38 5.1 114 1803
Time per iteration (s) (60 cores) 0.02 0.04 0.47 7.1 90
Total iteration time (s) (laptop) 0.087 1.45 40.7 926
Time per iteration (s) (laptop) 0.014 0.16 3.7 58

Parallel scaling factor (60 cores) 5.0 29.9 53.7 54.0 54.8

10.2.2. Example 2: uniform patches with area fraction f N,ε = 0.05
Using the same patch area fraction as in the previous example, we let N take the same values, but place the patch 

centers at the Fibonacci spiral points, which are approximately uniform on the sphere [10]. Results are shown in Table 2
and the middle panel of Fig. 10. The computed MFPT v̄ on the sphere of radius 1 − ε/5 was plotted in Fig. 3 for the case 
N = 10 000. The MFPT is plotted for the N = 100 and N = 1000 cases in Fig. 11.

10.2.3. Example 3: clustered patches
In our final example, we configure the patches to form a collection of 20 clusters. Each cluster is contained within a 

disk on the surface of the sphere centered at the vertices of a dodecahedron inscribed in the sphere, and the radii of the 
disks are chosen so that all 20 disks cover one quarter of the area of the sphere. Patch centers are placed randomly on the 
sphere, and a proposed center is accepted if it falls within one of the disks, while enforcing a minimum patch separation 
distance of 2ε. We choose ε empirically to be as large as possible so that our random placement process yields the desired 
number N of patches in a reasonable amount of time. For sufficiently large N , this results in a much denser packing of 
patches within each cluster than we had in our previous examples.

The results of our simulations are provided in Table 3 and the right panel of Fig. 10. The MFPT is plotted on a sphere 
of radius 1 − ε/5 in Fig. 4 for the N = 10 000 case and in Fig. 11 for the N = 100 and N = 1000 cases. The denser packing 
of patches leads to a greater number of GMRES iterations than in the previous examples and longer computation times, but 
the difference is mild. The case with N = 100 000 required just over an hour and a half to solve on our 60-core workstation. 
The simulation with N = 10 000 required 75 minutes on a laptop, and the simulation with N = 1000 required about one 
minute.
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Fig. 11. Plots of the MFPT v̄ on a sphere of radius 1 − ε/5 for the experiments described in Section 10.2. The first two rows correspond to Example 1 with 
N = 10, 100, 1000, 10 000. The third row corresponds to Example 2 with N = 100, 1000. The final row corresponds to Example 3 with N = 100, 1000.
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Table 3
Narrow escape problem with clustered patches.

N 10 100 1000 10 000 100 000
ε 0.25 0.047 0.012 0.0035 0.001

Average MFPT μ 0.29687267 0.25519357 0.20318506 0.17622000 0.16531162
L2 residual error 4.9 × 10−10 3.9 × 10−9 1.2 × 10−8 6.5 × 10−8 1.2 × 10−7

# GMRES iterations 8 12 19 28 42
Total iteration time (s) (60 cores) 0.21 0.43 9.9 269 5795
Time per iteration (s) (60 cores) 0.03 0.04 0.52 9.6 138
Total iteration time (s) (laptop) 0.18 2.7 76.4 2112
Time per iteration (s) (laptop) 0.02 0.22 4.0 75

Parallel scaling factor (60 cores) 2.9 43.9 49.3 51.4 55.5

Remark 7. We carried out the simulations above for the corresponding exterior problem as well (the narrow capture prob-
lem). As expected (since the integral equations are nearly identical), the timings and errors are similar and are therefore 
omitted.

11. Conclusions

We have developed a fast solver for the narrow capture and narrow escape problems on the sphere with arbitrarily-
distributed well-separated disk-shaped patches. We solve the corresponding mixed boundary value problems by an integral 
equation scheme derived using the Neumann Green’s functions for the sphere. Our numerical method combines a high 
order accurate solver for the one-patch problem, a multiple scattering formalism, and a hierarchical fast algorithm. We 
have demonstrated the scheme on examples with N as large as 100 000, significantly larger than previously accessible. The 
ability to carry out such large-scale simulations will permit a systematic study of the asymptotic approaches described, for 
example, in [11] and [12].

Possible extensions of our method include the consideration of narrow escape and narrow capture problems when the 
patches are asymmetric and have multiple shapes. Assuming some separation between patches, the multiple scattering 
formalism still applies, but the single patch integral equation will not be solvable by separation of variables and the com-
pressed representation of outgoing fields will need to be computed for each distinct patch type. Neither of these extra steps, 
however, affects the asymptotic O(N log N) scaling of the fast algorithm. Exterior problems involving multiple spheres with 
different arrangements of patches could also be simulated by a simple modification of our multiple scattering approach.

A more challenging problem is to extend our method to non-spherical geometries. For this, one would either have to 
discretize the entire domain surface, rather than just the absorbing patches, or construct the Neumann Green’s function 
for such a domain numerically. In the latter case, aspects of our multiple scattering approach would carry over. We are 
currently investigating these issues and will report on our progress at a later date.
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