

1 Rapid cold hardening protects against sublethal freezing injury in an Antarctic insect

2 **Running title:** RCH and sublethal freezing injury

3 Nicholas M. Teets^{*1}, Yuta Kawasaki², Leslie J. Potts¹, Benjamin N. Philip³, J.D. Gantz^{3,4},

4 David L. Denlinger⁵, Richard E. Lee, Jr.³

5 1Department of Entomology, University of Kentucky, Lexington, KY USA; 2Department of

6 Biology, Gustavus Adolphus College, Saint Peter, MN USA; 3Department of Biology, Miami

7 University, Oxford, OH USA; 4Current address: Biology Department, Hendrix College,

8 Conway, AR, USA; 5Department of Entomology, Ohio State University, Columbus, OH USA

9 *Corresponding author

10 Email: n.teets@uky.edu

11 **KEYWORDS** acclimation; Antarctica; freeze-tolerance; heat shock proteins; phenotypic

12 plasticity; stress

13

14

15

16

17

18

19

20

21 **SUMMARY STATEMENT**

22 Rapid cold hardening has a well-established role in preventing death from cold, and here we
23 show it also protects against nonlethal freezing injury in a freeze-tolerant Antarctic insect.

24 **ABSTRACT**

25 Rapid cold hardening (RCH) is a type of beneficial phenotypic plasticity that occurs on
26 extremely short time scales (minutes to hours) to enhance insects' ability to cope with cold snaps
27 and diurnal temperature fluctuations. RCH has a well-established role in extending lower lethal
28 limits, but its ability to prevent sublethal cold injury has received less attention. The Antarctic
29 midge, *Belgica antarctica* is Antarctica's only endemic insect and has a well-studied RCH
30 response that extends freeze tolerance in laboratory conditions. However, the discriminating
31 temperatures used in previous studies of RCH are far below those ever experienced in the field.
32 Here, we tested the hypothesis that RCH protects against nonlethal freezing injury. Larvae of *B.*
33 *antarctica* were exposed to either control (2°C), direct freezing (-9°C for 24 h), or RCH (-5°C
34 for 2 h followed by -9°C for 24 h). All larvae survived both freezing treatments, but RCH larvae
35 recovered more quickly from freezing stress and had significantly higher metabolic rates during
36 recovery. RCH larvae also sustained less damage to fat body and midgut tissue and had lower
37 expression of two heat shock protein transcripts (*hsp60* and *hsp90*), which is consistent with
38 RCH protecting against protein denaturation. The protection afforded by RCH resulted in energy
39 savings; directly frozen larvae experienced a significant depletion in glycogen energy stores that
40 was not observed in RCH larvae. Together, these results provide strong evidence that RCH
41 protects against a variety of sublethal freezing injuries and allows insects to rapidly fine-tune
42 their performance in thermally variable environments.

43 **INTRODUCTION**

44 The ability to cope with thermal variability on seasonal and diurnal timescales is a critical
45 adaptation for animals living in temperate and polar environments (Colinet et al., 2015), and
46 climate change is increasing thermal variability across much of the planet (Dillon et al., 2016;
47 Vasseur et al., 2014). To cope with low temperature stress, insects have evolved a suite of
48 physiological and biochemical adaptations (reviewed by Lee, 2010; Overgaard and MacMillan,
49 2017; Teets and Denlinger, 2013). One such adaptation is rapid cold hardening (RCH), an
50 adaptive plastic response in which brief chilling enhances tolerance to subsequent cold stress
51 (Lee et al., 1987; Lee and Denlinger, 2010). One of the fastest known adaptive physiological
52 responses to temperature, RCH has been observed across the arthropod phylogeny, and
53 analogous responses are present in fish (Hazel and Landrey, 1988), amphibians (Layne and
54 Claussen, 1987), and turtles (Muir et al., 2010). RCH can be induced by natural diurnal
55 thermoperiods and ecologically relevant cooling rates (Kelty, 2007; Kelty and Lee, 1999; Kelty
56 and Lee, 2001) and allows insects to cope with sudden cold snaps and optimize performance in
57 thermally variable environments.

58 In terrestrial polar environments, insect diversity is severely suppressed, in large part due
59 to short growing seasons and extreme low temperatures (Teets and Denlinger, 2014). Terrestrial
60 Antarctica harbors only three insect species (Convey and Block, 1996), and of these the midge
61 *Belgica antarctica* is the only endemic species and the world's southernmost insect (Lee and
62 Denlinger, 2015). The physiological and molecular mechanisms by which this species tolerates
63 environmental extremes (e.g., cold, desiccation, salinity, anoxia) are well-studied. While the
64 long, cold winter is a conspicuous feature of Antarctic habitats, larvae of *B. antarctica*
65 experience multiple freeze-thaw cycles throughout the year and thus maintain the ability to

66 survive internal ice formation (i.e., freeze-tolerance) year around (Baust and Lee, 1981; Elnitsky
67 et al., 2008; Kawarasaki et al., 2014a). Mechanistically, constitutive expression of heat shock
68 proteins (Rinehart et al., 2006) and antioxidants (Lopez-Martinez et al., 2008), aquaporins that
69 facilitate water movement during freezing (Goto et al., 2015; Yi et al., 2011), and plastic changes
70 in metabolic gene expression following freezing (Teets et al., 2013) likely contribute to the year-
71 round freeze tolerance of this species.

72 RCH was initially thought to be restricted to chill-susceptible and freeze-avoiding insects,
73 but the discovery of RCH in *B. antarctica* was the first case of RCH being described in a freeze-
74 tolerant insect (Lee et al., 2006b). In *B. antarctica*, RCH is elicited by temperatures between -3
75 and -12°C, occurs in as little as 30 min, and is activated more strongly when larvae are frozen
76 than supercooled (Kawarasaki et al., 2013). For example, a 2 h period of RCH at -5°C (the
77 conditions used in our experiments; see below) increases survival at -18°C for 24 h from ~10%
78 to >80%. Optimal RCH conditions can extend the lower limit of freeze tolerance below -20°C in
79 the laboratory (Kawarasaki et al., 2013), but microhabitat temperatures for larvae rarely drop
80 below -5°C, and -10°C is the lowest recorded microhabitat temperature in the field (Baust and
81 Lee, 1981; Elnitsky et al., 2008; Kawarasaki et al., 2014a). These temperatures are above the
82 supercooling point for most larvae (supercooling points are typically around -10°C for summer
83 acclimatized larvae; see Kawarasaki et al., 2014a), but larvae have a limited capacity to avoid
84 inoculative freezing at ecologically relevant soil moisture conditions (Kawarasaki et al., 2014b).
85 Thus, larvae have a high probability of freezing at sub-zero temperatures, but they can readily
86 survive freezing below -10°C, even in the summer (Kawarasaki et al., 2013; Lee et al., 2006b).
87 Therefore, most, if not all, freezing events in the field are nonlethal.

88 Previous work in *B. antarctica* documented sublethal costs of freezing stress. Multiple
89 freeze-thaw cycles result in tissue damage, energy depletion, and upregulation of heat shock
90 proteins before the onset of mortality (Teets et al., 2011), while simulated winter freezing
91 depletes glycogen energy stores (Kawarasaki et al., 2014a). In other freeze-tolerant insects,
92 similar sublethal costs have been observed. Multiple freeze-thaw cycles result in decreased body
93 mass in a sub-Antarctic caterpillar (Sinclair and Chown, 2005), while repeated freezing as
94 prepupae reduces adult fecundity in a temperate gall fly (Marshall and Sinclair, 2018). However,
95 the extent to which RCH protects against sublethal freezing injury has not been assessed.
96 Furthermore, most studies of RCH focus on extension of lower lethal limits, despite lethal cold
97 events being rare in the field (Alvarado et al., 2015; but see Coello Alvarado et al., 2015;
98 Findsen et al., 2013; Powell and Bale, 2006; Shreve et al., 2004).

99 Here, we investigated the extent to which RCH protects against sublethal freezing injury
100 at ecologically relevant temperatures. We identified the lowest temperature that produced no
101 significant mortality and tested the ability of a 2 h period of RCH to reduce freezing injury. The
102 direct stepwise temperature shifts used to elicit RCH do not fully reflect natural conditions, but
103 previous work has demonstrated that stepwise transfers provide the same protection as
104 ecologically relevant cooling ramps, and that there is a narrow window of temperature that elicits
105 RCH, including in *B. antarctica* (Chen et al., 1987; Coulson and Bale, 1990; Kawarasaki et al.,
106 2012). Furthermore, in the field larvae are exposed to repeated freeze-thaw cycles that can have
107 variable effects on physiology depending on the frequency and intensity of cold exposure
108 (Marshall and Sinclair, 2012), and our experiments do not account for potential effects of
109 multiple cold exposure. Nonetheless, our design allows us to rigorously test the hypothesis that
110 RCH affords protection at temperatures likely to be encountered in the field.

111 To test our hypothesis that RCH protects against sublethal freezing injury in *B.*
112 *antarctica*, summer-acclimatized larvae were exposed to nonlethal freezing for 24 h with and
113 without a 2 h RCH pretreatment, and we measured a range of outcome variables that span levels
114 of biological organization. In response to nonlethal freezing, we observed a reduction in
115 locomotor activity, lowered metabolic rates, damage to midgut and fat body tissue, an increase in
116 heat shock protein expression (consistent with damage to proteins), and a significant increase in
117 glucose content coupled with a decrease in glycogen energy stores. All symptoms of freezing
118 injury were reduced, at least partially, by RCH, indicating that RCH protects against multiple
119 routes of sublethal freezing injury at ecologically relevant conditions.

120 MATERIALS AND METHODS

121 Insects

122 Larvae of *B. antarctica* were collected on various islands within a 3 km radius of Palmer
123 Station (64°46'S, 64°04'W) in January 2018. Samples were returned to the laboratory and
124 extracted from their substrate into ice water using a modified Berlese apparatus. After extraction,
125 concentrated samples of larvae were immediately returned to natural substrate (containing rocks,
126 moss, and the alga *Prasiola crispa*) and stored at 2°C for at least one week until used for
127 experiments. Experiments were conducted within 2 weeks of collection. Prior to an experiment,
128 larvae were sorted from their substrate in ice water and held on moist filter paper overnight. Only
129 fourth instar larvae were used for experiments.

130 Cold treatments

131 Our goal was to assess the extent to which RCH prevents sublethal freezing injury. In a
132 preliminary experiment, we assessed the freeze tolerance of summer-acclimatized fourth instar

133 larvae to establish conditions for later experiments. Groups of 20 larvae, N=3 per temperature,
134 were exposed for 12 or 24 h to seven temperatures ranging from -3 to -21°C in 3°C increments.
135 Immediately prior to cold exposure, larvae were submerged in ~50 µl water in a 1.5 ml
136 microcentrifuge tube, and a small piece of ice was added to each tube to ensure that larvae froze
137 via inoculative freezing. Larvae have a water-permeable cuticle and a limited capacity to avoid
138 inoculative freezing (Elnitsky et al., 2008; Kawasaki et al., 2014b), and thus submerged larvae
139 in direct contact with ice will freeze at or near the body fluid melting point (~-0.6°C for summer
140 acclimatized larvae). After cold exposure, larvae were placed in Petri dishes with moist filter
141 paper, and survival was assessed 24 h later. Larvae that moved spontaneously or in response to
142 gentle prodding were considered alive. Survival was identical for the 12 and 24 h exposure at
143 each temperature, indicating that within these time frames temperature is the primary
144 determinant of freezing injury, rather than exposure time. Thus, even though a 12 h exposure
145 better reflects diurnal temperature fluctuations, we elected to use 24 h exposures for our
146 experiment because of logistical constraints coordinating field work and laboratory work during
147 our brief stay at Palmer Station. For 24 h exposures, survival was at or near 100% down to -9°C
148 and dropped off rapidly at lower temperatures, and all larvae died at temperatures at or below -
149 15°C (Fig. 1). Thus, we selected -9°C as our discriminating temperature for the RCH
150 experiments.

151 For the remaining experiments, we used the following conditions: 1) Control (maintained
152 at 2°C for the duration of the experiment), 2) Directly Frozen (DF, directly transferred from 2°C
153 to -9°C, as described above, and held at -9°C for 24 h), 3) Rapid Cold Hardening (RCH;
154 transferred from 2°C to -5°C for 2 h, then moved to -9°C for 24 h). For both freezing treatments,
155 larvae were submerged in water containing a small piece of ice to ensure inoculative freezing at

156 high sub-zero temperatures. Previous work demonstrated that freezing at -5°C for 2 h elicits a
157 maximal RCH response (Kawasaki et al., 2013). After treatment, larvae were returned to Petri
158 dishes with moist filter paper and kept at 2°C. All physiological experiments were conducted on
159 station, and samples for gene expression and biochemical assays (see details below) were frozen
160 at -80°C and shipped to the University of Kentucky on dry ice.

161 **Recovery of locomotion**

162 We first tested the hypothesis that RCH allows larvae to recover normal locomotion more
163 quickly after freezing stress. Immediately after cold treatments, larvae were placed into
164 individual wells of a 96-well plate containing 25 µl water. Plates were kept on a cooler of ice for
165 observation. Larvae were observed under a stereo microscope until the first signs of spontaneous
166 movement, which we recorded as the recovery time. In a separate experiment, we also measured
167 locomotor activity after freezing stress. Midge larvae crawl through their substrate by
168 simultaneously contracting their head capsule and an extension of the thorax called the anterior
169 proleg. Thus, to measure locomotor activity, we placed individual larvae in a Petri dish with ice
170 water and recorded the number of these contractions in a one-minute period. Cold-treated larvae
171 were measured in separate groups of larvae 2 and 24 h after cold exposure, and untreated larvae
172 were also included at both time points to control for any day-to-day variation in movement
173 speed. For both recovery time and movement speed we measured 40 larvae per treatment group.
174 For recovery time, 80 larvae were monitored simultaneously, while for movement speed a single
175 larva was observed at one time. The same investigator (NMT) observed all samples.

176 **Metabolic rate**

177 Here we tested the hypothesis that RCH restores metabolic function after freezing stress.
178 Larvae were exposed to control, directly frozen, and RCH treatments, as described above, and
179 we measured oxygen consumption in separate groups of larvae after 2 and 24 h recovery.
180 Oxygen consumption was measured by placing groups of 10 larvae into an Instech Fiber Optic
181 Oxygen Monitor (Model FOL/C1T500P; Instech Laboratories, Plymouth Meeting, PA, USA)
182 according to Elnitsky et al. (2009). In brief, larvae were equilibrated in the chamber containing
183 500 μ l water at 4°C for 10 min prior to recording changes in dissolved oxygen consumption for
184 at least 10 min. After measurement, each sample was weighed to the nearest 0.002 mg, and
185 oxygen consumption was expressed as nmol O₂ min⁻¹ mg⁻¹ fresh mass (FM). The oxygen sensor
186 was calibrated using solutions of 0% oxygen (produced by adding sodium dithionite crystals to
187 the same water used for measurement) and a saturated oxygen solution at 4°C. For each
188 treatment, we measured oxygen consumption in 5-6 groups of larvae.

189 **Tissue damage**

190 To measure tissue damage following freezing stress, we used a two-component dye
191 exclusion assay modified from the LIVE/DEAD Sperm Viability Kit (ThermoFisher Scientific,
192 Waltham, MA, USA) as described by Yi and Lee (2003). Larvae were exposed to control,
193 directly frozen, and RCH treatments and allowed to recover for 24 h. After recovery, midgut and
194 fat body tissue were dissected in ice-cold Coast's solution (Coast and Krasnoff, 1988) and
195 transferred to a slide containing 25 μ l SYBR-14 dye in Coast's solution. After 10 min, 25 μ l
196 propidium iodide in Coast's was added, and the tissues were stained for an additional 10 min.
197 Samples were imaged on a fluorescent microscope, and live cells with intact membranes
198 fluoresce green, while dead cells with damaged membranes fluoresce red. Cell survival was

199 determined by counting the proportion of live cells in a minimum of 300 cells per sample. For
200 each group, we imaged 4-5 tissue samples.

201 **Stress gene expression**

202 In this experiment, we compared the molecular stress response of larvae exposed to our
203 various cold treatments. We primarily focused on expression of transcripts encoding heat shock
204 proteins, a group of highly conserved stress genes (reviewed by Feder and Hofmann, 1999) with
205 an established role in stress responses in *B. antarctica* (Lopez-Martinez et al., 2009; Rinehart et
206 al., 2006; Teets et al., 2012b). Expression of heat shock protein transcripts is regulated by protein
207 denaturation, and in previous work we demonstrated that expression is correlated with other
208 measures of freezing damage (Teets et al., 2011). Thus, we used mRNA abundance of heat shock
209 proteins as a proxy for subcellular protein damage after freezing. We measured mRNA
210 expression of heat shock proteins from all five major families, small heat shock proteins (*sHsp*)
211 (GenBank: GAAK01009816), *hsp40* (GenBank: GAAK01004380), *hsp60* (GenBank:
212 GAAK01010161), *hsp70* (GenBank: GAAK01011953), and *hsp90* (GenBank:
213 GAAK01011429), as well as expression of *phosphoenolpyruvate carboxykinase (pepck)*
214 (GenBank: JX462659), a metabolic gene that is highly responsive to stress (Teets et al., 2013).
215 We measured gene expression in control larvae and after 2 and 24 h recovery from the directly
216 frozen and RCH treatments, N=5 per group.

217 RNA was extracted from groups of 20 larvae using Tri reagent (ThermoFisher) according
218 to the manufacturer's protocol. RNA was resuspended in Buffer RLT (Qiagen, Germantown,
219 MD, USA) and further purified using the RiboPure RNA Purification Kit (ThermoFisher).
220 Quantity and purity of RNA were assessed spectrophotometrically, and 500 ng RNA was used as
221 a template for first-strand cDNA synthesis using the qScript cDNA Synthesis Kit (Quanta Bio,

222 Beverly, MA, USA). cDNA was used as a template in qPCR reactions, with each 20 μ l reaction
223 containing 10 μ l 2X PerfeCTa SYBR Green FastMix (Quanta Bio), 2 μ l each primer at 2.5 μ M
224 concentration (250 nm final concentration), 2 μ l cDNA, and 4 μ l water. Primers for *ribosomal*
225 *protein l19 (rpl19)* (GenBank: JX462670) and *pepck* were obtained from Teets et al. (2013),
226 while those for the heat shock proteins were designed against annotated genes in the *B.*
227 *antarctica* genome (Kelley et al., 2014) (Table 1). Reactions were run for 40 cycles on a
228 QuantStudio 6 Flex real-time PCR system (ThermoFisher) and cycle threshold (Ct) values were
229 calculated. Gene expression was calculated using the $2^{-\Delta Ct}$ method as in previous studies (e.g.,
230 Teets et al., 2013). The Ct of each gene of interest was normalized to that of a reference gene,
231 *rpl19*, and we calculated fold changes relative to the control group.

232 **Metabolite assays**

233 To assess potential energetic benefits of RCH, we measured levels of several energy
234 stores. Metabolites were measured using colorimetric assays as described previously (Teets et
235 al., 2011; Teets et al., 2012a). Carbohydrates were extracted in perchloric acid from groups of 20
236 larvae, and free glucose was measured using the Glucose Assay Kit (Sigma-Aldrich, St. Louis,
237 MO, USA). To measure trehalose, we treated samples with trehalase from porcine kidney
238 (Sigma-Aldrich) to liberate glucose, and the resulting glucose was measured with the Glucose
239 Assay Kit. Glycogen was measured similarly by treating samples with amyloglucosidase from
240 *Aspergillus niger* (Sigma-Aldrich) prior to measuring glucose. Total lipids were measured in
241 groups of five larvae by homogenizing larvae in 1:1 chloroform:methanol and using vanillin-
242 phosphoric acid reagent to quantify lipids. Total proteins were measured by homogenizing
243 groups of 20 larvae larvae in radioimmunoprecipitation (RIPA) buffer and quantifying proteins

244 with the Pierce BCA Protein Assay Kit (ThermoFisher). For all metabolites, sample absorbance
245 values were compared to a standard curve and corrected for the dry mass of each sample.

246 **Statistical analysis**

247 All statistical analyses were conducted in JMP Pro 14 (SAS Institute Inc., Cary, NC,
248 USA) and R statistical software. Recovery time data were analyzed using a log-rank test to
249 compare recovery times between larvae that were directly frozen and those that experience RCH.
250 Movement speed data were not normally distributed and were thus compared with a permutation
251 ANOVA using the aovp function in the lmPerm package in R, followed by all pairwise
252 permutation t-tests with the pairwise.perm.t.test function in the RVAideMemoire package in R .
253 Cell viability data were analyzed with a generalized linear model using the glmer function in the
254 lme4 package in R. The data were fit with a binomial error distribution, with treatment as a main
255 effect and replicate nested within treatment as a random effect to prevent pseudoreplication.
256 Respirometry data, gene expression data, and metabolite data (except for glucose) were
257 compared with ANOVA followed by paired t-tests of all possible pairwise comparisons.
258 Trehalose, glycogen, lipid, and protein contents were log transformed prior to statistical analysis.
259 Glucose data were not normally distributed and were analyzed with permutation ANOVA and t-
260 tests, as described above for the movement speed data. To correct for multiple comparisons for
261 the entire study, p-values from all tests were combined and adjusted with the False Discovery
262 Rate Correction method of Benjamini and Hochberg (1995) using the p.adjust function in R. All
263 data used to generate the figures in this paper are available on Dryad (DOI:
264 <https://doi.org/10.5061/dryad.29p7ng2>).

265 **RESULTS**

266 **Recovery of locomotion**

267 Following 24 h of freezing at -9°C, larvae treated with RCH had a median recovery time
268 of 45 min while larvae that were directly frozen had a median recovery of 67.5 min, a difference
269 that was highly significant (Figure 2a; Log-Rank test, FDR , $X^2 = 18.29$, df = 1, p=3.34E-4).
270 After 2 h recovery from freezing, larvae treated with RCH had significantly faster head capsule
271 contractions than directly frozen larvae (Figure 2b; Permutation Test, FDR, p=0.9.72E-4), and
272 most directly frozen larvae failed to regain normal contractile movements despite displaying
273 irregular body contractions. After a 24 h recovery period, the median rate of movement of RCH
274 and directly frozen larvae were statistically indistinguishable, and neither group returned to
275 control levels.

276 **Metabolic rate**

277 After 2 h recovery from freezing at -9°C, there was a significant 22% decrease in oxygen
278 consumption (Figure 2c; ANOVA, FDR, $t_{22} = 3.76$, p = 0.004), but this decrease in metabolic
279 rate was prevented by RCH. The oxygen consumption rate of larvae treated with RCH ($1.33 \pm$
280 $0.02 \text{ nmol min}^{-1} \text{ mg}^{-1} \text{ FM}$) was significantly higher than that of directly frozen larvae ($1.06 \pm$
281 $0.05 \text{ nmol min}^{-1} \text{ mg}^{-1} \text{ FM}$) and statistically indistinguishable from that of control larvae ($1.35 \pm$
282 $0.04 \text{ nmol min}^{-1} \text{ mg}^{-1} \text{ FM}$). The same trend was apparent after 24 h recovery, although the
283 difference between RCH and directly frozen larvae was not quite statistically significant (Figure
284 2c; ANOVA, FDR, $t_{22} = 2.31$, p = 0.061).

285 **Tissue damage**

286 RCH reduced damage to fat body and midgut tissue after freezing. Cell survival in
287 control samples was high for both tissues (0.93 ± 0.03 for fat body; 0.96 ± 0.02 for midgut),

288 indicating minimal damage during dissection and processing (Figure 3). Cell viability was also
289 measured after 24 recovery from direct freezing and RCH treatments. In both tissues, freezing
290 significantly reduced cell viability; cell survival after freezing decreased to 0.47 ± 0.02 and 0.65 ± 0.05
291 in fat body and midgut, respectively. However, in both tissues, RCH significantly
292 improved cell survival after freezing (Figure 3; GLM, FDR, $p < 0.05$), although tissue damage
293 was still higher than in untreated samples.

294 **Stress gene expression**

295 In this experiment, we measured the mRNA expression of five heat shock proteins and
296 *pepck*, a stress-responsive metabolic gene (Figure 4). Expression of *sHsp* did not change after 2 h
297 recovery from either cold treatment (directly frozen and RCH) but was strongly upregulated ~ 3 -
298 fold in both groups after 24 h recovery (Figure 4a). Transcripts for *hsp40*, *hsp70*, and *pepck*
299 changed in some treatment groups but were never different between directly frozen and RCH
300 larvae (Figure 4b, d, f). However, two of the transcripts, *hsp60* and *hsp90*, showed distinct
301 expression patterns in directly frozen and RCH larvae. In both cases, expression was statistically
302 indistinguishable after 2 h recovery, but after 24 h recovery expression was higher in the directly
303 frozen group. For *hsp60* expression was 35% higher in directly frozen larvae (Figure 4c;
304 ANOVA, FDR, $t_{19} = 2.68$, $p = 0.032$), and for *hsp90* expression was 56% higher in directly
305 frozen larvae (Figure 4e; ANOVA, FDR, $t_{19} = 4.28$, $p = 0.002$).

306 **Energy store analysis**

307 In response to freezing, there was significant accumulation of glucose after 2 h recovery,
308 with larvae that were directly frozen accumulating significantly more glucose than larvae treated
309 with RCH (Figure 5a; Permutation Test, FDR, $p = 0.023$). However, after 24 h recovery, glucose

310 levels for both groups were indistinguishable from controls. Trehalose levels remained constant
311 after 2 h recovery, but there was a significant and nearly identical 14% increase in both directly
312 frozen and RCH larvae after 24 h recovery (Figure 5b; ANOVA, FDR, $p<0.05$). Glycogen
313 content was significantly reduced by ~15% in directly frozen larvae after 24 h recovery relative
314 to the other four groups (Figure 5c, ANOVA, FDR, $p<0.05$), such that RCH larvae had higher
315 levels of glycogen after 24 h recovery. There was a slight elevation of lipid in directly frozen
316 larvae after 24 h recovery relative to controls, but there were no significant differences between
317 directly frozen and RCH larvae at either recovery time (Figure 5d). Protein content increased
318 slightly in RCH larvae after 24 h recovery relative to controls but was otherwise invariant across
319 all treatment groups (Figure 5e).

320 **DISCUSSION**

321 Here, we provide several lines of evidence that RCH protects against sublethal freezing
322 injury in larvae of *B. antarctica*. Previous work has demonstrated that RCH extends the limits of
323 freeze tolerance (Kawasaki et al., 2013; Lee et al., 2006a; Teets et al., 2008), yet the test
324 temperatures in these studies (typically -15 to -20°C) are far colder than typical microclimate
325 temperatures, which rarely approach -10°C (Kawasaki et al., 2014a). Thus, lethal freezing
326 events are rare or perhaps non-existent for *B. antarctica*, and the results presented here
327 demonstrate that RCH can protect against nonlethal freezing injury at ecologically relevant
328 temperatures. Other work in chill-susceptible insects has provided some evidence of the benefits
329 of RCH at nonlethal conditions (Alvarado et al., 2015; Findsen et al., 2013; Kelty and Lee, 1999;
330 Powell and Bale, 2006; Shreve et al., 2004), and by incorporating behavior, metabolic
331 physiology, measurement of tissue damage, gene expression changes, and changes in

332 biochemical composition, our work demonstrates that RCH protects against multiple types of
333 freezing injury that span levels of biological organization.

334 **Preservation of locomotor function and metabolic rate**

335 The current understanding of RCH suggests it is a plastic mechanism that allows
336 ectotherms to “track” changes in environmental temperature in real-time (Lee and Denlinger,
337 2010). In our experiments, larvae treated with RCH regained motility 33% faster after a freezing
338 event, and 2 h after freezing had already resumed normal locomotor behavior (albeit much
339 slower than untreated larvae; Figure 2a, b). In chill susceptible insects, immobility from cold
340 stress is a consequence of membrane depolarization at low temperatures (MacMillan and
341 Sinclair, 2011; Overgaard and MacMillan, 2017), and recovery from chill coma requires
342 restoration of ion balance to permit neuromuscular function (MacMillan et al., 2012). While
343 these mechanisms are not as well-studied in freeze-tolerant insects, there is evidence of freezing-
344 induced hyperkalemia in some species (Kristiansen and Zachariassen, 2001; Štětina et al., 2018),
345 and current models of insect freeze tolerance propose that reversing these changes is essential for
346 recovery during thawing (Toxopeus and Sinclair, 2018). Thus, it is likely that RCH either
347 reduces the degree of ion dysregulation during freezing or allows larvae to restore ion gradients
348 more quickly during recovery, thus permitting faster resumption of locomotor activity.
349 Ecologically, quicker recovery from freezing would allow larvae to resume essential functions
350 like feeding and microhabitat selection, which may be especially important during the brief
351 austral summer.

352 Similar to locomotion, RCH also allowed larvae to maintain metabolic function after
353 freezing. Larvae that were directly frozen had a 22% reduction in metabolic rate after 2 h
354 recovery, and this reduction in metabolic rate was completely prevented by RCH (Figure 2c).

355 This pattern was also apparent after 24 h recovery, although the difference between directly
356 frozen and RCH larvae was not quite statistically significant. This preservation of metabolic
357 function by RCH likely allows larvae to kickstart the recovery process, which may explain the
358 improvement of locomotor function immediately after freezing (Figure 2a,b). Post-freeze
359 reduction in metabolic rate is also observed in the sub-Antarctic caterpillar *Pringleophaga*
360 *marioni* (Sinclair et al., 2004), although RCH was not assessed in that study. Our results are
361 consistent with the effects of freezing on mitochondrial function. In the freeze-tolerant goldenrod
362 gall fly *Eurosta solidaginis*, freezing reduces mitochondrial cytochrome oxidase C activity
363 (McMullen and Storey, 2008), and the activity of several mitochondrial enzymes is reduced in
364 response to low temperature (Joanisse and Storey, 1994). Thus, our working model is that RCH
365 protects against freezing-induced reductions in mitochondrial function, although we are unable to
366 rule out other possibilities like changes in oxygen delivery. In chill-susceptible *Drosophila*
367 *melanogaster*, cold acclimation prevents chilling-induced declines in mitochondrial coupling and
368 ATP synthesis (Colinet et al., 2017).

369 **Damage to tissues and proteins**

370 While freezing at -9°C for 24 h was nonlethal, larvae experienced significant tissue
371 damage. Nearly 55% of fat body cells and 35% of midgut cells died after freezing, and RCH
372 reduced the amount of freezing damage by about half in each tissue (Figure 3). Thus, as we have
373 observed previously for lethal freezing stress, RCH preserves cell viability and reduces damage
374 to tissues (Kawasaki et al., 2013; Lee et al., 2006b; Teets et al., 2008). Fat body and midgut
375 tissues are critical for growth and development, so protection of these tissues by RCH is likely
376 essential for resumption of normal activity.

377 We also measured mRNA expression of heat shock proteins as a proxy for protein
378 damage at the cellular level. Heat shock proteins are well-studied in *B. antarctica* and are
379 activated by a variety of stressors, including dehydration (Lopez-Martinez et al., 2009; Teets et
380 al., 2012b), UV exposure (Lopez-Martinez et al., 2008), and repeated freeze-thaw cycles (Teets
381 et al., 2011). Here, we show that beneficial hardening that reduces freezing injury also reduces
382 expression of certain heat shock proteins. All heat shock proteins were elevated for at least some
383 of the recovery times (Figure 4), which indicates that recovery from freezing activates the heat
384 shock response. For *sHsp*, *hsp40*, and *hsp70*, expression patterns were indistinguishable between
385 directly frozen and RCH at both time points. However, for *hsp60* and *hsp90*, expression was
386 lower after 24 h recovery in RCH larvae. This result is consistent with RCH reducing cellular
387 protein denaturation and thus reducing the signal for heat shock protein expression. *Hsp60* and
388 *hsp90* are both regulated by heat shock factor, a transcription factor that is released from binding
389 partners in response to protein denaturation (Feder and Hofmann, 1999). It is unclear at this point
390 why *hsp60* and *hsp90* show this pattern, and not others, although it is worth noting that *hsp60*
391 encodes a mitochondrial heat shock protein (Voos and Rottgers, 2002), which is consistent with
392 the idea that RCH reduces damage to mitochondria (see above).

393 **RCH provides energetic benefits**

394 The ultimate measure of sublethal benefits of RCH would be a direct measure of fitness.
395 However, *B. antarctica* has a two-year life cycle and is unamenable to laboratory rearing, which
396 prevents measures of adult fitness after larval stress. Thus, we measured energy stores as a proxy
397 for potential fitness benefits of RCH. Our earlier work showed that freezing is energetically
398 costly for *B. antarctica* (Teets et al., 2011), and repeated freeze-thaw cycles in prepupae of the
399 freeze-tolerant fly *E. solidaginis* reduce fecundity of adult females (Marshall and Sinclair, 2018).

400 In our experiments, larvae that were directly frozen experienced a 16% decrease in glycogen
401 content (Figure 5c), which is the major carbohydrate energy store in larvae. Lipids, the major
402 energy store in terms of caloric content, did not differ between directly frozen and RCH larvae.
403 However, it is worth noting that the vanillin assay we used is sensitive to the degree of saturation
404 of fatty acids, so any changes in lipid saturation in response to freezing could obscure changes in
405 bulk lipids (Williams et al., 2011).

406 The decrease in glycogen is perhaps explained by mobilization of glucose. Free glucose
407 was mostly undetectable in untreated larvae, but directly frozen larvae had significantly higher
408 levels of glucose after 2 h recovery, and this mobilization of glucose was muted in RCH larvae
409 (Figure 5a). While we did not detect significant glycogen depletion at 2 h recovery, the amount
410 of glucose liberated only represented ~1.5% of the available glycogen pool, so we were likely
411 unable to detect any glycogen depletion at this time. Also, while glucose returned to baseline
412 levels at 24 h recovery, it may have continued to increase during recovery in directly frozen
413 larvae, which could explain the glycogen depletion in this group at 24 h recovery. Indeed, in our
414 previous work on repeated freezing, elevated levels of glucose remained high after 12 h recovery
415 (Teets et al., 2011), a time point our sampling scheme would have missed. Glucose likely serves
416 as both a substrate for cryoprotectant synthesis and a fuel for metabolism (Calderon et al., 2009),
417 and stress-induced mobilization of glucose in *B. antarctica* was previously observed in response
418 to freezing and desiccation stress (Teets et al., 2011; Teets et al., 2012a). After 24 h recovery,
419 both directly frozen and RCH larvae had a slight, but significant, increase in trehalose, the major
420 blood sugar and a potent cryoprotectant (Crowe, 2007). While we are unable to account for the
421 source of this extra trehalose, the lack of glycogen depletion in RCH larvae suggests the
422 observed increase in trehalose could be the result of reduced breakdown rather than *de novo*

423 synthesis. However, without detailed analyses of metabolic flux, we are unable to reconcile the
424 exact source of each metabolite change. Also, we note that our measurements were taken
425 relatively soon after stress with a limited temporal resolution, so additional experiments are
426 needed to conclude that the short-term energy deficits we are observing ultimately lead to fitness
427 consequences.

428 The observed differences in glycogen content between directly frozen and RCH larvae
429 are seemingly at odds with the metabolic rate data (Figure 2c). Metabolic rates were higher in
430 RCH larvae, with a significant difference at 2 h recovery and a near significant difference at 24
431 h, yet RCH larvae had higher levels of glycogen after 24 recovery. We provide two possible
432 explanations for this discrepancy: 1) While we held larvae on filter paper overnight to promote
433 gut clearance, it is possible some food particles remained in the gut lumen. If that were the case,
434 reduced gut damage in RCH larvae (Figure 3) may have promoted increased assimilation of any
435 remaining gut content and allowed RCH larvae to maintain energy balance. The specific
436 carbohydrate assays we use (glucose, trehalose, and glycogen) would be unable to detect residual
437 plant sugars present in the gut lumen 2) Freezing stress may result in increased reliance on
438 anaerobic metabolism, which use energy substrates less efficiently. Frozen insects (including *B.*
439 *antarctica*) accumulate anaerobic end products (Michaud et al., 2008; Storey et al., 1981), and an
440 increased reliance on anaerobic metabolism could explain the increased glycogen depletion
441 despite a lower oxygen consumption rate. Nonetheless, our results suggest a slight, but
442 significant energetic benefit of RCH, which may ultimately provide a fitness advantage in the
443 short growing seasons of terrestrial Antarctica.

444 **Conclusions**

445 We provide strong evidence that RCH protects against sublethal freezing injury at several
446 levels of organization. Relative to directly frozen larvae, larvae treated with RCH regain
447 locomotor activity more quickly, have higher metabolic rates, reduced damage to tissues,
448 reduced damage to proteins, and higher levels of glycogen energy stores. Additional work is
449 needed to address the extent to which these same types of injuries occur in the field or in
450 response to ecologically relevant thermal regimes, to reconcile the apparent discrepancies
451 between metabolic rate and energy stores, and to identify the exact sources for the observed
452 shifts in carbohydrate metabolites. The observed symptoms of freezing injury are all consistent
453 with current models of freeze tolerance (Toxopeus and Sinclair, 2018) and further highlight the
454 multitude of challenges that must be overcome to cope with freezing. Our experiments add to
455 this literature by demonstrating that beneficial acclimation through RCH can prevent or reduce
456 organismal and suborganismal freezing injury at ecologically relevant temperatures.

457

458 **Acknowledgements**

459 Many thanks to the dedicated support staff at Palmer Station for their assistance with this project.
460 We appreciate the thoughtful comments of two anonymous reviewers.

461 **Competing interests**

462 No competing interests declared

463 **Author contributions**

464 N.M.T. designed the experiment; N.M.T., Y.K., L.J.P., B.N.P., and J.D.G. collected samples and
465 conducted physiological experiments; N.M.T. conducted molecular and biochemical analyses,

466 N.M.T. analyzed data, N.M.T., D.L.D., and R.E.L. wrote the paper; all authors contributed to
467 drafts and approved the final version of the manuscript.

468 **Funding**

469 This work was supported by United States Department of Agriculture National Institute of Food
470 and Agriculture Hatch Project grant 1010996 and National Science Foundation grant OIA-
471 1826689 to N.M.T., NSF grant OPP-1341393 to D.L.D., and NSF grant OPP-1341385 to R.E.L.

472 **Data availability**

473 Data for this paper are provided in an excel spreadsheet (Table S1) and will be made available on
474 Dryad (DOI: <https://doi.org/10.5061/dryad.29p7ng2>) at the time of acceptance.

475 **References**

476 **Alvarado, L. E. C., MacMillan, H. A. and Sinclair, B. J.** (2015). Chill-tolerant *Gryllus*
477 crickets maintain ion balance at low temperatures. *Journal of Insect Physiology* **77**, 15-25.

478 **Baust, J. G. and Lee, R. E.** (1981). Environmental "homeothermy" in an Antarctic
479 insect. *Antarctic Journal of the United States* **15**, 170-172.

480 **Baust, J. G. and Lee, R. E.** (1982). Adaptive potential of terrestrial invertebrates:
481 Maritime Antarctica. *Antarctic Journal*, 175-176.

482 **Baust, J. G. and Lee, R. E.** (1987). Multiple stress tolerance in an Antarctic terrestrial
483 arthropod: *Belgica antarctica*. *Cryobiology* **24**, 140-147.

484 **Benjamini, Y. and Hochberg, Y.** (1995). Controlling the false discovery rate - A
485 practical and powerful approach to multiple testing. *Journal of the Royal Statistical Society
486 Series B-Methodological* **57**, 289-300.

487 **Calderon, S., Holmstrup, M., Westh, P. and Overgaard, J.** (2009). Dual roles of
488 glucose in the freeze-tolerant earthworm *Dendrobaena octaedra*: cryoprotection and fuel for
489 metabolism. *Journal of Experimental Biology* **212**, 859-866.

490 **Chen, C. P., Denlinger, D. L. and Lee, R. E.** (1987). Cold-shock injury and rapid cold
491 hardening in the flesh fly *Sarcophaga crassipalpis*. *Physiological Zoology* **60**, 297-304.

492 **Coast, G. M. and Krasnoff, S. B.** (1988). Fluid secretion by single isolated Malpighian
493 tubules of the house cricket, *Acheta domesticus*, and their response to diuretic hormone.
494 *Physiological Entomology* **13**, 381-391.

495 **Coello Alvarado, L. E., MacMillan, H. A. and Sinclair, B. J.** (2015). Chill-tolerant
496 *Gryllus* crickets maintain ion balance at low temperatures. *Journal of Insect Physiology* **77**, 15-
497 25.

498 **Colinet, H., Renault, D. and Roussel, D.** (2017). Cold acclimation allows *Drosophila*
499 flies to maintain mitochondrial functioning under cold stress. *Insect Biochemistry and Molecular*
500 *Biology* **80**, 52-60.

501 **Colinet, H., Sinclair, B. J., Vernon, P. and Renault, D.** (2015). Insects in fluctuating
502 thermal environments. *Annual Review of Entomology* **60**, 123-140.

503 **Convey, P. and Block, W.** (1996). Antarctic Diptera: Ecology, physiology and
504 distribution. *European Journal of Entomology* **93**, 1-13.

505 **Coulson, S. J. and Bale, J. S.** (1990). Characterization and limitations of the rapid cold-
506 hardening response in the housefly *Musca domestica* (Diptera, Muscidae). *Journal of Insect*
507 *Physiology* **36**, 207-211.

508 **Crowe, J. H.** (2007). Trehalose as a "chemical chaperone": Fact and fantasy. In
509 *Molecular Aspects of the Stress Response: Chaperones, Membranes, and Networks*, eds. P.
510 Csermely and L. Vigh): Landes Biosciences and Springer Science + Business Media.

511 **Dillon, M. E., Woods, H. A., Wang, G., Fey, S. B., Vasseur, D. A., Telemeco, R. S.,**
512 **Marshall, K. and Pincebourde, S.** (2016). Life in the frequency domain: The biological impacts
513 of changes in climate variability at multiple time scales. *Integrative and Comparative Biology*
514 **56**, 14-30.

515 **Elnitsky, M. A., Benoit, J. B., Lopez-Martinez, G., Denlinger, D. L. and Lee, R. E.**
516 (2009). Osmoregulation and salinity tolerance in the Antarctic midge, *Belgica antarctica*:
517 seawater exposure confers enhanced tolerance to freezing and dehydration. *Journal of*
518 *Experimental Biology* **212**, 2864-2871.

519 **Elnitsky, M. A., Hayward, S. A. L., Rinehart, J. P., Denlinger, D. L. and Lee, R. E.**
520 (2008). Cryoprotective dehydration and the resistance to inoculative freezing in the Antarctic
521 midge, *Belgica antarctica*. *Journal of Experimental Biology* **211**, 524-530.

522 **Feder, M. E. and Hofmann, G. E.** (1999). Heat-shock proteins, molecular chaperones,
523 and the stress response: Evolutionary and ecological physiology. *Annual Review of Physiology*
524 **61**, 243-282.

525 **Findsen, A., Andersen, J. L., Calderon, S. and Overgaard, J.** (2013). Rapid cold
526 hardening improves recovery of ion homeostasis and chill coma recovery time in the migratory
527 locust, *Locusta migratoria*. *Journal of Experimental Biology* **216**, 1630-1637.

528 **Goto, S. G., Lee, R. E. and Denlinger, D. L.** (2015). Aquaporins in the Antarctic midge,
529 an extremophile that relies on dehydration for cold survival. *Biological Bulletin* **229**, 47-57.

530 **Goto, S. G., Philip, B. N., Teets, N. M., Kawarasaki, Y., Lee, R. E. and Denlinger, D.**
531 (2011). Functional characterization of an aquaporin in the Antarctic midge *Belgica antarctica*.
532 *Journal of Insect Physiology* **57**, 1106-1114.

533 **Hayward, S. A. L., Rinehart, J. P., Sandro, L. H., Lee, R. E. and Denlinger, D. L.**
534 (2007). Slow dehydration promotes desiccation and freeze tolerance in the Antarctic midge
535 *Belgica antarctica*. *Journal of Experimental Biology* **210**, 836-844.

536 **Hazel, J. R. and Landrey, S. R.** (1988). Time course of thermal adaptation in plasma-
537 membranes of trout kindey. 2. Molecular-species composition. *American Journal of Physiology*
538 **255**, R628-R634.

539 **Joanisse, D. R. and Storey, K. B.** (1994). Mitochondrial enzymes during overwintering
540 in 2 species of cold-hardy gall insects. *Insect Biochemistry and Molecular Biology* **24**, 145-150.

541 **Kawarasaki, Y., Teets, N. M., Denlinger, D. L. and Lee, R. E.** (2013). The protective
542 effect of rapid cold-hardening develops more quickly in frozen versus supercooled larvae of the
543 Antarctic midge, *Belgica antarctica*. *Journal of Experimental Biology* **216**, 3937-3945.

544 **Kawarasaki, Y., Teets, N. M., Denlinger, D. L. and Lee, R. E.** (2014a). Alternative
 545 overwintering strategies in an Antarctic midge: freezing vs. cryoprotective dehydration.
 546 *Functional Ecology* **28**, 933-943.

547 **Kawarasaki, Y., Teets, N. M., Denlinger, D. L. and Lee, R. E.** (2014b). Wet
 548 hibernacula promote inoculative freezing and limit the potential for cryoprotective dehydration
 549 in the Antarctic midge, *Belgica antarctica*. *Polar Biology* **37**, 753-761.

550 **Kawarasaki, Y., Teets, N. M., Kobelkova, A., Denlinger, D. L. and Lee, R. E.** (2012).
 551 Rapid cold-hardening in the frozen state increases cold tolerance in the Antarctic midge, *Belgica*
 552 *antarctica*. *Integrative and Comparative Biology* **52**, E273-E273.

553 **Kelty, J. L., Peyton, J. T., Fiston-Lavier, A. S., Teets, N. M., Yee, M. C., Johnston,**
 554 **J. S., Bustamante, C. D., Lee, R. E. and Denlinger, D. L.** (2014). Compact genome of the
 555 Antarctic midge is likely an adaptation to an extreme environment. *Nature Communications* **5**,
 556 4611.

557 **Kelty, J.** (2007). Rapid cold-hardening of *Drosophila melanogaster* in a field setting.
 558 *Physiological Entomology* **32**, 343-350.

559 **Kelty, J. D. and Lee, R. E.** (1999). Induction of rapid cold hardening by cooling at
 560 ecologically relevant rates in *Drosophila melanogaster*. *Journal of Insect Physiology* **45**, 719-
 561 726.

562 **Kelty, J. D. and Lee, R. E.** (2001). Rapid cold-hardening of *Drosophila melanogaster*
 563 (Diptera : Drosophilidae) during ecologically based thermoperiodic cycles. *Journal of*
 564 *Experimental Biology* **204**, 1659-1666.

565 **Kobelkova, A., Goto, S. G., Peyton, J. T., Ikeno, T., Lee, R. E. and Denlinger, D. L.**
 566 (2015). Continuous activity and no cycling of clock genes in the Antarctic midge during the
 567 polar summer. *Journal of Insect Physiology* **81**, 90-96.

568 **Kristiansen, E. and Zachariassen, K. E.** (2001). Effect of freezing on the
 569 transmembrane distribution of ions in freeze-tolerant larvae of the wood fly *Xylophagus cinctus*
 570 (Diptera, Xylophagidae). *Journal of Insect Physiology* **47**, 585-592.

571 **Layne, J. R. and Claussen, D. L.** (1987). Time courses of thermal acclimation for
 572 critical thermal minima in the salamanders *Desmognathus quadramaculatus*, *Desmognathus*
 573 *monticola*, *Desmognathus ochrophaeus*, and *Plethodon jordani*. *Comparative Biochemistry and*
 574 *Physiology A Comparative Physiology* **87**, 895-898.

575 **Lee, R. E.** (2010). A primer on insect cold tolerance. In *Low Temperature Biology of*
 576 *Insects*, eds. D. L. Denlinger and R. E. Lee), pp. 3-34. Cambridge, UK: Cambridge University
 577 Press.

578 **Lee, R. E., Chen, C. P. and Denlinger, D. L.** (1987). A rapid cold-hardening process in
 579 insects. *Science* **238**, 1415-1417.

580 **Lee, R. E., Damodaran, K., Yi, S.-X. and Lorigan, G. A.** (2006a). Rapid cold-
 581 hardening increases membrane fluidity and cold tolerance of insect cells. *Cryobiology* **52**, 459-
 582 463.

583 **Lee, R. E. and Denlinger, D. L.** (2010). Rapid cold-hardening: Ecological significance
 584 and underpinning mechanisms. In *Low Temperature Biology of Insects*, eds. D. L. Denlinger and
 585 R. E. Lee), pp. 35-58. Cambridge, UK: Cambridge University Press.

586 **Lee, R. E. and Denlinger, D. L.** (2015). Stress tolerance in a polyextremophile: the
 587 southernmost insect. *Canadian Journal of Zoology* **93**, 679-686.

588 **Lee, R. E., Elnitsky, M. A., Rinehart, J. P., Hayward, S. A. L., Sandro, L. H. and**
589 **Denlinger, D. L.** (2006b). Rapid cold-hardening increases the freezing tolerance of the Antarctic
590 midge *Belgica antarctica*. *Journal of Experimental Biology* **209**, 399-406.

591 **Lopez-Martinez, G., Benoit, J. B., Rinehart, J. P., Elnitsky, M. A., Lee, R. E. and**
592 **Denlinger, D. L.** (2009). Dehydration, rehydration, and overhydration alter patterns of gene
593 expression in the Antarctic midge, *Belgica antarctica*. *Journal of Comparative Physiology, B*
594 **179**, 481-491.

595 **Lopez-Martinez, G., Elnitsky, M. A., Benoit, J. B., Lee, R. E. and Denlinger, D. L.**
596 (2008). High resistance to oxidative damage in the Antarctic midge *Belgica antarctica*, and
597 developmentally linked expression of genes encoding superoxide dismutase, catalase and heat
598 shock proteins. *Insect Biochemistry and Molecular Biology* **38**, 796-804.

599 **MacMillan, H. A. and Sinclair, B. J.** (2011). Mechanisms underlying insect chill-coma.
600 *Journal of Insect Physiology* **57**, 12-20.

601 **MacMillan, H. A., Williams, C. M., Staples, J. F. and Sinclair, B. J.** (2012).
602 Reestablishment of ion homeostasis during chill-coma recovery in the cricket *Gryllus*
603 *pennsylvanicus*. *Proceedings of the National Academy of Sciences of the United States of*
604 *America* **109**, 20750-20755.

605 **Marshall, K. E. and Sinclair, B. J.** (2012). The impacts of repeated cold exposure on
606 insects. *Journal of Experimental Biology* **215**, 1607-1613.

607 **Marshall, K. E. and Sinclair, B. J.** (2018). Repeated freezing induces a trade-off
608 between cryoprotection and egg production in the goldenrod gall fly, *Eurosta solidaginis*.
609 *Journal of Experimental Biology* **221**.

610 **McMullen, D. C. and Storey, K. B.** (2008). Mitochondria of cold hardy insects:
611 Responses to cold and hypoxia assessed at enzymatic, mRNA and DNA levels. *Insect*
612 *Biochemistry and Molecular Biology* **38**, 367-373.

613 **Michaud, M. R., Benoit, J. B., Lopez-Martinez, G., Elnitsky, M. A., Lee, R. E. and**
614 **Denlinger, D. L.** (2008). Metabolomics reveals unique and shared metabolic changes in
615 response to heat shock, freezing and desiccation in the Antarctic midge, *Belgica antarctica*.
616 *Journal of Insect Physiology* **54**, 645-655.

617 **Muir, T. J., Costanzo, J. P. and Lee, R. E.** (2010). Brief chilling to subzero temperature
618 increases cold hardiness in the hatchling painted turtle (*Chrysemys picta*). *Physiological and*
619 *Biochemical Zoology* **83**, 174-181.

620 **Overgaard, J. and MacMillan, H. A.** (2017). The integrative physiology of insect chill
621 tolerance. In *Annual Review of Physiology*, Vol 79, vol. 79 (ed. D. Julius), pp. 187-208.

622 **Powell, S. J. and Bale, J. S.** (2006). Effect of long-term and rapid cold hardening on the
623 cold torpor temperature of an aphid. *Physiological Entomology* **31**, 348-352.

624 **Rinehart, J. P., Hayward, S. A. L., Elnitsky, M. A., Sandro, L. H., Lee, R. E. and**
625 **Denlinger, D. L.** (2006). Continuous up-regulation of heat shock proteins in larvae, but not
626 adults, of a polar insect. *Proceedings of the National Academy of Sciences of the United States of*
627 *America* **103**, 14223-14227.

628 **Shreve, S. M., Kelty, J. D. and Lee, R. E.** (2004). Preservation of reproductive
629 behaviors during modest cooling: rapid cold-hardening fine-tunes organismal response. *Journal*
630 *of Experimental Biology* **207**, 1797-1802.

631 **Sinclair, B. J. and Chown, S. L.** (2005). deleterious effects of repeated cold exposure in
632 a freeze-tolerant sub-Antarctic caterpillar. *Journal of Experimental Biology* **208**, 869-879.

633 **Sinclair, B. J., Klok, C. J. and Chown, S. L.** (2004). Metabolism of the sub-Antarctic
 634 caterpillar *Pringleophaga marioni* during cooling, freezing and thawing. *Journal of*
 635 *Experimental Biology* **207**, 1287-1294.

636 **Stetina, T., Hula, P., Moos, M., Simek, P., Smilauer, P. and Kostal, V.** (2018).
 637 Recovery from supercooling, freezing, and cryopreservation stress in larvae of the drosophilid
 638 fly, *Chymomyza costata*. *Scientific Reports* **8**, 4414.

639 **Štětina, T., Hůla, P., Moos, M., Šimek, P., Šmilauer, P. and Koštál, V.** (2018).
 640 Recovery from supercooling, freezing, and cryopreservation stress in larvae of the drosophilid
 641 fly, *Chymomyza costata*. *Scientific Reports* **8**.

642 **Storey, K. B., Baust, J. G. and Storey, J. M.** (1981). Intermediary metabolism during
 643 low-temperature acclimation in the overwintering gall fly larva, *Eurosta solidaginis*. *Journal of*
 644 *Comparative Physiology* **144**, 183-190.

645 **Teets, N. M. and Denlinger, D. L.** (2013). Physiological mechanisms of seasonal and
 646 rapid cold-hardening in insects. *Physiological Entomology* **38**, 105-116.

647 **Teets, N. M. and Denlinger, D. L.** (2014). Surviving in a frozen desert: environmental
 648 stress physiology of terrestrial Antarctic arthropods. *Journal of Experimental Biology* **217**, 84-
 649 93.

650 **Teets, N. M., Elnitsky, M. A., Benoit, J. B., Lopez-Martinez, G., Denlinger, D. L. and**
 651 **Lee, R. E.** (2008). Rapid cold-hardening in larvae of the Antarctic midge *Belgica antarctica*:
 652 cellular cold-sensing and a role for calcium. *American Journal of Physiology: Regulatory,*
 653 *Integrative and Comparative Physiology* **294**, R1938-R1946.

654 **Teets, N. M., Kawarasaki, Y., Lee, R. E. and Denlinger, D. L.** (2011). Survival and
 655 energetic costs of repeated cold exposure in the Antarctic midge, *Belgica antarctica*: a
 656 comparison between frozen and supercooled larvae. *Journal of Experimental Biology* **214**, 806-
 657 814.

658 **Teets, N. M., Kawarasaki, Y., Lee, R. E. and Denlinger, D. L.** (2012a). Energetic
 659 consequences of repeated and prolonged dehydration in the Antarctic midge, *Belgica antarctica*.
 660 *Journal of Insect Physiology* **58**, 498-505.

661 **Teets, N. M., Kawarasaki, Y., Lee, R. E. and Denlinger, D. L.** (2013). Expression of
 662 genes involved in energy mobilization and osmoprotectant synthesis during thermal and
 663 dehydration stress in the Antarctic midge, *Belgica antarctica*. *Journal of Comparative*
 664 *Physiology B Biochemical Systemic and Environmental Physiology* **183**, 189-201.

665 **Teets, N. M., Peyton, J. T., Colinet, H., Renault, D., Kelley, J. L., Kawarasaki, Y.,**
 666 **Lee, R. E. and Denlinger, D. L.** (2012b). Gene expression changes governing extreme
 667 dehydration tolerance in an Antarctic insect. *Proceedings of the National Academy of Sciences of*
 668 *the United States of America* **109**, 20744-9.

669 **Toxopeus, J. and Sinclair, B. J.** (2018). Mechanisms underlying insect freeze tolerance.
 670 *Biological Reviews* **93**, 1891-1914.

671 **Vasseur, D. A., DeLong, J. P., Gilbert, B., Greig, H. S., Harley, C. D. G., McCann,**
 672 **K. S., Savage, V., Tunney, T. D. and O'Connor, M. I.** (2014). Increased temperature variation
 673 poses a greater risk to species than climate warming. *Proceedings of the Royal Society B-*
 674 *Biological Sciences* **281**.

675 **Voos, W. and Rottgers, K.** (2002). Molecular chaperones as essential mediators of
 676 mitochondrial biogenesis. *Biochimica Et Biophysica Acta-Molecular Cell Research* **1592**, 51-62.

677 **Williams, C. M., Thomas, R. H., MacMillan, H. A., Marshall, K. E. and Sinclair, B.**
678 **J. (2011). Triacylglyceride measurement in small quantities of homogenised insect tissue:**
679 **Comparisons and caveats. *Journal of Insect Physiology* **57**, 1602-1613.**

680 **Yi, S.-X., Benoit, J. B., Elnitsky, M. A., Kaufmann, N., Brodsky, J. L., Zeidel, M. L.,**
681 **Denlinger, D. L. and Lee, R. E. (2011). Function and immuno-localization of aquaporins in the**
682 **Antarctic midge *Belgica antarctica*. *Journal of Insect Physiology* **57**, 1096-1105.**

683 **Yi, S.-X. and Lee, R. E. (2003). Detecting freeze injury and seasonal cold-hardening of**
684 **cells and tissues in the gall fly larvae, *Eurosta solidaginis* (Diptera: Tephritidae) using**
685 **fluorescent vital dyes. *Journal of Insect Physiology* **49**, 999-1004.**

686

687 **Figure Legends**

688 **Fig. 1. Freeze tolerance of summer acclimatized larvae.** Larvae were exposed to the indicated
689 temperatures for 24 h in groups of 20, n = 3 groups per temperature. Each sample is an
690 independent replicate, and each sample was measured at the same time. Larvae were submerged
691 in water with a small piece of ice to ensure inoculation, such that larvae were frozen at each of
692 the indicated temperatures. Each point represents a single group of larvae, and the red dashed
693 line is a logistic regression fit of the data. For each temperature, we measured three replicates;
694 for some groups the replicates are obscured because all samples had the same survival.

695 **Fig.2. RCH improves (A) recovery time and (B) movement speed immediately after**
696 **freezing, and (C) it allows larvae to maintain a higher metabolic rate after freezing.** In axis
697 labels, C = control, DF = directly frozen, and RCH = rapid cold hardening. In (C), FM = fresh
698 mass. In (A) and (B) jittered points represent individual larvae, and boxplots summarize
699 distribution. In (C) bars mean \pm SE, and overlaid jitter plots show individual data points. In (A),
700 the p-value is the result of a Log-Rank test comparing recovery times of directly frozen and RCH
701 larvae, followed by FDR correction, and n = 40 for each group. In (B-C) letters indicate
702 statistically significant differences (Permutation test followed by FDR correction in B; ANOVA
703 followed by pairwise t-tests with FDR correction for c; p<0.05). In (B), sample sizes for each

704 group, as they appear from left to right in the figure, are $n = 40, 39, 39, 40, 40$, and 35 , while for
705 (C) samples sizes are $n = 6, 5, 5, 5$, and 6 . Each sample is an independent biological replicate,
706 and the entire experiment was conducted one time.

707 **Fig. 3. RCH reduces tissue damage in (A) fat body and (B) midgut after freezing.** Bars
708 represent mean \pm SE cell survival and overlaid jitter plots show individual data points. A
709 representative microscopic image is placed above each bar; live cells fluoresce green while dead
710 cells fluoresce red. Different letters indicate a significant difference between groups (ANOVA,
711 Tukey, $p < 0.05$). For (A) sample sizes are $n = 4$ for each group, and for (B) $n = 5$ for each group.
712 Each sample is an independent biological replicate, and the entire experiment was conducted one
713 time.

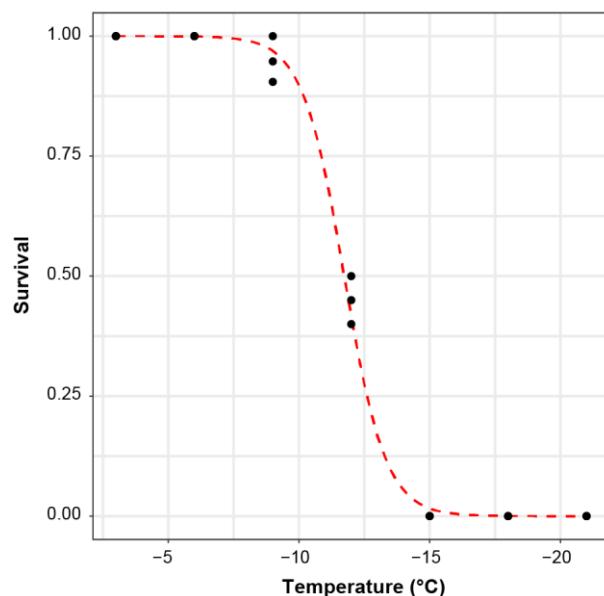
714 **Fig. 4. RCH alters expression of stress protein transcripts.** Whole-body expression of five
715 heat shock protein genes, one from each of the major families, and *pepck*, a stress-inducible
716 metabolic gene, were measured. Expression levels are normalized to a reference gene (*rpl19*) and
717 converted to a fold-change scale. Bars represent mean \pm SE, and overlaid jitter plots show
718 individual data points. Different letters indicate significant differences between groups
719 (ANOVA, FDR, $p < 0.05$). In axis labels, DF = directly frozen, RCH = rapid cold hardening. For
720 each group, $n = 5$ with the exception of RCH with 2 h recovery, for which $n = 4$. Each sample is
721 an independent biological replicate, and the entire experiment was conducted one time.

722 **Fig. 5. RCH conserves glycogen energy stores relative to direct freezing.** Levels of major
723 energy stores were measured after direct freezing (DF) and rapid cold hardening (RCH)
724 treatments. In (A) bars represent the median value while jittered points indicate individual
725 samples. In (B-E) bars represent mean and overlaid jitter plots show individual data points.
726 Letters represent significant differences between groups (Permutation test, FDR, $p < 0.05$ for a;

727 ANOVA, FDR, p<0.05 for b-e). In (A-C) and (E), n = 5 for each group; for (D) n = 5 except for
728 controls, for which n = 4. Each sample is an independent biological replicate, and the entire
729 experiment was conducted one time.

730 **Tables**

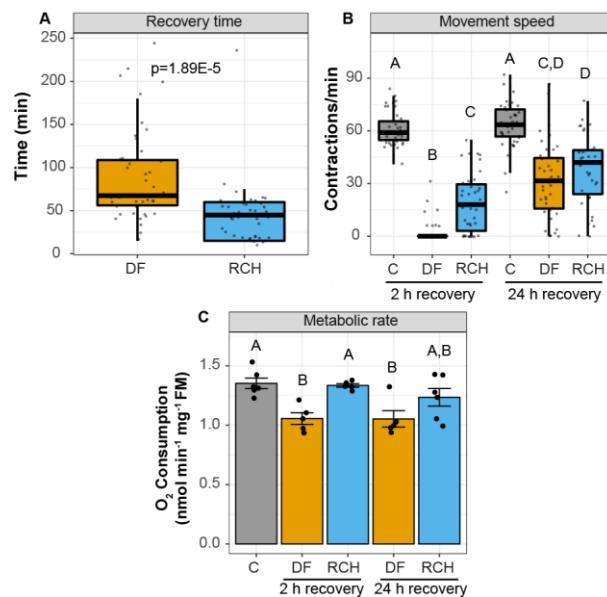
731 **Table 1. Primers used for qPCR.**


Gene	GenBank Accession #	Forward Primer	Reverse Primer
<i>rpl19</i>	JX462670	ACATCCACAAGCGTAAGGCTGAGA	TTCTTGTTCCTGGTGGCGATGCG
<i>shsp</i>	GAAK01009816	GACACCCTTATCAGACGACTAC	CTTCTCGTTCTCGTGCCTTG
<i>Hsp40</i>	GAAK01004380	ACTCTGACCGGAGAAAGTGATA	CTCGCTTGTGGCTCTTG
<i>Hsp60</i>	GAAK01010161	GTTGCAGGGAGTTGACATAC	GGCAACAGTTACACCATCTT
<i>Hsp70</i>	GAAK01011953	CTGCTTGGCTTACGGTTG	CCTTCGTCGATGGTCAAGATAG
<i>Hsp90</i>	GAAK01011429	CCGGTGGTAGCTTATCATCTC	GGTAACGATGGCCTTGATCTTA
<i>Pepck</i>	JX462659	AAATGCCTGCACTCAGTTGAAACC	GCTCAGTGCTGGTTGTGCAAGAT

732

733 **Figures**

734


735 Figure 1

736

737

738 Figure 2

739

740

741

742

743

744

745

746

747

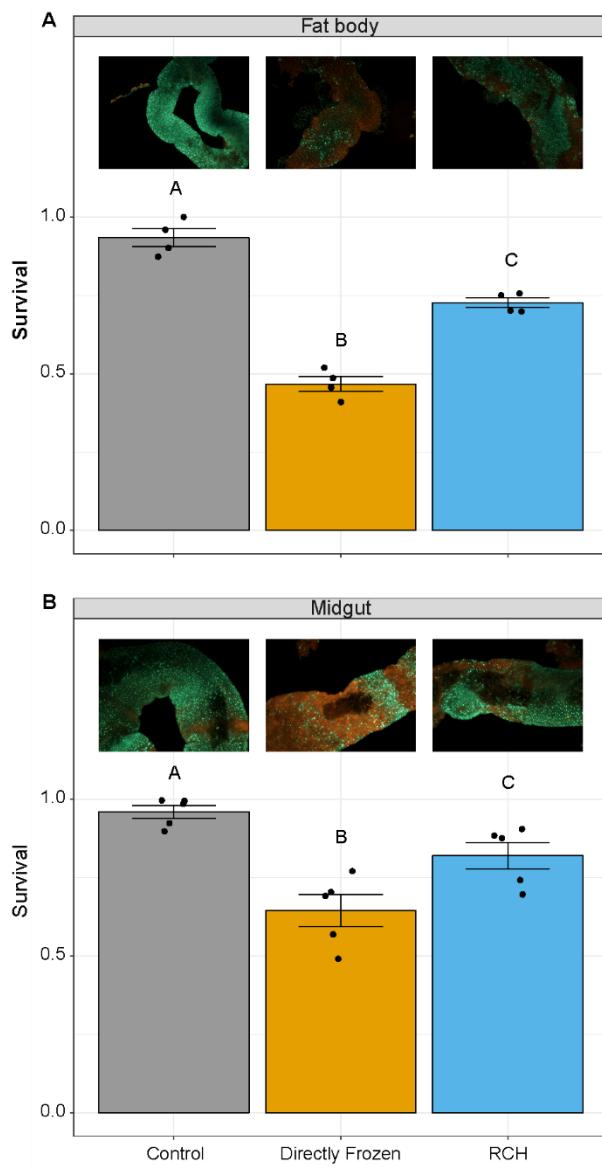
748

749

750

751

752


753

754

755

756

757 Figure 3

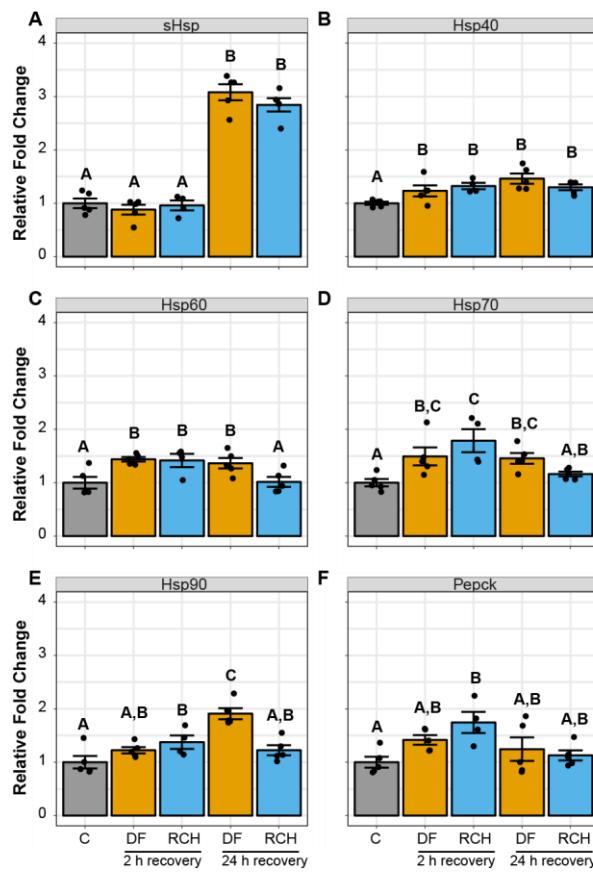
758

759

760

761

762


763

764

765

766

767 Figure 4

768

769

770

771

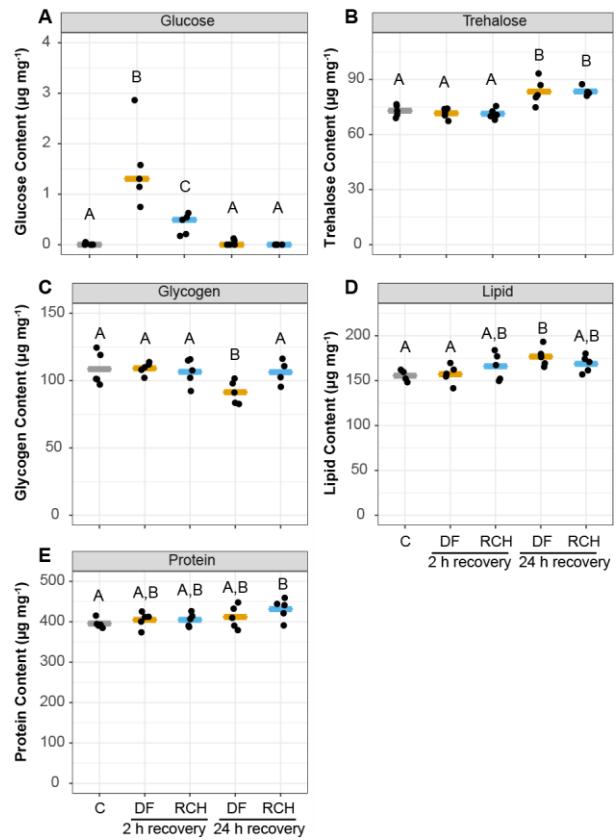
772

773

774

775

776


777

778

779

780

781

783

784