

1 Rapid cold hardening: ecological relevance, physiological mechanisms and new perspectives

2 Nicholas M. Teets^{1*}, J.D. Gantz², Yuta Kawasaki³

3 ¹Department of Entomology, University of Kentucky, Lexington, KY USA; ²Biology
4 Department, Hendrix College, Conway, AK USA; ³Department of Biology, Gustavus Adolphus
5 College, Saint Peter, MN USA

6 *Corresponding Author

7 Email: n.teets@uky.edu

8 Phone: 859-257-7459

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26 **Summary Statement**

27 Rapid cold hardening allows ectotherms to quickly enhance their cold tolerance. Here we
28 summarize the ecological relevance, underlying mechanisms, and future research directions for
29 this important process.

30 **Abstract**

31 Rapid cold hardening (RCH) is a type of phenotypic plasticity that allows ectotherms to quickly
32 enhance cold tolerance in response to brief chilling (lasting minutes to hours). In this Review, we
33 summarize the current state of knowledge of this important phenotype and provide new
34 directions for research. As one of the fastest adaptive responses to temperature known, RCH
35 allows ectotherms to cope with sudden cold snaps and optimize their performance during diurnal
36 cooling cycles. RCH and similar phenotypes have been observed across a diversity of
37 ectotherms, including crustaceans, terrestrial arthropods, amphibians, reptiles, and fish. In
38 addition to its well-defined role in enhancing survival to extreme cold, RCH also protects against
39 nonlethal cold injury by preserving essential functions like locomotion, reproduction, and energy
40 balance following cold stress. The capacity for RCH varies across species and across genotypes
41 of the same species, indicating that RCH can be shaped by selection and is likely favored in
42 thermally variable environments. Mechanistically, RCH is distinct from other rapid stress
43 responses in that it typically does not involve synthesis of new gene products; rather, the existing
44 cellular machinery regulates RCH through posttranslational signaling mechanisms. However, the
45 protective mechanisms that enhance cold hardiness are largely unknown. At the conclusion of
46 the Review, we provide evidence that RCH can be induced by multiple triggers in addition to
47 low temperature, and that rapidly induced tolerance and cross-tolerance to a variety of

48 environmental stressors may be a general feature of stress responses that requires further
49 investigation.

50

51 **Introduction**

52 Rapid cold-hardening (RCH) (see Glossary), a type of phenotypic plasticity that offers nearly
53 instantaneous protection against acute cold stress in insects, was originally reported in a
54 landmark *Science* paper more than 30 years ago (Lee et al., 1987). As the name indicates, this
55 response is most vividly distinguished from the process of cold acclimation (see Glossary) by the
56 swiftness of its induction. Cold acclimation, often used in laboratory studies to simulate seasonal
57 cold-hardening, occurs over a course of days to weeks (reviewed by Bowler, 2005), whereas
58 RCH is evident within minutes to hours. For example, in the flesh fly, *Sarcophaga crassipalpis*,
59 cold shock (see Glossary) at -10°C for two hours causes >80% mortality; however, when as little
60 as 30 min of exposure to 0°C precedes the same cold shock, mortality decreases to <50% (Lee et
61 al., 1987). RCH is the fastest acclimatory response to low temperature known and is a key
62 adaptation for coping with thermal variability. Daily temperature variation has increased over the
63 last 40 years across many regions of the planet (Dillon et al., 2016) and, therefore, the study of
64 plastic responses, including RCH, will contribute to efforts to predict the impacts of climate
65 change on ectotherms (see review by Sgro et al., 2016).

66 Debates exist as to whether hardening and acclimation reflect a continuum of the same
67 physiological responses (e.g. Loeschke and Sorensen, 2005). In the case of RCH and cold
68 acclimation, there are considerable mechanistic differences (see review by Teets and Denlinger,
69 2013b and discussion below). Moreover, while cold acclimation can be promoted at temperatures
70 conducive to development (e.g. Colinet and Hoffmann, 2012), RCH is generally elicited by

71 temperatures below the developmental threshold (NB: gradual cold acclimation can also occur
72 below the developmental threshold; see MacMillan et al., 2016 for an example). Thus, for the
73 purposes of this Review, we define RCH as beneficial acclimation that occurs within a time
74 course of less than a day, in response to chilling below the developmental threshold. In the
75 following sections, we summarize the ecological relevance, evolutionary genetics and molecular
76 mechanisms of RCH. We also present evidence that RCH may be part of a generalized ability to
77 rapidly adjust stress tolerance in changing environments.

78

79 **Ecological relevance of RCH**

80 ***The RCH response is widespread among arthropods and other ectotherms***

81 The list of species that exhibit RCH is extensive. Among insect orders, this response has
82 been observed in Coleoptera, Diptera, Hemiptera, Lepidoptera, Orthoptera and Thysanoptera
83 (see review by Lee and Denlinger, 2010). A notable recent addition to this list is the bumblebee,
84 *Bombus terrestris audax* (Owen et al., 2013), which was the first report of RCH in Hymenoptera.
85 Additionally, RCH is also present in non-insect arthropod taxa, including crustaceans (Ronges et
86 al., 2012), Acari (Broufas and Koveos, 2001; Ghazy and Amano, 2014) and Collembola
87 (Bahrndorff et al., 2009). Within a species, RCH can occur across developmental stages. For
88 example, in *Drosophila melanogaster*, this response is evident in larval, pupal and adult stages
89 (Czajka and Lee, 1990), whereas in the predatory mite, *Neoseiulus californicus*, exposure to 5°C
90 for two hours elicits RCH in all life stages, including eggs (Ghazy and Amano, 2014). RCH can
91 also be induced in individuals that are developmentally programmed for diapause; in *S.*
92 *crassipalpis*, hardening at 0°C improves cold shock survival in diapause-destined individuals
93 prior to or shortly after pupariation (see Glossary) (Chen et al., 1987). Even among tropical

94 species, some are capable of RCH (see Nyamukondiwa et al., 2011), although it is not universal
95 (e.g. Chen et al., 1990; Terblanche et al., 2008). Therefore, RCH is a widely used adaptation of
96 insects and other related arthropods to cope with thermally variable environments.

97 RCH-like phenotypic plasticity has also been reported in other ectothermic animals,
98 including some vertebrate species. For example, in the cane toad, *Rhinella marina*, acclimation
99 to 12°C for 12 hours reduces the critical thermal minimum (i.e. CT_{min}) (see Glossary) by ~2°C,
100 compared to those maintained at 24°C (McCann et al., 2014). Also, in tadpoles of the neotropical
101 túngara frog, *Engystomops pustulosus*, a prior induction of chill coma (see Glossary) by cooling
102 at 1.0°C min⁻¹ slightly depresses CT_{min} during a subsequent trial (Vo and Gridi-Papp, 2017).
103 Similarly, some species of fish (Hazel and Landrey, 1988), salamanders (Layne and Claussen,
104 1987) and turtles (Muir et al., 2010) exhibit RHC-like responses. Thus, although RCH is
105 understudied outside of arthropods, it is tempting to speculate that rapid phenotypic plasticity at
106 low temperature may be a general feature of ectotherms.

107 The cold tolerance strategy of an ectotherm is traditionally categorized by the ability to
108 tolerate internal ice formation (Lee, 2010). A majority of species are chill-susceptible and freeze-
109 intolerant (see Glossary), and mortality from cold occurs in the absence of internal ice formation
110 well above the supercooling point (see Glossary) due to direct chilling injury (see Glossary).

111 Initially, reports of RCH were restricted to chill-susceptible/freeze-intolerant species, and
112 therefore, this response was considered a physiological mechanism to protect cells against direct
113 chilling injury. The first report of RCH in a freeze-tolerant species (see Glossary) was in larvae
114 of the Antarctic midge, *Belgica antarctica* (Lee et al., 2006b). Subsequently, the list has been
115 expanded to include freeze-tolerant larvae of another midge species, *Eretmoptera murphyi*
116 (Everatt et al., 2012), and the goldenrod gall fly, *Eurosta solidaginis* (Gantz and Lee, 2015;

117 Levis et al., 2012; Teets et al., 2013). Thus, RCH protects not only against direct chilling injury,
118 but also against freezing injury imposed by the combined effects of low temperature and cellular
119 dehydration resulting from freeze concentration (see Glossary) of extracellular fluids (Mazur,
120 2004). RCH can be elicited in either the frozen or supercooled (see Glossary) state in *B.*
121 *antarctica*, but protection is greater in frozen larvae (Kawasaki et al., 2013). When larvae are
122 frozen during RCH, only extracellular water is frozen, and it appears that intracellular processes
123 that regulate RCH (see below) are still active in frozen *B. antarctica*. In contrast, RCH is only
124 observed when larvae are supercooled in *E. murphyi*, indicating that ice formation hinders RCH
125 in this species (Everatt et al., 2012).

126

127 ***Induction of RCH by direct chilling and ecologically relevant cooling***

128 The various way RCH is inducted, and its phenotypic outcomes, are summarized in
129 Figure 1. In laboratory studies, RCH is conventionally induced by an abrupt transfer to a mildly
130 low temperature. The optimal range of temperatures for RCH induction varies among species.
131 For example, in pharate adults (i.e., flies just prior to molting to the adult stage) of *S.*
132 *crassipalpis*, RCH is most effectively elicited by temperatures between 10 and 0°C (Chen et al.,
133 1987; Fig. 1). Remarkably, in larvae of *B. antarctica*, whose habitat remains relatively cold year
134 round (see review by Lee and Denlinger, 2015), optimal induction occurs in the subzero range,
135 even while larvae are frozen, and temperatures as low as -12°C effectively promote hardening
136 (Kawasaki et al., 2013). Although each species has a distinct window of temperatures that
137 triggers RCH, hardening is often elicited efficiently by temperatures around 10°C above the
138 lower lethal temperature (Nyamukondiwa et al., 2011).

139 Although there was initially concern that RCH may be a laboratory artifact due to the use
140 of unnatural, stepwise temperature transfers, subsequent work has clearly demonstrated its
141 ecological relevance. RCH is also elicited by slow-cooling regimes that mimic natural
142 fluctuations in habitat temperatures (Fig. 1). For example, in adult *D. melanogaster*, cooling
143 from 23°C to 0°C at 0.1 or 0.05°C min⁻¹ promotes RCH and improves cold shock tolerance
144 (Kelty and Lee, 1999). In natural environments, diurnal fluctuations cause gradually decreasing
145 temperatures at night. For example, a natural population of *D. melanogaster* in Michigan, USA
146 (43.60°N, 84.77°W) experiences diurnal cooling from ~22°C to ~10°C at a rate of 1.3 ± 0.1°C h⁻¹
147 ¹ during the late spring/early summer (Kelty, 2007). When flies are removed from field cages at
148 different times of day, individuals tested at the coldest time of a day (i.e. 6:00) are more cold
149 tolerant than those tested at the beginning (i.e. 18:00) or middle (i.e. 00:00) of the cooling period
150 (Kelty, 2007). A similar field-induction of RCH has also been observed in *D. melanogaster* from
151 Denmark (Overgaard and Sorensen, 2008) and olive fruit fly, *Bactrocera oleae*, in Greece
152 (Koveos, 2001), and these results indicate that RCH allows insects to track fluctuations in
153 temperature and optimize cold tolerance in real-time.

154 Notably, protection required during RCH is quickly lost upon rewarming. During
155 simulated diurnal thermal regimes, cold hardiness is lost at least partially during the warming
156 phase (Kelty and Lee, 2001), and this observation is consistent with other studies demonstrating
157 the transient nature of RCH (e.g., Chen et al., 1991; Kawasaki et al., 2013). However, the
158 protective effects of RCH appear to accumulate in response to consecutive thermoperiods (i.e.,
159 24 h temperature fluctuations that simulate diurnal warming and cooling cycles), as flies become
160 progressively more cold-tolerant when experiencing multiple thermoperiodic cycles (Kelty and
161 Lee, 2001). Additionally, the CT_{min} of these flies is reduced during the first cooling phase, and

162 this enhanced resistance to chilling is maintained through subsequent cycles for up to 7 days,
163 despite the occurrence of warming phases (Kelty and Lee, 2001). Although an increasing number
164 of studies have used slow-cooling regimes to investigate the ecological relevance of RCH, only a
165 handful have incorporated multiple thermocycles (Basson et al., 2012), and the effects of
166 multiple cold exposures cannot always be predicted from those of a single exposure (Marshall
167 and Sinclair, 2010; Marshall and Sinclair, 2012; Teets et al., 2011). Thus, additional studies
168 involving multiple chilling and rewarming cycles are needed to clarify the cumulative effects of
169 RCH suggested by the early work of Kelty and Lee (2001), since cooling events rarely occur in
170 isolation.

171

172 ***RCH protects against sublethal stress***

173 Although improved survival of extreme cold is a useful measure of RCH induction in
174 laboratory studies, animals may not frequently experience these extreme conditions in natural
175 environments. Thus, assessing the ability of RCH to protect against sublethal cold injury offers
176 additional insights into its ecological benefits (Fig. 1). Below the CT_{min} , locomotor ability is
177 impaired, but RCH can extend this lower limit of activity. For example, in the migratory locust,
178 *Locusta migratoria*, chilling at 4°C for four hours reduces CT_{min} from 7.5 ± 0.1 to 5.1 ± 0.1 °C
179 (Srithiphaphirom et al., 2019). Similarly, in *D. melanogaster*, flies cooled at slow rates to induce
180 RCH have a 2-4°C reduction in CT_{min} relative to flies cooled at faster rates (Kelty and Lee,
181 1999). Similar reductions in CT_{min} are observed in flies sampled from field cages at different
182 times of the day (Kelty, 2007).

183 RCH also promotes faster recovery from chill coma in some species (Fig. 1). For
184 example, in *L. migratoria*, RCH at 0°C reduces the time required to recover from cold shock by

185 approximately 15% (Findsen et al., 2013). However, this effect is not evident in adult *D.*
186 *melanogaster*, as neither pre-treatments of chilling at 4.5°C for three hours nor 0°C for two hours
187 affect recovery time from a sublethal cold exposure (Rako and Hoffmann, 2006), suggesting that
188 improved chill coma recovery (see Glossary) is not a general feature of RCH. In larvae of *B.*
189 *antarctica*, RCH at -5°C for two hours prior to freezing promotes faster recovery of movement
190 and resumption of metabolic activity compared to larvae directly frozen at a nonlethal
191 temperature of -9°C for 24 hours (Teets et al., 2019). In the monarch butterfly, *Danaus*
192 *plexippus*, RCH preserves flight behavior after cold stress; chilling at 4°C for two hours allows
193 more individuals to recover normal flight ability within 24 hours after exposure to -4°C,
194 compared to those exposed directly (~85% versus ~37%; Larsen and Lee, 1994). Similarly, in *S.*
195 *crassipalpis*, RCH improves recovery of the proboscis extension reflex (Kelty et al., 1996), as
196 well as retention of spatial discrimination acquired through associative learning (Kim et al.,
197 2005), each of which is severely impaired by cold shock.

198 Finally, protection by RCH provides energetic and fitness advantages to insects surviving
199 low-temperature stress (Fig. 1). For example, in *B. antarctica*, larvae that are directly frozen
200 experience a significant depletion in glycogen stores, whereas those that undergo RCH before
201 freezing are able to preserve their glycogen stores (Teets et al., 2019). In *S. crassipalpis*, cold
202 shock in the pharate adults reduces longevity and >75% of individuals die within ten days after
203 eclosion; yet, when RCH precedes cold shock, ~85% remain alive at the same age (Rinehart et
204 al., 2000). Among males that survive to ten days after eclosion, cold shock negatively impacts
205 fitness, as indicated by a substantial reduction in the rates of successful fertilization from 74.8 ±
206 5.3% to 8.4 ± 3.0%, but RCH mitigates this loss of fertility and improves fertilization success to
207 42.2 ± 3.7% (Rinehart et al., 2000). Similarly, in the house fly, *Musca domestica*, sublethal cold

208 exposure at -7°C decreases egg production, possibly due to reduced female lifespan longevity
209 and reduced daily oviposition (egg-laying) in females, and RCH at 0°C improves fecundity
210 (Coulson and Bale, 1992). Even at mildly low temperatures, RCH preserves reproductive
211 success. In adult *D. melanogaster*, courtship and mating behaviors are lost after immediate
212 transfer from 23°C to 16°C, but these functions are restored within two hours at 16°C (Shreve et
213 al., 2004). Thus, in addition to its well-established role in protecting against mortality from cold,
214 RCH preserves essential ecological functions following sublethal cold stress.

215

216 ***Potential costs associated with RCH***

217 Although RCH has clear benefits in improving performance at low temperatures, several
218 studies have reported that the induction of RCH may impose ecological costs. For example, in *D.*
219 *melanogaster*, RCH elicited by diurnal cooling reduces heat tolerance, suggesting trade-offs
220 between cold and heat tolerance (Overgaard and Sorensen, 2008). In *D. melanogaster*, adults
221 cold-hardened by slow cooling experience a slight but significant increase in mortality, as well as
222 reduced fecundity during the eight hour period after the treatment, compared to those maintained
223 at the rearing temperature (Overgaard et al., 2007). Chilling at 4°C for two hours also decreases
224 mating effectiveness in males, indicated by increased duration of courtship and decreased rates
225 of copulation (Everman et al., 2018). Finally, in the Mediterranean fruit fly, *Ceratitis capitata*,
226 repeated, daily inductions of RCH by slow cooling increase mortality after 5 days (Basson et al.,
227 2012). However, other studies did not find evidence of trade-offs between RCH and
228 development, longevity, or fecundity (Kelty and Lee, 1999; Powell and Bale, 2004; Powell and
229 Bale, 2005). Thus, future efforts to clarify the ecological costs of RCH are needed to provide
230 insights into its evolution; such research may explain the observed inter- and intraspecific

231 variation in RCH capacity (discussed below; see Gerken et al., 2015; Nyamukondiwa et al.,
232 2011).

233

234 **Evolutionary genetics of RCH**

235 Although RCH is reasonably well-studied at the molecular and physiological level (see
236 below), the evolutionary forces that have shaped RCH across ectotherms have received little
237 attention. Though most insects and other arthropods appear to be capable of RCH (Lee and
238 Denlinger, 2010), the magnitude of hardening varies, and there are species that lack an RCH
239 response altogether (Burks and Hagstrum, 1999; Sinclair and Chown, 2003; Stotter and
240 Terblanche, 2009; Terblanche et al., 2008), indicating that certain environments favor stronger or
241 weaker RCH phenotypes. As a type of adaptive phenotypic plasticity, current hypotheses
242 indicate that RCH and other plastic responses to temperature are likely a critical, yet
243 underappreciated, component of an organisms' ability to respond to rapid environmental change
244 (Chevin et al., 2010; Sgro et al., 2016; Stillman, 2003). Thus, inter- and intraspecific
245 comparisons of RCH and other types of thermal acclimation are needed to predict how these
246 phenotypes will contribute to ectotherm responses to climate change.

247 To date, only two studies have thoroughly investigated RCH capacity across species and
248 genetically variable lines. Nyamukondiwa et al. (2011) assessed RCH capacity in 18 species of
249 *Drosophila* collected from a variety of environments across three continents. The lower lethal
250 temperature that induces 90% mortality (LLT₉₀) ranges from -3 to -13°C, and a two hour
251 pretreatment 10°C above the LLT₉₀ significantly improves cold tolerance in 15 of the 18 species.
252 Importantly, after controlling for phylogeny, there is a negative relationship between basal cold
253 tolerance and the magnitude of RCH, indicating that hardening capacity may be constrained by

254 basal cold tolerance. In the same study, the opposite pattern was observed for heat hardening, i.e.
255 species with higher heat tolerance also have higher heat hardening capacity (Nyamukondiwa et
256 al., 2011), suggesting a trade-off between basal tolerance and thermal plasticity at low, but not
257 high temperature (also see Kellett et al., 2005). Generally, species with higher levels of basal
258 cold tolerance occur at higher latitudes, so the apparent tradeoff between basal tolerance and
259 RCH capacity may be a consequence of the diurnal temperature variation decreasing when
260 moving from temperate to polar regions (Wang and Dillon, 2014).

261 Predicting how RCH may evolve in response to environmental change also requires a
262 thorough assessment of intraspecific variation in RCH capacity. Gerken et al. (2015) measured
263 the magnitude of RCH across 184 lines from the *Drosophila* Genetic Reference Panel (DGRP), a
264 collection of isogenic lines derived from a single mid-latitude population in Raleigh, North
265 Carolina, USA. There is considerable variation in RCH capacity across these lines; although
266 most lines show improved ability to survive a lethal cold shock, some have no apparent
267 hardening ability, and yet others show a decrease in cold tolerance after pre-treatment. As with
268 interspecific comparisons, RCH capacity is constrained by basal tolerance, with highly cold-
269 tolerant lines having a reduced capacity for hardening. Also, lines with high RCH capacity tend
270 to have higher capacity for developmental acclimation, suggesting the two processes may have
271 some mechanistic overlap. However, RCH further enhances cold tolerance in most acclimated
272 flies, and the genetic architectures of RCH and cold acclimation are nonoverlapping, indicating
273 each plastic response may have distinct underlying genetic mechanisms (Gerken et al., 2015).

274 Follow-up studies subjecting subsets of the same DGRP lines used in Gerken et al.
275 (2015) to ecologically relevant cooling ramps also indicate there is significant genetic variation
276 in the ability to harden. However, RCH capacity across different thermal regimes (i.e. constant

277 temperature, fast ramp and slow ramp) is genetically correlated, suggesting that all three types of
278 RCH share similar underlying mechanisms (Gerken et al., 2018). Yet, the sublethal costs of
279 hardening on courtship and reproduction are similar across genotypes and unrelated to hardening
280 capacity (Everman et al., 2018), indicating that behavioral responses to hardening are
281 independent of thermal tolerance. Furthermore, the persistence of RCH after rewarming is not
282 genetically variable, and in most genotypes the protection afforded by RCH lasts for two hours
283 after returning flies to 25°C (Everman et al., 2017).

284 Although the above studies have yielded important insights into the evolutionary
285 physiology of RCH, it is important to highlight some difficulties in performing inter- and
286 intraspecific comparisons of RCH. Identifying appropriate test temperatures is a challenge,
287 because there are unlimited combinations of test temperatures, hardening conditions, and
288 exposure times that can all influence the estimation of RCH capacity. The studies by
289 Nyamukondiwa et al. (2011) and Gerken et al. (2015) used a test temperature at or close to the
290 LLT₉₀ and a hardening temperature 10°C above the LLT₉₀. Although this standardizes the
291 selection of the test temperature and hardening conditions, it assumes all species or genotypes
292 will have an identical, optimal hardening condition. Furthermore, in the DGRP, the relationship
293 between survival and cold shock temperature is genetically variable (Teets and Hahn, 2018), but
294 how this variation in the shape of cold survival curves confounds estimation of hardening
295 capacity has not been addressed. Despite these difficulties in standardizing assays for estimating
296 RCH capacity, the above studies in *Drosophila* clearly indicate that fine-scale intraspecific
297 variation in RCH and broad-scale variation across species must be considered when predicting
298 responses to environmental change.

299

300 **Physiological and molecular mechanisms of RCH**

301 In our previous review, we detailed physiological mechanisms that are associated with
302 RCH and cold acclimation (Teets and Denlinger, 2013b). Here, we will summarize the current
303 state of knowledge regarding the mechanisms of RCH, with a particular focus on recent
304 developments. A summary of the genes, cell signaling events and biochemical changes that
305 accompany RCH are found in Figure 2. Note this figure is not intended to be a mechanistic
306 model of RCH, but rather a comprehensive list of the molecular and biochemical processes that
307 have been associated with RCH in various studies. In the paragraphs below, we attempt to
308 synthesize findings from these disparate studies and identify common themes in the regulation of
309 RCH.

310

311 ***Allelic variants associated with RCH***

312 The study by Gerken et al. (2015) using the DGRP also used a genome-wide association
313 study (GWAS) to identify numerous candidate genes associated with RCH. There are 164 SNPs
314 associated with RCH capacity, and the genes containing these SNPs are involved in a variety of
315 biological processes including cell death regulation (i.e., autophagy and apoptosis), cell
316 membrane and cytoskeletal dynamics, and redox balance, to name a few. Of these candidate
317 genes, several were functionally validated with mutant strains. Most notably, reduced expression
318 of three genes linked to autophagy (*Atg7*, *Eip74EF*, and *px*) causes a reduction in RCH capacity,
319 providing the first molecular evidence that autophagy contributes to RCH (Gerken et al., 2015).
320 Autophagy is a cell preservation pathway in which damaged organelles and macromolecules are
321 engulfed and degraded, thereby preventing cell death and conserving energy (He and Klionsky,

322 2009). Autophagy has been previously associated with desiccation stress in insects (Teets and
323 Denlinger, 2013a), and it has extensive cross-talk with apoptosis, another cell death pathway
324 implicated in RCH (see below; Yi and Lee, 2011; Yi et al., 2007).

325

326 ***Transcriptional regulation of RCH***

327 RCH is one of the fastest known acclimatory responses to thermal stress, rivaling the
328 well-characterized heat shock response (Morimoto, 1998). The heat shock response is largely
329 mediated by upregulation of molecular chaperones to maintain protein homeostasis. Given that
330 cold can cause similar cellular stress, it was initially presumed that RCH would involve an
331 analogous transcriptional program. A microarray analysis in *D. melanogaster* (Qin et al., 2005)
332 reported 37 differentially expressed genes during RCH; however, the authors gave flies a 30-min
333 recovery period after hardening (which is not required to generate hardening), making it
334 impossible to determine whether the observed changes are related to hardening or simply reflect
335 biological responses to cooling and rewarming. In contrast, gene expression measurements taken
336 immediately after the hardening period indicate that RCH generally does not require the
337 synthesis of new gene products. In *D. melanogaster*, candidate genes involved in recovery from
338 cold stress (heat shock proteins and *Frost*) are not differentially expressed during a chilling
339 period that elicits RCH (Sinclair et al., 2007). Subsequent work assessing 219 genes found that
340 none are differentially regulated during RCH in *D. virilis*, whereas only one (*P5cr*) is
341 upregulated (with two downregulated; *Eip71CD* and *cwo*) in the cold-adapted *D. montana*
342 (Vesala et al., 2012). Thus, in *Drosophila*, there is no strong evidence that RCH causes
343 transcriptional activation.

344 More convincing evidence of a lack of transcriptional regulation in RCH was provided in
345 a transcriptomic assessment in the flesh fly *Sarcophaga bullata*, in which the abundance of
346 >15,000 transcripts was quantified. In this species, two hours of RCH at 0°C causes a dramatic
347 increase in cold tolerance, but the same conditions fail to elicit any changes in gene expression
348 (Teets et al., 2012a). Conversely, nearly 10% of the transcriptome (~1,500 transcripts) is
349 differentially expressed during recovery from cold stress. Thus, it appears that the short time
350 course (minutes to hours) and low temperatures (typically around 0°C) that trigger RCH do not
351 permit transcriptional activity. Although temperature dependence of RNA polymerase has not
352 been assessed in insects, polymerases from mesophilic bacteria (e.g., *E. coli*) are inactive at 0°C
353 (Uma et al., 1999), so perhaps it is not surprising that RCH fails to produce new transcripts.

354 Based on the evidence above, previous models suggested that transcriptional regulation is
355 not a component of RCH (Teets and Denlinger, 2013b). However, in recent years, select studies
356 have observed transcriptional changes accompanying RCH. In a few cases, upregulation of heat
357 shock proteins is observed in response to conditions that elicit RCH (Ahn et al., 2018; Lu et al.,
358 2016; Yang et al., 2018). Upregulation of a transcript encoding calcium/calmodulin protein
359 kinase II, a signaling protein involved in RCH (see below), is detected in the Oriental fruit fly
360 *Bactrocera dorsalis* (Ahn et al., 2018). Finally, transcripts encoding metabolic enzymes are also
361 involved in RCH in select species, including transcripts involved in glycerol and trehalose
362 synthesis (Kim et al., 2017; Park and Kim, 2014). Thus, some species appear to have a
363 transcriptional component to RCH, but in well-studied Diptera (i.e. *Drosophila* and flesh flies), a
364 strong RCH response is elicited despite the absence of transcriptional regulation.

365 ***Protein synthesis during RCH***

366 Evidence for changes in protein synthesis during RCH largely comes from two proteomic
367 studies. In the brains of *S. crassipalpis*, 38 proteins (out of ~370 assessed) are differentially
368 abundant between control and RCH flies (Li and Denlinger, 2008). Out of these, 14 were
369 identified by mass spectrometry, and the three proteins upregulated during RCH include ATP
370 synthase, heat shock protein 26 (hsp26) and tropomyosin-1. Downregulated proteins include
371 three proteins involved in proteostasis (including hsp90), three metabolic enzymes and two
372 proteins involved in cytoskeletal dynamics. A similar experiment conducted in whole body
373 samples of the rice water weevil *Lissorhoptrus oryzophilus* reported 21 upregulated and 8
374 downregulated proteins during RCH (Yang et al., 2018). Among the upregulated proteins are two
375 small heat shock proteins, several metabolic enzymes and several proteins involved in
376 cytoskeletal dynamics. Although these two studies suggest that *de novo* protein synthesis is a
377 component of RCH, the results should be interpreted with caution. First, in a later
378 phosphoproteomic analysis of RCH (discussed below), many of the same classes of proteins (and
379 in some cases identical proteins) were also differentially phosphorylated (Teets and Denlinger,
380 2016). Phosphorylation and other posttranslational modifications cause a shift in the isoelectric
381 point, and the shifting of protein spots on a 2D gel can be interpreted as a change in protein
382 abundance (see Overgaard et al., 2014). Second, in *D. melanogaster*, flies are still capable of
383 RCH when protein synthesis is blocked with cycloheximide, calling into question the functional
384 significance of *de novo* protein synthesis (Misener et al., 2001).

385

386 ***Post-translational modifications and cell signaling***

387 The relatively small number of transcripts and proteins synthesized during RCH suggests
388 that RCH is largely regulated by cell signaling. Chilling that induces RCH is accompanied by

389 increased intracellular calcium, and calcium levels track temperature quite closely, suggesting
390 that cells may use calcium to sense temperature and adjust their physiology accordingly (Teets et
391 al., 2008; Teets et al., 2013). Calcium entry into cells is also accompanied by phosphorylation
392 and increased activity of calcium/calmodulin-dependent protein kinase II, although the
393 downstream targets of this signaling enzyme during RCH are unknown. Calcium chelation,
394 blocking calcium channels, and antagonizing the calcium-binding protein calmodulin all prevent
395 RCH in tissues (Teets et al., 2008; Teets et al., 2013). Although these experiments indicate a
396 beneficial role of calcium influx during hardening, recent work has also demonstrated that
397 calcium-overload is responsible for cell death at low temperature, indicating a dual role for
398 calcium during cold stress (Bayley et al., 2018). Whether calcium leads to beneficial hardening
399 or triggers cell death may depend on the mode of entry into cells and magnitude of calcium
400 influx.

401 RCH is also accompanied by rapid phosphorylation of p38 MAP kinase, a stress-
402 inducible kinase involved in many stress responses (Fujiwara and Denlinger, 2007; Li et al.,
403 2012). Within minutes of chilling at 0°C, p38 phosphorylation is detected, and it occurs most
404 strongly at temperatures that elicit RCH (Fujiwara and Denlinger, 2007). Apoptotic signaling is a
405 potential target of p38 during stress, and indeed RCH suppresses apoptotic cell death following
406 cold shock (Yi and Lee, 2011; Yi et al., 2007). This reduction in programmed cell death is
407 accompanied by a significant reduction in the activity of caspases, a group of endoproteases
408 involved in the execution of apoptosis; however, whether this suppression of caspases is directly
409 caused by RCH or is a result of preventing cell damage after cold shock is unclear. Overgaard et
410 al. (2014) also observed apparent phosphorylation of glycogen phosphorylase during RCH,
411 which is accompanied by a slight increase in glucose levels. However, somewhat paradoxically,

412 this phosphorylation is not accompanied by a detectable increase in enzyme activity (Overgaard
413 et al., 2014). Activity was only measured *in vitro*, which may explain the discrepancy between
414 the proteomics and enzyme activity data.

415 To further identify phosphorylation changes that accompany RCH, Teets and Denlinger
416 (2016) conducted a quantitative phosphoproteomic analysis of fat body and brain tissue from *S.*
417 *bulletata* following RCH. In the fat body and brain, 64 and 82 proteins, respectively, are
418 differentially phosphorylated when tissues are chilled at 0°C for two hours. Thus, relative to
419 previous studies of mRNA and protein expression, there is an abundance of posttranslational
420 change following RCH. Of these differentially phosphorylated proteins, nine are common to both
421 tissues, including three involved in stress responses (l(2)37Cc, Grasp65, and 14-3-3 ζ), and
422 several others involved in cytoskeletal dynamics. Among all differentially phosphorylated
423 proteins, the gene ontology term “response to stress” is enriched, and this term includes three
424 heat shock proteins that are differentially phosphorylated during RCH. Thus, even though RCH
425 is not accompanied by a classic heat shock response, we speculate that differential
426 phosphorylation changes the chaperone activity and/or cellular localization of heat shock
427 proteins during RCH. In addition to stress proteins, proteins involved in cytoskeletal dynamics,
428 vesicle-mediated transport and cell morphogenesis are differentially phosphorylated, indicating
429 that cell structural modifications are an important component of RCH. Finally, KEGG
430 enrichment analysis identified several new pathways involved in RCH, including Hippo
431 signaling, protein processing pathways (proteasome and endoplasmic reticulum) and carbon
432 metabolism (Teets and Denlinger, 2016). Although this study confirmed the likely importance of
433 post-translational modification in RCH and identified new candidates, the functional significance

434 of these protein phosphorylation changes is unclear, and further validation is required to confirm
435 their role in RCH.

436 In addition to calcium signaling, RCH also modulates potassium homeostasis. Current
437 models of chilling injury indicate that cold-induced membrane depolarization leads to
438 hyperkalemia, and this disruption of ion balance is a major contributor to cold injury (Overgaard
439 and MacMillan, 2017). In the brain of *D. melanogaster*, cold stress causes a dramatic increase in
440 extracellular potassium concentration, and interestingly, flies pretreated with RCH experience an
441 even bigger disruption in potassium homeostasis (Armstrong et al., 2012). However, RCH also
442 allows for faster clearance of potassium during recovery (Armstrong et al., 2012), which may
443 explain the protective effect of RCH despite the larger disruption in ion balance. Nearly identical
444 results were observed in the locust *Locusta migratoria*, in which RCH increases the degree of
445 cold-induced hyperkalemia but allows for faster recovery of homeostasis (Findsen et al., 2013).
446 While the mechanisms allowing faster clearance are unclear, in our previous phosphoproteomics
447 analysis of RCH, we observed differential phosphorylation of many proteins involved in
448 transport, cytoskeletal dynamics and cellular energetics, all of which may affect ion clearance
449 (Teets and Denlinger, 2016).

450

451 ***Biochemical changes during RCH***

452 Dating back to pioneering work by Salt in the 1950's and 1960's, cryoprotectant
453 synthesis is perhaps the best-studied mechanism by which ectotherms seasonally enhance cold
454 tolerance (Salt, 1961). Several studies have tested the hypothesis that RCH induces
455 cryoprotectant synthesis. In a metabolomic screen of RCH in *S. crassipalpis*, the concentrations

456 of five metabolites increased during hardening, including those of canonical cryoprotectants
457 glycerol and sorbitol (Michaud and Denlinger, 2007). However, the authors elected for RCH
458 treatment lasting eight hours, which is substantially longer than the duration required for
459 maximal hardening in this species (one to two hours; Chen et al., 1987), making it unclear
460 whether the observed changes are necessary for RCH. Indeed, subsequent work in closely related
461 *S. bullata* found no evidence of cryoprotectant synthesis following a two hour hardening
462 treatment that dramatically improves cold tolerance (Teets et al., 2012b). In *D. melanogaster*,
463 RCH elicits a slight but significant increase in glucose and trehalose (Overgaard et al., 2007),
464 although other work has reported an absence of glucose synthesis during RCH (MacMillan et al.,
465 2009). In several moth species, increased levels of the cryoprotectants glycerol or trehalose are
466 observed during RCH (Kim et al., 2017; Park and Kim, 2013; Park and Kim, 2014), providing
467 further evidence that RCH involves cryoprotectant synthesis in certain species. However, the
468 levels of cryoprotectants observed during RCH are substantially lower than those typically
469 observed during seasonal cold acclimation, calling into question how these biochemical changes
470 contribute to cold hardening.

471 Another biochemical change that accompanies RCH is the modification of cell
472 membranes. The hypothesis of homeoviscous adaptation (see Glossary) indicates that organisms
473 adjust the composition of their cell membranes to maintain fluidity at different temperatures
474 (Sinensky, 1974), and this process has been identified as an important component of cold
475 hardiness (Koštál, 2010). In both *D. melanogaster* and *S. crassipalpis*, RCH causes an increase
476 in the abundance of certain unsaturated fatty acids and an overall increase in the degree of
477 unsaturation (Michaud and Denlinger, 2006; Overgaard et al., 2005), although the rate of cooling
478 influences the exact nature of cell membrane modifications (Overgaard et al., 2006). These

479 changes in membrane composition result in measurable increases in membrane fluidity when
480 intact membranes are measured with ^{31}P solid-state NMR (Lee et al., 2006a). However, as with
481 cryoprotectant accumulation, there are cases where RCH is observed in the absence of any
482 detectable changes in cell membrane composition (MacMillan et al., 2009).

483 ***Towards a mechanistic understanding of RCH***

484 As detailed above, many genes and pathways have been linked to RCH in studies spanning
485 levels of biological organization, but this information was obtained from numerous species using
486 a variety of methodologies. Thus, the key mechanisms that protect against cold injury during RCH
487 are still largely unknown. However, some important patterns, including the importance of cell
488 signaling and post-translational modifications, are emerging from these disparate studies, and we
489 recommend the following future directions: Firstly, there is discrepancy over the role of
490 transcription in RCH and all the studies that have observed transcriptional changes were in
491 Lepidoptera, which could indicate taxon-specific mechanisms for RCH. Carefully designed,
492 comparative transcriptomic experiments across species would help clarify the role of gene
493 expression in RCH. Secondly, while cell signaling is an important regulator of RCH, most of the
494 cell signaling work to date has been conducted in non-model species, so moving this research to
495 model species (i.e., *D. melanogaster*) may help advance these ideas. Finally, for any mechanistic
496 study of RCH, we recommend using the minimal duration of cold exposure that elicits a maximal
497 RCH response, and a careful study design to differentiate the physiological processes activated
498 during hardening versus those activated during recovery. The increased availability of reverse
499 genetic techniques (e.g., RNAi and genome editing) will also help clarify the mechanisms that
500 directly contribute to RCH.

501 We recommend the following steps to select RCH conditions for mechanistic studies: 1)
502 Empirically determine the LLT₉₀ for your species of interest. The time of cold exposure is
503 somewhat arbitrary, but brief exposures lasting for one to two hours are reasonable, since daily
504 minimum temperatures are typically experienced within this timeframe. 2) Limit the duration of
505 acclimation to the minimum time required to induce maximal hardening. For most species,
506 maximal hardening occurs within one to two hours. Thus, we recommend starting with a one our
507 hardening period and increasing the duration as needed to achieve maximal hardening. 3)
508 Empirically determine the optimal temperature for RCH induction. Use of a temperature 10°C
509 above the LLT₉₀ generally works well to elicit hardening in most species. If no hardening is
510 observed at this temperature, attempt additional temperatures within ~5°C above and below this
511 temperature. 4) Use the empirically determined RCH conditions from Steps 2 and 3 for
512 physiological and molecular experiments. Using the minimal duration of hardening that elicits a
513 strong phenotypic response will reduce false positives and increase the chances of identifying
514 mechanisms that are the necessary and sufficient for RCH.

515 **Multiple triggers elicit RCH**

516 Earlier in the review, we defined RCH as acclimation that occurs in less than a day in
517 response to chilling below the developmental threshold; however, it is becoming increasingly
518 clear that RCH is also elicited by other cues (Table 1). Exposure to high temperature, anoxia and
519 dehydration, in particular, can cause measurable increases in cold tolerance within one to two
520 hours (Chen et al., 1991; Coulson and Bale, 1991; Gantz and Lee, 2015; Kawasaki et al., 2019;
521 Levis et al., 2012). Similarly, other stresses, such as fasting and UV irradiation can trigger
522 acquisition of increased cold tolerance within 24 hours, (Andersen et al., 2013; Gantz et al., in
523 preparation; Le Bourg, 2013). Furthermore, similar to other cues enhancing cold tolerance, mild

524 chilling can enhance tolerance to other stressors, such as anoxia, and dehydration and
525 upregulated immune activity (Gantz et al., in review; Salehipour-Shirazi et al., 2017; Yoder et
526 al., 2006). This ability of multiple triggers to elicit RCH is analogous to the well-studied
527 phenomenon of hormesis, where mild exposure to stress (e.g. thermal stress, anoxia, insecticides,
528 UV irradiation) have long-lasting impacts on longevity, fitness, and stress tolerance (see
529 Calabrese, 2013; Cutler and Guedes, 2017; Lopez-Martinez et al., 2014; Lopez-Martinez and
530 Hahn, 2012; Patil et al., 1996; Scannapieco et al., 2007).

531 From an ecological perspective, stressful conditions often occur concomitantly
532 (Holmstrup et al., 2010), which may explain the ability of multiple cues to enhance cold
533 hardiness. For example, cold fronts typically produce reduced humidity (Miles, 1962; Moeller et
534 al., 1993), exposure to ultraviolet light may accompany high temperatures and hypoxia can
535 coincide with hypoosmotic stress during flooding (Hoback et al., 1998). Nevertheless, most
536 studies of RCH have investigated a single cue at a time; simultaneous use of multiple stressors
537 would strengthen our understanding of the ecological relevance of RCH and other rapid
538 acclimatory responses. In the limited data available, multiple stressors can induce more robust
539 hardening responses. For example, in adult flesh flies (*S. bullata*), sequential exposure to chilling
540 and dehydration promotes faster recovery from chill coma than exposure to chilling or
541 dehydration only (Yi et al., 2017). Similarly, when larvae are sequentially exposed to
542 dehydration and chilling, rates of pupariation and cell survival after cold shock are dramatically
543 improved (Yi et al., 2017). In contrast, combinations of other pretreatments, such as nutrient
544 restriction with dehydration or anoxia with chilling, impose negative effects on cold tolerance
545 (Mitchell et al., 2017; Nilson et al., 2006). Although the generality of these results remains to be

546 seen, they suggest that certain stressors trigger shared mechanistic pathways, whereas others
547 elicit distinct protective responses that are incompatible.

548 Although the mechanisms of RCH are the subject of intense investigation (see above), the
549 physiological and molecular mechanisms triggered by other hardening cues have not been
550 assessed. Chilling and other cues often enhance stress tolerance on similar timescales, i.e.
551 protective effects are seen within one hour and reach a maximum by about two hours after
552 induction (Coulson and Bale, 1991; Gantz and Lee, 2015; Kawarasaki et al., 2019; Lee et al.,
553 1987). Thus, it is tempting to speculate that cold stress and these disparate cues share core
554 signaling pathways (cross-talk; see Glossary) and/or protective mechanisms (cross-tolerance; see
555 Glossary). Indeed, cold and desiccation stress, for example, share many features at the cellular
556 level, and cross-tolerance is often observed between these stressors (Sinclair et al., 2013).
557 However, interactions among different environmental cues that induce hardening responses may
558 be far more complex. In a companion paper published concurrently with this Review, we
559 systematically examined rapid cross-tolerance in larvae of *B. antarctica* by exposing larvae to six
560 different acclimation treatments and four different stress conditions in a full factorial design.
561 Here, only certain combinations of stressors elicited cross-tolerance, and there was no clear
562 pattern regarding which cues enhanced tolerance to which stressors. For example, acclimation in
563 an acidic environment (pH 3) for two hours increased freezing (-14°C for 24 h) and dehydration
564 (35% relative humidity for 24 hours) tolerance, but decreased heat tolerance at 30°C and survival
565 of a hyperosmotic challenge in 3.0 M NaCl solution (Gantz et al., in preparation). Thus, while
566 there is some cross-talk and/or cross-tolerance between various stressors, there also appear to be
567 stress-specific signaling mechanisms, as indicated by the result that no single pre-treatment
568 elicited increased tolerance to every post-treatment. Therefore, systematic investigations of the

569 mechanistic interactions between these stressors offers an exciting opportunity for future
570 research.

571

572 **Conclusions**

573 The discovery of RCH (Lee et al., 1987) led to a paradigm shift in how we think about cold
574 hardening. Although seasonal adaptations to gradual changes in temperature (i.e., diapause and
575 cold acclimation) were well appreciated, it is now clear that cold tolerance is a flexible trait that
576 can rapidly change in response to temperature and other environmental signals. From the limited
577 studies that have addressed the evolutionary biology of RCH, there are both inter- and intraspecific
578 variation in RCH capacity that is likely shaped by selection, and it appears that the capacity for
579 RCH is constrained by basal cold hardiness. Although the ecological relevance of RCH is well
580 established, the physiological mechanisms have remained somewhat of a puzzle. The mechanisms
581 of chilling injury are becoming increasingly well characterized (Overgaard and MacMillan, 2017),
582 but the protection elicited by RCH does not seem to be determined by canonical cryoprotective
583 pathways (e.g. cryoprotectants, stress protein expression), at least in most cases. Some important
584 upstream regulators (i.e. calcium signaling, p38 MAPK) have been identified, but the downstream
585 processes that confer cold tolerance are a ripe area of investigation. Further, RCH can be induced
586 by multiple cues besides chilling, but many of these cues are not well characterized. Although the
587 underpinning mechanisms and ecological relevance are unclear, these observations of rapid cross-
588 tolerance provide a new area of research, and in future work we aim to identify the signaling
589 mechanisms (cross-talk) and protective mechanisms (cross-tolerance) that promote rapid
590 acclimation across stressors. Although this work is in its infancy, it appears that RCH may be part

591 of a collection of generalized rapid acclimation responses that allow organisms to integrate
592 complex environmental signals and optimize performance in temporally variable environments.

593 **Acknowledgements**

594 The authors appreciate the efforts of Stefan Galander and Julian Dow in soliciting and approving
595 submission of this review. We appreciate the through review and editorial comments provided by
596 Dr. Galander and two anonymous reviewers.

597

598 **Competing Interests**

599 The authors declare no competing interests

600

601 **Funding**

602 This work is supported by Hatch Project 1010996 from the USDA National Institute of Food and
603 Agriculture and National Science Foundation grant OIA-1826689 to N.M.T.

604

605 **References:**

606 **Ahn, J. J., Choi, K., Huang, S. Y., Baki, M. A. A., Ahmed, S. and Kim, Y.** (2018).
607 Calcium/calmodulin-dependent protein kinase II of the oriental fruit fly, *Bactrocera dorsalis*,
608 and its association with rapid cold hardiness. *Journal of Asia-Pacific Entomology* **21**, 1275-1282.

609 **Andersen, J. L., Findsen, A. and Overgaard, J.** (2013). Feeding impairs chill coma
610 recovery in the migratory locust (*Locusta migratoria*). *Journal of Insect Physiology* **59**, 1041-
611 1048.

612 **Armstrong, G. A. B., Rodríguez, E. C. and Robertson, R. M.** (2012). Cold hardening
613 modulates K⁺ homeostasis in the brain of *Drosophila melanogaster* during chill coma. *Journal of*
614 *Insect Physiology* **58**, 1511-1516.

615 **Bahrndorff, S., Loeschke, V., Pertoldi, C., Beier, C. and Holmstrup, M.** (2009). The
616 rapid cold hardening response of Collembola is influenced by thermal variability of the habitat.
617 *Functional Ecology* **23**, 340-347.

618 **Basson, C. H., Nyamukondiwa, C. and Terblanche, J. S.** (2012). Fitness costs of rapid
619 cold-hardening in *Ceratitis capitata*. *Evolution* **66**, 296-304.

620 **Bayley, J. S., Winther, C. B., Andersen, M. K., Gronkjaer, C., Nielsen, O. B.,**
621 **Pedersen, T. H. and Overgaard, J.** (2018). Cold exposure causes cell death by depolarization-
622 mediated Ca^{2+} overload in a chill-susceptible insect. *Proceedings of the National Academy of
623 Sciences of the United States of America* **115**, E9737-E9744.

624 **Bazinet, A. L., Marshall, K. E., MacMillan, H. A., Williams, C. M. and Sinclair, B.**
625 **J.** (2010). Rapid changes in desiccation resistance in *Drosophila melanogaster* are facilitated by
626 changes in cuticular permeability. *Journal of Insect Physiology* **56**, 2006-2012.

627 **Bowler, K.** (2005). Acclimation, heat shock and hardening. *Journal of Thermal Biology*
628 **30**, 125-130.

629 **Broufas, G. D. and Koveos, D. S.** (2001). Rapid cold hardening in the predatory mite
630 *Euseius (Amblyseius) finlandicus* (Acari : Phytoseiidae). *Journal of Insect Physiology* **47**, 699-
631 708.

632 **Burks, C. S. and Hagstrum, D. W.** (1999). Rapid cold hardening capacity in five
633 species of coleopteran pests of stored grain. *Journal of Stored Products Research* **35**, 65-75.

634 **Calabrese, E. J.** (2013). Low doses of radiation can enhance insect lifespans.
635 *Biogerontology* **14**, 365-381.

636 **Chen, C. P., Denlinger, D. L. and Lee, R. E.** (1987). Cold-shock injury and rapid cold
637 hardening in the flesh fly *Sarcophaga crassipalpis*. *Physiological Zoology* **60**, 297-304.

638 **Chen, C. P., Lee, R. E. and Denlinger, D. L.** (1990). A comparison of the responses of
639 tropical and temperate flies (Diptera, Sarcophagidae) to cold and heat stress. *Journal of
640 Comparative Physiology B-Biochemical Systemic and Environmental Physiology* **160**, 543-547.

641 **Chen, C. P., Lee, R. E. and Denlinger, D. L.** (1991). Cold shock and heat shock - A
642 comparison of the protection generated by brief pretreatment at less severe temperatures.
643 *Physiological Entomology* **16**, 19-26.

644 **Chevin, L. M., Lande, R. and Mace, G. M.** (2010). Adaptation, Plasticity, and
645 Extinction in a Changing Environment: Towards a Predictive Theory. *PLoS Biology* **8**.

646 **Colinet, H. and Hoffmann, A. A.** (2012). Comparing phenotypic effects and molecular
647 correlates of developmental, gradual and rapid cold acclimation responses in *Drosophila*
648 *melanogaster*. *Functional Ecology* **26**, 84-93.

649 **Coulson, S. C. and Bale, J. S.** (1992). Effect of rapid cold-hardening on reproduction
650 and survival of offspring in the housefly *Musca domestica*. *Journal of Insect Physiology* **38**, 421-
651 424.

652 **Coulson, S. J. and Bale, J. S.** (1991). Anoxia induces rapid cold hardening in the
653 housefly *Musca domestica* (Diptera, Muscidae). *Journal of Insect Physiology* **37**, 497-501.

654 **Cutler, G. C. and Guedes, R. N. C.** (2017). Occurrence and significance of insecticide-
655 induced hormesis in insects. In *Pesticide Dose: Effects on the Environment and Target and Non-*
656 *Target Organisms*, eds. S. O. Duke P. Kudsk and K. Solomon), pp. 101-119. Washington, DC:
657 American Chemical Society.

658 **Czajka, M. C. and Lee, R. E.** (1990). A rapid-cold-hardening response protecting
659 against cold shock injury in *Drosophila melanogaster*. *Journal of Experimental Biology* **148**,
660 245-254.

661 **Dillon, M. E., Woods, H. A., Wang, G., Fey, S. B., Vasseur, D. A., Telemeco, R. S.,**
662 **Marshall, K. and Pincebourde, S.** (2016). Life in the frequency domain: The biological impacts
663 of changes in climate variability at multiple time scales. *Integrative and Comparative Biology*
664 **56**, 14-30.

665 **Everatt, M. J., Worland, M. R., Bale, J. S., Convey, P. and Hayward, S. A. L.** (2012).
666 Pre-adapted to the maritime Antarctic? - Rapid cold hardening of the midge, *Eretmoptera*
667 *murphyi*. *Journal of Insect Physiology* **58**, 1104-1111.

668 **Everman, E. R., Delzeit, J. L., Hunter, F. K., Gleason, J. M. and Morgan, T. J.**
669 (2018). Costs of cold acclimation on survival and reproductive behavior in *Drosophila*
670 *melanogaster*. *Plos One* **13**.

671 **Everman, E. R., Ledbetter, N. and Morgan, T. J.** (2017). The persistence of short-term
672 cold acclimation in *Drosophila melanogaster* (Diptera: Drosophilidae). *Physiological*
673 *Entomology* **42**, 291-298.

674 **Findsen, A., Andersen, J. L., Calderon, S. and Overgaard, J.** (2013). Rapid cold
675 hardening improves recovery of ion homeostasis and chill coma recovery time in the migratory
676 locust, *Locusta migratoria*. *Journal of Experimental Biology* **216**, 1630-1637.

677 **Fujiwara, Y. and Denlinger, D. L.** (2007). p38 MAPK is a likely component of the
678 signal transduction pathway triggering rapid cold hardening in the flesh fly *Sarcophaga*
679 *crassipalpis*. *Journal of Experimental Biology* **210**, 3295-3300.

680 **Gantz, J. D. and Lee, R. E.** (2015). The limits of drought-induced rapid cold-hardening:
681 Extremely brief, mild desiccation triggers enhanced freeze-tolerance in *Eurosta solidaginis*
682 larvae. *Journal of Insect Physiology* **73**, 30-36.

683 **Gantz, J. D., Philip, B. N., Teets, N. M., Kawarasaki, Y., Potts, L. J., Spacht, D. E.,**
684 **Benoit, J. B., Denlinger, D. L. and Lee, R. E.** (in preparation). Brief exposure to a diverse
685 range of environmental stressors enhances freeze tolerance in the polyextremophilic Antarctic
686 midge, *Belgica antarctica*. *Journal of Experimental Biology* in preparation.

687 **Gantz, J. D., Spong, K. E., Seroogy, E., Robertson, R. M. and Lee, R. E.** (in review).
688 Effects of brief chilling and desiccation on ion homeostasis in the central nervous system of the
689 migratory locust, *Locusta migratoria*. *Comparative Biochemistry and Physiology A Comparative*
690 *Physiology*, in review.

691 **Gerken, A. R., Eller-Smith, O. C. and Morgan, T. J.** (2018). Speed of exposure to
692 rapid cold hardening and genotype drive the level of acclimation response in *Drosophila*
693 *melanogaster*. *Journal of Thermal Biology* **76**, 21-28.

694 **Gerken, A. R., Eller, O. C., Hahn, D. A. and Morgan, T. J.** (2015). Constraints,
695 independence, and evolution of thermal plasticity: Probing genetic architecture of long- and
696 short-term thermal acclimation. *Proceedings of the National Academy of Sciences of the United*
697 *States of America* **112**, 4399-4404.

698 **Ghazy, N. A. and Amano, H.** (2014). Rapid cold hardening response in the predatory
699 mite *Neoseiulus californicus*. *Experimental and Applied Acarology* **63**, 535-544.

700 **Hazel, J. R. and Landrey, S. R.** (1988). Time course of thermal adaptation in plasma-
701 membranes of trout kindey. 2. Molecular-species composition. *American Journal of Physiology*
702 **255**, R628-R634.

703 **He, C. C. and Klionsky, D. J.** (2009). Regulation mechanisms and signaling pathways
704 of autophagy. *Annual Review of Genetics* **43**, 67-93.

705 **Hoback, W. W., Stanley, D. W., Higley, L. G. and Barnhart, M. C.** (1998). Survival
 706 of immersion and anoxia by larval tiger beetles, *Cicindela togata*. *American Midland Naturalist*
 707 **140**, 27-33.

708 **Hoffmann, A. A.** (1990). Acclimation for desiccation resistance in *Drosophila*
 709 *melanogaster* and the association between acclimation responses and genetic variation. *Journal*
 710 *of Insect Physiology* **36**, 885-891.

711 **Holmstrup, M., Bindesbol, A. M., Oostingh, G. J., Duschl, A., Scheil, V., Kohler, H.**
 712 **R., Loureiro, S., Soares, A., Ferreira, A. L. G., Kienle, C. et al.** (2010). Interactions between
 713 effects of environmental chemicals and natural stressors: A review. *Science of the Total*
 714 *Environment* **408**, 3746-3762.

715 **Kawarasaki, Y., Teets, N. M., Denlinger, D. L. and Lee, R. E.** (2013). The protective
 716 effect of rapid cold-hardening develops more quickly in frozen versus supercooled larvae of the
 717 Antarctic midge, *Belgica antarctica*. *Journal of Experimental Biology* **216**, 3937-3945.

718 **Kawarasaki, Y., Teets, N. M., Philip, B. N., Potts, L. J., Gantz, J. D., Denlinger, D.**
 719 **L. and Lee, R. E.** (2019). Characterization of drought-induced rapid cold-hardening in the
 720 Antarctic midge, *Belgica antarctica* *Polar Biology* **42**, 1147-1156.

721 **Kellett, M., Hoffmann, A. A. and McKechnie, S. W.** (2005). Hardening capacity in the
 722 *Drosophila melanogaster* species group is constrained by basal thermotolerance. *Functional*
 723 *Ecology* **19**, 853-858.

724 **Kelty, J.** (2007). Rapid cold-hardening of *Drosophila melanogaster* in a field setting.
 725 *Physiological Entomology* **32**, 343-350.

726 **Kelty, J. D., Killian, K. A. and Lee, R. E.** (1996). Cold shock and rapid cold-hardening
 727 of pharate adult flesh flies (*Sarcophaga crassipalpis*): Effects on behaviour and neuromuscular
 728 function following eclosion. *Physiological Entomology* **21**, 283-288.

729 **Kelty, J. D. and Lee, R. E.** (1999). Induction of rapid cold hardening by cooling at
 730 ecologically relevant rates in *Drosophila melanogaster*. *Journal of Insect Physiology* **45**, 719-
 731 726.

732 **Kelty, J. D. and Lee, R. E.** (2001). Rapid cold-hardening of *Drosophila melanogaster*
 733 (Diptera : Drosophilidae) during ecologically based thermoperiodic cycles. *Journal of*
 734 *Experimental Biology* **204**, 1659-1666.

735 **Kim, Y.-S., Denlinger, D. L. and Smith, B.** (2005). Spatial conditioning in the flesh fly,
 736 *Sarcophaga crassipalpis*: disruption of learning by cold shock and protection by rapid cold
 737 hardening. *Journal of Asia-Pacific Entomology* **8**, 345-351.

738 **Kim, Y., Lee, D. W. and Jung, J. K.** (2017). Rapid cold-hardening of a subtropical
 739 species, *Maruca vitrata* (Lepidoptera: Crambidae), accompanies hypertrehalosemia by
 740 upregulating trehalose-6-phosphate synthase. *Environmental Entomology* **46**, 1432-1438.

741 **Koštál, V.** (2010). Cell structural modifications in insects at low temperatures. In *Low*
 742 *Temperature Biology of Insects*, eds. D. L. Denlinger and R. E. Lee), pp. 116-140. Cambridge,
 743 UK: Cambridge University Press.

744 **Koveos, D. S.** (2001). Rapid cold hardening in the olive fruit fly *Bactrocera oleae* under
 745 laboratory and field conditions. *Entomologia Experimentalis et Applicata* **101**, 257-263.

746 **Larsen, K. J. and Lee, R. E.** (1994). Cold tolerance including rapid cold-hardening and
 747 inoculative freezing of fall migrant monarch butterflies in Ohio. *Journal of Insect Physiology* **40**,
 748 859-864.

749 **Layne, J. R. and Claussen, D. L.** (1987). Time courses of thermal acclimation for
 750 critical thermal minima in the salamanders *Desmognathus quadramaculatus*, *Desmognathus*

751 *monticola*, *Desmognathus ochrophaeus*, and *Plethodon jordani*. *Comparative Biochemistry and*
752 *Physiology A Comparative Physiology* **87**, 895-898.

753 **Le Bourg, E.** (2013). Fasting can protect young and middle-aged *Drosophila*
754 *melanogaster* flies against a severe cold stress. *Biogerontology* **14**, 513-529.

755 **Lee, R. E., Chen, C. P. and Denlinger, D. L.** (1987). A rapid cold-hardening process in
756 insects. *Science* **238**, 1415-1417.

757 **Lee, R. E., Damodaran, K., Yi, S.-X. and Lorigan, G. A.** (2006a). Rapid cold-
758 hardening increases membrane fluidity and cold tolerance of insect cells. *Cryobiology* **52**, 459-
759 463.

760 **Lee, R. E. and Denlinger, D. L.** (2010). Rapid cold-hardening: Ecological significance
761 and underpinning mechanisms. In *Low Temperature Biology of Insects*, eds. D. L. Denlinger and
762 R. E. Lee), pp. 35-58. Cambridge, UK: Cambridge University Press.

763 **Lee, R. E. and Denlinger, D. L.** (2015). Stress tolerance in a polyextremophile: the
764 southernmost insect. *Canadian Journal of Zoology* **93**, 679-686.

765 **Lee, R. E., Elnitsky, M. A., Rinehart, J. P., Hayward, S. A. L., Sandro, L. H. and**
766 **Denlinger, D. L.** (2006b). Rapid cold-hardening increases the freezing tolerance of the Antarctic
767 midge *Belgica antarctica*. *Journal of Experimental Biology* **209**, 399-406.

768 **Levis, N. A., Yi, S. X. and Lee, R. E.** (2012). Mild desiccation rapidly increases freeze
769 tolerance of the goldenrod gall fly, *Eurosta solidaginis*: evidence for drought-induced rapid cold-
770 hardening. *Journal of Experimental Biology* **215**, 3768-3773.

771 **Li, A. and Denlinger, D. L.** (2008). Rapid cold hardening elicits changes in brain protein
772 profiles of the flesh fly, *Sarcophaga crassipalpis*. *Insect Molecular Biology* **17**, 565-572.

773 **Li, F.-F., Xia, J., Li, J.-M., Liu, S.-S. and Wang, X.-W.** (2012). p38 MAPK is a
774 component of the signal transduction pathway triggering cold stress response in the MED cryptic
775 species of *Bemisia tabaci*. *Journal of Integrative Agriculture* **11**, 303-311.

776 **Loeschke, V. and Sorensen, J. G.** (2005). Acclimation, heat shock and hardening - a
777 response from evolutionary biology. *Journal of Thermal Biology* **30**, 255-257.

778 **Lopez-Martinez, G., Carpenter, J. E., Hight, S. D. and Hahn, D. A.** (2014). Low-
779 oxygen atmospheric treatment improves the performance of irradiation-sterilized male cactus
780 moths used in SIT. *Journal of Economic Entomology* **107**, 185-197.

781 **Lopez-Martinez, G. and Hahn, D. A.** (2012). Short-term anoxic conditioning hormesis
782 boosts antioxidant defenses, lowers oxidative damage following irradiation and enhances male
783 sexual performance in the Caribbean fruit fly, *Anastrepha suspensa*. *Journal of Experimental*
784 *Biology* **215**, 2150-2161.

785 **Lu, M. X., Li, H. B., Zheng, Y. T., Shi, L. and Du, Y. Z.** (2016). Identification,
786 genomic organization and expression profiles of four heat shock protein genes in the western
787 flower thrips, *Frankliniella occidentalis*. *Journal of Thermal Biology* **57**, 110-118.

788 **MacMillan, H. A., Guglielmo, C. G. and Sinclair, B. J.** (2009). Membrane remodeling
789 and glucose in *Drosophila melanogaster*: A test of rapid cold-hardening and chilling tolerance
790 hypotheses. *Journal of Insect Physiology* **55**, 243-249.

791 **MacMillan, H. A., Knee, J. M., Dennis, A. B., Udaka, H., Marshall, K. E., Merritt,**
792 **T. J. S. and Sinclair, B. J.** (2016). Cold acclimation wholly reorganizes the *Drosophila*
793 melanogaster transcriptome and metabolome. *Scientific Reports* **6**.

794 **Marshall, K. E. and Sinclair, B. J.** (2010). Repeated stress exposure results in a
795 survival-reproduction trade-off in *Drosophila melanogaster*. *Proceedings of the Royal Society B-
796 Biological Sciences* **277**, 963-969.

797 **Marshall, K. E. and Sinclair, B. J.** (2012). The impacts of repeated cold exposure on
798 insects. *Journal of Experimental Biology* **215**, 1607-1613.

799 **Mazur, P.** (2004). Principles of Cryobiology. In *Life in the Frozen State*, eds. B. J.
800 Fuller N. Lane and E. E. Benson), pp. 29-92. Boca Raton, FL: CRC Press.

801 **McCann, S., Greenlees, M. J., Newell, D. and Shine, R.** (2014). Rapid acclimation to
802 cold allows the cane toad to invade montane areas within its Australian range. *Functional
803 Ecology* **28**, 1166-1174.

804 **Michaud, M. R. and Denlinger, D. L.** (2006). Oleic acid is elevated in cell membranes
805 during rapid cold-hardening and pupal diapause in the flesh fly, *Sarcophaga crassipalpis*.
806 *Journal of Insect Physiology* **52**, 1073-1082.

807 **Michaud, M. R. and Denlinger, D. L.** (2007). Shifts in the carbohydrate, polyol, and
808 amino acid pools during rapid cold-hardening and diapause-associated cold-hardening in flesh
809 flies (*Sarcophaga crassipalpis*): a metabolomic comparison. *Journal of Comparative Physiology,
810 B* **177**, 753-763.

811 **Miles, M. K.** (1962). Wind, temperature and humidity distribution at some cold fronts
812 over SE England. *Quarterly Journal of the Royal Meteorological Society* **88**, 286-300.

813 **Misener, S. R., Chen, C. P. and Walker, V. K.** (2001). Cold tolerance and proline
814 metabolic gene expression in *Drosophila melanogaster*. *Journal of Insect Physiology* **47**, 393-
815 400.

816 **Mitchell, K. A., Boardman, L., Clusella-Trullas, S. and Terblanche, J. S.** (2017).
817 Effects of nutrient and water restriction on thermal tolerance: A test of mechanisms and
818 hypotheses. *Comparative Biochemistry and Physiology a-Molecular & Integrative Physiology*
819 **212**, 15-23.

820 **Moeller, C. C., Huh, O. K., Roberts, H. H., Gumley, L. E. and Menzel, W. P.** (1993).
821 Response of Louisiana coastal environments to a cold front passage. *Journal of Coastal
822 Research* **9**, 434-447.

823 **Morimoto, R. I.** (1998). Regulation of the heat shock transcriptional response: cross talk
824 between a family of heat shock factors, molecular chaperones, and negative regulators. *Genes &
825 Development* **12**, 3788-3796.

826 **Muir, T. J., Costanzo, J. P. and Lee, R. E.** (2010). Brief chilling to subzero temperature
827 increases cold hardiness in the hatchling painted turtle (*Chrysemys picta*). *Physiological and
828 Biochemical Zoology* **83**, 174-181.

829 **Nilson, T. L., Sinclair, B. J. and Roberts, S. P.** (2006). The effects of carbon dioxide
830 anesthesia and anoxia on rapid cold-hardening and chill coma recovery in *Drosophila*
831 *melanogaster*. *Journal of Insect Physiology* **52**, 1027-1033.

832 **Nyamukondiwa, C., Terblanche, J. S., Marshall, K. E. and Sinclair, B. J.** (2011).
833 Basal cold but not heat tolerance constrains plasticity among *Drosophila* species (Diptera:
834 Drosophilidae). *Journal of Evolutionary Biology* **24**, 1927-1938.

835 **Overgaard, J. and MacMillan, H. A.** (2017). The integrative physiology of insect chill
836 tolerance. In *Annual Review of Physiology*, Vol 79, vol. 79 (ed. D. Julius), pp. 187-208.

837 **Overgaard, J., Malmendal, A., Sørensen, J. G., Bundy, J. G., Loeschke, V., Nielsen,
838 N. C. and Holmstrup, M.** (2007). Metabolomic profiling of rapid cold hardening and cold
839 shock in *Drosophila melanogaster*. *Journal of Insect Physiology* **53**, 1218-1232.

840 **Overgaard, J. and Sørensen, J. G.** (2008). Rapid thermal adaptation during field
841 temperature variations in *Drosophila melanogaster*. *Cryobiology* **56**, 159-162.

842 **Overgaard, J., Sørensen, J. G., Com, E. and Colinet, H.** (2014). The rapid cold
843 hardening response of *Drosophila melanogaster*: Complex regulation across different levels of
844 biological organization. *Journal of Insect Physiology* **62**, 46-53.

845 **Overgaard, J., Sørensen, J. G., Petersen, S. O., Loeschke, V. and Holmstrup, M.**
846 (2005). Changes in membrane lipid composition following rapid cold hardening in *Drosophila*
847 *melanogaster*. *Journal of Insect Physiology* **51**, 1173-1182.

848 **Overgaard, J., Sørensen, J. G., Petersen, S. O., Loeschke, V. and Holmstrup, M.**
849 (2006). Reorganization of membrane lipids during fast and slow cold hardening in *Drosophila*
850 *melanogaster*. *Physiological Entomology* **31**, 328-335.

851 **Owen, E. L., Bale, J. S. and Hayward, S. A. L.** (2013). Can winter-active bumblebees
852 survive the cold? Assessing the cold tolerance of *Bombus terrestris audax* and the effects of
853 pollen feeding. *Plos One* **8**.

854 **Park, Y. and Kim, Y.** (2013). RNA interference of glycerol biosynthesis suppresses
855 rapid cold hardening of the beet armyworm, *Spodoptera exigua*. *Journal of Experimental*
856 *Biology* **216**, 4196-4203.

857 **Park, Y. and Kim, Y.** (2014). A specific glycerol kinase induces rapid cold hardening of
858 the diamondback moth, *Plutella xylostella*. *Journal of Insect Physiology* **67**, 56-63.

859 **Patil, N. S., Lole, K. S. and Deobagkar, D. N.** (1996). Adaptive larval thermotolerance
860 and induced cross-tolerance to propoxur insecticide in mosquitoes *Anopheles stephensi* and
861 *Aedes aegypti*. *Medical and Veterinary Entomology* **10**, 277-282.

862 **Powell, S. J. and Bale, J. S.** (2004). Cold shock injury and ecological costs of rapid cold
863 hardening in the grain aphid *Sitobion avenae* (Hemiptera : Aphididae). *Journal of Insect*
864 *Physiology* **50**, 277-284.

865 **Powell, S. J. and Bale, J. S.** (2005). Low temperature acclimated populations of the
866 grain aphid *Sitobion avenae* retain ability to rapidly cold harden with enhanced fitness. *Journal of Experimental Biology* **208**, 2615-2620.

867 **Qin, W., Neal, S. J., Robertson, R. M., Westwood, J. T. and Walker, V. K.** (2005).
868 Cold hardening and transcriptional change in *Drosophila melanogaster*. *Insect Molecular*
869 *Biology* **14**, 607-613.

870 **Rako, L. and Hoffmann, A. A.** (2006). Complexity of the cold acclimation response in
871 *Drosophila melanogaster*. *Journal of Insect Physiology* **52**, 94-104.

872 **Rinehart, J. P., Yocom, G. D. and Denlinger, D. L.** (2000). Thermotolerance and rapid
873 cold hardening ameliorate the negative effects of brief exposures to high or low temperatures on
874 fecundity in the flesh fly, *Sarcophaga crassipalpis*. *Physiological Entomology* **25**, 330-336.

875 **Ronges, D., Walsh, J. P., Sinclair, B. J. and Stillman, J. H.** (2012). Changes in
876 extreme cold tolerance, membrane composition and cardiac transcriptome during the first day of
877 thermal acclimation in the porcelain crab *Petrolisthes cinctipes*. *Journal of Experimental Biology*
878 **215**, 1824-1836.

879 **Salehipour-Shirazi, G., Ferguson, L. V. and Sinclair, B. J.** (2017). Does cold activate
880 the *Drosophila melanogaster* immune system? *Journal of Insect Physiology* **96**, 29-34.

881 **Salt, R. W.** (1961). Principles of insect cold-hardiness. *Annual Review of Entomology* **6**,
882 55-&.

883 **Scannapieco, A. C., Sørensen, J. G., Loeschke, V. and Norry, F. M.** (2007). Heat-
884 induced hormesis in longevity of two sibling *Drosophila* species. *Biogerontology* **8**, 315-325.

885 **Sgro, C. M., Terblanche, J. S. and Hoffmann, A. A.** (2016). What can plasticity
886 contribute to insect responses to climate change? *Annual Review of Entomology* **61**, 433-451.

887

888 **Shreve, S. M., Kelty, J. D. and Lee, R. E.** (2004). Preservation of reproductive
889 behaviors during modest cooling: rapid cold-hardening fine-tunes organismal response. *Journal
890 of Experimental Biology* **207**, 1797-1802.

891 **Sinclair, B. J. and Chown, S. L.** (2003). Rapid responses to high temperature and
892 desiccation but not to low temperature in the freeze tolerant sub-Antarctic caterpillar
893 *Pringleophaga marioni* (Lepidoptera, Tineidae). *Journal of Insect Physiology* **49**, 45-52.

894 **Sinclair, B. J., Ferguson, L. V., Salehipour-shirazi, G. and MacMillan, H. A.** (2013).
895 Cross-tolerance and cross-talk in the cold: Relating low temperatures to desiccation and immune
896 stress in insects. *Integrative and Comparative Biology* **53**, 545-556.

897 **Sinclair, B. J., Gibbs, A. G. and Roberts, S. P.** (2007). Gene transcription during
898 exposure to, and recovery from, cold and desiccation stress in *Drosophila melanogaster*. *Insect
899 Molecular Biology* **16**, 435-443.

900 **Sinensky, M.** (1974). Homeoviscous adaptation - Homeostatic process that regulates
901 viscosity of membrane lipids in *Escherichia coli*. *Proceedings of the National Academy of
902 Sciences of the United States of America* **71**, 522-525.

903 **Srithiphaphirom, P., Lavallee, S. and Robertson, R. M.** (2019). Rapid cold hardening
904 and octopamine modulate chill tolerance in *Locusta migratoria*. *Comparative Biochemistry and
905 Physiology a-Molecular & Integrative Physiology* **234**, 28-35.

906 **Stillman, J. H.** (2003). Acclimation capacity underlies susceptibility to climate change.
907 *Science* **301**, 65-65.

908 **Stotter, R. L. and Terblanche, J. S.** (2009). Low-temperature tolerance of false codling
909 moth *Thaumatotibia leucotreta* (Meyrick) (Lepidoptera: Tortricidae) in South Africa. *Journal of
910 Thermal Biology* **34**, 320-325.

911 **Teets, N. M. and Denlinger, D. L.** (2013a). Autophagy in Antarctica: Combating
912 dehydration stress in the world's southernmost insect. *Autophagy* **9**, 629-631.

913 **Teets, N. M. and Denlinger, D. L.** (2013b). Physiological mechanisms of seasonal and
914 rapid cold-hardening in insects. *Physiological Entomology* **38**, 105-116.

915 **Teets, N. M. and Denlinger, D. L.** (2016). Quantitative phosphoproteomics reveals
916 signaling mechanisms associated with rapid cold hardening in a chill-tolerant fly. *Journal of
917 Proteome Research* **15**, 2855-62.

918 **Teets, N. M., Elnitsky, M. A., Benoit, J. B., Lopez-Martinez, G., Denlinger, D. L. and
919 Lee, R. E.** (2008). Rapid cold-hardening in larvae of the Antarctic midge *Belgica antarctica*:
920 cellular cold-sensing and a role for calcium. *American Journal of Physiology: Regulatory,
921 Integrative and Comparative Physiology* **294**, R1938-R1946.

922 **Teets, N. M. and Hahn, D. A.** (2018). Genetic variation in the shape of cold-survival
923 curves in a single fly population suggests potential for selection from climate variability. *Journal
924 of Evolutionary Biology* **31**, 543-555.

925 **Teets, N. M., Kawasaki, Y., Lee, R. E. and Denlinger, D. L.** (2011). Survival and
926 energetic costs of repeated cold exposure in the Antarctic midge, *Belgica antarctica*: a
927 comparison between frozen and supercooled larvae. *Journal of Experimental Biology* **214**, 806-
928 814.

929 **Teets, N. M., Kawasaki, Y., Potts, L. J., Philip, B. N., Gantz, J. D., Denlinger, D.
930 L. and Lee, R. E.** (2019). Rapid cold hardening protects against sublethal freezing injury in an
931 Antarctic insect. *Journal of Experimental Biology* **222**, jeb206011.

932 **Teets, N. M., Peyton, J. T., Ragland, G. J., Colinet, H., Renault, D., Hahn, D. A. and
933 Denlinger, D. L.** (2012a). Combined transcriptomic and metabolomic approach uncovers

934 molecular mechanisms of cold tolerance in a temperate flesh fly. *Physiological Genomics* **44**,
935 764-77.

936 **Teets, N. M., Peyton, J. T., Ragland, G. J., Colinet, H., Renault, D., Hahn, D. A. and**
937 **Denlinger, D. L.** (2012b). Combined transcriptomic and metabolomic approach uncovers
938 molecular mechanisms of cold tolerance in a temperate flesh fly. *Physiological Genomics* **44**,
939 764-777.

940 **Teets, N. M., Yi, S. X., Lee, R. E. and Denlinger, D. L.** (2013). Calcium signaling
941 mediates cold sensing in insect tissues. *Proceedings of the National Academy of Sciences of the*
942 *United States of America* **110**, 9154-9159.

943 **Terblanche, J. S., Clusella-Trullas, S., Deere, J. A. and Chown, S. L.** (2008). Thermal
944 tolerance in a south-east African population of the tsetse fly *Glossina pallidipes* (Diptera,
945 Glossinidae): Implications for forecasting climate change impacts. *Journal of Insect Physiology*
946 **54**, 114-127.

947 **Uma, S., Jadhav, R. S., Kumar, G. S., Shivaji, S. and Ray, H. K.** (1999). A RNA
948 polymerase with transcriptional activity at 0 degrees C from the Antarctic bacterium
949 *Pseudomonas syringae*. *FEBS Letters* **453**, 313-317.

950 **Vesala, L., Salminen, T. S., Laiho, A., Hoikkala, A. and Kankare, M.** (2012). Cold
951 tolerance and cold-induced modulation of gene expression in two *Drosophila virilis* group
952 species with different distributions. *Insect Molecular Biology* **21**, 107-118.

953 **Vo, P. and Gridi-Papp, M.** (2017). Low temperature tolerance, cold hardening and
954 acclimation in tadpoles of the neotropical tungara frog (*Engystomops pustulosus*). *Journal of*
955 *Thermal Biology* **66**, 49-55.

956 **Wang, G. and Dillon, M. E.** (2014). Recent geographic convergence in diurnal and
957 annual temperature cycling flattens global thermal profiles. *Nature Climate Change* **4**, 988-992.

958 **Yang, S., Zhang, X. X., Wang, J. X., Wang, S., Pan, Y., Zhang, J. H. and Xi, J. H.**
959 (2018). Identification and analysis of up-regulated proteins in *Lissorhoptrus oryzophilus* adults
960 for rapid, cold hardening. *Gene* **642**, 9-15.

961 **Yi, S.-X. and Lee, R. E.** (2011). Rapid cold-hardening blocks cold-induced apoptosis by
962 inhibiting the activation of pro-caspases in the flesh fly *Sarcophaga crassipalpis*. *Apoptosis* **16**,
963 249-255.

964 **Yi, S.-X., Moore, C. W. and Lee, R. E.** (2007). Rapid cold-hardening protects
965 *Drosophila melanogaster* from cold-induced apoptosis. *Apoptosis* **12**, 1183-1193.

966 **Yi, S. X., Gantz, J. D. and Lee, R. E.** (2017). Desiccation enhances rapid cold-
967 hardening in the flesh fly *Sarcophaga bullata*: evidence for cross tolerance between rapid
968 physiological responses. *Journal of Comparative Physiology B-Biochemical Systemic and*
969 *Environmental Physiology* **187**, 79-86.

970 **Yoder, J. A., Benoit, J. B., Denlinger, D. L. and Rivers, D. B.** (2006). Stress-induced
971 accumulation of glycerol in the flesh fly, *Sarcophaga bullata*: Evidence indicating anti-desiccant
972 and cryoprotectant functions of this polyol and a role for the brain in coordinating the response.
973 *Journal of Insect Physiology* **52**, 202-214.

974

975 **Figure Legends**

976 **Figure 1. Summary of the induction conditions and phenotypic outcomes of RCH.** The left
977 panel illustrates the narrow temperature windows and short time periods in which RCH typically
978 occurs. The graphs show example data that was recreated from Chen et al. (1987). The middle
979 panel shows the various temperature protocols that have been used to induce RCH. RCH is most
980 commonly elicited with stepwise temperature transfers, but RCH can also be elicited with thermal
981 ramps, artificial thermoperiods and natural thermoperiods. The graph of natural thermoperiods
982 shows air temperature data for Lexington, KY on April 17-18, 2019. The right panel shows some
983 phenotypic outcomes of RCH. The graphs include example data illustrating the general
984 phenomena; graph 1 is from Teets et al. (2016), graph 2 is from Kawasaki et al. (2013), graph 3
985 is from Kelty and Lee (1999), graph 4 is from Teets et al. (2019), and graph 5 is from Rinehart et
986 al. (2000). All figures were adapted with permission from the authors.

987 **Figure 2. Summary of molecular mechanisms associated with RCH across species.** The
988 schematics on the left illustrate the various levels of organization that participate in the induction
989 of RCH, and the boxes to the right summarize the gene and protein classes, cell signaling events
990 and biochemical changes that accompany RCH. This figure isn't meant to be a mechanistic model
991 but rather a comprehensive summary the processes that have been associated with RCH across
992 disparate studies. The illustrations for the DNA double helix and translation were adapted from
993 graphics provided by the Database Center for Life Science under a Creative Commons License
994 (Attribution 4.0 International). Superscripts indicate references that support each part of the figure.

995 ¹Gerken et al., 2015; ²Ahn et al., 2018; ³Kim et al., 2017; ⁴Lu et al., 2016; ⁵Park et al., 2014;
996 ⁶Vesala et al., 2012; ⁷Yang et al., 2018; ⁸Sinclair et al., 2007; ⁹Teets et al., 2012; ¹⁰Li and
997 Denlinger, 2008; ¹¹Overgaard et al., 2014; ¹²Teets and Denlinger, 2016; ¹³Armstrong et al., 2012;
998 ¹⁴Findsen et al., 2013; ¹⁵Fujiwara and Denlinger, 2007; ¹⁶Li et al., 2012; ¹⁷Overgaard et al., 2014;

999 ¹⁸Teets and Denlinger, 2016; ¹⁹Teets et al., 2008; ²⁰Teets et al., 2013; ²¹Yi and Lee, 2011; ²²Yi et
1000 al., 2007; ²³Lee et al., 2006; ²⁴Michaud and Denlinger, 2006; ²⁵Michaud and Denlinger, 2007;
1001 ²⁶Overgaard et al., 2007; ²⁷Overgaard et al., 2005; ²⁸Overgaard et al., 2006; ²⁹Park and Kim, 2013;
1002 ³⁰Yoder et al., 2006; ³¹MacMillan et al., 2009.

1003 **Glossary**

1004 **Chill coma:** A reversible state of paralysis at low temperature caused by neuromuscular
1005 impairment stemming from cold-induced membrane depolarization.

1006 **Chill coma recovery:** The process of regaining locomotor capacity after a nonlethal cold event
1007 below the critical thermal minimum.

1008 **Chill susceptible:** Describes organisms that are freeze intolerant and succumb to cold at
1009 temperature well above the supercooling point.

1010 **Cold acclimation:** Improved function at low temperature as a result of prolonged (days to weeks)
1011 exposure to lower ambient temperature.

1012 **Cold shock:** A brief exposure to non-freezing low temperature (typically lasting only a few hours
1013 at temperature below 0°C) that causes direct chilling injury

1014 **Critical thermal minimum:** The lowest temperature at which an ectotherm can maintain
1015 physiological performance, often locomotor function in the context of acute cold stress.

1016 **Cross-talk:** When two distinct stressors have overlapping signaling pathways, such that activation
1017 of one stress signaling pathways concurrently activates all or part of a distinct stress signaling
1018 pathway.

1019 **Cross-tolerance:** When two distinct stressors share similar protective mechanisms and thus afford
1020 protection to one another.

1021 **Cryoprotectants:** Low molecular weight solutes that accumulate in high quantities in cold tolerant
1022 ectotherms to protect against chilling or freezing injury.

1023 **Direct chilling injury:** Damage to cellular macromolecules (e.g., lipids, proteins) caused by an
1024 acute exposure to low temperature in the absence of freezing

1025 **Freeze concentration:** The process by which extracellular solutes become concentrated during
1026 ecologically relevant freezing. When freezing is restricted to extracellular spaces, only water joins
1027 the ice lattice, which reduces the amount of liquid water outside the cells and concentrates solutes.

1028 **Freeze intolerant:** Describes ectotherms in which internal freezing is lethal.

1029 **Freeze tolerant:** Describes a cold tolerance strategy in which an ectotherm can survive internal
1030 ice formation.

1031 **Homeoviscous adaptation:** The process by which adjustments in cell membrane composition
1032 promote maintenance of appropriate membrane fluidity at the environmental temperature.

1033 **Pupariation:** In higher Diptera (flies), the process of forming the puparium, which is a hardened
1034 shell derived from the molted larval cuticle that protects the pupa contained within.

1035 **Rapid cold-hardening:** A process by which ectotherms rapidly enhance their cold tolerance in
1036 response to brief (minutes to hours) chilling or another acclimation cue.

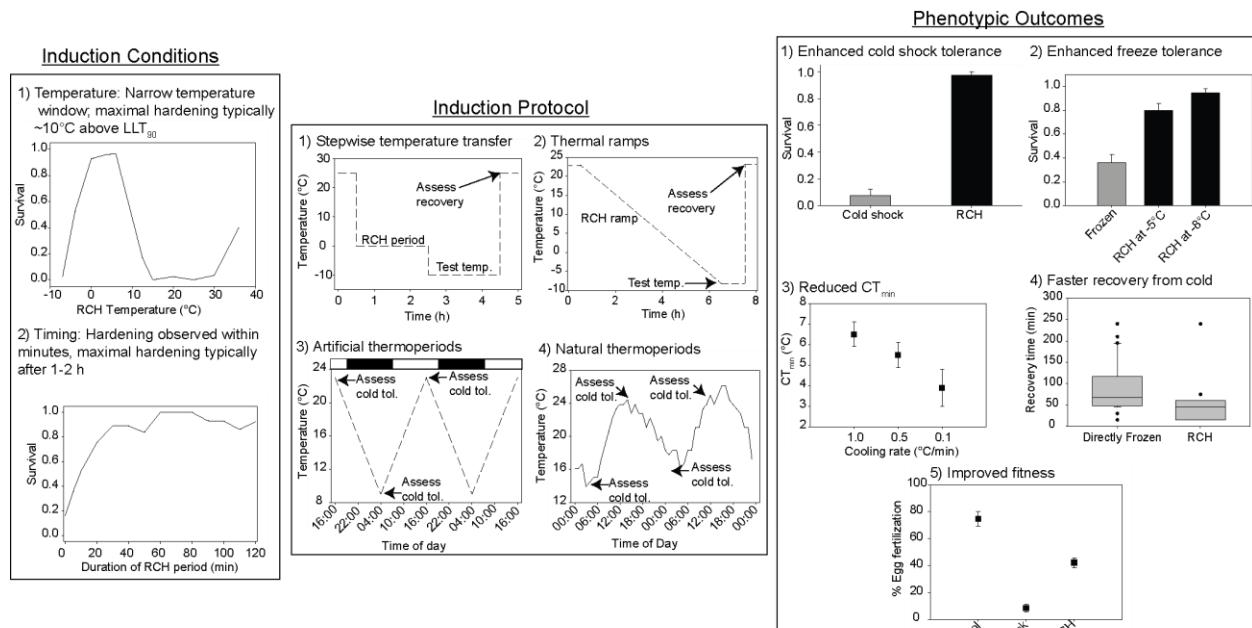
1037 **Supercooled:** Describes a liquid that is cooled below its freezing point without solidification

1038 **Supercooling point:** The temperature at which ice crystallization occurs and an organism
1039 spontaneously freezes

1040 **Tables**1041 Table 1. Summary of triggers that elicit rapid acclimation within 24 h and their effects on stress
1042 tolerance.

1043

Pretreatment condition (in bold) and effects	Selected references
Chilling	
↑ cold tolerance	Lee et al., 1987 and numerous others
↑ freezing tolerance	Kawasaki et al., 2013
↑ dehydration resistance	Yoder et al., 2006
↑ anoxia tolerance	Gantz et al., in review
↑ immune system activity	Salehipour-shirazi et al., 2017
Freezing	
↑ freezing tolerance	Lee et al., 2006; Kawasaki et al., 2013
High temperature	
↑ cold tolerance	Chen et al., 1991
Dehydration	
↑ cold tolerance	Yi et al., 2017; Kawasaki et al., 2019
↑ freezing tolerance	Levis et al., 2012
↑ dehydration resistance	Hoffmann, 1990; Bazinet et al., 2010
Hyperosmotic stress	
↑ freezing tolerance	Gantz et al., in preparation
Hypoosmotic stress	
↑ freezing tolerance	Gantz et al., in preparation
Anoxia	
↑ cold tolerance	Coulson and Bale, 1991
Fasting	
↑ freezing tolerance	Gantz et al., in preparation
UV irradiation	
↑ freezing tolerance	Gantz et al., in preparation


1044

1045

1046

1047 **Figures**

1048 **Figure 1**

1049

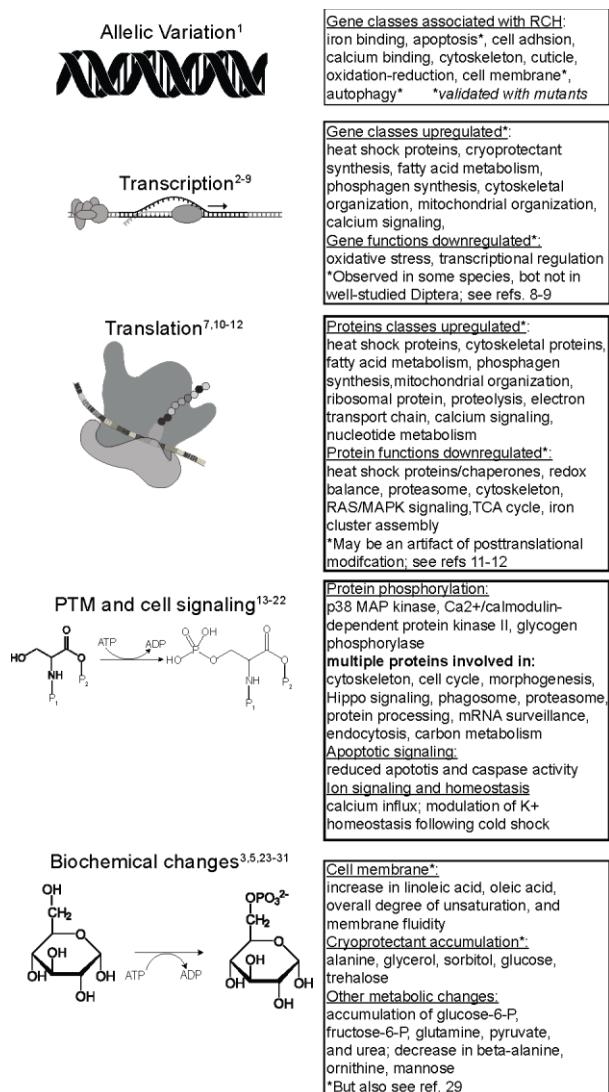
1050

1051

1052

1053

1054


1055

1056

1057

1058

1059 Figure 2

1060

1061