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1 Abstract

Time-series can provide critical insights into the structure and function of microbial communities.
The analysis of temporal data warrants statistical considerations, distinct from comparative micro-
biome studies, to address ecological questions. This primer identifies unique challenges and best
practices for analyzing microbiome time-series. In doing so, we focus on (1) identifying composi-
tionally similar samples, (2) inferring putative interactions among populations, and (3) detecting
periodic signals. In a series of hands-on modules with a motivating biological question centered on
marine microbial ecology, we connect theory, code, and data. The topics of the modules include
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exploring shifts in community structure and activity, identifying expression levels with a diel peri-
odic signals, and identifying putative interactions within a complex community — all given sequence
data from Station ALOHA in the North Pacific Subtropical Gyre. Modules are presented as self-
contained, open-access, interactive tutorials in R and Matlab. Throughout, we highlight analytical
considerations for dealing with autocorrelated and compositional data, with an eye to improving the
robustness of inferences from microbiome time-series. In doing so, we hope that this primer helps to
broaden the use of time-series analytic methods within the microbial ecology research community.

Keywords code:Matlab; code:R; microbial ecology; time-series analysis; marine microbiology;
regression; clustering; periodicity

2 Introduction

Microbiomes encompass biological complexity from molecules to genes, metabolisms, and com-
munity ecological interactions. Understanding this complexity can be difficult due to domain- or
location- specific challenges in sampling and measurement. The application of sequencing tech-
nology has revolutionized almost all disciplines of microbial ecology, by allowing researchers the
opportunity to access the diversity, functional capability, evolutionary history, and spatiotemporal
dynamics of microbial communities rapidly and at a new level of detail [1, 2]. Studies interested
in microbial ecological processes can now sample at the time-scale at which those processes occur,
resulting in the collection of microbiome time-series data. While this opens new avenues of inquiry,
it also presents new challenges for analysis [3, 4, 5, 6, 7].

Contemporary questions of interest in the field of microbiome study involve community composi-
tion [8], identification of putatitve biomarker species [9], and changes in composition over time and
fluctuating environmental conditions [10, 11, 12, 13]. To tackle such questions, technology from
next generation sequencing, including sequence data in the form of barcodes, i.e., amplicon tag-
sequencing, metagenomics, and metatranscriptomics, have been used in a range of environments
spanning the gut, built-environments, soil, ocean, air, and more.

One of the first challenges in analyzing microbiome data is to categorize sequences in terms of taxa
or even ‘species’ [14, 15]. Many methods have been developed to perform this categorization [16, 2,
17, 18, 19, 20, 21, 22, 23, 24, 25, 26]. Particular choices used to define species-level units may alter
downstream estimations of diversity and other parameters of interest [27, 28, 29]. However, some
definition of taxa is often necessary for characterizing the composition of microbial communities.
In this primer, we use the term species to denote approximately species-level designations such as
operational taxonomic unit (OTU) or amplicon sequence variant (ASV).

Once sequences have been categorized to approximate species-level groups, the interpretation of
their read count abundance is accompanied by assumptions that violate many standard parametric
statistical analyses. For example, zero reads from a sample mapping to a particular species is
commonplace in microbiome sequence results, yet it typically remains unclear if a zero indicates
evidence of absence (e.g., species not present in sample, incapable of transcribing a gene) or absence
of evidence (e.g., below detection, inadequate sequencing depth) [30, 5]. In addition, sequence data
is compositional, and therefore does not include information on absolute abundances [31]. As a
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result, compositional data has an intrinsic negative correlation structure, meaning that the increase
in relative abundance of one community member necessarily decreases the relative abundances of
all other members [32].

The issues of categorization and sampling depth apply to all kinds of microbiome data sets. In
particular, temporal autocorrelation presents an additional complexity to microbiome time-series,
in that each observation is dependent on the observations previous to it in time. Autocorrelation
also precludes the use of many standard statistical techniques, which assume that observations
are independent. In Figure 1, we show how autocorrelation leads to high incidences of spurious
correlations among independent time-series, and how spurious correlations can be mitigated by
accounting for autocorrelation before downstream analysis.

Complex microbiome data demand nuanced analysis. In this paper, we provide a condensed
synthesis of principles to guide microbiome time-series analysis in practice. This synthesis builds
upon and is complementary to prior efforts that established the importance of analyzing temporal
variation for understanding microbial communities (e.g., [33]). Here, we emphasize a convergence
approach, integrating methods and ideas from various fields of time-series analysis. Our process
is described in detail via several code tutorials at https://github.com/arcoenen/analyzing_
microbiome_timeseries that include analytic tools and microbiome time-series data, and provide
a software skeleton for the custom analysis of microbiome time-series data. These tutorials include
the basics of discovering underlying structure in high-dimensional data via statistical ordination and
divisive clustering, nonparametric periodic signal detection in temporal data, and autoregression
and regression on microbiome time-series.

3 Methods

3.1 Overview of tutorials

We describe three distinct categories of time-series analyses: clustering, regression, and identifying
periodicity. For each category, we demonstrate the use of a particular analysis method or methods to
answer an ecologically motivated question (Fig 2). Each tutorial emphasizes best practices for nor-
malization specifically developed for the analysis of compositional data. Each tutorial also addresses
challenges related to multiple hypothesis testing, overdetermination, and measurement noise. Inter-
active, self-contained tutorials that execute the workflows described in the manuscript are available
in R and MATLAB at https://github.com/arcoenen/analyzing _microbiome_timeseries.

3.2 Dataset Sources

Time-series data are derived from relative abundances of marine microbial or viral communities:
(i) an 18S rRNA gene amplicon data set from [34], where samples were collected at 4 hour intervals
for a total of 19 time points (Lagrangian sampling approach); (ii) a viral metagenomic data set
from [25], taken at near monthly intervals at 7 depths over 1.5 years. Input example data for each
module are in the form of relative abundance tables, where samples are represented as columns and
each row is a species (OTU or transcript ID) with sequence counts or read coverage abundance
per species. The code in each of these modules can be customized for use on other data, although
for the purposes of analyzing any temporal-scale variability, samples must be taken at a frequency
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sufficiently shorter than the temporal scale of interest (e.g., daily temporal variability requires
sub-daily sampling, seasonal temporal variability requires sub-seasonal sampling).

3.3 Normalization
3.3.1 Log-ratio transformations

Microbiome data tend to have three properties: (1) they are sum-constrained (all reads sum to
the sequencing depth), (2) they are nonnegative, and (3) they are prone to heteroskedasticity (the
variance of the data is not equal across its dynamic range). These attributes of microbiome data
violate some underlying assumptions of traditional statistical techniques. Transforming microbiome
data into log-ratios [35] can mitigate these problems by stabilizing variance and distributing values
over all real numbers.

The simplest log-ratio transformation requires selecting some particular focal variable/species in
the composition, dividing all other variables in each sample by the abundance of the focal species,
and taking the natural logarithm. Mathematically:

LR; = ZTL(I’Z) - ln(mfocal) (1)

This kind of log-ratio transformation eliminates negative constrained covariances, but all variables
become relative to the abundance of an arbitrary focal species. Instead of selecting a focal species,
the Centered Log-Ratio Transformation constructs ratios against the geometric average of commu-
nity abundances [36].

CLR; = In(x;) — %Zln(xk) (2)
k=1

This transformation retains the same dimensionality as the original data, but is also still sum
constrained:

n

znj CLRy =) _ (ln(xk) - Tlli:ln(xk)> (3)
k=1 k=1

k=1
N CLRy = in(zy,) - % 3 in(z) (4)
k=1 k=1 k=1
=0 (5)

3.3.2 Distance metric

Multivariate microbiome data is not readily summarized or visualized in two or three dimensions.
Therefore, to summarize and explore data, we want to recapitulate the high-dimensional properties
of the data in few dimensions. Such low-dimensional representations are distance-based. A distance
matrix is obtained by applying a distance metric to all pairwise combinations of observations. For
example, given data matrix X, the Euclidean distance between observations X; and X is:

d(X)ij = /(% — 25)? (6)
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Different metrics measure distance using different attributes of the data. For example, only pres-
ence/absence of different community members is used to calculate Jaccard distance [37] and un-
weighted Unifrac [38], which also takes into account phylogenetic relationships between species. On
the other hand Euclidean distance emphasizes changes in relative composition. Weighted Unifrac
distance incorporates phylogenetic information as well as changes in relative abundances. Euclidean
distance performed on log-ratio transformed data is analagous to Aitchinson’s distance [39], which
is recommended for the analysis of the difference of compositions. Note distance metrics which are
sensitive to the magnitude of observations (e.g., Euclidean distance) should only be calculated on
the data once it has been scaled so all variables occupy a similar range of magnitudes.

3.4 Ordination
3.4.1 Covariance-Based Ordination

One method of exploring highly multivariate microbiome data is to statistically ordinate them.
An ordination is a transformation that presents data in a new coordinate system, making high-
dimensional data visualizable in two or three dimensions. Principal Components Analysis (PCA) is
a method which selects this coordinate system via the eigendecomposition of the sample covariance
matrix, i.e., which is equivalent to solving the factorization problem:

mem = U7n><mDm><mU7qr;><m~ (7)

Here, @ is the sample by sample covariance matrix, D is a diagonal matrix containing the eigen-
values of @), and U is a matrix of the eigenvectors associated with those eigenvalues. For PCA,
the eigenvectors (or principal axes) are interpreted as new, uncorrelated variables, which are an
orthogonal linear combination of the original m variables. Each of the eigenvalues corresponds to
one of the eigenvectors and refers to its magnitude, which is proportional to the amount of vari-
ance in the data explained by that eigenvector. To plot a PCA, we select a subset of eigenvectors
with the largest associated eigenvalues, apply the linear combination of variables contained in those
eigenvectors to each observation, and then plot the observations with the resulting coordinates.

Principal Coordinates Analysis (PCoA), based on PCA, better deals with the negative constrained
covariance associated with compositionality [40]. PCoA uses the same procedure as PCA, except
a sample by sample distance matrix is decomposed instead of the sample covariance matrix. For
both of these methods, scaling the data is recommended so that no one variable disproportionately
influences the ordination.

3.4.2 Nonmetric Multidimensional Scaling

Nonmetric Multidimensional Scaling (NMDS) is an alternative ordination method which forces
the data to be projected into a prespecified number of dimensions. NMDS projects high-dimensional
data into a lower-dimensional space such that all pairwise distances between points are preserved.
To implement NMDS, we solve the optimization problem:

X' = argmin [|d(X) — d(X")|2 (8)

where X is the original data matrix and X’ is the data in the lower-dimensional space. Here d is a
distance metric (see Distance section). Because the sum of pairwise distances is the quantity being
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minimized by NMDS, this method is strongly affected by outliers, so data should be examined for
outliers prior to NMDS ordination. Additionally, unlike PCA and PCoA, where the new sample
coordinates are directly related to the measured variables, NMDS coordinates have no meaning
outside of their pairwise distances, and therefore specific NMDS coordinates have no interpretation.
Another important difference between NMDS and PCA is that the NMDS is enforced to fit the
ordination to a fixed number of dimensions, which means the projection is not guaranteed to be a
good fit. Stress is the quantification of how well the NMDS projection recapitulates the distance
structure of the original data:

Stress = \/Z(d(X) — d(X"))* (9)

> d(X)?

The closer the stress is to 0, the better the NMDS performed.

3.4.3 Clustering

Clustering defines relationships between individual data points, identifying a collection of points
that are more similar to each other than members of other groups. As a working example, we
will implement two types of divisive, distance-based clustering algorithms. A divisive clustering
method is one which works by partitioning the data into groups with increasingly similar features.
The number of groups to divide the species into is determined prior to calculation, which begs the
question: how many groups? This question can be quantitatively assessed using several indices. A
clustering algorithm can be implemented using a range of possible numbers of clusters, and then
comparison of these indices will indicate which number has a high degree of fit without over-fitting.
These indices can also be used to help choose between clustering algorithms.

One such index is sum of squared differences, which is related to the total amount of uniformity
in all clusters. Mathematically:

Cluster member 2
Mclusters Mmembers A Cluster center
SSE = E E ik — Ck (10)

k=0 =0

A common heuristic to identifying an optimal number of clusters is to plot SSE vs. k and look for
where the curve ‘elbows’, or where the decrease slows down (see clustering tutorial).

Another way to evaluate the efficacy of clustering is via the Calinski-Harabasz index [41], which
is the ratio of the between-cluster squared distances to the within-cluster squared differences:

Joe}

(z
CH = ’“?; (11)
—k

<

3

where B(x) is the between cluster sum of square differences, W (x) is the within cluster sum of square
differences, n is the number of species, and k is the number of clusters. This index contributes an
additional perspective to sum squared differences in that it accounts for the number of clusters the
data are partitioned into as well as the overall variation in the data as a whole. A large value of CH
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indicates that the between-cluster differences are much higher than the average differences between
the dynamics of any pair of species in the data, so a maximum value of CH indicates maximum
clustering coherence.

The ‘Silhouette width’ is another index which allows for fine scale examination of the coherence
of individual species to their cluster. Silhouette width is therefore helpful for identifying outliers
in clusters. The silhouette width for any given clustering of data is calculated for each species
by taking the ratio of the difference between that species’ furthest in-cluster neighbor and nearest
out-of-cluster neighbor to the maximum of the two. Mathematically,

sum square diff out of cluster = sum square diff in cluster

P NE—
min(d(z;, vj¢c)) — max(d(z;,rjec))
mazx(min(d(z;, zj¢c)), max(d(z;, rjcc)))

SW; = (12)

Where C is all species in the cluster, and d is the sum square difference operator. The widths can
range from -1 to 1. Silhouette widths above 0 indicate species which are closer to any of their in-
cluster neighbors than any out-of-cluster species, so having as many species with silhouette widths
above 0 as possible is desirable. Any species with particularly low silhouette widths compared to
the rest of their in-cluster neighbors should be investigated as potential outliers.

3.5 Periodicity Analysis

Periodicity analysis reveals whether or not community members exhibit a cyclical periodic change
in abundance. Approaches to identifying periodic signals include parametric methods and non-

parameteric methods, including ‘Rhythmicity Analysis Incorporating Nonparametric methods’ (RAIN) [42].

The RAIN method identifies significant periodic signals given a pre-specified period and sampling
frequency. RAIN then conducts a series of Mann-Whitney U tests (rank-based difference of means)
between time-points in the time-series over the course of one period. For example, one such series
of tests might answer the question: are samples at hours 0, 24, 48 higher in rank than the samples
at hours 4, 28, 527. Then, the sequence of ranks is examined to determine if there is a consistent
rise and fall about a peak time. RAIN analysis can be improved via detrending, or regression
normalization, to remove longer-term temporal effects such as seasonality. A first approximation
can be made by taking the linear regression of all time-points with time as the independent variable,
then subtracting this regression from the time-series. This operation stabilizes the data to have a
similar mean across all local windows.

In order to assess periodicity for an entire microbial community, we may conduct many hypothesis
tests. The more tests that are performed at once, the higher the probability of finding a low p-
value due to chance alone [43]. Some form of multiple testing correction is therefore encouraged.
False Discovery Rate (FDR) based methods are recommended for high-throughput biological data
over more stringent Familywise Error Rate corrections [44, 45]. The method employed here is
the Benjamini-Hochberg step-up procedure [46] (for graphical demonstration see the ‘periodicity’
tutorial in the associated software package). P-values are ranked from smallest to largest, and all
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null hypotheses are sequentially rejected until test k where:
k
Pk 2 —Q (13)
m

where m is the total number of tests conducted, and « is the desired false discovery rate amongst
rejected null hypotheses.

3.6 Regression
3.6.1 Partial autocorrelation

Time-series data is often autocorrelated, that is, values earlier in time are correlated with values
later in time. Autocorrelation arises in time-series data because each measurement is not necessarily
independent.

Autocorrelation is the Pearson correlation of a time-series with itself offset by some lag p. Given
a time-series X = {X1,..., X, }, the autocorrelation R of X at lag p is

Yol (Xi = X) (Xigp — X)
Z?:l (Xi - X)Q

Autocorrelation at small lags can impose autocorrelation at larger lags. For example, if the time-
series X is highly autocorrelated at lag p = 2, it will probably also be autocorrelated at lags
p=4,6,8,... although to a lesser degree. For our purposes, we want to quantify the autocorrelation
of X at each lag independent of other lags. This is called the partial autocorrelation. We assume
that a lag p affects subsequent lags p + 1, ... linearly. The model for the time-series X under this
assumption is

R(p) =

(14)

p
X; =Y ¢ X, (15)
i=1

Using this model, we can estimate the coefficients ¢;, i.e. the relative contribution of different lags
to the next value in the time-series. In practice, these coefficients are estimated by solving the
Yule-Walker equations (see Autoregression).

The partial autocorrelation is computed iteratively. To begin, the partial autocorrelation for the
first lag p = 1 is exactly the autocorrelation for p = 1. To estimate the partial autocorrelation for
p = 2, we first remove the effect of the p = 1 lag from the time-series. We choose p =1 in Eqn 15
and estimate the coefficient ¢; for the resulting model. Then we compute the autocorrelation for
p = 2 on the modified time-series X®

X = Xj— 61X (16)

i.e. the times-series with the contributions from lag p = 1 removed. For a general lag p = k, we
choose p = k in Eqn 15 and estimate the coefficients ¢y . .. ¢k, then compute the modified time-series
X (k)

k
XM =X, -3 6iX;0 (17)
i=1
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The partial autocorrelation for lag p = k is the autocorrelation for lag p = k of the modified time-
series X(®) After some maximum lag, the partial autocorrelation tends to become small and stay
small. At these large lags, the time-series is no longer auocorrelated, that is, measurements are
independent.

3.6.2 Autoregression

An autoregression model describes relationships between different time-points within a single
time-series. Here we present the simplest autoregression model i.e. a simple linear autoregression

model. For a time-series X = (Xi,...,X,), each point X; is a linear combination of previous
points:
P
Xi = Z QSJ‘XZ',]' + € (18)
j=1
for i = 1,...,n. Here p is the maximum lag, that is, the number of terms previous to X; which
contribute to its value. The ¢ = (¢1, ..., ¢,) are the autoregressive coefficients and determine the
relative contribution of each time lag from 1 to p. The € = (e1,...¢€,) are called the residuals or

noise terms. This particular formulation is called an autoregressive model of order p, or AR(p).

Given a time-series X and an AR(p) model, it is possible to estimate the autoregressive coefficients
¢, which quantify the relative contributions of different lags. From Eqn 18, the Yule-Walker set of
equations are:

P
TYm = Z (bk’}/m—k + 0-526171,0 (19)

k=1
for m = 0,...,p. The 7, are the covariance of X with itself lagged by m time points. Here o,

is the standard deviation of the residuals €, which only contributes to the autocovariance at zero
lag, m = 0. The set of equations from Eqn 19 can be written in matrix form yielding an exact
expression for ¢

71 Yo V-1 Y—2 ... ¢1
Y2 Y1 Yo V-1 .- P2
=] 7 T Yoo oo | @ (20)
Tp Yp—-1 Vp-2 Yp-3 --- pr

Given the autoregressive coefficients, the residuals are defined as:

P

€ =X; — Z ¢; Xi—j (21)

Jj=1

The residuals are the non-autocorrelated component of the original time-series. Each value in the
residual time-series is independent. Thus the residuals are better suited for certain downstream
analyses such as regression.
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3.6.3 Linear regression with L1 regularization

Regression can be used to quantify relationships among different variables. Linear regression
assumes a linear relationship between the response variable Y and its predictors X, that is

Y =Xf3+e (22)

Here X may be a vector, i.e. a single variable, or a matrix, i.e. multiple variables. In addition, we
may choose to include a constant variable, i.e. the first column X;; = 1. The 5 are the regression
coefficients and quantify the relative importance of each predictor in X for explaining the observed
values in Y, where € denotes the error.

The regression coefficients can be estimated using ordinary least squares, that is, by solving the
minimization problem

52&rgminHY—X§H2 (23)

which has the exact solution )

F=(XTx)" X"y (24)

Microbial communities may contain a large number of species and relatively few interacting pairs.
In this case, regression can be augmented by L1 regularization, i.e.:

2 Sl12 |
B = arg min (HY—XﬁH +)\HﬁH1> (25)

L1 regularization refers to minimizing the sum of the absolute values of the interaction coefficient
in addition to how well the model fits. L1 regularization biases the regression coefficient vector 5
to be sparse and ultimately decreases the number of interaction coefficients in a putative model.
In communities with many species, this may also decrease the likelihood of false positives. The
parameter A\ controls the extent to which sparsity is imposed, i.e., increasing A is associated with
greater sparsity and fewer interactions.

3.6.4 Overfitting

Overfitting occurs when a model is too complex for the amount of observed data. To identify if
the data have been overfit, we divide our data into two sets: training and testing. We perform the
regression analysis only on the training set. We compute the model error for the training set by

L2
Y;:rain - Xtrainﬂ

(26)

€ITOI'train — ’

Then we compute the model error for the testing set in the same way. Overfitting can often by
identified if error¢ai, and errories; are drastically different, e.g., by orders of magnitude.

4 Results and Discussion

4.1 Exploring Shifts in Daily Protistan Community Activity

The North Pacific Subtropical Gyre (NPSG) is widely studied as a model ocean ecosystem. Near
the surface, the NPSG undergoes strong daily changes in light input. Abundant microorganisms in

10
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the NPSG surface community, such as the cyanobacteria Prochlorococcus and Crocosphaera, tune
metabolic activities such as cell growth and division to particular times of day [47, 48, 49]. However,
the extent to which these daily cycles and the timings of particular metabolic activities extend to
protistan members of the NPSG surface ecosystem remains less characterized. To this end, we
examined an 185 rRNA gene diel dataset from a summer 2015 cruise sampled every 4 hours for 3
days on a Lagrangian track near Station ALOHA [34]. In this expedition, both rRNA and rDNA
were sampled to explore differences in metabolic activity for particular community members at
different times of day [50]. Previous work [34] found shifts in the metabolically active protistan
community, including phototrophic Chlorophytes and Haptophytes as well as parasitic Syndiniales.

In this analysis, we asked whether or not the metabolically active component of the microbial
community is unique to different times of day. Therefore, we focused specifically on the 18S rRNA
gene data as a proxy for overall functional activity of protistan taxa [50, 51, 52]. We used statistical
ordination to explore underlying sample covariance. Samples which appear near each other in
a statistical ordination have similar multivariate structure. In the clustering tutorial we present
several methods for performing ordination, e.g., PCoA (see Methods: Ordination). First, in Figure 3
(A) and (B), we construct a PCoA using Jaccard distance to emphasize changes in presence/absence
of rRNA signatures, and find that the first 3 Principal Coordinates explain 64.76% of the variation
between all samples. Samples from 2PM and 6AM strongly differentiate along the first coordinate
axis, while samples at 10AM settle between them. The ordination suggests that the species which
are transcribing the 18S gene at 2PM are fairly distinct from those transcribing at 6AM, while
10AM is intermediate between the two. Next, we constructed an additional PCoA ordination on
the Euclidean distance matrix of isometric log-ratio transformed 18S rRNA counts (see clustering
tutorial for implementation). As seen in the scree plot in Figure 3 (C), while the first Principal
Coordinate explained about 25% of the variation between samples, the following four Principal
Coordinates each explained around 5% of the variation. This is the case for the Euclidean distances
between sampled 18S rRNA profiles. Despite the low proportion of total variance explained, strong
separation emerges between 2PM and 6AM samples along the largest coordinate axis.

Noting the differences in active community members between 2PM and 6AM, we identified co-
occurring species by clustering their temporal dynamics. Based on comparisons of sum squared
errors and the CH index introduced in Methods, we opted to divide the OTUs into eight clusters
(Figure 4 for composition and representative temporal signature, tutorial for details on cluster
selection). We conducted this clustering with a k-medoids algorithm (see tutorial), allowing us
to identify the median species’ time-series as a representative shape for the temporal dynamics
common to each cluster. We observe 2PM peaks associated with clusters 2,3,6, and 8 and increased
nighttime expression levels in cluster 1. These temporal patterns coincide with those surmised
during our exploratory ordination of the community sampled at each time point (where 2PM and
6AM samples formed distinct clusters, Fig 3). Upon closer inspection of cluster membership (bar
plots in Figure 4A), we find cluster 3 contains 65/105 (62%) of Haptophyte OTUs and 18/33 (55%)
of Archaeplastids, including members of Chlorophyta.

These results suggest temporal niche partitioning within the complex protistan community, con-
sistent with the findings of [34]. By clustering results with respect to temporal patterns, we were
able to parse the complex community to reveal the identities of key taxonomic groups driving the
observed temporal patterns. The taxonomic composition of cluster 3 was made up of Haptophytes
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and Chlorophytes. Photosynthetic Chlorophytes have previously been found to be correlated with
the light cycle [47, 53] and the temporal pattern found in [34] was similar to the standardized
expression level (Figure 4B), as was the inferred relative metabolic activity of Haptophytes.

4.2 Identifying Protists with Diel Periodicity in 18S Expression Levels

The metabolic activity of microbes is a critical aspect of the basis of marine food webs [54]. In the
euphotic zone, microbial populations are inherently linked to the light cycle as the energy source
for metabolism. Identifying diel patterns in protists is particularly interesting due to widespread
mixotrophy, where a mixotroph may ingest prey during periods of limiting inorganic nutrients
or light [55, 56, 57]. Additionally, protistan species encompass a wide range of cell sizes, thus
synchronization of light among photoautotrophs may reflect species-specific differences in nutrient
uptake strategies [58, 59]. Based on the observation of sample differentiation between the middle
of the day (2PM) and dawn (6AM) from exploratory ordination and clustering analyses described
in 4.1, we further investigated the hypothesis that some protists may exhibit a 24-hour periodicity
in their 18S rRNA expression levels.

The high-resolution nature of the sequencing effort in this study enabled us to ask which members
of the protistan community had 24-hour periodic signals. Following normalization (CLR, Eq 2) and
detrending (see Periodicity tutorial and Methods: Periodicity Analysis), we used RAIN to assess
the periodic nature of each OTU over time. Results from RAIN analysis reported p-values for each
OTU at the specified period as well as estimates of peak phase and shape. The null hypothesis tested
by RAIN is that the observations do not consistently increase, then decrease (or vice-versa) once
over the course of a period. Rejecting the null hypothesis, then, asserts a time-series has one peak
during the specified period. To determine which OTUs were found to have significant periodicity
we rejected the null hypothesis at 5% FDR level (Eq. 13). Figure 5 illustrates examples of two
protistan OTUs with significant diel periodicity, a haptophyte and pelagophyte. Trends in CLR
normalized values for each OTU indicated that there was a repeated and temporally coordinated
relative increased in the metabolic activity of both species at 2PM 5. Both groups have previously
been found to respond to day-night environmental cues, findings are also supported by [34].

Identities of OTUs found to have significant diel periodicity included species with known pho-
totrophic and/or heterotrophic feeding strategies. This suggests that species with diel changes in
metabolic activity may be responding to light or availability of prey. More specifically, several
known phototrophs or mixotrophs, including dinoflagellates, haptophytes, and pelagophytes were
found to have significant diel periodicity. Interestingly, there were a number of OTUs identified
as belonging to the Syndiniales group (Alveolates) which are obligate parasites. Diel rhythmicity
among these parasites suggests that they are temporally coordinated to hosts that also have a
periodic signal, which includes dinoflagellates.

4.3 Depth-specific seasonal trends and putative interactions amongst
viruses

The ALOHA 1.0 dataset is a series of viral metagenomes sampled approximately monthly at 7
depths for 1.5 years at Station ALOHA in the NPSG (Fig 6) [25]. In total, the relative abundances
of 129 viral contigs were quantified. As detailed in [25], viral contig abundances display structure
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with depth, providing insight into viral infection strategies and interactions with similarly depth-
stratified bacterial hosts [60]. Here, we sought to identify potential interactions amongst viruses.

To begin, we quantified and removed the autocorrelated component of the time-series for each
viral contig across the 7 depths. We did so, in part, to avoid potential issues arising from the analysis
of correlations amongst time-series which need not recapitulate interactions [61]. We computed the
partial autocorrelation (PAC) function with a maximum lag of N = 6 (see Methods: Partial
Autocorrelation). A single lag corresponds to approximately one month (34.5 days). For each lag,
a viral contig was considered “strongly autocorrelated” if the PAC coefficient at that lag had a
magnitude greater than 0.3. Strong autocorrelation is indicative of predictable temporal patterns
for individual viral contigs. We found that the percentage of strongly autocorrelated viral contigs at
lag 1 decreased with depth (top panel of Fig 7), possibly reflecting predictable, seasonal bottom-up
drivers (eg. light or temperature) on individual viral contigs in the upper ocean. The percentage
of strongly autocorrelated viral contigs at other lags did not have a clear trend with depth.

Depth-dependent patterns were also evident in the magnitude of PAC coefficients across viral
assemblages. In Fig 7 (bottom panel), we show the PAC coefficient values for the subset of strongly
autocorrelated viral contigs at each depth and for each lag. For example, at 75m, strong positive
PAC coefficients at lag 1 were observed among the = 40% of strongly autocorrelated viral contigs.
With longer time lags, PAC coeflicients showed increased variance. This discrepancy in PAC vari-
ance at 7bm indicates community-wide coherence in temporal patterns at short time-scales (i.e.
one month) but not at longer time-scales (i.e. greater than one month). In contrast, viral contigs
at depth 1000m display consistent negative autocorrelation across lags 2 through 6. This pattern
is consistent with temporally sporadic changes in viral assemblages in the mesopelagic ocean on
time-scales less than roughly 6 months.

Next, we performed a regression analysis to identify potential interactions between viral contigs.
We first removed the autocorrelated components of the time-series for each viral contig. We used
a linear AR(p) model with the maximum lag p determined by the earlier partial autocorrelation
results (see Methods). We set a minimum threshold for the partial autocorrelation to establish a
maximum lag p < 2 for each viral contig. We fit AR(p) models to each time-series to estimate
the autoregressive coefficients and compute the residual time-series. Finally, we computed the
regression coefficients among residual time-series using two different regression techniques: simple
linear regression and linear regression with L1 regularization (see Methods). Example results for
depth 25m are shown in Fig 8 (top panel). Across all depths, we found that most viral contigs
were unrelated or only weakly related to one another. Most weak relationships were filtered out
when L1 regularization was used, further suggesting that we do not have evidence of virus-virus
interactions - despite the fact that many time-series pairs appear to be highly correlated. In Fig
8 (bottom panel), we quantify the fraction of negative, positive, and non- relationships among the
virus pairs for each depth. The fraction of negative interactions is slightly enhanced at surface
and greatly enhanced at depth, which may be an artifact of compositionality and low diversity at
depth [62, 63]. Our negative results indicate absence of evidence for interactions amongst viruses
in the surface ocean. This may be due to lack of direct competition among viruses, limitation in
detecting viral interactions at roughly monthly timescales, and/or fundamental limitations in using
correlation-based methods to infer interactions [61].
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5 Conclusion

Conducting high-resolution temporal analyses to understand microbial community dynamics has
become more feasible in recent years with continued advances in sequence technology. However,
specific statistical considerations should be taken into account as a precursor for microbiome anal-
ysis. In this primer, we summarized challenges in analyzing time-series data and present examples
which synthesize practical steps to manage these challenges. For further reading on the topics
addressed here, we recommend: normalizations and log-ratios [32, 36|, distance calculations [64],
clustering [62], statistical ordination [65, 66], regression [67], and general best practices [68]. In
addition to regression, model-based inference approaches have significant potential for identifying
interactions from -omics data [69, 70, 71, 72]. Here, our aim was to integrate analytic advances
together to serve practical aims, so that they can be transferred for analysis of other high resolution
temporal data sets. We hope that the consolidated methods and workflows in both R and MAT-
LAB help researchers from multiple disciplines advance the quantitative in situ study of microbial
communities.

6 Data Availability

For the 18S rRNA gene-based survey, data originated from [34]. The raw sequence data can also
be found under SRA BioProject PRJNA393172. Code to process this 18S rRNA tag-sequencing
data can be found at https://github.com/shu251/18Sdiversity_diel and quality checked reads
and final OTU table used for downstream data analysis is available (10.5281/zenodo.1243295), as
well as in the GitHub https://github.com/arcoenen/analyzing_microbiome_timeseries.

Viral metagenomic dataset taken at 12 time points at 7 depths originated from [25]. Raw sequence
data, assemblies, and viral populations are available at NCBI under BioProject no. PRJNA352737
and https://www.imicrobe.us/#/projects/263. The final relative abundance table used in this
manuscript is included in the GitHub https://github.com/arcoenen/analyzing _microbiome_
timeseries). All associated metadata are available at [60] and http://hahana.soest.hawaii.
edu/hot/hot-dogs.
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Figure 1: Random walks yield apparently significant correlations despite no underlying interactions,
in contrast to residuals (i.e., point-to-point differences). (A) Time-series of independent random
walks, z;(t). (B) Correlation structure of random walks; (C) Time-series of the residuals of random
walks, i.e., Ax;(t) = x;(t + At) — z;(¢); D) Correlation structure of residual time-series.
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Figure 2: Schematic workflow diagram of analytical techniques implemented in each module. The
top layer considers the types of questions that may be of interest for a particular study. In the
shaded box, appropriate data normalizations are listed as implemented in each tutorial. Underneath

the shaded box, we list the analytical techniques implemented in each module.

These techniques

provide some insight into the initial question asked, which is described in the product box. The use
of the term species is interchangeable with other measured units that could be a focus of inquiry.
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Figure 3: Comparing PCoA ordinations for 185 community compositions across samples. (A,
C) Scree plots: each bar corresponds to one of the axes of the PCoA, the height is proportional
to the amount of variance explained by that axis. We decided the first 3 axes were sufficient to
summarize the data in these cases (explaining a total of (A) 64.76% and (C) 37.54% of the variance).
Shading of bars indicate our interpretations of which axes are important to show (black), which
are unimportant (light grey), and which are intermediate cases (medium grey). (B, D) Ordinations
using the selected axes after scree plot examination. Each point is one sample, the color of the
point indicates the time of day at which the sample was taken. PCoA was implemented using two
different distance metrics on isometric log-ratio transformed data: (A, B) Jaccard distance and (C,
D) Euclidean distance.
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Figure 4: Characterization of protist clusters. (A) Cluster membership based on the phylum or
class level protistan taxonomy. The ’Other/unknown’ category includes sequences with non-specific
identity such as ‘uncultured eukaryote’ and 'Unassigned’ denotes sequences with no taxonomic hit
(< 90% similar to reference database). (B) Medoid OTU time-series for each cluster. Y-axis is
z-score, so a value of 0 corresponds to mean expression level. White and shaded regions represent
samples taken during the light (white) dark cycle (shaded).
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Colors denote unique viral contigs.

white lines indicate that no sample was taken during that month.
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Figure 7: Partial autocorrelation for each depth in the ALOHA 1.0 metavirome time-series. The
maximum lag considered was N = 6, and one lag corresponds to 34.5 days. Top) Fraction of viral
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