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Abstract

The cyclotron radiation emission spectroscopy (CRTS) technique pioneered by Project 8 measures
electromagnetic radiation from individual electrons gyrating in abackground magnetic field to construct
ahighly precise energy spectrum for beta decay studies and other applications. The detector, magnetic
trap geometry and electron dynamics give rise to a multitude ofcomplex electron signal structures which
carry information about distinguishing physical traits. With machine learning models, we develop a
scheme based on these traits to analyze and classify CRTS signals. Proper understanding and use ofthese
traits will be instrumental to improve cyclotron frequency reconstruction and boost the potential of
Project 8 to achieve world-leading sensitivity on the tritium endpoint measurementin the future.

1. Introduction

The Project 8 experiment aims to perform an ultra-precise measurement ofthe tritium beta decay endpoint to
directly measure or constrain the effective mass ofthe electron anti-neutrino, and to determine the mass
hierarchy ordering. To this end, the collaboration has pioneered the cyclotron radiation emission spectroscopy
(CRES) technique [1], in which electromagnetic radiation from the cyclotron motion ofindividual electrons in a
magnetic field B is used to reconstruct an energy spectrum from the angular frequency:
eB(r, 1)
me + Ke(t) /¢

where B is the magnetic field magnitude, e and me are the electron charge magnitude and mass, Ke(?) is the

M

electron’s kinetic energy, and cis the speed oflight. In the non-relativistic regime, this gives a low energy limit of
2.8 x 10loHzina 1T magnetic field. A CRES signal is reconstructed via a series of short-time discrete Fourier
transforms (DFTs) to produce a frequency spectrum as a function oftime (a spectrogram). Due to radiative
energy loss, the signal exhibits a pseudo-linear behavior in this time/frequency plane; figure | shows an example
spectrogram with several such signals. We refer to these CRES signals as tracks.

Forthis work, we are primarily concerned with the apparatus and data from Phase | ofProject 8; the datais from a
campaign performed in 2015 with s3mKr as the electron source gas. The Phase I detector [2] featured arectangular
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Figure 1. A multi-track electron event featuring five tracks. The electron is born in the trap around 7 ms and scatters with a residual gas
molecule around 32 ms, abruptly changing the frequency ofall tracks. This event is shown for illustrative purposes onlyand is not
from the data sets used in this work.

Figure 2. Diagram ofthe magnetic bottle trap in a bathtub configuration. Three coils are wound around the rectangular waveguide
whose magnetic fields create a potential barrier along the main axis where a 1T background field is present. Electrons are constrained
to the low-field region between two trapping coils.

waveguide to house the source gas and transport emitted radiation from the source to an antenna, as well as a
conductive shortacting as areflector opposite the antenna.

The waveguide also sports a configurable magnetic bottle trap formed by pinch coils wound along the axis of
the ~1 T background magnetic field, which we call the axial direction or simply z by definition. In such atrap,
electrons with momentum mostlyin the (x, ) directions canbe constrained in z by the small O(mT) influence
ofthe trap coils. In the ‘bathtub trap’ (the only configuration explored here), two coils ofequal polarity source the
trap by creating a pair ofpotential barriers for the electrons as illustrated in figure 2. Thus, in addition to cyclotron
motion in the (x,y) plane, atrapped electron exhibits a slower axial oscillation O(MHz) as it explores the allowed
region inz within the trap. In our experimental setup a full eventhas an average ofapproximately 2.5 ms. This axial
motion givesrise to anumber ofrich signal characteristics beyond only the instantaneous cyclotron frequency
given by equation (1). In this paper, we will summarize our understanding ofthese characteristics, the impacton
frequencyreconstruction, and present a machine-learning (ML) track classification scheme as a firststep toward a
sophisticated CRES signal analysis. This type ofanalysis will allow for significant improvementin the energy
resolution achievable with CRES, and will be especiallybeneficial when moving from a monoenergetic krypton
source to a continuous tritium source where proper event reconstruction is ofparamount importance. Lastly, we
study the impact of our ML classification analysis on the extracted tritium endpoint through simulation.

1.1. Data and signal basics
The s3mKr source emits internal conversion electrons at several energies, which we divide into three nominal

groups by the atomic shell ofthe transition as dictated in table 1.
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Table 1. Relative intensities 083" Kr conversion electron lines under study in
this work. From [6, 7],

Intensity Width

Group Line (total =1) Energy (eV) (eV)
17 keV K 0.36 17830.0 2.83
30 keV Ll 0.392 30424.4 1.84

124 0.581 30477.2 1.4
32keV M) 0.067 31934.2 1.99

M3 0.105 31941.9 1.66

N2+ 0.016 321409 0.59

Each transition is monoenergetic, up to anatural linewidth oforder eV, which is substantially less than the
energy resolution ofPhase I. The 17 keV data is closest to the tritium endpoint (18.6 keV), and the higher-energy
peaks provide important insight on the relative energy dependence ofsignal characteristics.

Electron signals emitted in the magnetic trap are received by an antenna and processed by a cryogenic
receiver chain described in [1]. The signal is down-mixed twice using local oscillators and sampled at 200 MHz
by areal-time spectrum analyzer (RSA). The RSA triggers an acquisition when it detects a high Fourier excess,
and writes time-domain data for 10 ms per trigger with a pre-trigger time of | ms. The acquisition is then
processed with a series of DFT's ofsize 8192 samples (0.040 96 ms) to produce a spectrogram like the one in
figure 1, which displays a CRES event. The resulting spectrograms are scanned for high-power bins in collinear
groupings called tracks; for an in-depth discussion the track finding algorithms and procedure, we refer to [3].
The initial frequency ofa track signal is called the start frequency, and it is the start frequency ofan electron event
that contains primary energy information needed for spectrum reconstruction.

All events considered in this study are subject to a cut on the start time ofthe first track within +£0.25 ms of
the pre-trigger time. This retains only events which have promptly triggered an acquisition and removes those
which onlytriggered after some time due to sufficiently enough power; these low-power tracks often start even
before the acquisition window, which prohibits a measurement ofthe start frequency altogether. Furthermore,
in preparing the training set for the machine learning analysis we consider only the first track(s) in such events.
In the example offigure 1, the second set oftracks would be cut, which is useful in labeling the ground truth, a
process described in section 4; by only considering the first set oftracks in an event we can confidently label
separate signal classes using both frequencyinformation and other parameter space cuts.

2. The need for classification

In this section, we summarize our understanding ofrelativistic electron dynamics in Project 8 traps to motivate
the classification scheme and elucidate the resultant properties ofreconstructed CRES signals. An analysis that
properly extracts and uses the information in these signal properties is key to obtaining a precise, well-
understood energy spectrum.

2.1. Axial motion considerations
We parameterize the axial motion ofan electron with the pitch angle 8(f), defined as the angle between the
momentum vector and the magnetic field:

cos 9(1) P B for B = B:z. @)
P#(f) P

For atrapped electron, pz has an oscillatory time dependence and therefore so does the instantaneous pitch
anglell. By definition, 9 = 90° atthe turning points ofthe axial oscillation aspz = 0; at the center ofthe trap, the
pitch angle reaches a minimum along with Bz Thus, the range in z explored by an electron is fully characterized
by (a) the trap geometry and (b) the minimum pitch angle. Going forward, we will simply use § to refer to this
minimum pitch angle, rather than the time-varying instantaneous pitch angle 9(f). In fact, there is also alimitto
the smallest pitch angle value due to conservation ofenergy which depends on the ratio ofthe trap depth and
maximum magnetic field, for more on this see [4]. Atanominal 4 mT trap depth the lowerbound is about 86°
and maybe higher depending on the chosen geometry.

A detailed mathematical discussion oftrapped electron dynamics and the resultant CRES signal
characteristics is outside the scope ofthis work but maybe found in [4]; we refer to their nomenclature for the

11 The fractional energy loss over the timescale ofthe axial period is small, so we may treat the total momentum p as a constant here.
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rest ofthe paper. There, aphenomenological model is developed using approximate Project 8§ magnetic trap
geometries to analytically describe the motion ofelectrons with 6 < 90°. The model includes a short opposite
the antenna, as is present in the Phase I detector; the resultis an energy (frequency) and position-dependent
interference effect between the incident and reflected radiation. The power spectrum P(LJ) is calculated from the
Poynting vector in the axial direction, and decomposed as a sum ofwaveguide modes. For a single mode denoted
by A, we take advantage ofthe quasi-periodic motion ofthe electron in the trap to express the power averaged
over the axial period with equation (45) in [4], reproduced here:

=4Po.A 1] K(W|2 COS2(Zf +

x [d(oj — k\Wp") + 6(u) + K\Vp")Jwith k) ==--emeemmemeemeev , 3)

where P(> \ and every A,, are amplitudes dependent on the magnetic trap shape, zt + /is the distance from the
shortto the trap center, and  \is the mode phase velocity. This equation describes a comb-like spectrum with
power concentrated at a central frequency f10 (the average cyclotron frequency) and at frequencies shifted by
integer multiples n ofthe axial oscillation frequency fln. In the bathtub trap geometry Q0 = Qc x F(tan-16)
where the function oftangent includes parameters describing the length and depth ofthe trap. The pitch angle
dependence ofPA(tu) comes from f10, fln, and in turn kx; in particular, the coefficients a,, (k) describe the relative
strength ofeach peak in the comb structure. Considerable discussion about these coefficients and their
calculation for some models is included in [4],

We refer back to figure | in the previous section, now equipped to understand how this example event
illustrates the behavior ofequation (3).

(a) The signal takes the form ofmultiple parallel tracks corresponding to the different values ofthe frequency
band order n. We call this structure a multi-peak track (MPT).

(b) At approximately 32 ms, the electron scatters with a residual gas molecule and changes the makeup ofthe
MPT; this is consistent with an abrupt change in the pitch angle. In particular, the frequency and power of
individual tracks is observed to be pitch-angle-dependent as expected.

(c) By contrast, the track slope—the change in frequency (energy) with respect to time—encodes the total
radiated power and thus does not vary within tracks ofanyone MPT.

The dependence ofthe individual band power on the pitch angle for n ~ 2 is shown in figure 3 fora 32 keV
electron in abathtub trap; it is this individual band power, and not the total power, that corresponds to a single
track in the spectrogram. Since high-orderbands are never powerful enough for reconstruction, we in general
restrict our discussions to only the mainband (n = 0) and one detected sideband order: n = 1 orn = 2
depending on the short interference effect. The dashed line in figure 3 shows an example detection threshold that
is met only by the mainband and the n = 2 sideband for different but partially overlapping ranges ofthe pitch
angle. This creates three allowed track types based on the pitch angle and the band order.

(i) Mainband high pitch angle: closestto 90° forn = 0.
(ii) Mainband low pitch angle: far from 90° forn = 0.

(iii) Sidebands: asingle range forn = 2.

Since the short interference is a wavelength-dependent effect, we expect the specific nature ofthe allowed
pitch angle regions to vary with frequency. Indeed, in Project 8 Phase I the 32 keV tracks are well described by
figure 3 and the three cases above; but the storyis very different at 17 keV, where the mainband is almost
completely suppressed and we detect onlythe n = 1 sidebands. For further discussion ofthis effect where the
n = 1 sideband is visible we refer the reader to section VII of[4]. This exemplifies the powerful influence ofthe
short, and the importance ofunderstanding sideband effects.

2.2. Radial gradient effects

So far, we have treated the axial motion as independent ofthe (x,y) plane on the basis that the magnetic field
varies onlywith z, i.e. VB is always parallel to B. However, to improve our description ofthe electron dynamics
we must consider a small radial gradient ofthe form VB x BI2 This causes the guiding center ofthe cyclotron12

12 In fact, the assumption that B X B = 0 contradicts the Maxwell equations and thus is clearly unphysical.
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Figure 3. Left: power distribution ofa 32 keV electron signal in a bathtub-type Project 8 trap as dependent on pitch angle due to the
rectangular waveguide with a short. For a threshold as shown, only the mainband and 2nd order sidebands surpass the detection
threshold while the 1st order sideband is suppressed. Right: As a result, the slope ofthe mainband, which is directly proportional to
the total detected power, suffers a discontinuity in frequency.

orbitto precess slowly (compared to the axial motion) in x andy, which in effect perturbs the one-dimensional
magnetic trap profile Bz(z) with a slow time dependence. A small anti-symmetric tipping ofthe trap coils at angle
V' from z is the simplest way to recreate this VB x B perturbation in simulation. Consequently, this gradient
induces a periodic drift in the axial frequency Qa:

na(t) to n,,|1 + Jsin b sin((L,,.Dj, @)

where ris the radial position ofthe electron, fis the characteristic trap length and fZm is the drift frequency.

The effect ofthis precession on the track signal now becomes clear: ifthe axial frequency varies sinusoidally,
so will the frequency ofthe n > 0 (sideband) tracks. This oscillation has been observed in Phase I data, where it
manifests as a track with an appreciable ‘width’ in frequency; figure 4 shows an example sideband track with this
quality. Since the observed period ofprecession is 100 y/s, which is comparable to the DPT length (40.96 /vs),
the oscillation can be seen to some extent directly in the spectrogram.

This observed frequency oscillation represents one ofthe primary motivations for a machine learning
approach to signal classification. Its effect on the spectrogram is clear as illustrated in figure 4, and it is a unique
property ofsideband tracks which demonstrates the power to discriminate from mainbands. By extracting
information from the spectrogram around a track, we can then apply machine learning techniques to identify
sideband oscillation when it is present and label the track accordingly.

2.3. Energy correction

The cyclotron frequency flr ofa MPT structure can be calculated using the phenomenological model in [4] if
both the reconstructed mainband frequency )0 and the pitch angle 0 ofthe electron are known. The resultis in
effect an energy correction, where the kinetic energy (and thus from many events, the energy spectrum) is
calculated from the true cyclotron frequency rather than the frequency ofany one reconstructed track. Itis the
end goal ofthe classification scheme to accomplish exactly this; first the identity ofthe mainband track mustbe
established, and then pitch angle information extracted. We may extract the pitch angle in two ways.

(i) Axial frequency: for MPTs with a mainband and one or more sidebands, the axial frequency fln is the
frequency difference between the mainband and a sideband track divided by its order n. fla may also be
determined the same way from an event with multiple sidebands but no mainband. In Phase I, these cases
comprise a minority ofour data at about ~ 10%.

(i) Track slope: for MPTs with only a mainband, the pitch angle may be extracted from the track slope, which is
proportional to the total radiated power in equation (3). Such cases comprise the majority ofthe data used
for this work at about ~90%.

The second method listed above has an ambiguity that must be addressed: in general, the track slope alone
does notuniquely determine the pitch angle (this is evident from figure 3). To resolve this issue, we must also
differentiate between mainbands ofthe high and low pitch angle regions. Our task is then to assign every track an
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Figure 4. Close examination ofa spectrogram with a sideband signal. The frequency oscillates due to radial gradients in the magnetic
field, depositing power over a range ofroughly 500 kHz and most concentrated at the turning points ofthe oscillation. This oscillation
corresponds to the apparent thickness ofthe track.

appropriate topological label from the list in section 2.1: mainband high pitch angle, mainband low pitch angle,
or sideband. Classification into these three groups will allow for an accurate measurement ofthe mainband
frequency, the pitch angle, and in turn the true kinetic energy can be determined from the cyclotron frequency.

We approach this task with a machine learning model that uses a supervised learning method for
classification. The overarching goal ofthe classification program is to use only those track features that are
intrinsic to the signal itselfand, through their inclusion, have the capability to improve the accuracy and
robustness ofthe signal identification. As Project 8 moves to a tritium source, such a classification scheme will be
vital to make an accurate measurement ofthe continuous spectrum and reach meaningful conclusions about the
endpoint. In the remaining sections, we will develop the classification scheme and present the results on krypton
Phase I data atall three energies ofinterest. The next steps ofpitch angle calculation and the resultant energy
correction are notyet implemented, but are of course a primary focus of future work to realize the full potential
oftrack classification. We will also discuss the future impact ofa more-developed classification process in the
context oftritium endpoint sensitivity and full event reconstruction.

3. Signal analysis and feature extraction

The track features which we use for classification result from two separate analysis techniques: primary track
finding and the rotate-and-project algorithm. These methods give us atotal of 14 parameters that we use in
training the ML classification model. In this section, we describe the calculation ofthese parameters.

3.1. Primarytrack parameters

Primary track finding is the process of collecting high-power spectrogram bins into linear track signals,
described thoroughly in [3]. Atits conclusion, several parameters are formally calculated to describe each track
candidate; these include the slope, start frequency, time length, and many others. We use the following three
quantities as inputs to the classification model:

' Total Power Density (W Hz-1): the sum ofpower spectral density values in all bins that comprise the
track cluster.

v TrackSlope (Hzs-1): the slope ofthe track as extracted from regression analysis and a Hough

transform [5],
' TimeLength (s): the difference between the track end time and start time.
Recall that the slope ofa track is directly proportional to the total power emitted by the electron, and the

slope and individual track power together determine the pitch angle information as illustrated in figure 3. Thus,
the correlation between slope and track power has strong discrimination power between regions ofhigh and low
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Figure 5. Power and slope correlations in Phase 132 keV bathtub trap tracks (black scatter). The phenomenological model fitis
overlaid for high (blue) and low (pink) pitch angle carriers, which demonstrates the well-resolved separation ofmainband populations
with disjoint pitch angles.

pitch angle. Figure 5 illustrates this correlation for 32 keV electrons and shows a good separation ofthe two
mainband populations, which agrees with our understanding ofthe physical process from the
phenomenological model. In this figure the sideband events populate the low PSD range across all slopes. This
provides a clear motivation for the use ofthese two features as inputs to the classification model.

The utility ofthe track length is primarily based in its correlation with the track power as well. Mainband
tracks in general have a strong profile with power concentrated in one or a few ofthe frequencybins at each time
slice. By contrast, sideband tracks often have power distributed across manybins due to the effect ofthe radial
magnetic field gradient discussed in section 2.2. Sidebands also contain less power overall in the case ofthe 30
and 32 keV peaks. Consequently, the track power can have considerable dependence on the number ofpoints
which comprise the track, and the track length helps to bolster the discrimination ability between all three types
in conjunction with the slope and power.

3.2. Rotate-and-project distribution

Radial magnetic field gradients create a sinusoidal variation in the axial frequency, effectively smearing sideband
track power over several frequency bins while leaving the mainband track untouched. To extract a set of
parameters from the spectrogram that quantify this difference, we first simplify the problem. After primary track
finding, spectrograms with a known track are reprocessed with a ‘Rotate-and-Project’ operation, where they are
effectively projected along the axis perpendicular to the track. This reduces the analysis to one-dimension—the
projected spectrum—while preserving the most useful information about the track from the full spectrogram.
The precise procedure is as follows.

(i) The known track is characterized by a slope g and intercept/).

(ii) The full spectrogram is reduced to a sparse spectrogram of only points that have SNR > 4.0 and that lie
within the time bounds ofthe track. These points will be described by (/,/*) where #denotes the time
coordinate,/the frequency coordinate and; the point index.

(iii) The projected spectrum s at bin £ is calculated as a function ofthe intercept, which we call // and which
sweeps the range/0 == A/in discrete steps of6/3 (both A/and 6/3 are runtime-configurable parameters):

W - i - Ok):
st = exp (©)
j lal

where j3u = fo — AJ/+ kb6/3, qis the track slope, and a is another runtime-configurable variable which
describes the resolution ofthe spectrum. This calculation is a kernel density estimation with a Gaussian
kernel and bandwith a.
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Figure 6. Spectra from the rotate-and-pro)ect analysis for a typical (a) mainband track and (b) sideband track. The mainband track is
sharply peaked, whereas the sideband track is spread over awider frequency range and doubly peaked. Each spectrum also shows the
associated Gaussian fit for comparison. Note they-axis in (b) is scaled down in comparison to (a). The sideband used for (b) is the
same track as illustrated in figure 4.

Ataminimum, a should reflect the inherent uncertainty in each pointlocation, which is roughly the bin size;
this way, the spectrum is not strongly affected by how precisely the choices of A7 6/3, or the reconstructed value
S0 coincide with the discrete binning ofthe spectrogram, a can also be made much larger than the bin size, and
the projected spectrum gains sensitivity to structures which span a similarly larger bandwidth; however to retain
good sensitivity to the sharp mainband tracks, we keep a similar to the bin width. There is no advantage to
matching it exactly with the bin size, so for convenience we choose a = 50 kHz which is approximately 2 bins.
For the step size, we choose 6/3 = 25 kHz, or halfthe resolution a and approximately | bin. The only
requirements on the sweep range 2 A/are that it should be many times larger than the frequencybin size, and ata
minimum large enough to capture the full amplitude ofthe sideband oscillation (~1 MHz). We choose
A/= 4 MHz.

Figure 6 shows typical projected spectra corresponding to amainband and a sideband track. The qualitative
differences between the two remain clear: sideband spectra typically feature a wide double peak structure,
contrasted with the sharp and high-amplitude profile ofthe mainband spectrum. The sideband spectrum
amplitude is largest near the edges ofthe signal region because the axial motion is slowest at its turning points,
thus depositing more power per bin; this effect can also be seen in the spectrogram (figure 4). Next, we use the
ROOT library TSpectrum [8] to characterize peaks in the projected spectrum. This library fits a linear
background by = ak + hand labels a point k as a peak ifit meets all ofthe following criteria.

(i) Value is atleast twice that ofthe background level: % ~ 2by.
(i) Peak amplitude meets or exceeds aminimum fraction rofthe highest peak: si- — bj- Jk r sup”js, — b,}.

(iii) Value is alocal maximum withinmbins: Si > sj Vj |0 < |j — k\"m. The frequency range corresponding
tombinsis m 6/3.

We choose r = 0.4 and m = 5. The values ofthese and the other configurable parameters from equation (5)
are listed in table 2. Once the peak locations are determined, the full spectrum is fitto a sum ofn Gaussian
functions where 7 is the number ofpeaks found. Only a handful oftracks in our studies produced a spectrum
with 3 or more peaks, and none with more than 6.

From the spectrum s& and the results ofthe Gaussian fit, we extract a total of 11 additional parameters for use
with the classifier:

¢ Average, RMS, Skewness, Kurtosis: firstfour statistical moments ofthe spectrum %. Average and
RMS are inunits ofMHz, and Average is shifted by/0 so that 0 corresponds to the center ofthe spectrum.

¢+ MeanCentral, SigmaCentral, NormCentral,MaximumCentral: extracted fit parameters ofthe
Gaussian with mean closest to/0 (the most central peak). MeanCentral is shifted byfl as described above,
andMaximumCentral = b0 + (27r) 1 NormCentral / SigmaCentral where bl is the background

level atthe peak location. BothMeanCentral and SigmaCentral areinunits ofMHz.

+ NPea ks: number ofpeaks found by TSpectrum for the Gaussian fit.
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Table 2. Standard
parameter values for
rotate and project

analysis.
Parameter Value
A/ 4 MHz
sp 25kHz
a 50 kHz
r 0.4
m 5
' RMSAwayFromCentral: rms ((s2) — (s)2)1/2 ofpoints greater than 3 times SigmaCentral awayfrom

the most central peak.

v Central PowerFraction: average value (s) ofbins within 3 times SigmaCentral ofthe most central
peak divided by the average value ofall points in the spectrum.

In the event that the Gaussian fit fails to converge, all ofthe parameters that depend on it are obviously
unreliable and some can be undefined. To circumvent this, we simply remove any tracks from the analysis that
have an unsuccessful fit, or which have any parameters undefined as a result ofan improper fit. These represent
between 5% and 10% ofall tracks in various data sets we have used. Combining these with the track parameters
discussed in the previous subsection, we have atotal of 14 parameters to use for ML-based classification. The
slope, power, and track length have the ability to distinguish between all three track topologies based on the
phenomenological model; the projected spectrum provides an additional 11 parameters which distinguish
sidebands from the two mainband topologies. In the next section we discuss the implementation ofthis new
analysis.

4. Supervised classification

We take amachine learning approach towards signal classification across 17,30, and 32 keV data sets (see
section 1.1) using a supportvector machine (SVM) [9] classifier optimized via supervised learning. The result of
training the SVM is anominal decision function that takes data points (track parameters) as 14-dimensional
vector inputs and predicts a class label with a given accuracy and precision. In this section we briefly discuss the
overall training scheme with details left to appendix A is available online atstacks.iop.org/NjP/22/033004/
mmedia.

To obtain the training, cross-validation, and test sets over which the classifier is optimized we make a series
ofparameter-space cuts in the data. The first cutis on the start time as discussed in section 1.1, which selects only
tracks that promptly trigger the RSA acquisition. From these, we assign ground-truth labels using two
independent fits to the phenomenological model: first, we fit the predicted behavior ofslope with respect to the
start frequency with the energy assumed to be known exactly. Points within a fixed Euclidean distance in the
slope/frequency space ofthe model predictions were labeled as main carriers, either #igh-6 or low-0
accordingly. Second, we label the remaining sideband tracks using the relative track power with respect to
frequency, again with the energy fixed. Tracks outside the inclusion regions for every label are simply discarded.
This yields a total 0of7347 tracks for optimization. Labeled tracks are further splitin a 67%/33% fashion for
training (training and cross-validation together) and testing, respectively. In performing the split, we keep the
relative ratios ofclasses in mind so as not to introduce biases during training.

Itis worth noting briefly that although a ground-truth labeling informed by a proper simulation is likely
more desirable, our understanding ofthese pitch angle effects with the phenomenological model was very new at
the time, and our simulation tools were not equipped to incorporate them easily. We have high confidence in the
accuracy ofthe training set labels as described here, so the concern is a minor one. Furthermore, the method
described above for labeling is only suitable for training purposes and not for classification since, in generating
the fits to the selected subset of data, we assume that the energy is known exactly (with a small margin oferror
represented by a Euclidean distance in the respective parameter space). In the final data, which we wish to
classify, this assumption is not valid for all the tracks we reconstruct.

The implementation ofthe classifier is performed with the python-based ML library Scikit-learn [10]. In
Scikit-learn, template SVMs are implemented by a Cython wrapper around the powerful library LIBSVM [11].
In training the SVM classifier we in parallel optimize the model’s hyperparameters C and 7 which may influence
bias and overfitting. C encodes the leniency ofthe SVM in trading misclassihcation for model stability
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(influencing overfitting) and 7 dictates the influence oftraining points defining the decision boundary to the rest
(influencing bias and variance). We then test the competency ofthe optimized model on the test set and use the
accuracy and the areaunder the receiver operating characteristic (AUROC) as performance metrics. For our
multi-class application (two mainband classes and one sideband class), we average the individual receiver
operating characteristic (ROC) curves to report the overall AUROC metric.

5. Results

Here we report the results ofthe track classifier as trained on different combinations ofthe s3mKr line groupings
discussed in section 4. We will show that the optimized SVM classifier can distinguish the three different track
topologies with great accuracy and robustness, allowing us to obtain clean spectra across all energyranges.

5.1. Narrowband classifier
In the case ofa tritium spectrum, the region ofinterest will be a window spanning approximately 4 keV
(200 MHz) around the endpointvalue Q = 18.6 keV. A classifier will be necessary to understand the CRES
signal in this region ifsidebands are present and, overall, ifenergy corrections are to be applied in an event-by-
event fashion. With s3mKr as a calibration source gas, we may first study the classifier results by training our
model on the 30 keV peaks and applying it to both 30 and 32 keV peaks simultaneously. This 2 keV energy
separationl] serves as a test ofclassifier reliability across an energy range similar to the tritium window; we call
this configuration the narrowband classifier.

The results ofthe optimization outlined in the previous section (in detail in appendix A), picked from a
cross-validation accuracy 0f92.0% =+ 0.8% as amean over three-folds, gives us the following SVM
hyperparameters:

C = 108.01
7=2947 x 10"3.

These values are indicative ofa ‘smooth’ model (7 <C 1) which captures little ofthe data complexity in the
feature space, butis balanced by the large value of C>> | which allows for highly nonlinear terms in the loss
metric minimization, recovering some complexity in the decision plane.

The respective test set accuracy on the 30 keV range is 91.2%. We also generate the ROC curves for each class
and average them as shown in figure 7. Across all classes we observe an AUROC over 0.9 which indicates that our
model does very well at separating any individual type oftrack from the rest. The ROC curve for low pitch angle
mainbands (in pink) has the lowest AUROC, which is most likely due to its relatively small population relative to
the other two classes; this comes into effect at One-versus-Rest level where the former population is pitted
against the latter simultaneously. Both average curves achieve a ROC over 0.960 putting us in an excellent range
ofmodel stability to compliment the high test accuracy obtained.

In figure 8(a) we see the resulting classified track start frequency spectrum in the 30 keV range, the range on
which this classifier was trained. We observe a clean separation ofmainband tracks in blue (high pitch angle) and
pink (low pitch angle) to sidebands in yellow that are mostly concentrated above 1150 MHz. The broad peak
between 1160 and 1170 MHz corresponds to upper sidebands of2nd order, giving a rough estimate ofthe axial
frequencyfa % 22.5 MHz; the n = 1 sidebands are predicted to be suppressed due to the short effect discussed
in section 2.1. To see the separation between mainbands ofdifferent types more clearly, we study the slope
populations in the frequencyrange 1118-1123 MHz. The overlap ofhigh and low pitch angle mainbands in
frequency space seen in figure 8(a) around the low pitch angle peaks is now apportioned, as evident in figure 9(a).
The blue scatter points in the region around the low pitch angle peaks constitute true high pitch angle carriers
whose true start frequency has been missed during primary track reconstruction. This separation allows a single-
valued reconstruction ofthe pitch angle for a mainband ofa given slope; recall that energy corrections maybe
performed once the pitch angle information is available

We also apply the narrowband classifier to the 32 keV group and obtain an accuracy 0£92.8%, which
surpasses the test set score. As can be seen in figure 8(b), the frequency spectrum sports a clean separation
between mainbands and sidebands; in this case both upper (around 1090 MHz) and lower (around 1010 MHz)
sidebands are visible. The short peak around 1040 MHz has also been classified as a mainband with its respective
low pitch angle tail. This corresponds to the 32.14 keV krypton line, which would be extremely difficult to spot
by eye, as its relative intensityis very low. The mainbands ofthe 31.9 keV lines are separated neatly in slope-
frequency space as seen in figure 9(b), once again giving way for possible energy reconstruction through pitch

13 Including upper and lower sidebands the energy range is wider, at approximately 3.25 keV.
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Figure 7. ROCs ofindividual classes and averages for the narrowband model.
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Figure 8.30 and 32 keV frequency spectra classified with the narrowband model. The colors represent the SVM class identification.

angle extraction. The success ofthe narrowband model at 32 keV is reassuring that a similar technique could be
applied to the tritium endpointregion with training on the 17 keV krypton peak.

5.2. Optimal set ofclassification features

We can further improve the performance ofthe narrowband SVM model by examining how useful each
parameter is for accurate classification. An exhaustive search ofthe unique combinations offeatures from the
14-dimensional feature space results in 214 — | = 16 383 iterations ofthe training algorithm. We train a SVM

and evaluate the accuracy and the AUROC for each feature subset. The subset with the best overall performance

11
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Figure9.30 and 32 keV trackslope and frequency correlations classified with the narrowband model. The colors represent the SVM
classidentification.

may have improved accuracy compared to the full feature set, and will require less intense computation
resources to train on alarge data campaign.

To evaluate each subset SVM with a single metric, we use the sum in quadrature ofthe accuracy and the
AUROC value:

Aopt = six] + 312, (6)

where x is the accuracy ofthe model andy is the AUROC. The maximum possible value of Aoptis ~JI RS 1.414.
Maximizing this combined metric allows us to asses both the model stability and its predictive power
simultaneously.

Perhaps unsurprisingly, the value of Aopt is in general large for subsets with many features; a complex model
has a greater capability for increased performance. However, some single-feature models are able to achieve high
values of Aopt as well. Average exemplifies this, which alone yields a model with 90.1% accuracy and
Aopt = 1.314. Ofcourse, models with a single feature for classification run the risk oflacking enough variance to
generalize effectively so we discard them as viable candidates. A global maximum of Aopt = 1.359 is achieved
with amodel utilizing 6 final parameters: Total PowerDensity, TrackSlope, TimeLength,
MeanCentral, NormCentral, andMaximumCentral. This amounts to an accuracy 0f94.9%, an
increase 0f3.7% compared to the original resultin section 5.1, and an AUROC 0f0.97 on the test set.

5.3.17 keV peak: sidebands and energy dependence

The 17 keV peak presents a unique problem for the classifier; as discussed in section 2.1, the CRES signal power
distribution across the sideband spectrum is energy-dependent as a consequence ofthe waveguide short. We
have come to understand thatthe 17 keV Phase I data studied here consists almost entirelyl4 ofpairs of | st-order
sideband tracks, due to alarge suppression ofthe mainband peak from the short interference effect. We have
studied more closely the region between the 17 keV sideband peaks and found an excess of power corresponding
to an average SNR of 1.26; much too low for track reconstruction, but adequate in combination with other
studies to confirm the sideband hypothesis. Consequently, we cannot train the classifier on 17 keV tracks since
we have no mainband tracks to offer it.

14 A small fraction  1%) ofobservedtracksat 17 keV are hypothesized to be genuine mainband signals from shake-offelectrons.
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Figure 10.17 keV classified frequency spectrum with wideband model. The colors represent the SVM class identification.

Instead, we can firstuse the same classifier thatwas trained on 30 keV to evaluate the 17 keV tracks, and the results
are subpar, with an accuracy of75.5%. While a sizeable portion oftracks are still classified properly, we are confident
thatnearly all ofthose classified as main carriers are incorrect. However, this resultis not unexpected; the power and
slope correlation discussed in section 3.1 is also energy-dependent, and from section 5.2 we now understand these
two parameters to be among the most decisive in the classification scheme. In the training scheme, the classifier
becomes familiar with the 30 keV power-slope correlation, and this has a considerable negative influence when
applied to the 17 keV peak where the true power-slope correlation is different. It should be noted that this effectis also
present at 32 keV when trained on 30 keV, but from the comparable accuracy scores and AUROCs we conclude itis
insignificant for this small energy difference, much to our advantage.

5.4. Wideband classifier

To improve the classifier performance on 17 keV data, we will consider two approaches: first, we use only the
rotate-and-project parameters, which have no energy dependence. Second, we train and evaluate the 14-
dimensional classifier simultaneously on all three peaks.

With the rotate-and-project parameters only, we re-train and test the classifier on 30 keV data, and apply itat
17 keV. In the test set (30 keV), the total accuracy decreases to 86.1%; this is reasonable given that the slope and
power information, which was especially useful in discriminating between the two mainband types, is missing.
When applied at 17 keV, we observe an accuracy 0f78.9%, which is amodest improvement over the
narrowband model (75.5%). The ratio ofthe 17 keV accuracy to that of30 keV is more substantially improved:
0.917 compared with 0.829 for the narrowband. This suggests, as we hypothesized, that energy-dependent
parameters are partially responsible for the shortcoming ofthe narrowband classifier at 17 keV. However, the
rotate-and-project only performance is still far less than ideal and poor compared to the narrowband model at
30 and 32 keV, thus it does not provide us with a satisfactory alternative.

The second approach we explore considers all three energy ranges simultaneously for training; we call this
model the wideband classifier. The 17 keV classified spectrum from this model is shown in figure 10. Itis
immediately clear that this model has by far the best performance at 17 keV, with an accuracy 0f96.1%. The
largest population ofmainband tracks is broadly centered about ~ 1750 MHz, which is atleast 30 MHz above the
(suppressed) mainband peak. Informal inspection ofthe slope-power correlation among these tracks, as well as
the individual spectrograms, suggests they are indeed most consistent with true mainband tracks. We interpret
this as evidence for satellite shake-up/shake-offelectrons [12] to be further investigated. Similar broad peaks of
mainbands at the 30 and 32keV ranges have also been observed at a similar separation in frequency (see figure 8).
Overall, the 30 and 32 keV lines themselves also show improved accuracy scores compared to the original
narrowband model with the full feature set: 92.3% (+1.1%) and 95.6% (+2.8%) respectively.

6. Discussion and outlook

We now have two candidate classifier models: the optimal-feature set narrowband model and the wideband
model. Since the classifier will be used for future tritium analyses, we keep the context oftritium data in mind
when discussing the advantages ofeach. The overall accuracy scores and AUROC: for each classifier are
summarized in table 315.

15 The training computation times for all three models are on the same order, between 15 and 30 min and does not require high performance

computing.
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Table 3. Summary ofclassification model accuracy scores and averaged
AUROC metrics. We exclude 17 keV from the calculation ofthe narrowband

AUROC.
Accuracy
Model AUROC
17 keV 30 keV 32keV
Narrowband 75.5% 91.2% 92.8% 0.967
Wideband 96.1% 92.3% 95.6% 0.984
Optimized — 94.9% 94.0% 0.973
narrowband

In the previous section, we improved the classification accuracy at 17 keV by training on all three peaks
simultaneously (the wideband model); this model also boasted percent-level improvements to the accuracy at 30
and 32 keV. We understand that the narrowband classifier performed poorly at 17 keV due to energy-dependent
correlations between parameters, and the lack ofappropriate training at 17 keV. In a tritium analysis, the data
acquisition will be contained to not more than +£2 keV around the endpoint; this includes the 17 keV krypton
peak, which can be used for magnetic held calibration. Therefore, ifwe construct a narrowband model in this
context—trained on 17 keV krypton data and applied to tritium data from approximately 15—19 keV—itis
reasonable to expect a performance similar to the current narrowband model at 30 and 32 keV. Although the
narrowband classifier has notbeen directly trained and evaluated in the tritium endpoint energy range, we have
high confidence in its applicability there in the future. The overall results ofthe various classification approaches
and studies have yielded great improvements to our understanding ofthe datato give us this confidence.

We also saw in the previous section that the choice ofan optimal subset ofthe classification features
improved the narrowband model accuracy and AUROC metrics at the percent level, bringing them to a point
comparable to the wideband model. In the next section, we will also examine the effect ofimperfect classification
on the resultant tritium spectrum. Upon comparison ofthe performance ofa narrowband 30 keV network and
the wideband network applied to 30 and 32 keV data, we see that the wideband model gives only marginal
improvement in performance over the narrowband model trained on a close neighbor. Since the tritium signal
spectrum has a close neighbor calibration source at 17 keV ofKrypton, itis not necessary to bring in the
complexity ofawideband model. The sideband problems which prevented aversion ofthe narrowband model
from being trained at 17 keV in this work are expected to be ameliorated in hardware at later phases. However, in
the eventuality that they remain a challenge, we have shown that awideband model can achieve good
performance as well ifit is trained properly.

6.1. Future applications in event reconstruction

The signal from a single electron in general takes the form of many reconstructed tracks, via (a) sideband power
deposition and (b) scattering interactions with residual gas molecules. The sideband comb structure creates a
group ofparallel tracks as discussed in section 2.1, and discrete energy loss from a scattering interaction creates a
jump’ in the signal frequencies and in the pitch angle. After track finding, those tracks thatbelong to the same
event (electron) are grouped together to obtain onlythe start frequency ofthe event as a whole. In the current
eventbuilding scheme, this is accomplished with two stages in sequence corresponding to the two items above.
First, individual tracks are combined into MPT objects based on a coincidence between start and end times.
Many such MPTs are then joined into a single event using a similar coincidence check on the timestamps, this
time a head-tail comparison. A full treatment ofthis process is given in [13]. However, the present event builder
(with no classifier information) makes no statement about the identity ofthe mainband within a MPT structure;
the start frequency ofan event is simply defined as that ofthe first track (in time) within the first MPT ofthe
event sequence. The classification scheme thus creates the potential for a more intelligent eventbuilding
procedure which takes advantage ofthe labeled topologies to determine the true main carrier start frequency of
an event.

One simple improvement is to utilize the classification labels to add consistency checks in event building. A
MPT structure should logically contain no more than one mainband, and the start frequency ofthe MPT should
be determined by this mainband track alone (ifpresent). MPTs with two or more sidebands may also be checked
to ensure the frequency spacing between them is consistent with aunique axial frequency. Ifamainband track
decreases in frequency after a scatter, indicating a sharp increase in the pitch angle, the accompanying decrease
in axial frequency ofthe candidate sidebands may also be used as a check. These examples are only some ofthe

many possibilities in which classification labels can enhance our reconstruction process.
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Figure 11. Classified tracks ofcandidate MPT events exhibiting multiple topological combinations present in Project 8 Phase | data.
Theblue are mainband high pitch angle, the pink mainband low pitch angle and the yellow sideband classified tracks. The rectangular
boxes are for illustration only; the trackis composed ofall points concentrated alonga line passing through the middle ofthe box.

In figure 11 we show some typical interesting event topologies which could benefit from an eventbuilder that
utilizes the classifier results.

+ Top left: an event with a scatter that changes the pitch angle from the high to low region, according to the
classifier. A faint sideband is also visible above the mainband after the scatter, but it was not reconstructed. Itis
interesting to note that this change in topologywould be very difficult for a human labeller to identify, butis
clearly easy for the classifier.

+ Bottom left: a MPT with two lone sidebands. In this case, we can reconstruct the hidden mainband start
frequency from the axial separation and determine the pitch angle correction.

+ Bottom right: a MPT that the classifier has identified to contain two mainbands. This indicates an error, either
in the classification or the MPT construction. To address this, we might consider the relative probabilities that
either track is in fact a sideband (i.e. work eventbuilding information into the classifier), or simply discard the
event ifit cannotbe made sensible.

Animproved eventbuilder that works in tandem with the classifier is crucial for proper reconstruction ofa
continuous tritium spectrum using CRES. Complex event topologies and sideband proliferation from lower
energies in the spectrum continuum will demand a sophisticated understanding ofthe underlying nature of
tracks. For example with atomic tritium, assuming | x 10Is atoms m~3 and a cylindrical voxell of1 cmin
diameter and 10 m in length, for events with, on average, ten tracks oflength 80 /is each we expect 3.14 x 1015
atoms/voxel. Then, given an activity of5.6 x 106 pervoxel for the entire spectrum, we expect about 1.69 events
(abouttwo events) present at all times when looking at a | keV window below the endpoint where only a

2 x 10~4 fraction ofthe activity is present. With two possibly overlapping events in a given spectrogram, the use
ofan accurate classifier will be decisive in identifying and separating the constituents ofeach; we expect that the
model presented here is a decisive step toward that success. In figure 12 we outline the analysis steps discussed for
this work, including the future work regarding (a) the eventbuilder as discussed in this section, and (b) pitch
angle corrections to extractthe true cyclotron frequency.16

16 Assuming that we have beamforming in the radial direction with | cm orbetterresolution, and no axial information.
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Figure 12. Analysis flowchartdescribed and proposed in this work. The green blocks indicate large-scale processing steps and the
smaller orange blocks show the data at each step. Feature extraction and the classifier decision function are contained within the block
labeled ‘Classifier’, and the classified track provides more input information to the eventbuilder compared to the raw track. Expansion
ofthe event building stage and implementation ofthe pitch angle corrections are the most critical future analysis tasks to fully utilize
the classification scheme.

6.2. Effects of misclassification on tritium spectrum
Along with the improved eventbuilder, a classifier helps us reuse or remove all but the misclassihed sidebands at
ahigh confidence level. However, itis still important to study the effect ofsideband proliferation through
misclassification on the tritium spectrum. Using the Morpho [14] interface to perform Hamiltonian Monte
Carlo simulations with the Stan package [15], we model the electron kinematic variables and compute the
detected track frequencies according to the discussions in section 2.1. The kinetic energy is drawn from the
tritium spectrum probability distribution function with an endpoint ofexactly Q = 18 600 eV and zero
neutrino mass. The power in each ofthe mainband and the pair ofn = 2 sideband tracks is then calculated for a
circular waveguide with the same bathtub trap configuration as for the dataused in this paper. For those
electrons thatbecome trapped, a uniform detection threshold is enforced on each track. The detected tracks are
collected into a mainband spectrum, denoted p0CE)> and a sideband spectrum denotedp2CE)17- Here, E
represents the inferred kinetic energy from the detected track frequency, which in the case ofsideband tracks
would constitute an erroneous reconstruction; this allows us to study the effects ofboth misclassification and the
lack ofpitch angle corrections. It is important to note that this simulation serves only as a toy model and does not
reflectthe complete design ofthe Project 8 detector in Phase I (from which the data presented here in earlier
sections was taken), or Phase II which has since reconstructed the first ever tritium spectrum with CRTS.
However, the toy model is relevant as amean to highlight and evaluate some ofthe challenges that sideband
presence will bring when reconstructing any CRES spectrum.

Ifthe probability for a track to be wrongly classified (either mainband as sideband, orvice versa) is uniformly
a, then the spectrum ofclassified mainband tracks is:

pP{E) = (1 = @)p0(E) + a p2(E). )

With a = 0, we obtain the main-carrier-only spectrum from a ‘perfect’ classifier. Since the energy ofeach event
is calculated from the measured (mainband) frequency and not the cyclotron frequency, we expect to observe a
shiftto lower energy (higher frequency) in the endpoint. Indeed, figure 13 shows the simulated Kurie plot for
perfect classification @ = 0 (inblack) and the fitted Q-value:

Q(a = 0) = 18.461 keV (8)

which deviates from the true inputvalue by 139 eV. In the same figure we show the spectrum witha = 0.5
(random classification); now, the region above the endpoint is contaminated by sidebands. As aresult, the
endpoint is measured at:

Q(a = 0.5) = 19.028 keV

which exceeds the true value by 428 eV, or roughly 20 MHz: quite similar to the observed axial frequency.
Lastly, we perform the Kurie fit for many values ofa to see the dependence ofQ in amore continuous form;
figure 14 illustrates these results. Each Q-value (shown as the dashed line) represents the mean of 50 unique
spectrum simulations for a fixed value of'ct; the band in light red spans the standard error ofthe mean on either
side, and is dominated by the statistical uncertainty ofeach simulation. Though the simulations are themselves
independent, we use the same set of simulations for all values ofa. Thus, the uncertaintyband in Q does not
reflectthe endpoint measurement uncertainty ofthe simulation, nor, more importantly, ofanyreal Project 8

17 Recall thatthe n — | sidebands are suppressed due to the interference effect.
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Figure 13. Kurie plot oftwo simulated tritium spectra in the toy model described in section 6.2: mainbands only (black) and sideband
contaminated with misclassification rate a = 0.5 (purple).
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Figure 14. Extracted Q-value from Kitrie fitto sideband contaminated tritium spectrum simulations for different values of
misclassification fraction a. The light red band represents the standard error ofthe mean. The true value ofthe endpoint is
asymptotically approached for decreasing @ which, without energy corrections, sits around 18.5 keV.

phase. Comparingto a = 0, we observe thateven fora % 10~2 which is small compared to our demonstrated
models, the endpoint shiftis significant; a precise requirement or bound on a, however, is again not necessarily
transferable to Project 8. Still, we may safely conclude that going forward with the classification models we must
have the highestreasonable standard for accuracy. Our thorough understanding ofthe trap geometry and
related systematics helps in addition to reduce the effects of sideband contamination in future Project 8 phases,
through both design and trap configuration.

We have clearly demonstrated with this simulation that both energy corrections and track classification will
have a substantial influence on future CRES tritium results, with an observed endpoint shift on the scale of
0(100 eV). The design and configuration offuture phases of Project § are guided in partby the goal to suppress
detectable sidebands and achieve sub-percent level misclassification. Incorporation ofthis improved track
classification and pitch angle considerations will enable a CRES experiment like Project 8 to take the next step
and achieve a competitive eV-scale endpoint sensitivity.

7. Conclusions

With the phenomenological model put forward in [4], we have motivated the need for a classification of CRES
signal topologies according to the pitch angle distribution oftrapped electrons and the sideband comb structure
ofevents discussed in section 2. With the use ofreconstructed signal properties including total power, track
slope, and analysis ofthe rotated-proj ected spectrum (section 3.2), we have enumerated 14 quantities that have
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the power to discriminate between the three different track topologies. We have implemented a Machine
Learning-based classification scheme using a SVM algorithm with these 14 parameters, and studied the results of
several models on Project 8§ Phase I data. With the use ofan optimal feature set, we have achieved amodel with
94.9% total accuracy and an AUROC 010.973. This model is trained and applied over a total energyrange of
approximately 3.5 keV, which gives us confidence in its applicability to tritium analysis (—15—19 keV).

The use ofthese classification models has already improved our understanding ofthe Phase I data. Ithas
bolstered our confidence in the phenomenological model, our understanding ofthe relationship between signal
characteristics and trap geometry, and the set ofoptimal features provides some insight into the nature oftracks
both physically and from the viewpoint ofreconstruction. The classified spectra are much more informative
than ordinary (unclassified) spectra, and our comparison ofdifferent training models has highlighted the energy
dependence ofsome track parameters.

Energy correction—from measured frequencies to true cyclotron frequencies—is another necessary step
thatwill utilize track classification, but this application is outside the scope ofthis paper. These corrections were
discussed briefly in section 2.3, and in section 6.2 we showed through simulation that we expect these
corrections to be oforder 100 eV. Consequently, for an experiment like Project 8 to perform an eV-scale
precision measurement ofthe tritium spectrum in its next phase, itis essential to minimize the impact of
sideband effects. Strategies to accomplish this have been pursued already in Phase II and are akey consideration
in the development ofthe Phase III experiment; one such strategy in Phase I almost completely eliminates the
presence ofdetectable sidebands by reducing the frequency modulation index. We also discussed future
prospects ofan eventbuilder that works in tandem with the classifier, and perhaps through Machine Learning as
well. With these types ofimprovements to the apparatus guided by this work, and ahighly robust track/event
classification scheme, Project 8 will work toward a Phase III analysis that is greatly advanced and mature
compared to earlier phases, and capable ofachieving an endpoint measurement with eV-scale precision.

Project 8 has demonstrated the CRES technique, constructed the first-ever CRES tritium spectrum with it,
and will soon be looking toward a competitive eV-scale measurement ofthe neutrino mass limit in Phase I11.
The work presented here has contributed greatly to our understanding of CRES signals and the obstacles to an
eV-scale sensitivity, and its conclusions have provided us with valuable knowledge ofthe path toward a highly
sensitive measurement. By utilizing the full potential oftrack classification, we can continue to advance the
CRES technique and make valuable steps towards the future ambitions of Project 8: ultra-precise spectroscopy, a
decisive measurement ofthe tritium endpoint, and and ultimately a direct mass measurement.
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