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ABSTRACT: We introduce a family of methods for the full
configuration interaction problem in quantum chemistry,
based on the fast randomized iteration (FRI) framework
[Lim, L.-H.; Weare, J. SIAM Rev. 2017, 59, 547; DOI:
10.1137/15M1040827]. These methods, which we term
“FCI-FRI”, stochastically impose sparsity during iterations of
the power method and can be viewed as a generalization of
full configuration interaction quantum Monte Carlo
(FCIQMC) without walkers. In addition to the multinomial
scheme commonly used to sample excitations in FCIQMC,
we present a systematic scheme where excitations are not
sampled independently. Performing ground-state calculations
on five small molecules at fixed cost, we find that the
systematic FCI-FRI scheme is 11−45 times more statistically efficient than the multinomial FCI-FRI scheme, which is in turn
1.4−178 times more statistically efficient than the original FCIQMC algorithm.

1. INTRODUCTION

Deterministic approaches to treating strong correlation in
interacting quantum systems are often rendered intractable by
the exponential scaling of the size of the Hilbert space with the
number of particles.1 In contrast, quantum Monte Carlo
(QMC) methods2−9 can be computationally more efficient
because they employ a sparse representation of the wave
function in this space, obtained via stochastic sampling.
Methods that utilize a continuous basis of configurations in
real space have long existed, e.g., diffusion Monte Carlo.10−15

The application of these methods to Fermionic systems
requires nodal constraints due to the antisymmetry of the wave
function. This has motivated the development of discrete-space
methods, e.g., full configuration interaction QMC (FCIQMC)
and auxiliary-field QMC,16−19 in which the antisymmetry is
provided by a Slater determinant basis, thereby obviating the
need to impose nodal constraints on the wave function.8,16,20,21

A disadvantage of discrete-basis methods is that the basis is not
complete, but this can be addressed using standard
extrapolation techniques.22,23

Recently, Lim and Weare24 introduced the fast randomized
iteration (FRI) framework, a class of methods that use
techniques similar to those used in discrete-basis QMC
methods to solve large, generic linear algebra problems.
Sparsity is imposed stochastically in matrices and vectors,
which reduces the computational cost and storage require-
ments of these methods and facilitates their application to
problems significantly larger than those treatable by conven-

tional linear algebra approaches. Many existing QMC
algorithms, including the FCIQMC method, can be under-
stood as specific methods within the FRI framework. The
central purpose of this work is to describe, in a more general
context, the application of FRI methods to calculations on
interacting Fermionic systems in a discrete basis. Importantly,
we leverage this generality to develop alternative methods
within this framework and investigate their statistical error and
convergence properties through numerical tests on small
molecular systems.
The FRI framework can be applied in a variety of ways to

calculate ground- and excited-state observables of electronic
systems. This study discusses only the application of FRI to
calculate the ground-state energy of the full configuration
interaction (FCI) Hamiltonian matrix in a Slater determinant
basis. Such applications of the FRI framework will be referred
to in this manuscript as FCI-FRI. In these methods, calculation
of the ground-state energy is achieved via stochastic
implementations of the power method, in which an initial
trial vector is evolved toward the ground state eigenvector by
repeatedly applying the Hamiltonian, scaled and shifted such
that the ground state is dominant. The power method can be
viewed as a discretization of the imaginary-time propagation
used in many QMC methods. In order to reduce computa-
tional cost, the Hamiltonian matrix and solution vector are
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compressed stochastically, meaning that randomly selected
subsets of their elements are zeroed in each iteration.
Calculating the energy after each iteration and averaging yields
an estimate of the ground-state energy. This estimate can be
systematically improved by executing more iterations and by
retaining more nonzero elements in each compression. Unlike
the original FCIQMC method, some FRI methods become
identical to the deterministic power method as the number of
randomly selected elements increases to the size of the basis.
The various approaches to matrix and vector compression

within the FRI framework differ in terms of their computa-
tional cost and statistical efficiency. In this study, we combine
these approaches in two new FCI-FRI methods and compare
them to the original FCIQMC method.16 In the first method,
multinomial matrix compression, which is used in FCIQMC, is
combined with systematic vector compression. Multinomial
and systematic sampling are reviewed in section 2. In the
original presentation of FRI,24 systematic vector compression
was shown to yield the least statistical error out of all other
schemes considered. In contrast, vector compression is
achieved by integerizing elements in FCIQMC. Comparing
the original FCIQMC method to the “multinomial FCI-FRI”
method, which uses the same matrix compression scheme,
illustrates the gains in efficiency that an improved vector
compression scheme can enable. In the second method,
“systematic FCI-FRI”, we seek to further improve the efficiency
by also compressing the matrix systematically instead of
multinomially. We introduce a new hierarchical scheme to
reduce the computational cost of performing this compression.
In numerical tests on five small molecules, we find that
systematic FCI-FRI yields consistently greater statistical
efficiency (defined below) than multinomial FCI-FRI by at
least an order of magnitude, and multinomial FCI-FRI is also
more statistically efficient than FCIQMC in its original form.
An additional purpose of this work is to better understand

how the features of each of these methods influence their
errors and computational cost. To this end, we also compare
two methods applied recently to FCI problems25 in which the
matrix is not compressed. Although expensive, such
approaches are feasible because of the sparse structure of the
Hamiltonian. In the first of these methods, the vector is
compressed using the stochastic systematic scheme, whereas in
the second, it is compressed using a deterministic thresholding
scheme. Both methods have similar cost and are tractable for
problems beyond the reach of deterministic FCI. However, the
stochastic method achieves significantly less error, highlighting
the advantages of stochastic methods over their deterministic
counterparts.
A number of recent extensions to the original FCIQMC

algorithm have been found to enable improvements in
performance by orders of magnitude. For example, in
semistochastic FCIQMC,26,27 a fixed subspace within the
Slater determinant basis is treated deterministically, greatly
reducing the statistical error in that portion of the solution
vector. A related extension involves preserving some elements
exactly if their magnitude exceeds a user-specified threshold.28

In the initiator approximation,29−31 elements in the solution
vector are zeroed in each iteration according to deterministic
compression rules to better constrain the sign structure of the
solution vector, which introduces a small bias. The FCI-FRI
methods discussed here also include some deterministic
features, although these differ in key aspects from those in
the FCIQMC extensions. In FCI-FRI, the vector and matrix

elements to be preserved exactly are chosen dynamically in
each iteration on the basis of their relative magnitudes. The
criteria for selecting these elements do not rely on user-
specified parameters and instead were chosen to minimize
compression error given a finite number of samples. Unlike the
initiator approximation, this approach does not introduce an
additional bias. Another FCIQMC extension that can be
applied to FCI-FRI involves calculating perturbative correc-
tions to the energy.32

Due to the versatility of the FRI framework, many recent
FCIQMC extensions can also be applied to FCI-FRI methods,
which may yield further performance improvements. Here, we
compare FCI-FRI methods only to the original FCIQMC
method, without extensions, in order to (1) facilitate clarity in
our presentation of the FCI-FRI methods, and (2) isolate the
effects of different matrix and vector compression schemes in
our results. Future work will be devoted to incorporating these
complementary extensions into FCI-FRI methods.
The remainder of this article is organized as follows. In

section 2, we summarize the FRI framework in the context of
the power method for FCI calculations and describe the
compression schemes considered in this study. Efficient
compression of the Hamiltonian matrix is accomplished
using a hierarchical scheme introduced in section 2.2.3 and
discussed in more detail in Appendix A. In section 3, we
discuss results obtained by applying these methods to five
small molecular systems and compare their statistical
efficiencies. In section 4, we summarize our key findings and
comment further on the differences among the methods in
relation to potential future research directions.

2. METHODS
2.1. The Power Method for Full Configuration

Interaction Calculations. The FCI formalism casts the
treatment of a system of interacting Fermions in terms of linear
algebra.33 In the FCI-FRI and FCIQMC methods discussed
here, a randomization of the power method is used to calculate
observables associated with the ground-state (lowest-energy)
eigenvector of the FCI Hamiltonian matrix, H. This matrix is
expressed in a Slater determinant basis for N electrons in M
orbitals. Its only nonzero off-diagonal elements are those
corresponding to single and double excitations between pairs
of Slater determinants. The matrix element corresponding to a
single excitation from determinant |K⟩ to |L⟩ = câ

†cî|K⟩ is

i

k

jjjjjjj
y

{

zzzzzzz∑γ≡ → = ⟨ | ̂ | ⟩ = + ⟨ || ⟩
∈

H H i a L H K h ij aj( )LK K ia
K

ia
j occ

(1)

where hia represents a matrix element of the one-electron
component of the Hamiltonian and ⟨ij||aj⟩ is an antisymme-
trized two-electron repulsion integral. These are both readily
obtained from the output of a Hartree−Fock calculation. The
parity of the excitation γia

K is determined by the order of the
orbitals comprising the Slater determinants in this basis.34 The
sum is over the orbitals occupied in |K⟩. The notation HK(i→
a) will be used throughout this paper to denote the index of an
excitation from determinant |K⟩. The matrix element for the
double excitation to |M⟩ = câ

†cb̂
†cîcĵ|K⟩ is

γ γ≡ → = ⟨ | ̂ | ⟩ = ⟨ || ⟩H H ij ab M H K ab ij( )MK K ia
K

jb
K

(2)

and the diagonal matrix element associated with |K⟩ is
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∑ ∑= ⟨ | ̂ | ⟩ = + ⟨ || ⟩
∈ ∈

H K H K h ij ij
1
2KK

j
jj

i jocc , occ (3)

The ground-state eigenvalue of this matrix is therefore the
system’s electronic energy.
Applying the generic power method to H involves iteratively

generating a sequence of vectors, here referred to as iterates.
Each iterate v(τ), where τ denotes the iteration index, is
obtained by multiplying the previous iterate by the matrix P =
1 − εH, where 1 is the identity and ε is a positive number that
is sufficiently small to ensure that the ground state of H is the
dominant eigenvector of P. The initial iterate, v(0), must have
nonzero overlap with the ground-state eigenvector, vGS. In FCI,
the Hartree−Fock unit vector is usually a suitable choice and is
used in all of the calculations presented here. The iterates
converge to the ground-state eigenvector up to a normalization
factor,

|| ||
=

τ

τ

τ→∞

v
v

vlim
( )

( ) GS
(4)

After a sufficient number of iterations, convergence to the
ground state is geometric, with error decaying by a factor of (1
− εE0)/(1 − εE1) after each iteration. Here E0 is the ground-
state eigenvalue of H, and E1 is the first excited-state
eigenvalue. Alternative choices of v(0) may be used to reduce
the number of iterations required for convergence.35 The
norms of the iterates ||v(τ)|| tend to either 0 or ∞, depending
on the sign of E0, as τ→∞. An energy shift, S(τ), is therefore
included in the matrix P(τ) at each iteration to stabilize the
norm,

ε= − −τ τSP H1 ( 1)( ) ( ) (5)

where S(τ) is updated dynamically after every A iterations,
where A is a user-specified parameter (10 in our calculations),
according to the formula introduced in the FCIQMC
method,16

ξ
ε

= −
|| ||

|| ||
τ τ

τ

τ
−

−S S
A

v

v
lnA

A
( ) ( )

( )
1

( )
1 (6)

Here ξ is a user-specified damping parameter (taken to be 0.05
in the calculations presented here), and ||·||1 denotes the one-
norm, defined for an arbitrary vector x as

∑|| || = | |xx
i

i1
(7)

This procedure is used to stabilize the one-norm of the iterates
in all methods considered in this study. In FCIQMC, the shift
is updated only after the one-norm of the iterates (i.e., the
number of walkers) has reached a specified target.16 The
iterates are generated by the relation

=τ τ τ+v P v( 1) ( ) ( ) (8)

2.2. FRI Compression Schemes. The size of the FCI
basis, NFCI ∼ O(M chooseN), renders it impossible to apply
the power method as described above to many systems of
chemical interest. The memory cost is O(NFCI) and the
computational cost of matrix−vector multiplication is
O(N2V2NFCI), where V = M − N is the number of virtual
(unoccupied) orbitals. For large systems, these costs are
prohibitive. The FCI-FRI methods circumvent these bottle-
necks by stochastically compressing the vector v(τ), and

possibly the matrix P(τ), in each iteration. Stochastic
compression is defined such that (1) the resulting compressed
vector or matrix has at most a desired number m of nonzero
elements and (2) the expectation value of each element in the
compressed vector or matrix is equal to the corresponding
element in the input vector or matrix, i.e.,

[Φ ] = xxE ( ) i i (9)

where Φ denotes the compression operation and x is an
arbitrary vector. The fact that many of the elements in the
compressed matrix or vector are zero facilitates the use of
sparse linear algebra schemes, which enables the efficiency of
FRI methods.
As an example, in an FCI-FRI method that uses only vector

compression, matrix−vector multiplication is performed as

= Φτ τ τ+v P v( )( 1) ( ) ( ) (10)

This method has a memory cost of O(N2V2m) (to store the
nonzero elements in the matrix−vector product before
compression) and a computational cost of O(N2V2m log m).
For many systems of chemical interest, these costs can be
significantly less than those for deterministic FCI.
There are many possible compression methods in FRI with

the above defining properties that differ in the degree of
statistical error they introduce. In order to emphasize the
generality of the FRI framework, we begin by introducing
several such methods in more abstract linear algebra terms
before discussing their specific application to the FCI problem.

2.2.1. Vector Compression. In this study, we compare
several different approaches to vector compression. These have
been applied in previous stochastic quantum chemistry
calculations, although they can be applied more generally to
any vector. The simplest approach to compressing an arbitrary
vector x involves randomly selecting a subset of its elements,
each with probability

=
| |

|| ||
p

x
xi

i

1 (11)

The expected number of times each element is sampled is

[ ] =n mpE i i (12)

where m is the total number of elements selected. Therefore,
assigning each element of the compressed vector the value

Φ =
|| ||n x

m
x

x
( )

sgn( )
i

i i1
(13)

ensures that the condition in eq 9 is satisfied and that the
vector has at most m elements (fewer if any ni > 1). Possible
methods for randomly generating the values {ni} will be
discussed below.
It is often beneficial to preserve the largest-magnitude

elements of x exactly in order to reduce the overall statistical
error incurred in compressing the vector. Lim and Weare24

proposed the following criterion for determining the number ρ
to preserve exactly. If s is a vector, with length , of indices that
sorts the elements of x in order of decreasing magnitude (i.e.,
|xsj| ≥ |xsj+1| for all j < ), then ρ is the minimum value of h for
which

∑− | | ≤ | |
= +

+
m h x x( ) s

j h

c

s
1

h j1
(14)
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where m denotes the desired number of nonzero elements in
Φ(x), and c is the number of nonzero elements in x. Thus, ρ
depends both on m and x. Calculating ρ requires identifying
the largest-magnitude elements of x. This can be done
efficiently, in O(ρ log c) time, by using a binary heap structure
rather than sorting the entire vector. The elements of x with
indices {s1, s2, ..., sρ} are unchanged in the compression. If m ≥
c, this criterion naturally specifies that all elements are
preserved exactly. Otherwise, the remaining elements of
Φ(x) are determined by applying random sampling with (m
− ρ) samples to the vector x′, which is obtained by zeroing the
ρ largest-magnitude elements of x. The resulting elements of
the compressed vector are

l
m
ooo
n
ooo

ρ

ρ ρ
Φ =

≤

|| ′|| − >−

x i

n x m i
x

x
( )

sgn( )( )
s

s

s s1
1i

i

i i (15)

An alternative, deterministic approach to vector compression
is preserving the m largest-magnitude elements of x exactly and
zeroing the remaining elements. The additional sampling step
introduced above has the notable advantage that the
compressed vector is equal to the original in expectation.
Even with a high degree of vector sparsity, results that are exact
to within a controllable statistical error can be obtained by
averaging over many independent vector compressions,
provided there are no other sources of error.
2.2.2. Sampling Schemes. We compare two approaches to

generating the integers {ni} used for vector compression in eq
15. Both involve selecting m (or m − ρ) elements from a
probability distribution p and are summarized in Figure 1. In

multinomial sampling, selections are made independently. The
simplest implementation involves generating m random
numbers {Uk} uniformly on the interval (0,1). The index of
the kth element selected is the value of j which satisfies

∑ ∑≤ <
=

−

=

p U p
i

j

i k
i

j

i
1

1

1 (16)

Any index can potentially be selected more than once, as the
random numbers {Uk} are generated independently. The alias
method is a more efficient implementation of multinomial
sampling than the one described above.34,36

The systematic sampling scheme typically achieves reduced
variance in the vector n. The m random numbers {Uk} used in
the selection of elements are generated from a single random
number r chosen uniformly on the interval (0,1), as follows:

= − +
U

k r
m
1k( )

(17)

with k = 1, 2, ..., m. The value of r determines the position of
the ×’s in each of the m subintervals of (0,1) in the systematic
portion of Figure 1. The indices of elements selected are
determined as described in multinomial sampling. Although
systematic sampling is expected to yield less statistical error
than multinomial in general, this difference is expected to
become smaller as the number of elements selected (m)
decreases relative to the size of the vector. When m = 1,
systematic sampling coincides exactly with multinomial
sampling.

2.2.3. Hierarchical Matrix Factorization. The vector
compression methods discussed above enable the application
of FRI to iterative linear algebra methods based on matrix−
vector multiplication at less cost than their deterministic
counterparts. However, even the cost of multiplying a sparse
vector by P(τ) is prohibitive for large problems in quantum
chemistry. This cost can be further reduced by compressing
both the matrix and vector in each iteration. In principle, the
vector compression methods described above could also be
applied to compress the matrix before multiplication in each
iteration, e.g., by treating each of its columns as a vector. This
would require enumerating all of its nonzero elements, which
offers few advantages over calculating the matrix−vector
product without compression.
This section describes an alternative hierarchical approach to

randomly approximating a matrix−vector product using
compression. For a generic matrix−vector product Ax, this
involves factoring A into a product of matrices and performing
a sequence of vector compressions. For example, if A =
A(3)A(2)A(1), then Ax can be approximated as

= ΦAx A A x( )(3) (2) (1) (18)

where

= Φx A x( )(1) (1) (19)

The compressions after each multiplication are performed
independently in this study, but other approaches in which
they are not independent are possible as well. If A(1), A(2), and
A(3) are sparse, this approach can be made more efficient than
calculating Ax directly. The multinomial selection of
excitations in FCIQMC7 can be understood as a specific
implementation of this approach, but we describe it in more
general terms to demonstrate that it can be used with any
compression scheme in FRI.
There are multiple ways to factor the Hamiltonian matrix

and correspondingly the matrix P(τ) for quantum chemistry
calculations. These can be applied in contexts other than FCI,
e.g., for stochastic coupled-cluster.37,38 Here we consider two
such factorings, near-uniform7 and heat-bath Power−Pitzer
(HB-PP).34,39 The structure of each matrix in these
factorizations is dictated by the two-body structure of the
Hamiltonian. Both have the form BC(τ)Q, where Q is factored
further into a product of matrices. Elements of these matrices
can be calculated efficiently using information about the
symmetry of the system and, in the case of the HB-PP
factorization, information from the Hamiltonian matrix.
Elements of Q have been introduced as the probabilities for
sampling excitations in previous descriptions of FCIQMC, and
multiplication by B sums contributions from different
excitations to the same determinant. Off-diagonal elements

Figure 1. Illustration of the multinomial and systematic sampling
schemes applied to the selection of m = 3 elements from a probability
distribution p. The ×’s represent the random numbers Uk generated
on the interval (0,1). The indices selected in both schemes
correspond to the intervals in p with which the ×’s are aligned.
The vector n shown for each scheme represents the number of times
each element is selected.
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of the matrix BQ can be interpreted as an approximation to
those of P(τ) or H. The extra factor of C(τ) corrects for this
discrepancy between BQ and P(τ) by multiplying by elements
of P(τ) and dividing by elements of Q. This form ensures that
matrix elements can be calculated efficiently and that
multiplication by the matrix factors is equivalent to multi-
plication by P(τ). The detailed forms of these factorizations are
given in Appendix A.
2.3. FCI-FRI Methods Considered in this Study. The

previous sections discussed compression techniques applicable
to matrices and vectors in general. This section summarizes the
particular implementations of these schemes in the three FCI-
FRI methods considered in this study, as well as FCIQMC. A
Python/Cython implementation of these methods with
OpenMP parallelism is available on GitHub.40

In all three FCI-FRI methods, iterate vectors are compressed
systematically following matrix multiplication, regardless of
which matrix compression scheme is used. A subset of ρ vector
elements is preserved exactly, with ρ calculated as described in
the discussion surrounding eq 14, and (m − ρ) additional
nonzero vector elements are sampled randomly using the
systematic scheme described in section 2.2.2. In order to
quantify the error introduced by compressing the matrix P(τ) in
each iteration, we considered three different matrix compres-
sion schemes in the three FCI-FRI methods. In the “full-matrix
FCI-FRI” method, the matrix is not compressed. This method
has been discussed previously and compared to FCIQMC.25

As discussed above, its memory and CPU cost per iteration is
approximately O(N2V2m log m). In the remaining two FCI-
FRI methods, P(τ) is compressed either multinomially or
systematically using a hierarchical factorization scheme, with
additional constraints as discussed in Appendix B. Excluding
the diagonal elements of P(τ), which are preserved exactly, Nmat
samples are used in each compression. Matrix compression in
“multinomial FCI-FRI” corresponds more closely to the
scheme used in the original FCIQMC method, whereas
“systematic FCI-FRI” is designed to reduce statistical error.
These algorithms are summarized in Table 1.
2.4. Comparison with FCIQMC. As discussed above, the

FCIQMC method described in ref 16 can be viewed as a
specific method within the FRI framework. Although our
presentation of the method differs somewhat from previous
studies, we implemented FCIQMC in its original form, i.e.,
without any of its existing extensions (e.g., initiator or
semistochastic), for comparison to FCI-FRI. This section
summarizes the compression techniques in FCIQMC using the
unifying language of the FRI framework, in order to facilitate
comparison to the new FCI-FRI methods in this study. Further
details about compression in FCIQMC can be found in
Appendix B.
In the original FCIQMC algorithm, each iterate v is

represented by a number of signed walkers, so each of its
elements vK is an integer. The total number of walkers is ||v||1.
The random selection of excitations in FCIQMC corresponds
to multinomial compression of P(τ) using one of the
factorizations discussed in Appendix A. The “spawning” step
corresponds to integerization of off-diagonal elements after
multiplication by C(τ) in the hierarchical scheme, and the
“death/cloning” step corresponds to integerization of diagonal
elements. “Annihilation”, i.e., the summation of matrix
elements corresponding to the same Slater determinant basis
element, is performed by multiplying by B in the hierarchical
scheme.

The key difference between the original FCIQMC algorithm
and multinomial FCI-FRI methods lies in the compressions
performed after the final two matrix multiplications in the
hierarchical scheme. In FCIQMC, after multiplication by C(τ),
elements are rounded to integers using a random binomial
integerization procedure. Like other vector compression
techniques, this ensures sparsity in the resulting vector since
many elements are rounded to zero. This reduces the cost of
multiplication by B (i.e., “annihilation”), since this involves
summing fewer nonzero elements, but it also introduces
additional statistical error. The vector obtained after multi-
plication by B is not compressed and is instead treated as the
next iterate. In multinomial FCI-FRI, the vector obtained after
multiplication by C(τ) is not compressed, so the elements that
are summed during multiplication by B are real-valued (i.e.,
not necessarily integers). Sparsity is instead enforced by
compressing the iterate systematically after the final matrix
multiplication. It should be noted that compression is
performed after multiplication by B in the semistochastic
FCIQMC extension, as in FCI-FRI, although this extension
was not considered in this study.
One advantage of FCIQMC is its straightforward paralleliz-

ability. Since elements are selected independently in the
multinomial matrix compression scheme, they can be selected
in parallel. Similarly, the stochastic rounding of matrix
elements to integers can be performed in parallel, as each
element is treated independently. In contrast, elements are not
selected independently in systematic compression, so these
strategies cannot be applied in exactly the same way.
Nevertheless, parallelizing systematic schemes is possible,

Table 1. Overview of the Steps in Each Iteration of the FCI-
FRI Methods Considered in This Study and the
Approximate Scaling of the CPU Cost of Each Step

Full-Matrix FCI-FRI CPU cost/iterationa

1. Calculate v(τ+1)′ = P(τ)v(τ) O(N2V2m log m)b

2. Compress v(τ+1)′ systematically to m nonzero
elements

O(N2V2m)

3. Adjust the energy shift, S(τ) (eq 6) O(1)

Multinomial and Systematic
FCI-FRI CPU cost/iteration

1. Calculate v(τ+1)′ = P(τ)v(τ) using
hierarchical factorization with
multinomial or systematic
compression to Nmat nonzero
elements

O(Nmat) or O(MNmat)
+ O(Nmat log m)c

2. Compress v(τ+1)′ systematically to
m nonzero elements

O((Nmat + m) + m log(Nmat + m))d

3. Adjust the energy shift, S(τ)
(eq 6)

O(1)

aThe variable N is the number of electrons in the system; M is the
number of spatial orbitals in the single-particle basis; V = M − N is
the number of virtual orbitals; m is the number of nonzero elements
kept in the solution vector; Nmat is the number of off-diagonal
elements sampled from the Hamiltonian matrix. bThe log m factor
here arises because our implementation uses a less efficient binary
search algorithm to perform matrix−vector multiplication. This cost
could be reduced by using a hashing algorithm.7 cO(Nmat) is the
approximate cost of compressing the near-uniform distribution, and
O(MNmat) is the cost for HB-PP. The O(Nmat log m) term comes
from multiplication by B in both factorizations and can be reduced to
O(Nmat) using hashing. dWorst-case scaling. More typical scaling,
corresponding to preserving relatively few elements exactly, is O(Nmat
+ m).
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e.g., by performing parallel compressions in subspaces of the
Slater determinant space. Investigation of these strategies will
be the subject of future research. The original FCIQMC
method and FCI-FRI methods become more similar as the
number of nonzero elements in the compressions (number of
walkers) decreases relative to the size of the basis (NFCI): the
probability of choosing repeated elements in multinomial
matrix compression decreases, and the frequency of
annihilation events in FCIQMC decreases. However, our
examples suggest that the number of walkers required to obtain
reasonable results from the original FCIQMC method is
already sufficient to observe a substantial benefit from FRI.
2.5. Statistical Error Analysis. Although in principle the

iterates can be averaged to obtain an estimate of the ground-
state eigenvector, the memory requirements of such an
approach are prohibitive for large systems. In practice, we
are only interested in observables calculated from the ground-
state eigenvector, so their average values are accumulated
rather than the eigenvector itself. This section addresses the
calculation of the average ground-state energy and the methods
used to quantify the statistical error in this average.
Conventionally, the energy of a state vector x is calculated as

a Rayleigh quotient, defined here as

*
*

=E x
x Hx

x x
( )R (20)

where x* denotes the conjugate transpose of x. Averages of the
energy obtained from the Rayleigh quotient estimator applied
to an ensemble of random vectors will exhibit a statistical bias
due to the products of correlated random vectors in both the
numerator and denominator.28 Consequently, a projected
energy estimator is instead used to calculate averages:

=
*
*E x

v Hx
v x

( )P
ref

ref (21)

where vref is a constant, appropriately chosen reference vector.
In principle, using a reference vector that is closer to the exact
ground-state eigenvector of the Hamiltonian will yield a better
estimate of the correlation energy.18 In this study we use the
Hartree−Fock unit vector for simplicity. If this estimator is to
be applied to multiple vectors x (in this case, the iterates
obtained after each iteration), the numerator can be calculated
efficiently by storing the matrix−vector product Hvref and
taking its inner product with each vector x. In the FCI-FRI
methods in this study, this inner product is calculated before
each iterate is compressed.
The numerator and denominator of eq 21 at a particular

iteration are denoted as

= *τ τn v Hv( )
ref

( )
(22)

and

= *τ τd v v( )
ref

( )
(23)

Because n(τ) and d(τ) are correlated within each iteration due to
their mutual dependence on v(τ), averaging the quotients n(τ)/
d(τ) over all iterations would introduce a statistical bias.
Therefore, the mean energy is calculated instead as ⟨EP⟩ = ⟨n⟩/
⟨d⟩, where

∑
τ

⟨ ⟩ =
− τ τ

τ

≥

n
N

n
1

i c

( )

c (24)

and the corresponding expression for the denominator is
defined analogously. Here the total number of iterations in the
trajectory is denoted Ni, and the equilibration time, τc, is the
number of iterations at the beginning of the trajectory not
included in the average. Our approach to determining τc will be
described below. If the expected value of the iterates v(τ)

converges to the exact ground-state eigenvector (to within a
normalization factor) after infinitely many iterations, the mean
energy will also converge to its exact value, since the numerator
and denominator are averaged separately. In practice, a
systematic bias is still observed after infinitely many iterations
in FCI-FRI and FCIQMC because the expected value of the
iterates does not converge to the exact ground-state
eigenvector. This has been discussed previously in the context
of FCIQMC and diffusion Monte Carlo methods as the
population control bias.10,43

The delta method is used to calculate the variance of the
average ⟨Ep⟩ as follows:
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where n0 and d0 represent the deterministic quantities vref*HvGS
and vref* vGS, up to an irrelevant normalization factor. We define
Edelta
(τ) as

= −

≈
⟨ ⟩

− ⟨ ⟩
⟨ ⟩

τ
τ τ

τ τ

E
n
d

n d
d

n
d

n d
d

delta
( )

( )

0

0
( )

0
2

( ) ( )

2
(26)

Because subsequent iterates in a trajectory are correlated, the
variance in eq 25 cannot be calculated naively as σ2/(Ni − τc),
where σ2 is the mean-squared deviation from the average, i.e.,

∑σ
τ

=
− τ τ

τ

≥N
E

1
( )2

i c
delta
( ) 2

c (27)

Instead, σ2 must be multiplied by the integrated autocorrela-
tion time (IAT), a measure of the degree of correlation. The
IAT is estimated using the iterative procedure described in ref
44, as implemented in the emcee software package,45 using the
sequence of values {Edelta

(τ) } as the input. If the sequence {n(τ)/
d(τ)} was used instead, the resulting variance would not
correspond to an energy estimate in which the numerator and
denominator are averaged separately.
The equilibration time τc is determined for each trajectory

by inspecting plots of the IATs of the numerator and
denominator of the energy estimator separately vs τc. Typically,
the IAT is greater for smaller values of τc, both because of their
dependence on the initial iterate v(0) and because iterates can
become trapped around metastable energy values before
converging to the ground-state eigenvector.46 Equilibration
times were therefore chosen to exclude this initial period of
decreasing IATs. In FCIQMC, τc is also constrained to be
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greater than the first index at which the energy shift is updated
(eq 6).
The Flyvbjerg−Petersen blocking method47 has been used

in previous FCIQMC studies16,20,35,48 to calculate the variance.
The approach described here has the notable advantage that
no data from after the initial equilibration period (τ ≥ τc) is
discarded in the calculation of the mean and variance. Either of
these methods requires a very long trajectory to achieve an
accurate estimate of the variance, and it is likely that some of
the statistical error estimates reported in this study are not fully
converged.
The standard error of the energy estimator is calculated as

σ = [⟨ ⟩]E(Var )e p
1/2

(28)

This error is expected to scale as (Ni − τc)
−1/2 after sufficiently

many iterations, according to the Markov chain central limit
theorem with standard assumptions of ergodicity.44,49 This
scaling renders it impossible to directly compare the standard
errors from two trajectories with different numbers of
iterations. Therefore, the primary metric that will be used to
compare the methods discussed here is the statistical efficiency,
defined as34

σ τ
=

−
E

N
1

( )e
2

i c (29)

For two methods executed for the same number of iterations
after the equilibration period, the method with the greater
statistical efficiency will typically yield less variance. From an
alternative perspective, in order to achieve a target standard
error, the method with greater statistical efficiency can be
executed for fewer iterations. For example, to achieve a
standard error of 10−5Eh, a method with statistical efficiency E
requires [(10−5Eh)

2E]−1 iterations after the equilibration
period. In this study, we do not normalize the efficiency
based on the computational cost of each iteration. Therefore,
for a given FCI-FRI method applied to a particular system,
increasing the number of matrix or vector samples increases
the statistical efficiency due to the expected decrease in error,
regardless of the corresponding increase in computational cost.
For this reason, when comparing the statistical efficiencies of
different FCI-FRI methods and FCIQMC, we ensure that the
same number of matrix and vector samples are used in all
methods for each system. This ensures that any differences in
the resulting statistical efficiencies are due to features inherent
to the methods.

3. RESULTS

The methods described in the previous section are applied to a
subset of the molecular systems considered in ref 16. The
parameters relevant to the Hartree−Fock and randomized FCI
calculations performed for these five systems are presented in
Table 2. In order to run calculations for sufficiently many
iterations to obtain robust estimates of the mean energy and
associated standard error, fewer single-particle orbitals are used
for three systems than in ref 16, thus reducing the size of the
FCI basis (NFCI). This truncation is performed by discarding
natural orbitals obtained from a second-order Møller−Plesset
perturbation theory (MP2) calculation with occupation
numbers less than a specified threshold. We emphasize that
truncating the basis is necessary only because of inefficiencies
in our implementations of these methods. Optimizing our
implementations should enable the treatment of significantly
larger systems. Core electrons are frozen in Ne, C2, and N2, as
in ref 16. The same value of ε is used to construct the matrix
P(τ) (eq 5) used in all methods for each system. The PySCF
electronic structure software package42 is used to perform
Hartree−Fock, MP2, and deterministic FCI calculations. In ref
16, the average FCIQMC energy for the hydrogen fluoride
(HF) molecule was compared to coupled-cluster theory with
perturbative triple excitations, CCSD(T). Our deterministic
FCI result, calculated using PySCF, differs from the CCSD(T)
result by 4.89 × 10−4Eh, and from the FCIQMC result from ref
16 by 5.4 × 10−5Eh, a value greater than the reported
uncertainty.

3.1. FCI-FRI without Matrix Compression. In order to
isolate the contribution of vector compression to the statistical
error in calculations of the ground state energy, we first
consider results obtained by applying the “full-matrix FCI-FRI”
method, which does not use matrix compression, to the Ne
atom. We compare calculations with differing numbers of
nonzero elements retained in the compression of each iterate
(m). As m approaches the size of the FCI basis, this method
becomes identical to the deterministic power method. The
difference between the estimated ground-state energy at each
iteration and the exact energy is plotted for calculations with
three different values of m in the top panel of Figure 2. The
energy of the first iterate in each trajectory is the Hartree−
Fock energy, since the first iterate was initialized to the
Hartree−Fock unit vector. The energy decreases toward the
exact energy in subsequent iterations. After the estimator is
determined to be sufficiently close to the exact energy, at
iteration τc, the mean is accumulated according to eq 24. This
cumulative mean is plotted in Figure 2 for τ ≥ τc.

Table 2. Parameters Used in Calculations on Each of the Systems in This Studya

system geometry occupation threshold/10−4 (N, M) NFCI/10
6 ε /(10−4Eh) EFCI/Eh

Ne (aug-cc-pVDZ) − − (8, 22) 6.69 10 −128.709476b

HF (cc-pCVDZ) 0.91622 Å − (10, 23) 283 1 −100.270929c

H2O (cc-pVDZ) rO−H = 0.975512 Å 6 (10, 18) 18.3 10 −76.167449c

∠HOH = 110.565°
N2 (cc-pVDZ) 1.0944 Å 30 (10, 17) 4.8 5 −109.228042c

C2 (cc-pVDZ) 1.27273 Å 5 (8, 22) 6.7 5 −75.7260112c
aUnless otherwise specified, the geometry is the diatomic bond length. MP2 natural orbitals with occupancies below the occupancy threshold, if
specified, were excluded from the single-particle basis. The resulting number of (spatial) orbitals is reported as M. The number of unfrozen
electrons considered for each system is N, and NFCI is the size of the FCI basis. The parameter ε (eq 5) is chosen to ensure convergence of the
power method. EFCI denotes the exact FCI energy (including nuclear repulsion) used for comparison to our stochastic results. bFrom ref 41.
cCalculated using the PySCF software package.42
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The value of the equilibration time τc used in these
trajectories increases with increasing m (Table 3), primarily

due the greater degree of noise in trajectories with fewer
nonzero elements in each iterate. When m is smaller, the
energy decreases more quickly toward the ground state,
causing a lesser value of τc, but fluctuates to a greater extent
after τ = τc. In the deterministic power method, the asymptotic
convergence rate is determined by the ratio (1 − εE0)/(1 −
εE1). Randomized implementations of the power method can
exhibit different convergence properties, depending on the
statistical error introduced in each iteration. This trend in τc is
therefore not surprising, and it suggests that an accurate energy

estimate can be achieved at less computational cost if the
values of m and ε are varied dynamically during the calculation.
The difference Ediff between the final estimate of the energy,

obtained by averaging over all τ ≥ τc, and the exact FCI energy
from ref 41, is presented for each m in Table 3. The number of
iterations included in each of these averages can be obtained
by subtracting τc from the reported total number of iterations,
Ni. The reported uncertainties, twice the standard error σE
calculated as described in section 2.5, represent 95%
confidence intervals for the means. The exact energy is within
these confidence intervals for all values of m reported here (i.e.,
|Ediff| < 2σE). The standard error is expected to decrease after
more iterations, with an asymptotic scaling of (Ni − τc)

−1/2.
Confidence intervals for intermediate values of τ, calculated by
scaling the final confidence intervals reported in Table 3, are
shown as shaded areas in Figure 2. The value Ediff is not
expected to converge to 0 but rather to the statistical bias, as
discussed in section 2.5. This bias scales as m−1 when m is
sufficiently large (but still much smaller than the size of the
FCI basis, NFCI),

24 but the number of iterations performed in
our calculations is not sufficient to measure the biases in these
calculations accurately.
In Table 3, decreased standard error is observed in

calculations with greater values of m, despite the fact that
fewer iterations were included in these calculations. If the
errors from these calculations are compared after the same
number of iterations, the trend with increasing m would be
more pronounced. The statistical efficiency does not depend
on the number of iterations and therefore allows for a more
direct comparison. Statistical efficiencies calculated from all
trajectories are presented in Table 3 and in the bottom panel of
Figure 2. While the computational cost of full-matrix FCI-FRI
calculations is approximately proportional to m, the statistical
efficiency appears to increase at a faster-than-m rate for small
m. This indicates that, in terms of reducing the standard error,
it is more advantageous to increase m in this pre-asymptotic
regime than to increase the number of iterations. The statistical
efficiency is expected to increase linearly with m for m
sufficiently large (but still much smaller than NFCI).

24 Similar
faster-than-m pre-asymptotic scaling has been observed in
other methods that use sequential Monte Carlo sampling on a
classical problem,50 suggesting that it is not (solely) a
manifestation of the Fermion sign problem in this case.
Before considering the effect of matrix compression on the

statistical error, we comment briefly on the benefits of using
stochastic, rather than deterministic, vector compression.
Results for the Ne atom obtained using a deterministic vector
compression scheme are presented in Figure 3. In each
iteration, the matrix is not compressed, the m greatest-
magnitude elements in the vector are preserved exactly, and
the remaining vector elements are zeroed. For all values of m
considered, the energy calculated from the projected estimator,
EP, converges after approximately 3000 iterations. Energies
obtained from the “full-matrix FCI-FRI” method, with m =
50 000 nonzero elements kept after each iteration, are also
presented for comparison. The error in the corresponding
deterministic calculation after a similar number of iterations is
almost 2 orders of magnitude greater than the 95% confidence
interval in the FCI-FRI calculation. Similar results for other
electronic systems were observed previously in ref 25. These
results indicate that the success of the FCI-FRI method in
these cases cannot be attributed to its discarding vector
elements that do not contribute significantly to the energy, as is

Figure 2. Results obtained by applying the “full-matrix FCI-FRI”
method to the Ne atom. (top) Differences between the energy
estimator (EP

(τ), eq 21) and the exact FCI ground-state energy for
three trajectories with different numbers, m, of nonzero elements in
the compressed vectors. After the initial equilibration period (τ > τc),
the cumulative mean ⟨EP⟩ is plotted, with the shaded region
indicating the corresponding 95% confidence interval (±2σE).
(bottom) The statistical efficiency for trajectories executed with
different values of m. The dashed line with slope 1 represents the
expected scaling of the efficiency with respect to m (for m large but
less than NFCI).

Table 3. Results Obtained by Applying the “Full-Matrix
FCI-FRI” Method to the Ne Atom with Different Values of
ma

m/103 Nmat /10
6

(Ediff ± 2σE)/
(10−5Eh) eff/(106Eh

−2) τc/10
3 Ni/10

3

1 0.93 6437 ± 16099 1.25 × 10−10 0.8 1237
2 1.9 141 ± 242 6.4 × 10−7 1.1 1062
5 4.7 −0.089 ± 4.60 0.0015 1.2 1200
10 9.3 0.307 ± 0.480 0.296 3.2 589
25 23.4 −0.053 ± 0.112 12.8 4.8 256
50 46.8 0.034 ± 0.063 86.9 6.1 123

aThe difference Ediff between the mean and exact (FCI) energy for
each calculation is presented, with twice the standard error σE (95%
confidence interval). The length of the equilibration period (τc) and
total number of iterations (Ni) are given. The statistical efficiency is
calculated using eq 29. The mean number of Hamiltonian matrix
evaluations in each iteration Nmat is presented for comparison to other
methods.
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done in the deterministic approach. The stochastic representa-
tion of these small-magnitude elements is crucial to its success.
This observation may be relevant to selected CI methods,51−55

which utilize a similar greedy optimization scheme.
3.2. Methods with Matrix Compression. The cost of the

full-matrix FCI-FRI method renders it intractable for larger
systems, so we also evaluate the performance of methods that
use matrix compression, including the original FCIQMC
method.
3.2.1. Near-Uniform Factorization.Methods that utilize the

near-uniform factorization described in Appendix A will be
discussed first. In order to ensure a fair comparison among
these methods, all calculations for each system are executed
with approximately the same cost, i.e., using the same numbers

of nonzero elements in the matrix and vector compressions in
each iteration (Nmat and m, respectively). In an FCIQMC
calculation, Nmat is the number of walkers, and m is determined
by their distribution among the Slater determinant basis
elements. In FCIQMC, the number of walkers and m fluctuate
randomly in each iteration. Previous studies have determined
that the number of walkers must be greater than a system-
dependent critical value in order to ensure convergence. The
number of walkers used in the FCIQMC calculations discussed
here are constrained to be greater than these critical values.
Critical values for the Ne and HF systems are given in ref 16,
and those for the remaining systems considered in this study
are determined using the same scheme, i.e., by observing
trends in the growth of the number of walkers before the
energy shift S(τ) is updated. The values of Nmat and m used in
FCI-FRI calculations are fixed at the corresponding average
values obtained from the FCIQMC calculations after walker
growth has stabilized.
Results from these calculations for all molecular systems are

presented in Table 4. In all calculations, average energies
converge to the exact FCI energies reported in Table 2 to
within twice the standard error (95% confidence interval).
Strictly speaking, all methods considered here exhibit a
statistical bias, although for these calculations it is very likely
less than the reported confidence intervals. After more
iterations, we expect that the standard error for all trajectories
will decrease, and the energy differences Ediff for both
trajectories of a particular method and system will converge
to the same statistically significant bias. It is impossible to draw
definitive conclusions about the relative biases of the three
methods described here without more iterations.
Standard errors from FCIQMC calculations range from 3 ×

10−5Eh to 20 × 10−5Eh, while those from the FCI-FRI methods
are smaller (from 2 × 10−5Eh to 6 × 10−5Eh for multinomial
FCI-FRI, and from 0.4 × 10−5Eh to 1.7 × 10−5Eh for systematic
FCI-FRI), despite their use of fewer iterations. This trend is also

Figure 3. Results obtained by applying the power method with
deterministic vector truncation to the Ne atom. Only the m greatest-
magnitude elements of the vector were preserved exactly after each
iteration. Differences between the energy estimator EP

(τ) and the exact
energy at each iteration are plotted for four trajectories with different
values of m. Results from the “full-matrix FCI-FRI” calculation with m
= 50 000 elements from Figure 2 are presented for comparison. Note
the log scale on the vertical axis.

Table 4. Differences between Mean Energy Estimates and Those Reported in Table 2 (Ediff) for Each of the Systems
Considered Here, Calculated Using the FCIQMC, Multinomial FCI-FRI, and Systematic FCI-FRI Methods with the Near-
Uniform Factorization Schemea

FCIQMC multinomial FCI-FRI systematic FCI-FRI

system m/103 Nmat/10
6 (Ediff ± 2σE)/(10

−5Eh) τc/10
3 Ni/10

3 (Ediff ± 2σE)/(10
−5Eh) τc/10

3 Ni/10
3 (Ediff ± 2σE)/(10

−5Eh) τc/10
3 Ni/10

3

Ne 242 0.26 −1.44 ± 7.36 22.5 2800 0.06 ± 5.66 15.0 2373 −0.16 ± 1.09 11.5 1422
2.89 ± 7.47 22.5 2800 −3.12 ± 4.99 15.0 3200 −0.74 ± 1.11 11.0 1445

HF 926 1.00 10.57 ± 26.86 160.0 1469 −9.76 ± 11.17 400.0 1104 0.49 ± 2.57 620.0 1495
21.09 ± 33.50 430.0 1474 −7.03 ± 11.28 380.0 1100 −0.37 ± 3.37 620.0 994

H2O 491 0.57 −0.96 ± 6.52 30.0 2400 0.61 ± 5.54 20.0 1232 −0.41 ± 1.29 25.0 1055
0.54 ± 6.47 30.0 2400 −2.08 ± 5.63 20.0 1228 0.17 ± 1.16 25.0 1059

N2 1014 1.21 −7.46 ± 29.75 200.0 1788 −1.05 ± 5.02 80.0 822 0.14 ± 0.82 76.7 554
4.78 ± 39.85 200.0 1791 2.41 ± 5.55 52.1 512 −0.89 ± 1.33 170.0 557

C2 2622 4.14 9.53 ± 9.56 50.0 2908 1.32 ± 3.55 540.0 2051 0.71 ± 1.08 42.2 513
4.76 ± 11.54 50.0 2768 −2.30 ± 3.92 450.0 1327 −0.50 ± 0.77 50.6 516

aThe parameter m represents the sparsity of the iterates (mean sparsity for FCIQMC), and Nmat represents the number of Hamiltonian matrix
elements evaluated in each iteration (mean number of walkers for FCIQMC). Results from two independent trajectories are presented for each
method. Mean energy differences ± twice the standard error (95% confidence interval) are reported for each calculation, followed by the length of
the equilibration period (τc) and total number of iterations (Ni). For each chemical system, the three methods share a similar computational cost
per iteration.
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reflected in the corresponding efficiencies (Figure 4, top),
which are normalized based on the different number of

iterations considered in the calculation of each standard error.
For all systems, efficiencies for systematic FCI-FRI calculations
are more than an order of magnitude greater than those for
multinomial FCI-FRI calculations, which are in turn 2−113
times greater than those for FCIQMC calculations.
The integrated autocorrelation times (IATs), calculated as

described in section 2.5 for all three methods, are similar
within each system considered here. This is likely because the

same value of the imaginary time step, ε, is used for each
system (Table 2). A previous study34 found that reducing the
statistical error in matrix compression in FCIQMC enabled the
use of greater values of ε. This reduces the degree of
correlation between iterates, thereby decreasing the IAT and
increasing the statistical efficiency. This suggests that using
greater values of ε in the multinomial and systematic FCI-FRI
methods could potentially increase the observed difference in
their efficiencies. Furthermore, increasing ε may reduce the
equilibration times τc for the FCI-FRI methods.
Because the systematic FCI-FRI method converges to the

deterministic power method as Nmat and m approach finite
values, we expect that the reported performance advantages for
systematic FCI-FRI relative to the other two methods would
increase for greater values of Nmat and m. On the other hand,
because the compression schemes used in these FCI-FRI
methods become more similar to those in FCIQMC as the size
of the FCI basis increases relative to Nmat and m, the statistical
efficiencies of these methods are expected to become more
similar in this limit. For many systems, however, the values of
Nmat and m required to calculate reasonably accurate energy
estimates also increase with system size. In the calculations we
have compared thus far, the values of these parameters are
dictated by the critical number of walkers in FCIQMC.16

Calculations for the Ne and HF systems were also compared
with fewer matrix and vector samples. Using only 164 000
walkers in an FCIQMC calculation on Ne yields an energy
estimate that differs from the exact energy by (−163 ± 20783)
× 10−5Eh, whereas a systematic FCI-FRI calculation with
equivalent numbers of samples yields an energy estimate that
differs by (0.58 ± 5.15) × 10−5Eh after a similar number of
iterations. The efficiencies of these two calculations differ by 7
orders of magnitude. A similar comparison for HF with only
812 000 walkers also shows a factor of 107 difference in
efficiencies. This suggests that FCI-FRI methods may allow for
the use of significantly fewer matrix and vector samples than
the original FCIQMC method.

3.2.2. Heat-Bath Power−Pitzer Factorization. Results
obtained using the three methods with the HB-PP factorization
matrix mostly follow the same trends as those for the near-
uniform factorization (Table 5). Standard errors for systematic

Figure 4. Increases in statistical efficiency are robust across five
molecular systems and two choices of matrix factorization schemes,
near-uniform (top) and heat-bath Power−Pitzer (bottom). Reported
statistical efficiencies represent an average over the two independent
trajectories obtained using each method and do not reflect differences
in computational cost for systems with different sizes. Note the log
scale on the y-axis.

Table 5. Mean Energy Differences ± Twice the Standard Error for Randomized Methods Using the Heat-Bath Power−Pitzer
Factorization Schemea

FCIQMC multinomial FCI-FRI systematic FCI-FRI

system m/103 Nmat/10
6 (Ediff ± 2σE)/(10

−5Eh) τc/10
3 Ni/10

3 (Ediff ± 2σE)/(10
−5Eh) τc/10

3 Ni/10
3 (Ediff ± 2σE)/(10

−5Eh) τc/10
3 Ni/10

3

Ne 242 0.26 0.01 ± 13.43 15.0 902 3.96 ± 7.83 15.0 917 −0.44 ± 1.61 15.0 657
−3.41 ± 13.22 20.0 963 0.75 ± 7.92 15.0 905 −1.09 ± 1.61 15.0 686

HF 926 1.00 −4.15 ± 17.31 130.0 502 −4.78 ± 18.28 180.0 436 −0.91 ± 2.99 40.0 447
4.41 ± 15.89 120.0 507 0.66 ± 13.42 50.0 430 −0.54 ± 3.00 27.4 654

H2O 491 0.57 −12.33 ± 10.66 30.0 938 −1.53 ± 5.95 20.0 645 −0.30 ± 1.52 20.0 533
−4.04 ± 10.45 30.0 936 −3.65 ± 5.69 20.0 646 −0.18 ± 1.63 20.0 531

N2 997 1.15 33.68 ± 94.08 200.0 663 1.03 ± 5.53 53.2 699 0.43 ± 1.18 64.6 373
55.74 ± 75.77 200.0 659 4.19 ± 5.07 57.1 700 −0.19 ± 1.72 72.7 372

C2 2620 4.14 −11.20 ± 17.99 50.0 573 −1.02 ± 4.59 190.0 432 −0.15 ± 2.02 130.0 331
12.40 ± 22.95 140.0 581 −0.12 ± 5.61 36.8 494 −0.73 ± 1.96 50.0 213

aParameters are reported for each trajectory as in Table 4 (iterate vector sparsity, number of matrix samples, and number of iterations).
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and multinomial FCI-FRI calculations are less than those from
FCIQMC, as is reflected in their associated efficiencies (Figure
4, bottom). One FCIQMC calculation on H2O did not
converge to within the 95% confidence interval, although given
the relative magnitude of its standard error, this is likely a
statistical anomaly. Systematic FCI-FRI calculations on C2
were particularly expensive due to the number of orbitals and
cost of evaluating elements of matrices in the HB-PP
factorization, rendering it difficult to accumulate sufficiently
many samples to obtain an accurate estimate of the integrated
autocovariance. Consequently, the estimated standard errors
for these calculations are likely more inaccurate than for the
other calculations in this study. This highlights the need for
more efficient implementations of these FCI-FRI methods.
3.3. Variational Energy Estimates. Finally, we evaluate

the possibility that the primary utility of the FCI-FRI methods
considered here is that they efficiently identify the most
important Slater determinant basis elements in the ground-
state eigenvector. Variational Rayleigh quotients (eq 20) for a
subset of the iterates (i.e., every 100th iterate) in each
trajectory were calculated in addition to the projected
estimates used to obtain average energies. If FCI-FRI is only
an efficient search for significant basis elements, then we expect
many of these Rayleigh quotients to be close to the ground-
state energy.
We calculate the minimum Rayleigh quotient over both

independent trajectories for each system considered. Differ-
ences between these minimum energies and the exact ground-
state energies for each system are plotted in Figure 5. The
mean energy difference from the original FCIQMC method is
also plotted for comparison, with error bars denoting the
corresponding 95% confidence interval. For all methods and
systems considered, this difference for the minimum Rayleigh

quotient is more than an order of magnitude greater than the
maximum of the FCIQMC confidence interval. The minimum
Rayleigh quotients from FCIQMC are greater than those from
the FCI-FRI methods considered and, for all systems except
C2, are also greater than the Hartree−Fock energy. This
difference between the FCIQMC and FCI-FRI Rayleigh
quotients can possibly be attributed to the lower-variance
vector compression scheme employed in FCI-FRI. Even
though the average of the FCIQMC iterates converges to
the ground state to within a bias, the binomial integerization
scheme used in FCIQMC displaces each iterate further from
the ground state than in FCI-FRI.
These results indicate that none of the vectors from the

FCIQMC or FCI-FRI trajectories are particularly close to the
ground state, as measured by the variational energy estimates.
The facts that the average of each component of the solution
vector converges quickly to its exact value, to within a
controllable statistical bias, and that the projected estimator is
linear in these components, rather than quadratic, are essential
for the success of FCI-FRI methods.

4. CONCLUSIONS
This paper describes several generic matrix and vector
compression techniques within the FRI framework in the
context of the FCI problem. Hierarchical approaches to matrix
compression are discussed and shown to offer significant
advantages over approaches that require enumerating all
nonzero elements. Two examples of hierarchical factorization
schemes for the FCI Hamiltonian matrix are presented, namely
near-uniform and heat-bath Power−Pitzer. We describe how
these various techniques can be combined in methods for
calculating the FCI ground-state energy using power iteration,
and we compare these “FCI-FRI” methods to FCIQMC in its
original form.
Calculations on small molecules are used to compare the

performance of these methods in terms of statistical efficiency,
a metric inversely related to the square of the standard error.
FCI-FRI calculations on the Ne atom demonstrate that using
matrix compression in addition to vector compression can
enable significant reductions in computational cost while only
moderately decreasing the statistical efficiency.
We show that systematic matrix compression offers

significant advantages over multinomial matrix compression,
which has been used previously in FCIQMC. FCI-FRI
calculations with systematic matrix compression applied to
five small molecular systems are 11−45 times more efficient
than those with multinomial compression, which are in turn
1.4−178 times more efficient than calculations performed
using the original FCIQMC method.
The advantages of these stochastic methods over related

deterministic compression methods are investigated. The error
in a stochastic calculation on the Ne atom is nearly 2 orders of
magnitude less than a deterministic calculation with com-
parable cost, which illustrates the importance of stochastically
representing all components of the solution vector in the FCI
Slater determinant space. Furthermore, by applying variational
energy estimators to stochastic calculations performed on all
molecular systems, we demonstrate the importance of
averaging over many sparse, stochastic iterates in producing
an accurate energy estimate. These features of stochastic
methods and the results in this study suggest the applicability
of FCI-FRI methods to strongly correlated systems with dense
solution vectors.

Figure 5. Difference between the minimum variational energy
estimate from each method and the exact FCI energy from Table 2.
Results from the FCIQMC, multinomial FCI-FRI, and systematic
FCI-FRI methods, using both the near-uniform (top) and heat-bath
Power−Pitzer (bottom) matrix factorization schemes, are shown for
each of the molecular systems considered in this study. Mean energy
differences from the FCIQMC method for each system are plotted for
comparison. Error bars represent 95% (2σE) confidence intervals.
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Future research will investigate strategies for further
improving the performance of FCI-FRI methods. We will
develop implementations of these methods that exploit
parallelism more effectively, possibly using techniques
developed previously for FCIQMC. Due to the generality of
the FRI framework, the compression techniques introduced
here can be applied in tandem with the complementary
initiator and semistochastic extensions to FCIQMC, which
suggests an approach to further improving statistical efficiency.
Additionally, examining the effect of the choice of parameters
used in FCI-FRI calculations on the statistical efficiency may
provide additional insight into how to optimize performance.
For example, our results suggest that FCI-FRI methods allow
more flexibility than FCIQMC in the choice of the parameter
ε, which corresponds to the time step in imaginary time
propagation. Varying ε may affect the statistical efficiency of
FCI-FRI methods. Furthermore, the number of nonzero
elements in each matrix and vector compression in FCIQMC
is determined by the number of walkers, whereas in FCI-FRI,
these parameters can be varied independently. FCIQMC
methods require a critical number of walkers to reliably
converge to the ground-state energy. Our results suggest that
using improved matrix compression schemes in FCI-FRI
methods can reduce the number of matrix and vector elements
required for convergence. Exploring these possibilities may
facilitate the development of stochastic methods for quantum
chemistry that are able to treat larger systems than currently
possible.
Appendix A. Matrix Factorizations for Quantum Chemistry
This section describes two approaches to factoring the matrix
P(τ), near-uniform and heat-bath Power−Pitzer (HB-PP).
Elements in each matrix in the factorization are calculated
using information from Hartree−Fock based on predetermined
rules. The cost of evaluating these elements is greater for the
HB-PP factorization than for near-uniform, although inter-
mediate compression steps in the HB-PP scheme yield less
statistical error than for near-uniform.
A.1. Near-Uniform. In the near-uniform factorization,7 P(τ)

is factored into the product BC(τ)Q, where Q is factored
further into a product of four matrices, Q(4)Q(3)Q(2)Q(1).
Elements of these four matrices can be calculated efficiently
based on symmetry relationships between pairs of Slater
determinants in the FCI basis. Elements of Q differ from
elements of P(τ), so multiplication by C(τ)compensates for this

by multiplying by elements of P(τ)and dividing by elements of
Q. This ensures that elements of the product of matrix factors
are equal to those of P(τ). Finally, multiplication by B sums
elements corresponding to all excitations that contribute to
each Slater determinant element of the final vector.
Each of the one-electron orbitals from a Hartree−Fock

calculation can be assigned an associated irreducible
representation (irrep) according to the symmetry of the
system under consideration. This can encode spin symmetry
(up or down), spatial (point group) symmetry, and, for
crystalline systems, k-point symmetry. For each nonzero
element in H corresponding to a single excitation from |K⟩
to câ

†cî|K⟩, the irrep of orbital i must equal that of orbital a, i.e.,
Γi = Γa. Because P

(τ)is related to H by only a scalar factor and a
shift by identity, its elements obey the same symmetry
relationships. For double excitations, the direct product of
irreps of the occupied orbitals, Γi ⊗ Γj, must equal that of the
virtual orbitals, Γa ⊗ Γb, in order for the corresponding
element of H to be nonzero. Excitations satisfying these
symmetry constraints are termed symmetry-allowed excita-
tions. Applying this factorization scheme requires an O(N)-
operation per nonzero element in the current iterate to count
the number of occupied and virtual orbitals with each irrep.
The matrices in this factorization map Slater determinant

basis elements to excitations, indexed using multi-indices
containing the orbitals involved in each excitation, and
ultimately back to the determinants defined by these
excitations. A schematic overview of these relationships is
presented in Figure 6. The matrix Q(1) has dimensions (3NFCI

× NFCI), and its row space can be divided into three distinct
subspaces. The first corresponds to single excitations, and each
element is indexed using a multi-index {K,1} denoting a
generic single excitation from |K⟩. Elements of Q(1) in this
subspace are given as

δ=
+{ }Q
n

n nK J KJ,1 ,
(1) s

s d (A1)

where δKJ is a Kronecker delta, and ns and nd are the numbers
of symmetry-allowed single and double excitations from a
reference determinant in the FCI basis (typically Hartree−
Fock). The second subspace contains generic double
excitations and has elements given as

Figure 6. Hierarchical structure of the near-uniform factorization of the matrix P(τ), showing the orbital indices used to index the row and column
spaces of each matrix in the factorization.
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δ=
+{ }Q
n

n nK J KJ,2 ,
(1) d

s d (A2)

Elements in the third subspace, indexed as {K,0}, will be
mapped back to their original Slater determinant |K⟩ by the
final matrix multiplication in the factorization. These must be
considered separately in intermediate steps, as will be
explained in the discussion of compression below. These “no
excitation” elements are given as

δ={ }Q K J KJ,0 ,
(1)

(A3)

The subsequent matrices in the factorization map generic
single and double excitations from the row space of Q(1) to
specific single and double excitations. This begins with
multiplication by Q(2), which maps to the specific occupied
orbitals in these excitations. Single-excitation elements in this
matrix are nonzero only for symmetry-allowed choices of
occupied orbitals i. An occupied orbital in |K⟩ is symmetry-
allowed if there is at least one virtual orbital of the same
symmetry in |K⟩. The number of such orbitals in |K⟩ is denoted
nK
occ. These single-excitation elements in Q(2) are

={ } { }
−Q n( )K i K K,1, , ,1

(2) occ 1
(A4)

Double excitation elements are nonzero for all of the
N(N − 1)/2 unique pairs of occupied orbitals (i,j) in |K⟩,
regardless of whether they have corresponding symmetry-
allowed pairs of virtual orbitals. These elements are

= −{ } { }
− −Q N N2 ( 1)K i j K,2,( , ) , ,2

(2) 1 1
(A5)

The orbitals (i,j) are grouped in the multi-index to indicate
that their order is irrelevant to the indexing. As above, “no
excitation” elements of Q(2) are 1, i.e.,

={ } { }Q 1K K,0 , ,0
(2)

(A6)

All other elements of Q(2) are 0.
Single-excitation elements in Q(3) map a virtual orbital to

each excitation. Elements for symmetry-allowed virtual orbitals
a are

={ } { }
−Q n i( ( ))K i a K i K,1, , , ,1,

(3) virt 1
(A7)

where nK
virt(i) is the number of virtual orbitals in |K⟩ with the

same symmetry as i. Double excitation elements are defined for
symmetry-allowed virtual orbitals a, i.e., those for which there
exists at least one virtual orbital b that satisfies Γi ⊗ Γj =
Γa ⊗ Γb:

= [ ]{ } { }
−Q n i j( , )K i j a K i j K,2,( , ), , ,2,( , )

(3) virt 1
(A8)

where nK
virt(i,j) is the number of symmetry-allowed virtual

orbitals given an occupied pair (i,j). “No excitation” elements
of Q(3) are 1, and all other elements are 0.
Since single excitations are specified completely by the

occupied and virtual orbitals in the row-space indices of Q(3),
single-excitation elements of Q(4) map these excitations to
themselves, as follows:

={ } { }Q 1K i a K i a,1, , , ,1, ,
(4)

(A9)

Double-excitation elements for symmetry-allowed virtual
orbitals b are

= [ ]{ } { }
−Q n i j a( , , )K i j a b K i j a K,2,( , ), , , ,2,( , ),

(4) virt 1
(A10)

where nK
virt(i,j,a) denotes the number of symmetry-allowed

virtual orbitals in |K⟩ given i, j, and a. Note that all of these
orbitals b have the same irrep, since there is only one irrep Γb
in the system’s point group that satisfies Γi ⊗ Γj = Γa ⊗ Γb.
The matrix C(τ), which ensures that the factorization is equal

to P(τ), is a diagonal square matrix. Its single-excitation
elements are

=
→τ

τ

{ } { }
{ } { } { } { } { }

C
P i a

Q Q Q

( )
K i a K i a

K

K K K i K K i a K i
,1, , , ,1, ,

( )
( )

,1 ,
(1)

,1, , ,1
(2)

,1, , , ,1,
(3)

(A11)

The denominator corresponds to the “generation probability”
in the original description of FCIQMC. Double excitation
elements in C(τ) are

=

→ ×

+

τ

τ

{ } { }

{ } { } { }
−

{ } { } { } { }

{ } { } { } { }
−

C

P ij ab Q Q

Q Q

Q Q

( )( )

(

)

K i j a b K i j a b

K K K K i j K

K i j a K i j K i j a b K i j a

K i j b K i j K i j b a K i j b

,2,( , ), , , ,2,( , ), ,
( )

( )
,2 ,

(1)
,2,( , ) , ,2

(2) 1

,2,( , ), , ,2,( , )
(3)

,2,( , ), , , ,2,( , ),
(4)

,2,( , ), , ,2,( , )
(3)

,2,( , ), , , ,2,( , ),
(4) 1

(A12)

The sum of terms in the denominator of this expression
accounts for the fact that there are two elements in the row
space of C(τ), i.e., {K,2,(i,j),a,b} and {K,2,(i,j),b,a}, correspond-
ing to each double excitation, i.e., K(ij → ab). These will be
summed after multiplication by the final matrix in the
factorization, B. Elements in C(τ) corresponding to “no
excitation” elements in the basis are given as their
corresponding diagonal elements in P(τ):

=τ τ
{ } { }C PK K KK,0 , ,0
( ) ( )

(A13)

Multiplication by B sums contributions from the row space
of C(τ) that map to the same Slater determinant basis element.
Because there are many elements in this space that map to the
same determinant, the row dimension of B is smaller than the
column dimension. Elements for double excitations are

= =→ { } → { }B B 1K ij ab K i j a b K ij ab K i j b a( ), ,2,( , ), , ( ), ,2,( , ), , (A14)

and those for single excitations are

=→ { }B 1K i a K i a( ), ,1, , (A15)

“No excitation” elements are mapped back to the determinant
from which they originated, i.e.,

={ }B 1K K, ,0 (A16)

This mapping can be performed efficiently using a hashing
algorithm,7 at O(Nmat) cost, where Nmat is the number of
elements selected from the matrix. In our current implementa-
tions of FCIQMC and FCI-FRI methods, a simpler
O(Nmat log m) binary search is used instead, where m is the
number of nonzero iterate elements.
The selection of excitations from the near-uniform

distribution in FCIQMC can be understood as a particular
multinomial compression technique applied to the factoriza-
tion scheme discussed above. Systematic compression could be
applied analogously. However, one of the primary advantages
of systematic compression is that it can be performed such that
the elements selected from the vector are unique, thereby
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yielding less statistical error. This benefit is somewhat
diminished when using the factorization described above,
since the indices {K,2,(i,j),a,b} and {K,2,(i,j),b,a} indicate the
same double excitation but are treated separately until
multiplication by B. We therefore designed an alternative
factorization scheme to address this (Figure 7). Elements of
the matrix BQ in this alternative scheme are equal to those in
the original scheme; the difference only arises in how double-
excitation elements are defined and indexed in Q(3) and Q(4).
Pairs of virtual orbitals and pairs of symmetry elements in the
system’s point group are used instead of individual virtual
orbitals to index these elements. Applying the FCIQMC
compression technique with the alternative scheme would
yield the same statistical error; its advantages are realized only
when using systematic compression.
Elements of the matrix Q(3) in this alternative factorization

were obtained by summing double-excitation elements in the
matrix product Q(3)Q(4) from the above factorization
corresponding to pairs of irreps (Γx,Γy). If the irreps of the
occupied orbitals in a double excitation are equal (Γi = Γj),
then the irreps of the virtual orbitals must also be equal to
satisfy the symmetry conditions described above. Double
excitation elements of Q(3) corresponding to such pairs of
occupied orbitals are

l

m
oooooo

n
oooooo

=

Γ Γ >

Γ ⊗ Γ = Γ ⊗ Γ

{ } { }

−

Q

n n i j n( ) ( , ) ( ) 1,

0 otherwise

K i j x x K i j

K x K K x

i j x x

,2,( , ),( , ) , ,2,( , )
(3)

virt virt 1 virt

(A17)

Here x denotes a symmetry element in the system’s point
group, Γx is its associated irrep, and nK

virt(Γx) denotes the
number of virtual orbitals in |K⟩ with irrep Γx. If Γi ≠ Γj, the
corresponding elements of Q(3) are

l

m

ooooooooo

n

ooooooooo

=

Γ + Γ
Γ > Γ >

Γ ⊗ Γ = Γ ⊗ Γ

{ } { }Q

n n

n i j
n n

( ) ( )

( , )
( ) 0, ( ) 0,

0 otherwise

K i j x y K i j

K x K y

K
K x K y

i j x y

,2,( , ),( , ) , ,2,( , )
(3)

virt virt

virt
virt virt

(A18)

Double excitation elements in Q(4)are given as the reciprocal of
the number of virtual orbital pairs within each irrep pair. For
pairs of virtual orbitals with the same irrep,

l

m

oooooooo

n

oooooooo

=

Γ [ Γ − ]
Γ >

Γ = Γ = Γ

{ } { }Q

n n
n2

( ) ( ) 1
( ) 1,

0 otherwise

K i j a b K i j x x

K x K x
K x

a b x

,2,( , ),( , ) , ,2,( , ),( , )
(4)

virt virt
virt

(A19)

If instead Γa ≠ Γb, the elements are

l

m
oooooo

n
oooooo

=

Γ Γ Γ > Γ >

Γ = Γ Γ = Γ

{ } { }

− −

Q

n n n n( ) ( ) ( ) 0, ( ) 0,

,

0 otherwise

K i j a b K i j x y

K x K y K x K y

a x b y

,2,( , ),( , ) , ,2,( , ),( , )
(4)

virt 1 virt 1 virt virt

(A20)

Except for the different indexing scheme for virtual orbitals in
double excitations, elements in C(τ) and B are defined as above.
Consequently, the elements of C(τ) are as uniform in
magnitude as in the factorization scheme above. Compression
of either near-uniform factorization scheme can be performed
at approximately O(Nmat) cost.

A.2. Heat-Bath Power−Pitzer. In the above factorization,
symmetry information is used to facilitate the efficient
calculation of elements in the first four matrices, and
discrepancies between products of these elements and
elements of P(τ) are eliminated through multiplication by
C(τ). Less error is introduced by stochastic compression of this
factorization when Q is closer to P(τ), i.e., when the magnitudes
of elements of C(τ) are more uniform.34,39 The heat-bath
Power−Pitzer (HB-PP) factorization is designed to achieve
more uniformity in these elements by using information from
the Hamiltonian matrix in constructing Q, which is factored
into a product of five matrices, Q(5)Q(4)Q(3)Q(2)Q(1). Elements
in these matrices are indexed by individual orbitals rather than
unique pairs of orbitals or symmetry elements. Because it is
expensive to incorporate information about single-excitation
Hamiltonian elements into these matrices, due to the O(N)
cost of evaluating each element, single-excitation elements in
the factors of Q are defined exactly as in the near-uniform case.

Figure 7. An alternative near-uniform factorization structure for the matrix P(τ). Unlike in Figure 6, double excitations have unique indices, making
this factorization more amenable to systematic compression.
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The same is true for “no excitation” elements, for reasons that
will be made apparent in Appendix B.
Elements corresponding to double excitations in Q(1) are

also defined as in the near-uniform case. Double-excitation
elements in subsequent matrices are defined in terms of a
matrix D and vector S. Elements of D approximate the sum of
magnitudes of double-excitation elements in the Hamiltonian
corresponding to a particular pair of occupied orbitals,34

l
m
ooooo

n
ooooo

∑
=

|⟨ || ⟩| ≠

=
∉{ }D

pq rs p q

p q0
pq r s p q, ,

(A21)

where ⟨pq||rs⟩ is an antisymmetrized two-electron integral
obtained from the Hartree−Fock calculation. The exact sum
for each determinant depends on which orbitals are occupied,
so it is approximated by an unrestricted sum over all other
orbitals in the Hartree−Fock basis. Analogously, elements of S
approximate this sum for a single occupied orbital,

∑=S Dp
q

pq
(A22)

The primary advantage of defining S and D by unrestricted
sums is that they can be computed and stored in memory at
the beginning of the simulation, at a memory cost of O(M2)
and a CPU cost of O(M4).
The row spaces of Q(2) and Q(3) are indexed by multi-

indices containing individual occupied orbitals instead of
unique pairs of occupied orbitals. Elements in Q(2) are

=
∑{ } { }

∈
Q

S
SK i K

i

j j
,2, , ,2

(2)

occ (A23)

and those in Q(3) are

=
∑{ } { }

′∈ ′
Q

D

DK i j K i
ij

j ij
,2, , , ,2,

(3)

occ (A24)

As a consequence of this indexing scheme, pairs of elements
in Q(3) in which the order of the occupied orbitals is reversed
are not necessarily equal, i.e.,

≠{ } { } { } { }Q QK i j K i K j i K i,2, , , ,2,
(3)

,2, , , ,2,
(3)

(A25)

Elements in the next matrix corresponding to double
excitations with one virtual orbital are defined as

= |⟨ || ⟩|

∑ ⟨ || ⟩|
{ } { }

∈{ }

Q
ia ai

ic ci
K i j a K i j

c
,2, , , , ,2, ,

(4)
1/2

virt
1/2

(A26)

where ⟨ia||ai⟩ represents a two-electron exchange integral.
Note that if the spins of orbitals i and a differ, this integral is 0.
The sum in the denominator includes all virtual orbitals in |K⟩.
Elements in Q(5) are indexed by a second virtual orbital and are
defined as

δ

δ
=

|⟨ || ⟩ |

∑ ⟨ || ⟩|
{ } { }

Γ ⊗Γ Γ⊗Γ

Γ ⊗Γ Γ⊗Γ

Q
jb b j

jc cj
K i j a b K i j a

c
,2, , , , , ,2, , ,

(5)
1/2

,

1/2
,

b a i j

c a i j (A27)

where the Kronecker deltas enforce the symmetry condition
for double excitations described in section A.1, and the sum
includes all orbitals in the basis, including those occupied in

|K⟩. Elements in Q(5) corresponding to single excitations are
defined in analogy to eq A9.
Elements of the matrix C(τ)are

= → ×

[ ×

+

+ ×

+ ]

τ τ
{ } { } { }

−

{ } { } { } { }

{ } { } { } { }

{ } { } { } {

{ } { } { } { }

{ } { } { } { }

{ } { } { } { }
−

C P ij ab Q

Q Q

Q Q

Q Q

Q Q

Q Q

Q Q

( )( )

(

)

(

)

K i j a b K i j a b K K K

K i K K i j K i

K i j a K i j K i j a b K i j a

K i j b K i j K i j b a K i j b

K j K K j i K j

K j i a K j i K j i a b K j i a

K j i b K j i K j i b a K j i b

, , , , , ,2, , , ,
( ) ( )

,2 ,
(1) 1

,2, , ,2
(2)

,2, , , ,2,
(3)

,2, , , , ,2, ,
(4)

,2, , , , , ,2, , ,
(5)

,2, , , , ,2, ,
(4)

,2, , , , , ,2, , ,
(5)

,2, , ,2
(2)

,2, , , ,2,
(3)

,2, , , , ,2, ,
(4)

,2, , , , , ,2, , ,
(5)

,2, , , , ,2, ,
(4)

,2, , , , , ,2, , ,
(5) 1

(A28)

where the four terms in the sum account for the four different
orders in which the orbitals for the double excitation can be
chosen. The matrix B is defined analogously to the near-
uniform factorization. The cost of performing the compres-
sions for the HB-PP scheme scales as O(MNmat).

Appendix B. Compression Schemes in FCIQMC and FCI-FRI
In principle, any compression scheme could be used to
compress the intermediate vectors generated after each matrix
multiplication in the hierarchical factorization schemes
described above. This section describes the specific schemes
used in the original FCIQMC method, as well as in
multinomial and systematic FCI-FRI. Previously, FCIQMC
has been described in terms of a sequence of “spawning”,
“death/cloning”, and “annihilation” steps. This section presents
an alternative interpretation of the method using the language
of FRI.
Different subspaces of the intermediate vectors are treated

differently in the compression schemes used in each of these
methods. In each vector obtained after multiplying by the
factors of Q, “no excitation” elements are preserved exactly in
all methods considered in this study. This is because diagonal
elements of P(τ) are often significantly greater in magnitude
than off-diagonal elements, provided that ε is sufficiently small
(eq 5).
In FCIQMC, the remaining portions of the vectors are

compressed using multinomial sampling, without exact
preservation of elements, with the added constraint that
certain numbers of samples are allocated to each subspace. The
number of samples allocated to an arbitrary subspace w is
denoted nw. The number of samples allocated to the space of
excitations associated with each Slater determinant is given as

= | |{ }n vK K (B1)

The number of elements in each single- and double-excitation
subspace is determined by counting the number of samples in
each subspace during multinomial compression of the vector
Q(1)v(τ). The numbers in the remaining subspaces are
calculated analogously following each matrix multiplication.
The total number of samples used in each compression is
denoted Nmat. Approaches to performing this sampling
efficiently for the near-uniform and HB-PP factorizations are
described in refs 7, 34, and 39.
Compression in FCIQMC is performed differently following

multiplication by C(τ) in both factorizations, so that each
element in the resulting vector is an integer. If x′ denotes the
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vector obtained after multiplication by this matrix, “no
excitation” elements in the compressed vector are given as

∑Φ ′ = ′{ }
=

| |

{ }
−x vx( ) bin ( )K

i

v
i

K K,0
1

( )
,0

1
K

(B2)

The function bin(i)(x) denotes the binomial integerization of a
number x, defined as

= ⌊ + ⌋x x rbin ( )i i( ) ( ) (B3)

where r(i) is a random number chosen uniformly on the
interval (0,1). This function preserves its argument in
expectation, i.e., E[bin(i)(x)] = x. Different values of the
superscript i correspond to independent random numbers. The
argument of this function in eq B2 is related to the “death/
cloning probability” in previous presentations of FCIQMC,
and performing the sampling corresponds to the “diagonal
death/cloning” step. Other elements in the compressed vector,
corresponding to off-diagonal elements in P(τ), are

∑Φ ′ = ′
=

−x nx( ) bin( )i
j

n

i i
1

1
i

(B4)

where the index i indicates an excitation, e.g., {K,(i,j),a,b} or
{K,i,a}. Here the argument of the binomial integerization
function corresponds to the “spawning probability” in
FCIQMC. The resulting vector is sparse because many
elements are set to zero by the binomial integerization
function. The number of nonzero elements is random, unlike
the systematic vector compression. Multiplication by B
constitutes the “annihilation” step in FCIQMC, as it involves
summing elements that are mapped to the same Slater
determinant basis element.
In multinomial FCI-FRI, multinomial compression is also

used to compress the first few intermediate vectors. Because
the elements of v(τ) are not necessarily integers, a separate
systematic sampling procedure is applied to determine the
number of elements n{K} to sample from the subspace
associated with each Slater determinant. The magnitudes of
elements in v(τ) are normalized to obtain the probabilities {pi}
used in systematic sampling, and a constraint is added: for all K
for which |vK

(τ)| > 0, n{K} > 0. In contrast to FCIQMC,
compression is not performed after multiplication by C(τ), so
the elements summed during multiplication by B are not
necessarily integers. In systematic FCI-FRI, the first few
intermediate vectors are compressed systematically to Nmat
elements instead of multinomially, preserving ρ elements
exactly in each compression according to eq 14. Unlike in
multinomial compression, the constraint that a certain number
of elements are selected from each subspace is not imposed.
Because the order of elements determines which elements are
chosen in systematic compression, elements are ordered
consistently in each iteration, first by the Slater determinant
index, then by the type of excitation (single, double, or “no
excitation”), then by the occupied and virtual orbital(s).
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