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Topological antiferromagnetic (AFM) spintronics is an emerging field of research, which involves the topological 
electronic states coupled to the AFM order parameter known as the Néel vector. The control of these states is envisioned 
through manipulation of the Néel vector by spin-orbit torques driven by electric currents. Here we propose a different 
approach favorable for low-power AFM spintronics, where the control of the topological states in a two-dimensional 
material, such as graphene, is performed via the proximity effect by the voltage induced switching of the Néel vector in 
an adjacent magnetoelectric AFM insulator, such as chromia. Mediated by the symmetry protected boundary 
magnetization and the induced Rashba-type spin-orbit coupling at the interface between graphene and chromia, the 
emergent topological phases in graphene can be controlled by the Néel vector. Using density functional theory and tight-
binding Hamiltonian approaches, we model a graphene/Cr2O3 (0001) interface and demonstrate non-trivial band gap 
openings in the graphene Dirac bands asymmetric between the K and K′ valleys. This gives rise to an unconventional 
quantum anomalous Hall effect (QAHE) with a quantized value of 2e2/h and an additional step-like feature at a value 
close to e2/2h, and the emergence of the spin-polarized valley Hall effect (VHE). Furthermore, depending on the Néel 
vector orientation, we predict the appearance and transformation of different topological phases in graphene across the 
180° AFM domain wall, involving the QAHE, the valley-polarized QAHE and the quantum VHE (QVHE), and the 
emergence of the chiral edge state along the domain wall. These topological properties are controlled by voltage through 
magnetoelectric switching of the AFM insulator with no need for spin-orbit torques.    

I. INTRODUCTION 

In the past decades, spintronics has been considered as a 
promising avenue to establish new frontiers in information 
technology by exploiting the spin degree of freedom [1]. Driven 
by this technological challenge, exploration of new spintronic 
phenomena has become one of the most active research topics in 
condensed matter physics. Recently, antiferromagnetic (AFM) 
spintronics has emerged as a subfield of spintronics, where the 
AFM order parameter known as the Néel vector was employed as 
the non-volatile state variable [2-5]. Due to being robust against 
magnetic perturbations and exhibiting ultrafast dynamics, 
antiferromagnets can serve as promising functional materials for 
spintronic applications. 

In parallel with these developments, there has been increasing 
interest in materials and structures where quantum effects are 
responsible for novel physical properties, revealing the important 
roles of symmetry, topology, and dimensionality [6]. Among such 
quantum materials are graphene [7], topological insulators [8], 
Dirac and Weyl semimetals [9], and beyond [10]. The unique 
spin-dependent electronic properties of these materials are 
envisioned to open new perspectives for spintronic applications 
[11-13]. Among them, topological AFM spintronics is especially 
interesting, involving the interplay between the topological 
electronic states and antiferromagnetism [14-17].  

The key ingredient of AFM spintronics, including its 
topological variant, is a possibility to control the Néel vector by 
external stimulus. Achieving this functionality in 
antiferromagnets is not straightforward as in ferromagnets where 

the control of the magnetic order parameter, i.e. magnetization, 
can be realized by an applied magnetic field, spin transfer torque 
or spin-orbit torque. Recently, it has been predicted that in 
antiferromagnets with two spin sublattices forming inversion 
partners, an electrical current can induce a non-equilibrium 
magnetic field, which sign alternates between the spin sublattices 
[18]. Such a staggered magnetic field generates an alternating sign 
in spin-orbit torque, which can trigger Néel vector switching. This 
prediction has been realized experimentally for CuMnAs [19] and 
Mn2Au [ 20 ] antiferromagnets, thus demonstrating the viable 
route for AFM spintronics.   

While this progress is impressive, it is recognized that very 
large electric currents are needed to generate the required spin-
orbit torques (>106 Acm−2). Such currents would inevitably 
produce significant energy dissipation unfavorable for the desired 
low-power spintronics. From this perspective, it is beneficial to 
have the ability of controlling the Néel vector purely by electric 
fields through an applied voltage. Such a control has been 
demonstrated using magnetoelectric antiferromagnet Cr2O3 in the 
corundum structure (chromia) [21]. Due to the magnetoelectric 
nature of this material, by applying an electric field (in the 
presence of a finite magnetic bias), one can switch the Néel vector 
between two non-volatile states. Utilizing this functionality in 
topological AFM spintronics would provide both ultra-low power 
performance and ultrafast switching dynamics.  

To this end, the voltage-switchable Néel vector in chromia 
could be exploited to manipulate quantum and topological 
properties of two-dimensional materials, such as graphene, via the 
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proximity effect. The exchange coupling between chromia and 
graphene across the interface in a graphene/Cr2O3 hybrid structure 
would be mediated by the boundary magnetization, which is the 
intrinsic property of all magnetoelectric antiferromagnets [22-24]. 
The boundary magnetization is firmly coupled to the bulk AFM 
order so that switching of the Néel vector leads to its reversal. Due 
to being insensitive to the interface roughness, the boundary 
magnetization can serve as a robust voltage-controlled parameter 
to operate topological properties of graphene. Experimental 
efforts along these lines have indicated the potential of the  
graphene/Cr2O3 hybrid structure for realizing a magnetoelectric 
transistor [25].  

The appearance of topological effects in graphene, such as 
the quantum anomalous Hall (QAHE) [26] and the quantum spin 
Hall effect (QSHE) [27] requires spin-orbit coupling (SOC). It  is 
known, however, that the intrinsic SOC in pristine graphene is 
extremely weak [28,29]. Yet, a sizable SOC in graphene can be 
induced by the proximity effect at the interface between graphene 
and other materials such as transition metal dichalcogenides 
[30,31]. In addition to SOC, the proximity effect can also induce 
a sizable spin-polarization in graphene when it is deposited on the 
surface of a magnetic insulator [32, 33], which can lead to the 
QAHE [34].   

 All these observations indicate that the proximity effect at 
the Cr2O3/graphene interface could produce SOC necessary for 

graphene to exhibit topological properties, which could be 
controlled by voltage though the boundary magnetization of 
chromia. Motivated by this idea, we use density functional theory 
(DFT) and model tight-binding approaches to explore spin- and 
orbital-dependent electronic and transport properties of the 
graphene/Cr2O3 (0001) interface. We show that the presence of a 
sizable SOC and exchange splitting in graphene induced by the 
proximity of chromia leads to the QAHE which changes sign with 
reversal of the Cr2O3 Néel vector. The broken symmetry between 
the A and B sublattices in graphene at the  Cr2O3/graphene 
interface produces asymmetry between the K and K′ valleys, 
resulting an unconventional QAHE and the emergence of the 
spin-polarized valley Hall effect. We predict the appearance and 
change of different topological phases in graphene across the 180° 
AFM domain wall and the emergence of the chiral edge state 
along the domain wall. 

 
II. RESULTS 

A. DFT calculations 

We perform DFT calculations of the  graphene/Cr2O3 (0001) 
interface, as described in Methods. A 22 unit cell of graphene 
excellently matches to the 11 unit cell of the Cr2O3 (0001) 
surface with a lattice mismatch of just 0.83% (see in Appendix A 
for computational details). By performing structural optimization 

 

Figure 1. Atomic and electronic structure of the graphene/Cr2O3 (0001) interface without SOC. a The optimized atomic structure: side view. Blue, 
red, and gold balls indicate Cr, O, and C atoms, respectively. Color arrows denote up (green) and down (purple) spins in AFM chromia. b Top view 
of the atomic structure (a) showing graphene and surface Cr and subsurface O monolayers. c, d Electronic band structures projected to the top graphene 
layer for spin-up (c) and spin-down (d) electrons. The color contrast reflects the strength of the carbon pz orbital contribution weighted with the sz spin 
contribution in arbitrary units. e-f The spin-resolved bands originating from the graphene Dirac bands zoomed in near K (e) and K′ (f) points. The same 
color coding is used as in c and d. 
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(Supplementary Material [35]), we find the most energetically 
favorable atomic structure, which is shown in Figures 1 a,b. In 
this interface structure, one C atom lies atop the surface Cr atom, 
the distance between the two being 2.63 Å. Such a large distance 
indicates the weak bonding between graphene and the substrate 
consistent with the previous DFT calculations [32,34].   

The magnetic structure of bulk Cr2O3 represents a collinear 
antiferromagnetic configuration with Cr magnetic moments 
pointing along the (0001) direction (Figure 1a). The top surface 
Cr monolayer has parallel-aligned magnetic moments of mCr = 
2.8μB, representing the boundary (surface) magnetization [23].   
Reversal of the Néel vector in bulk chromia (which can be 
achieved by voltage) leads to the reversal of this surface 
magnetization.  

We find that there is a sizable exchange splitting of the spin 
bands in graphene induced by the proximity of the surface 
magnetization of chromia.  Figures 1 c,d show the band structure 
of the graphene/Cr2O3 (0001) interface calculated without SOC in 
vicinity of the Dirac point of pristine graphene. Here the bands are 
projected to the pz orbitals of the top graphene layer and their up- 
(Figure 1c) and down- (Figure 1d) spin weights are shown in color. 
It is seen that the spin bands are split by the induced exchange 
interaction. It is also seen that there is a splitting between bands 
of the same spin which is due to a staggered sublattice potential 
discussed below. Figures 2e and 2f zoom in on the spin-split bands 
originating from the graphene Dirac bands near the K and K′ 

points, respectively. These figures reveal that the exchange 
splitting of the spin bands is about 60 meV, the band structures at 
the K and K′ points are identical, and there are no gap openings at 
the band crossing points in the absence of SOC.    

The broken inversion symmetry at the graphene/Cr2O3 

interface gives rise to the Rashba-like SOC. The SOC mixes the 
up- and down-spin states and opens the gaps at the crossing points, 
as is evident from Figures 2a and 2b. We find that the band 
opening is about 3 meV near the K valley (Fig. 2a) and is about 
0.7 meV near the K′ valley (Fig. 2b). From comparison of Figures 
2a and 2b, it is also notable that SOC reduces the effective spin 
splitting at the K′ valley. This difference in the band structure at 
the K and K′ points is due to the variable bond length between Cr 
surface atoms and C atoms in the graphene A and B sublattices 
(Fig. 1b), resulting in the staggered potential, the staggered 
exchange interaction and the staggered SOC, as described by our 
tight-binding model below.  

Switching the Néel vector in chromia is equivalent to the time 
reversal symmetry transformation. It is therefore expected that   
reversal of all the Cr magnetic moments in Cr2O3 would lead to 
swapping the bands structures between the K and K′ points with 
simultaneous reversal of the spin character of the bands. This is 
exactly what we find by performing self-consistent DFT 
calculations in the presence of SOC for the graphene/Cr2O3 

interface. From comparison of Figures 2 c,d and Figures 2a,b, we 
see that switching the Néel vector in chromia transforms the band 
structures between the K and K′ points and at the same time 
reverses the spin character.  

 
B. Tight-Binding Model 

To provide more insight into the proximity effect on the electronic 
band structure of graphene and to analyze its quantum transport 
behavior, we build a model tight-binding Hamiltonian as follows 
ܪ  [31,36-39] ൌ	െݐ ∑ ஺ܿ௜ఈற〈௜௝〉ఈ ܿ஻௝ఈ ൅ ௦௢ݐ݅ ∑ ݖ̂ ∙ ൫ߪԦ ൈ መ݀	௜௝൯〈௜௝〉ఈఉ ஺ܿ௜ఈற ܿ஻௝ఉ െߣ௡௟ ∑ ሺ ෝ݉ ∙ Ԧሻܿ஺௜ఈற〈௜௝〉ఈఉߪ ܿ஻௝ఉ ൅ ܷ∑ ఓߟ ∑ ܿఓ௜ఈற௜ఈ ܿఓ௜ఈఓୀ஺,஻ ൅∑ ௦௢,ఓߣ݅ ∑ ௜௝ܿఓ௜ఈறߥ ௭ܿఓ௝ఈ〈〈௜௝〉〉ఈఓୀ஺,஻ߪ െ ஺ܬ ∑ ሺ ෝ݉ ∙ Ԧሻ௜ఈߪ ஺ܿ௜ఈற ஺ܿ௜ఈ ൅ܬ஻ ∑ ሺ ෝ݉ ∙ Ԧሻܿ஻௜ఈற௜ఈߪ ܿ஻௜ఈ ൅ ܺ∑ ∑ ܿఓ௜ఈற௜ఈ ܿఓ௜ఈఓୀ஺,஻ ,  (1) 

where ஺ܿ௜ఈற  and ஺ܿ௜ఈ are the creation and annihilation operators for 
site i on sublattice A with spin ߙ. The first term is the conventional 
tight-binding Hamiltonian for pristine graphene with hopping 
parameter t. The second term is the Rashba SOC, which includes 

parameter ݐ௦௢, Pauli matrix vector ߪԦ ൌ ൫ߪ௫, ,௬ߪ  ௭൯, and the unitߪ

vector መ݀ 	௜௝ from site j to i. The third term represents the non-local 

exchange interaction involving the spin-dependent hopping with ෝ݉ ൌ ሺ݊݅ݏ ߠ ݊݅ݏ ߮ , ݊݅ݏ ߠ ݏ݋ܿ ߮ , ݏ݋ܿ ሻߠ  being the unit vector of 
the surface magnetization. This term affects the slope of band 

Figure 2. The DFT-calculated band structures of the graphene/Cr2O3

(0001) interface in the presence of SOC. a,b The band structures around
the K (a) and K′ (b) points. c,d Same as a and b, respectively, but for the 
reversed  Néel vector in chromia. Color contrast reflects the sz spin 
contribution in the same way as in Figure 1. The insets in b and c are the 
zoomed bands to reveal small band openings of 0.7 meV.  
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curvatures by strength ߣ௡௟. For simplicity, we assume ߮ ൌ 0 	, but 
note that varying ߮  only causes small changes in the band 
structure and does not affect our main results. The remaining 
terms describe the site-dependent interactions. The fourth term 
describes the staggered sublattice potential (ߟ஺ ൌ 1 and ߟ஻ ൌ െ1) 
of strength U. The staggered potential opens the band gaps and 
rounds the bands near the Dirac points, but does not introduce 
differences in the band structure near the K and K′ valleys. The 
fifth term describes the staggered SOC of amplitude ߣ௦௢, which 
involves the second-nearest neighbor hopping and has ߥ௜௝ ൌ1	ሺെ1ሻ for clockwise (counterclockwise) hopping from cite j to i. 
The band openings in question are strongly influenced by the 
staggered SOC. The next two terms correspond to the exchange 
interactions of strengths ܬ஺  and ܬ஻ , which are assumed to be 
different on the A and B sublattices. The last term describes an 
overall energy shift. The summation over	〈݆݅〉	and	〈〈݆݅〉〉	in Eq. (1) 
runs over all the nearest (next-nearest) neighbor sites, respectively. 
We note that although the model Hamiltonian contains many 
terms, all the terms appear to be necessary to quantitatively 
reproduce the DFT calculated band structures (Supplementary 
Figure S3). Details of the fitting procedure and the resulting fitting 
parameters are given in the Supplementary Material [35]. 
  

C. Berry curvature 

Next, using Hamiltonian (1) with the fitted parameters, we 
analyze the QAHE, which is determined by the Berry curvature [9]  

 Ω௡൫ሬ݇Ԧ൯ ൌ െ∑ ଶ୍୫ۦఅ೙ೖሬሬԦ|௩ೣ|అ೙ᇲೖሬሬԦۧۦఅ೙ᇲೖሬሬԦ|௩೤|అ೙ೖሬሬԦۧሺఌ೙ᇲೖሬሬԦିఌ೙ೖሬሬԦሻమ .௡ᇲஷ௡   (2) 

Here n is band index, ݒ௫,௬ൌ ܪ߲ ߲݇௫,௬⁄  is the velocity operator, 

and 	௡௞ߝ and ߖ௡௞  are eigenvalues and eigenfunctions of the 
Hamiltonian at a given k-point within the Brillouin zone. For 

simplicity, we omit x and y indices in the notation for Ω௡൫ሬ݇Ԧ൯ as 

well as for the anomalous Hall conductance (AHC), ߪ, below. In 
Figure 3, we show the calculated Berry curvature around the K 
(Figs. 3 a-d) and K′ (Figs. 3 e-h) valleys for each of the four bands 
displayed in Supplementary Figures 3a and 3b, respectively. It is 
seen that the Berry curvature becomes very large on the circles 
around the K and K′ points. The radii of these circles match the k 
values, at which the band openings appear due to SOC (Figs. 2 

a,b). The enhancement of Ω௡൫ሬ݇Ԧ൯ at the K and K′ points, especially 
pronounced for the lowest (Figs. 3 a,e) and highest (Figs. 3 d,h) 
energy bands, reflects their extrema at these points 

Figure 3. Color contour plots of the Berry curvature projected on the kx-ky plane. a-d The Berry curvature for the four bands shown in Supplementary 
Figure S3a around the K point. e-h The Berry curvature for the four bands shown in Supplementary Figure S3b around the K′ point. The bands are 
ordered from low to high energy. The origin of x- and y-axis is at the K point in a-d and at the K′ point in e-h. Color bars quantify the Berry curvature.
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(Supplementary Figs. S3a and S3b [35]) resulting from the band 
opening produced by the staggered sublattice potential U.  
 

D. Anomalous and valley Hall conductance  

The AHC is determined by the Berry curvature, as follows9:  

 σ ൌ ௘మ௛ ଵଶగ∑ ஻௓௡׬ ௡݂Ω௡൫ሬ݇Ԧ൯݀ଶ݇, (3) 

where e is elementary charge, h is Planck’s constant, and ௡݂ is the 
Fermi-Dirac distribution function. Figure 4a (black line) shows 
the calculated AHC, ߪ, as a function of the Fermi energy, ߝ௙. As 

expected, the AHC acquires the value of ߪ ൌ 2݁ଶ/݄ when ߝ௙ lies 

within the energy region where there is a global energy gap in the 
system (i.e., where the band openings at the K and K′  points 
overlap). When ߝ௙ lies far from this gap, the AHC tends to zero 

due the cancellation of the contributions from the K and K′ valleys. 
It is notable that in the vicinity of ߝ௙ ൌ 2 meV and ߝ௙ ൌ 5 meV, 

i.e. above or below the smaller bandgap, the AHC exhibits an 
unconventional two-step-like feature associated with quantized 
conductance at ݁ଶ/݄  for one valley but not for the other. This 
feature in the AHC appears due to different band gaps at the K and 
K′ valleys. This is evident from Figure 4a, where we plot partial 

contributions to ߪ arising from the K and K′ valleys, ߪ௄ and ߪ௄ᇲ 
(red and green lines in Fig. 4a), by  integrating the Berry curvature 

over the respective k-space regions. Each ߪ௄ and ߪ௄ᇲ has an exact 
quantized value of ݁ଶ/݄, when ߝ௙ falls into the associated band 

gap. However, when  ߝ௙ lies within the wider band of the K valley, 

but above or below the band gap of the K′ valley, the contribution 
from the latter is ߪ௄ ൌ ݁ଶ/݄ , while the contribution from the 

former,  ߪ௄ᇲ , drops down to about െ݁ଶ/2݄ so that within this 

energy widow ߪ appears to be close to a value of ݁ଶ/2݄. The ߪ௄ᇲ 
value of െ݁ଶ/2݄  results from the integration of the Berry 
curvature of the lowest energy band around the K′ valley (Fig. 3e). 

Thus, the AHC exhibits the unconventional two-step-like 
behavior due to the different band openings at the K and K′ valleys.  

Switching the Néel vector in chromia is equivalent to the time 

reversal symmetry operation. Since Ω௡൫ሬ݇Ԧ൯ is odd with respect to 

time reversal symmetry, i.e. Ω௡൫െሬ݇Ԧ, െݏԦ൯ ൌ െΩ௡൫ሬ݇Ԧ,   Ԧݏ Ԧ൯, whereݏ
is the spin, it is expected that with reversal of the Néel vector ܮሬԦ, ߪ 
will change sign and the partial contributions will transform as ߪ௄ሺെܮሬԦሻ ൌ െߪ௄ᇲሺܮሬԦሻ  and ߪ௄ᇲሺെܮሬԦሻ ൌ െߪ௄ሺܮሬԦሻ . This is exactly 
what we find from the calculation shown on Figure 4b, where 
reversal of the Néel vector in the Hamiltonian (1) was modelled 
by changing the angle of the surface magnetization from ߠ ൌ 0 to ߠ ൌ 180୭. Since the Néel vector and the surface magnetization in 
chromia can be electrically switched, this result indicates the 
possibility of the voltage controlled QAHE at low temperature. 
We note that a reversible AHE has been realized experimentally 
at room temperature, although using Pt rather than graphene, as 
an overlayer on chromia [40].   

 The asymmetry between the K and K′ valleys at the 
graphene/Cr2O3 interface gives rise to the valley polarization [41]. 
The valley polarization appears due to different populations of the 
two valleys. It can be detected by measuring the longitudinal 
transport in graphene perpendicular to the AFM domain wall in 
chromia between two regions with opposite orientation of the 
Néel vector. Creation and annihilation of the AFM domain wall 
performs as a valley valve, filtering the valley polarized carriers 
in graphene. If the chemical potential is engineered to be located 
within the wider band of the K valley, but below or above the band 
gap of the K′ valley, a perfect valley filtering is expected in the 
ballistic transport regime. In this case the longitudinal 
conductance is zero in the presence of the domain wall but non-
zero in its absence.   

The valley polarization gives rise to the valley Hall effect 
(VHE) [42]. The VHE can be quantified using a valley Hall 
conductance (VHC), which is defined as the difference in the 

Figure 4. The calculated anomalous Hall conductance (AHC) in graphene as a function of the Fermi energy ߝ௙	for the Néel vector in chromia pointing 

up (a) and down (b).  ߪ is the total AHC, and  ߪ௄ and ߪ௄ᇲare the partial contributions arising from the K and K′ valleys, respectively. c Valley Hall 

conductance (VHC),  ߪ௩ ൌ ௄ߪ െ .௙.  The results are obtained using Hamiltonian (1) with the parameters fitted to the DFT bandsߝ ௄ᇲ, as a function ofߪ
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AHC between the K and K′ valleys, i.e. ߪ௩ ൌ ௄ߪ െ  ௄ᇲ. Figure 4cߪ
demonstrates that ߪ௩  is largest, when the Fermi energy ߝ௙  lies 

within only one of the band gaps at either K or K′ valley 
(depending on magnetization orientation). ߪ௩  is zero if ߝ௙  lies 

within both gaps and is close to a quantized value of ݁ଶ/݄ away 
from the gaps. The latter originates from the integration of the 
Berry curvature over the lowest energy band (Figs. 3 a,e), 
contributing to the VHC ݁ଶ/2݄ from the K valley and െ݁ଶ/2݄  
from the K′ valley. The VHC of ߪ௩ ൎ	݁ଶ/݄  represents a spin 
polarized version of the VHE [42], where the bands contributing 
to the transport are nearly fully spin-polarized. 

Contrary to ߪ, the sign of ߪ௩  does not depend on the Néel 
vector orientation (up or down). Due to this invariance, a pure 
valley current can be induced in graphene along the domain wall 
in Cr2O3. This effect can be realized and measured using a device 
structure in Figure 5. Here a charge current is generated along the 
left vertical graphene bar by a current source and produces an 
anomalous Hall current, JAHE, which flows in the opposite 
directions in the graphene layer regions above the two AFM 
domains of Cr2O3. If the domain wall is placed symmetrically (as 
in Fig. 5), the net anomalous Hall current is cancelled. On the 
contrary, a valley Hall current, JVHE, is not cancelled and flows in 
graphene along the domain wall. Such a pure valley current 
induces a voltage drop between top and bottom terminals of the 
right vertical graphene bar in Figure 5 due to the inverse VHE. 
This voltage drop can be detected using the non-local 
measurements, as was reported recently [43-45]. 

We note that the above scheme assumes that the Fermi level 
is located in the range of energies where both the AHC and VHC 

are non-zero. If the Fermi level is engineered to lie above or below 
the energy gaps, i.e. in the energy region where the AHC vanishes 
but the VHC does not, the VHC can also be measured using the 
proposed device scheme without the presence of the domain wall. 
In this regime, the VHC is expected to be close to e2/h. In fact, 
these measurements require less stringent conditions compared to 
those considered above, due to a wider energy range where the 
VHC is non-zero (as determined by the band splitting at the K and 
K′ points, resulting from the staggered sublattice potential) and 
the non-local voltage output being independent of the domain 
structure of Cr2O3.  

 
E. Topological phases across a domain wall 

The formation of the 180°  AFM domain wall also leads to a 
topological phase transition in graphene, resulting from continues 
rotation of the surface magnetization. This transition manifests 
itself in the changing topological invariants across the domain 
wall. For the surface magnetization pointing normal to the 
interface, the QAHE is characterized by the Chern number ܥ ൌଵଶగ∑ ஻௓௡׬ Ω௡൫ሬ݇Ԧ൯݀ଶ݇ (where the summation is performed over all 

occupied bands) being +2 or –2 for ߠ ൌ 0  and ߠ ൌ 180° , 
respectively. The Chern number is a topological invariant and thus 
must discontinuously change across the domain wall. At each 
discontinuity point, the transition must be accompanied by band 
gap closure.  

To observe this transformation, we use Hamiltonian (1) to 
calculate the evolution of the band structure as a function of 
magnetization angle ߠ , assuming for simplicity that the 

Figure 5. Schematic set up for the detection of the valley Hall effect. 
Shaded regions represent two antiparallel aligned domains of the surface
magnetization in chromia. A charge current is generated along the left
vertical graphene bar by a current source. It produces an anomalous Hall
current, JAHE, which flows in the opposite directions above the two AFM
domains of Cr2O3. The AHC has opposite sign in the two domains and
thus canceled. On the contrary, a valley Hall current, JVHE, is not 
cancelled and flows in graphene along the domain wall. Such a pure
valley current induces a voltage drop between top and bottom terminals
of the right vertical graphene bar due to the inverse VHE. 

Figure 6. Topological phase transformation as a function of
magnetization angle ߠ. Three topological phases are distinguished by
the Chern numbers: QAHE (ܥ ൌ േ2, 	௩ܥ ൌ 0, indicated by green color);
valley-polarized QAHE (VP-QAHE) (ܥ ൌ േ1, 	௩ܥ ൌ 1 , indicated by
yellow color); and QVHE (ܥ ൌ 0, 	௩ܥ ൌ 2, indicated by orange color). 
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magnetization is uniform. The band structures for different angles  ߠ are depicted in Supplementary Figures S4 and S4 [35] around 
the K′ and K points, respectively. We find that near the K′  point 
the band gap closes at ߠ ൎ 36°	 (Fig. S4b), then it reopens (see 
Fig. S5c for ߠ ൎ 49°), closes again at ߠ ൎ 60°	 (Fig. S4d), and 
remains open at larger ߠ  (Figs. S4e-S4i). The band structure 
around the K point mirrors that near the K′ point when the 
magnetization is flipped from 	ߠ  to 180° െ ߠ . In this case, the 
band gap is opened at smaller angles (Figs. S5a-S5e), but it closes 
at ߠ ൎ 120° (Fig. S5f), then it reopens  (see Fig. S6g for 	ߠ ൎ131°) and closes again at ߠ ൎ 144° (Fig. S5h). Between 36° ൏ߠ ൏ 60° and 120° ൏ ߠ ൏ 144°, the maximum band opening is 
about 0.1 meV at ߠ ൎ 49° (the K′ point) and	ߠ ൎ 131° (the K 
point). These results indicate that new topological phases emerge 
in the range of angles 36° ≲ ߠ ≲ 144°.  

To reveal the nature of these topological phases we calculate 
the valley dependent Chern numbers, ܭܥ and ܭܥ′	, by integrating 
the Berry curvature around the K and K′ points, respectively. In 
the calculation, we chose ߝ௙  to lie within the band gap for ߠ ൌ ߠ ,0° ൌ ߠ ,49° ൌ ߠ  ,90° ൌ 131°, and ߠ ൌ 180°.  We find that the 
valley dependent Chern numbers are equal for the surface 
magnetization normal to the interface, i.e. ܭܥ ൌ 	′ܭܥ ൌ 1 for ߠ ൌ0  and ܭܥ ൌ 	′ܭܥ ൌ െ1 for ߠ ൌ 180°. These conditions produce a  
QAHE phase with the total Chern numbers ܥ ൌ ܭܥ ൅ 	′ܭܥ ൌ േ2 
and the valley Chern number  ܥ௩ ൌ ܭܥ െ ′ܭܥ ൌ 0.	 However, for 
the other angles, we obtain that ܭܥ and ܭܥ′	 are different, namely, ܭܥ ൌ 1  and ܭܥ′	 ൌ 0  at ߠ ൌ 49° ܭܥ , ൌ 1  and ܭܥ′	 ൌ െ1 at ߠ ൌ90° , and ܭܥ ൌ 0  and ܭܥ′	 ൌ െ1  at ߠ ൌ 131° , signaling for the 
emergence of  new topological phases. The regions around ߠ ൌ49°  and ߠ ൌ 131°  are characterized by ܥ ൌ േ1 , respectively, 
and ܥ௩ ൌ 1 . This regions exhibit the valley-polarized QAHE 
phase (VP-QAHE) [46], where the QAHE and the VHE coexist. 
For magnetization lying in the plane, i.e. ߠ ൌ 90°, the resulting 
phase has zero total Chern number, ܥ ൌ 0, but a non-zero valley 
Chern number, ܥ௩ ൌ 2, indicating the emergence of the quantum 
valley Hall effect (QVHE) [42]. The corresponding topological 
phase diagram is depicted in Figure 6. We note that the overall 
situation is somewhat reminiscent to that predicted for a Bi bilayer 
where magnetization rotation induced by the spin-orbit torque 
forces the topological phase transition [36]. 

 

III. DISCUSSION 

The emergence of different topological phases in graphene 
across the AFM domain wall in chromia is expected to produce 
chiral edge states (CES) similar to those predicted [8] and 
observed [ 47 - 49 ] on domain walls of a magnetically doped 
topological insulator. Two CES are expected to appear along the 
lines parallel to the domain wall where the topological phase 
changes. The appearance of the two CES, as well as the QVHE 
phase, requires a sufficiently wide domain wall with the width 

larger than the characteristic decay length of the CES into the 
gapped region, which we estimate to be about 12 nm 
(Supplementary Information). If the domain wall is not wide 
enough, the two CES collapse into a single CES and the QVHE 
phase disappears.       

Observation of the predicted phenomena relies on 
magnetoelectricity of chromia. The latter allows a 180° domain 
wall of the surface magnetization to be formed by applying 
voltages of different sign at two local regions to align the Néel 
vector in opposite directions [50].  The domain wall width can be 
engineered either by tuning anisotropy with strain or by the split-
gate scheme with multiple gates. Furthermore, the locally applied 
voltages can dynamically control the location of the domain wall 
[50].  The dynamics may be used to switch paths of injected spin-
polarized electrons, which can be detected for readout at specific 
probes locally attached to graphene along the voltage-controlled 
domain wall regions in chromia. A further advantage of the 
proposed scheme is that the interface with the split gates needs 
neither dopants, adatoms, or external Oersted fields. The 
magnetoelectric switching is expected to improve the timing of 
the writing process as to form the domains in memory devices, 
since it is controlled by applied voltages, rather than by magnetic 
probe scanning [49]. Specific transport measurements to observe 
the predicted phenomena can be performed using a four-terminal 
probe [51-54]. The required ߝ௙ engineering can be achieved via 

applied gate voltage [55] or uniaxial pressure [34].  

IV. CONCLUSIONS 

Our work has outlined a new route for topological 
antiferromagnetic spintronics. We have predicted the control and 
manipulation of the topological states in a two-dimensional 
material via proximity of a magnetoelectric antiferromagnet with 
the Néel vector being the control parameter. Using the 
graphene/Cr2O3 (0001) interface as a model system, we showed 
the emergence of the unconventional quantum anomalous Hall 
effect and the spin-polarized valley Hall effect. We predicted the 
appearance and transformation of the different topological phases 
in graphene across the 180° AFM domain wall and the emergence 
of the chiral edge state along the domain wall. These topological 
properties can be controlled by voltage through magnetoelectric 
switching of the AFM insulator with no need for spin-orbit 
torques generated by large currents. Thus, our results provide a 
viable approach for low-power voltage-controlled topological 
antiferromagnetic spintronics.    
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APPENDIX A: DFT COMUTATIONAL DETAILS 

DFT calculations are performed using the Vienna Ab initio 
Simulation Package (VASP). 56  We apply local density 
approximation (LDA) + U 57 with U = 4.0 eV and J = 0.58 eV 
using the projector augmented wave method.58 In the calculations, 
we use a Cr2O3 (0001) slab composed of 8 and 16 atomic layers 
of O and Cr, respectively (Fig. 1a), assuming the energetically 
most favorable surface structure terminated with a single Cr layer 
top and bottom of the slab. 59  A 22 graphene sheet, which lattice 
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