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ABSTRACT
Current crowdsourcing platforms provide little support for worker

feedback. Workers are sometimes invited to post free text describ-

ing their experience and preferences in completing tasks. They can

also use forums such as Turker Nation
1
to exchange preferences on

tasks and requesters. In fact, crowdsourcing platforms rely heavily

on observing workers and inferring their preferences implicitly.

On the contrary, we believe that asking workers to indicate their
preferences explicitly will allow us to improve different processes

in crowdsourcing platforms. We initiate a study that leverages ex-

plicit elicitation from workers to capture the evolving nature of

worker preferences and we propose an optimization framework to

better understand and estimate task completion time. We design

a worker model to estimate task completion time whose accuracy

is improved iteratively by requesting worker preferences for task

factors, such as, required skills, task payment, and task relevance.

We develop efficient solutions with guarantees, run extensive ex-

periments with large scale real world data that show the benefit

of explicit preference elicitation over implicit ones with statistical

significance.
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1 INTRODUCTION
The main actors of a crowdsourcing platform are requesters and

tasks, and workers who complete them. Understanding quality

indicators in crowdsourcing has been a recent research focus [6, 12,

13, 20]. Some work focuses on estimating quality indicators such

as engagement and motivation [19, 21, 24], and on revisiting this

estimation periodically in an implicit manner. An important open

question however is, can we improve the estimation of quality
indicators by seeking explicit preferences from workers?

On Amazon Mechanical Turk
2
or Prolific Academic,

3
a task has

factors such as type (e.g., image annotation, ranking, sentiment

analysis), payment and duration, i.e., the time allotted to complete

1
http://turkernation.com/

2
https://www.mturk.com/

3
https://www.prolific.ac/
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a task. Workers are characterized by their preferences for task fac-
tors [1, 27]. Our first contribution is to propose an optimization
framework ExPref, within which an individual worker model, that
captures the preference of workers for task factors, is learned and

maintained to estimate task completion time.Worker Model is “su-
pervised” in nature and it is initialized by deriving principles from

active learning [5]. Indeed, worker preference on task factors, such

as, payment, task types, are indicators of how much time the she

needs to complete the task. Task completion time is an important

quality indicator in crowdsourcing platform, as deeper understand-

ing and analysis of task completion time benefits customization of

payment strategies [12, 13], task assignment, and appropriate re-

cruitment of workforce for crowdsourcing platforms [17, 18, 24, 28].

Unless ExPref is updated periodically, it is likely to become out-

dated, as worker’s preferences evolve over time (e.g., a worker’s

skills improve as she completes tasks). To update the model, we

advocate the need to explicitly elicit from a worker her pref-
erences. That is a stark departure from the literature where
workers are observed and their preferences computed im-
plicitly. An additional challenge arises to address the following

question: in what fashion these preferences should be extracted and
used to produce a scalable and accurate model?. To that end, we

present Question Selector for optimizing preference elicitation

that asks a worker to rank the k task factors that lead to minimize

error in the model. For example, a worker may be asked “ Rank task
relevance and payment”. A higher rank for payment will indicate the

worker’s preference for high paying tasks over those most relevant

to her profile. We prove that optimally selecting k questions, i.e., k
task factors, for explicit worker preference is NP-hard, even when

theWorker Model is linear. Consequently, we develop an efficient

alternative using an iterative greedy algorithm that has a provable

approximation bound. Once the worker provides her preference,

the next challenge is how to consume that feedback to update Worker
Model in a principled manner. We present Preference Aggregator
to update theWorker Model with the elicited preferences. To ensure

that ExPref does not necessarily incur additional burden, worker’s

response can be : a total order over those k factors; or a partial pref-
erence over a subset of those k factors, when the worker does not/

can not provide total ordering. Of course, an extreme case is that

the worker does not provide any preference and in that case the

Worker Model is updated implicitly. We formulate those choices as

a constrained optimization problem and develop efficient solutions.

We run experiments that measure the quality and scalability of

ExPref. We use 165, 168 real micro-tasks from CrowdFlower involv-

ing 58 workers hired from Amazon Mechanical Turk. We measure

the accuracy of ExPref against multiple baselines, including exist-

ing ones that leverage implicit preference computation [24]. We

show that soliciting preferences explicitly and using them to
update the model achieves greater stability in a short num-
ber of iterations and outperforms implicit preference based
solutions with statistical guarantees. We also show that task
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Notation Definition

n,m # tasks, # task factors

t⃗ task t represented by a vector ofm factors

T Task factor matrix

w⃗ workerw’s preference vector

Qk a set of selected k questions

yt completion time of task t

Y⃗ vector representing yt over a set of tasks
F Worker Model

Table 1: Table of important notations

completion time is highly correlated with the quality of the com-

pleted tasks - hence a deeper analysis on task completion time

helps improve crowdsourced task quality. We present case studies

as anecdotal evidence and show that ExPref truly captures worker

preference. We finally measure scalability and demonstrate that

our proposed solutions scale well. CrowdCur [9] is the real world

implementation of these research ideas.

In summary, our contributions are:

• ExPref, a framework that elicits explicit worker preference

to better estimate task completion time. ExPref has aWorker
Model that captures worker preferences for task factors.

• A formalization of two core problems: Question Selector
that asks aworker to rankk task factors, andPreferenceAg-
gregator that updates the model with elicited preferences.

• An in-depth analysis and solutions with provable guaran-

tees for theWorker Model, the Question Selector, and the

Preference Aggregator.
• Extensive experiments that corroborate that explicit prefer-

ence elicitation outperforms implicit preference computa-

tion [24] and that our framework scales well.

2 FRAMEWORK AND FORMALISM
We present our proposed framework and formalize the problems.

2.1 ExPref Framework
We propose an iterative framework ExPref (refer to Figure 1) that

is designed to ask personalized questions to a worker to elicit her

preferences. The rationale is that while task factors are stable, a

worker’s preference evolves as workers undertake tasks [16, 24].

We propose aWorker Model that consumes task factors and predicts

for a task, how long will the worker spends on the task, by inferring
her preferences. However, unless theWorker Model is refreshed or

updated periodically, it is likely to become outdated, as worker

preference evolves over time [1, 16, 24]. To update the model, one

has to periodically invoke an explicit preference elicitation step,

calledQuestion Selector that selects a set ofk task factors and asks
workerw to rank them. Once the worker provides her preference,

the Worker Model is updated by the Preference Aggregator.
This information could be used in many places to characterize

the workforce of a crowdsourcing platform and enable several

improvements such as the analysis of workers’ fatigue [16] and

motivation, and better task assignment to workers [17, 18, 24, 28].

Two computational problems form the heart of this framework. 1.
Question Selector: - when invoked, selects the best set of k ques-

tions to elicit a worker’s preference for task factors. 2. Preference
Aggregator: - takes a worker’s preference to the questions into

account, and updates theWorker Model. The last two components

work in sequence, given the necessity to refine the learned model.

The technical challenge is to update the model while satisfying the

preference the worker has provided.

The remainder of the paper focuses on a particular workerw , un-

less otherwise stated - i.e., each of the components of the framework

is designed or invoked for her.

2.2 Data Model and Problem Definitions
Task Factors. Task characteristics are commonly defined by the

platform and their values by requesters. Each task t in a set of n
given tasks is characterized by a set ofm factors whose values are

either explicitly present or could be extracted (such as keywords,

duration, pay-off). For this work, we assume that for every task, its

factors are given. This gives rise to a task factor matrix T .

Example 2.1. The matrix in Table 2.1 contains 6 tasks charac-

terized by factors, such as type, payoff, duration. Example types

are image annotation, ranking and sentiment analysis. Payoff de-

termines the $ value the workers receives as payment, whereas,

duration is an indication of the maximum time a worker needs to

complete that task.

task − id annotation ranking sentiment payoff duration completion time

t1 1 0 0 20 35 25

t2 1 0 0 5 5 35

t3 0 1 0 5 10 45

t4 0 1 0 5 40 5

t5 0 0 1 10 10 12

t6 0 0 1 20 30 23

Given a task t that aworkerw undertakes (either via self-appointment

or via an assignment algorithm), we are interested to understand

and estimate task completion time, the time spent by the worker to

perform the task. The last column of the task factor matrix indicates

completion time of the individual tasks. When the worker is arriv-

ing in the platform for the first time, we use a budget b to initialize

theWorker Model by asking workers b questions. Afterwards, we

periodically update the model by seeking explicit feedback through

Question Selector and update workers preference using Prefer-
ence Aggregator in the Worker Model.

Worker Preferences. The preferences of a workerw are repre-

sented by a vector w⃗ of lengthm that takes real values and deter-

mines the preferences over the task factors. Using Example 2.1, w⃗
could be represented as a set of weights for the task factors, such

as, {duration,payment}.
Worker Model. Central to our framework is a model that con-

sumes task factors and given a worker’s history, infers her prefer-

ence vector to estimate task completion time. It is easy to notice

that task completion time is continuous in nature.

Explicit Questions. An explicit question q is asked to elicit

w’s preference on a particular task factor, assuming there is an

one to one correspondence between the questions and task factors

(thus, every task factor is a potential question and total possible

questionsm). A set of k questions is asked to obtain a preferred

order among a set of k task factors (where k is part of the input). As

an example, one may ask to “ Rank task duration, annotation tasks,
ranking tasks, sentiment analysis tasks, payment”. A worker may

provide a full order among these 5 factors as her preference, or may

provide partial order of preference. As an example of the former,

she may rank payment, then duration, then ranking tasks, followed
by sentiment analysis, and finally annotation tasks. On the contrary,

her preference is partial, when the worker prefers, payment over
duration, but does not explicitly say anything about the rest.
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Figure 1: The ExPref Framework

2.2.1 Problem Definition: Worker Model. Given the task

factor matrix T of a set of n tasks, where each task t is described
bym factors and associated with a continuous variable yt denoting
the time the worker spends on t , we are interested in estimating

the worker preference vector w⃗ . The Worker Model F is a linear

aggregate function over T and w⃗ , denoted as F = w⃗T · T .

Optimization goal. Our objective is to estimate w⃗ in F , such

that it minimizes the reconstruction error [10], i.e.,

E = | |w⃗T · T − Y⃗ | |2
2

(1)

Once the model is built, it can estimate the completion time of

a future task by the worker. Using Example 2.1, F can estimate

the completion time of any of the 6 tasks or other future tasks, by

consuming T .

Initialization.How to initialize theWorker Model is a challenge.
Initially when a brand new workerw joins the platform, as no past

history of w is available, she is treated akin to a “cold worker”.

Initially we have no information of task completion, hence w⃗ can’t

be estimated accurately. The objective of the model initialization

is to select a subset of tasks B (|B| = b, given as a budget) to be

completed byw and build F using that.

One obvious choice is to randomly select b samples (tasks) to

initialize the model. However, we argue there does exist further

merit in careful selection of initial set of b tasks (training inputs), as

a careful selection of the training examples (inputs), will generally

need far fewer examples in comparison to selecting them at random

from some underlying distribution.

Our proposed formalism is inspired from active learning in Ma-

chine Learning [5] that is iterative in nature and is optimized to

select one more input (i.e., a task) at a time that maximizes the

accuracy of the underlying model. For us, from the available candi-

date pool of tasks that are not yet undertaken by the worker, this

translates to selecting one task t (input) at a time, the worker w
undertakes it, and we record its completion time yt .

4

Optimization goal. During the model initialization phase, in a

single iteration, our objective is to select that task t that will give
rise to a worker preference vector ŵ , which is a good estimation of

true worker preference w⃗ by minimizing the mean squared error

of the maximum likelihood estimates between ŵ and w⃗ .

4
An offline formulation of this problem, that is selecting the entire set B

in one shot is computationally more expensive and we defer this study to

future work.

E ( | |ŵ − w⃗ | |)2 (2)

Given Example 2.1, if b = 3 and we have already selected two

tasks (t1, t2), the objective would be to select the next best task that
minimizes the mean squared error between ŵ and w⃗ .

2.2.2 Problem Definition : Question Selector. This module

selects the best set of k questions for a worker w . The objective

is to select those task factors that are responsible for the model’s

inaccuracy, i.e., removing them would improve the reconstruction

error of F the most.

Optimization goal. Let E denote the current reconstruction

error of F and
ˆE denote it when k task factors are removed. Given

Q, the k questions are selected such that the model reconstruction

error improves the most, i.e., arдmax {Qk ∈Q: |Qk |=k } (E −
ˆEQ−Qk ).

Using Example 2.1, if k = 2, this will select any two of the five

task factors in the task factor matrix.

2.2.3 ProblemDefinition : PreferenceAggregator. The pref-
erences provided by a worker for task factors, could be expressed

as a set of constraints of the form, i > j, j > l . Worker preference

could take one of the three following forms:

(1) Full Order: The worker can provide a full order over the k se-

lected factors. The full ranking will be in the form of i ≻ j ≻ k ≻ l ,
if i, j,k, l are the task factors (questions). This preference could be

expressed as a set of k − 1 pairwise linear constraints of the form,

i > j, j > k , and etc.

(2) Partial Order: The worker can provide a partial order instead,

especially when she can not provide full order. Given the set of k
factors, a partial order takes the form of i ≻ j, but no preference is

elicited between for k, l .
(3) No Preference: The worker does not provide any preference.

Optimization goal. Worker’s preferences are taken as hard

constraints. Given her preference, the objective is to relearn F

that satisfies the preferences such that its reconstruction error is

minimized. The objective therefore is to minimize E such that the

constraints are satisfied.

Using Example 2.1, if workerw explicitly states that she prefers

annotation tasks to ranking tasks, this preference is translated

into constraints expressed on the worker preference vector. Those

are then used by the preference aggregator to update F .

3 ALGORITHMS
We present solutions that are efficient and come with guarantees.

3.1 Worker Model
As formalized in Section 2.2.1, the Worker Model F is a linear com-

bination of task factors and worker preference over those factors.

We design algorithms for the optimization problem that is intrinsic

to the model, and then a solution for model initialization.

Efficient Algorithm.We first derive an alternative form of our

optimization function and then show that we can use simple matrix

algebraic techniques to solve the problem.

Equation 1 could be rewritten as

minw⃗ (w⃗T · T )
T
(w⃗T · T ) =minw⃗ (w⃗T T T T w⃗ − 2w⃗T T T Y⃗ + Y⃗T Y⃗ )

(3)
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To minimize Equation 3, we compute the gradient and set it to 0.

i.e.,

∇(w⃗ ) = 2T T T w⃗ − 2T T Y⃗ = 0 (4)

This allows us to solve w⃗ by computing the matrix inverse.

T T T w⃗ = T T Y⃗ (5)

Which finally gives,

w⃗ = (T T T )
−1
T T Y⃗ (6)

(T T T )
−1
T T

in Equation 6 is known as the Moore-Penrose

pseudo-inverse matrix of T . This alternative representation is valid

as long as the task factor matrix T is invertible (or could be inverted

by adding an additional term, refer to [3]).

With this alternative representation in Equation 6, computing the

best estimation of w⃗ is done by matrix inversion and multiplication

techniques.

Running Time. The overall running time of the algorithm is

dictated by matrix multiplication (multiplying (T T T ), Matrix in-

version (inverting T T T
−1
), followed by matrix multiplication (to

obtain (T T T )
−1
T T

), and a final matrix multiplication (to obtain

(T T T )
−1
T T

). The asymptotic complexity is O (m2n +m3).

3.1.1 Initializing the Worker Model. One major challenge

to develop the “supervised” Worker Model is how to handle “cold

workers” - brand new workers. If the platform does not have any

information about such workers, we initialize the Worker Model
F by judiciously selecting one task at a time and repeating this

process b times.

Efficient Algorithm. As described in Section 2.2.1, we present

an online problem formulation, which selects one task t at a time,

the worker undertakes the task, we record the completion time and

update F . We repeat this process for b iterations. As expressed in

Equation 2, our objective is to estimate ŵ which is a good estimator

of w⃗ (the true preference vector of the worker). The model initial-

ization algorithm has to select a task whose completion time is not

yet known. Therefore, the challenge is, how to select a task without

knowing its completion time, so that we meet the optimization

goal.

We present an alternative representation of Equation 2 that lies

at the heart of our algorithm. Interestingly, this alternative repre-

sentation does not involve task completion time. Hence, just by

looking at the task factor matrix, we can select the next best task

that optimizes Equation 2. At a given run of this algorithm, let us

assume then that we already have selected a few tasks that gives

rise to T ′ task factor matrix. Equation 2 can be rewritten as (we

omit the details for brevity and refer to [10, 26] for details)

E ( | |ŵ − w⃗ | |)2 |T ′ = Trace[(T ′T T ′)]−1 (7)

Therefore, minimizing the error is same as minimizing

Trace[(T ′T T ′)]−1, where Trace[.] is the matrix trace, the sum of

its diagonal components.

Now, we are ready to describe the algorithm. Consider Equa-

tion 7 and let us assume A = (T ′T T ′)−1. (assuming it is already

invertible). We are now trying to select another input task t that
adds one additional row [t] to T ′. Therefore, now T ′ becomes

[
T ′ tT

] [
T ′

tT

]
= T ′

T
T ′ +

[
t
] [

t
]

(8)

This is equal to AA−1 + ttT . Therefore, we would like to find a t
that minimizes

Trace[(A−1 + ttT )
−1
] (9)

This matrix inverse could actually be carried out in closed form

and it becomes

Trace[(A−1 + ttT )
−1
] = Trace[A] −

tTAAt

1 + tTAt
(10)

Now thatTrace[A] = Trace[(T ′T T ′)]−1, to minimize the mean

squared error by adding a task, we choose that task that maximizes

tTAAt

1 + tTAt
(11)

Therefore, at a given iteration, the algorithm selects a task that

maximizes Equation 11. To select the set B, this process is repeated

b times.

Running Time. This algorithm takes O (m2n + m3) time to

compute
tTAAt
1+tTAt of a single candidate task. In each iteration, it has

to consider the entire pool of tasks to decide the best candidate. If

the number of tasks is upper-bounded by n, one iteration of this

algorithm takes O (m2n2 +m3n)
Running Example: Suppose we have selected the first two

tasks in Table 2.1. We describe how to select the third task to com-

plete the set of b = 3 tasks for model initialization. Suppose the

following two tasks have been selected in the previous iteration,

T =

[
annotation ranking sentiment payoff duration

1 0 0 20 35

0 1 0 5 10

]

Assume that A = (T T T )−1. After calculating the value of A,
we start by examining the 4 remaining tasks one at a time and we

will calculate the value of
tTAAt
1+tTAt for each of them. Out of the 4

remaining tasks, one can see that
tTAAt
1+tTAt is maximized (

tTAAt
1+tTAt =

0.512) for the task t4,

t4 =
[

annotation ranking sentiment payoff duration
0 1 0 5 40

]

Therefore, this task is selected and given to the worker. Once

she returns it, task completion time is recorded.

3.2 Question Selector
The Question Selector intends to select the k-task factors (i.e.,

questions) whose removalmaximizes the improvement of theWorker
Model F . The idea is to present those factors to the worker and seek

her explicit preference. A careful review of the objective function

(refer to Section 2.2.1) shows that since E is a constant at a given

point - thus, maximizing (E − ˆEQ−Qk ) : {Q
k ∈ Q : |Qk | = k } is

same as minimizing the reconstruction error of
ˆEQ−Qk , i.e., retain-

ing the best m − k factors (thus eliminating the worst k factors)

that has the smallest reconstruction error of F . The problem thus

becomes selecting the best m − k factors that have the smallest

reconstruction error. The remaining k factors would therefore be

chosen as the explicit questions for preference elicitation.
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Theorem 3.1. Optimally selecting k questions for explicit worker
preference is NP-hard.

Proof. (Sketch): When a linear model such as the one in Equa-

tion 1 is assumed, the problem of identifying and removing the k
worst factors, i.e., retaining the bestm − k factors, is akin to select-

ing a subset ofm − k columns from the task factor matrix T such

that the pseudo-inverse of this sub-matrix has the smallest norm.

Under the ℓ2 norm, using the rigorous NP-hardness proof de-

scribed in [3], our proof follows. Given an instance of that prob-

lem [3], we set k (the k worst factors to remove) as the difference

between the total number of columns and k ′ (k ′= the best set of

k ′ columns giving rise to the submatrix whose pseudo-inverse has

the smallest norm). The rest of the proof is trivial and omitted for

brevity. □

3.2.1 Efficient Algorithm. Under the linear model such as the

one described in Equation 1 and its equivalent representation using

a pseudo-inverse matrix, the objective of identifying the set Qk of

k selected questions (thereby identifyingm − k best factors) out of

a set Q ofm questions (a task factor is a question) is equivalent to

retaining the task factor submatrix withm − k columns that is of

the following form [26]:

argmin

Qk ⊂Q, |Qk |=k
Trace (T T

Q\QkTQ\Qk )−1 (12)

We now describe a greedy algorithm K-ExFactor to identify k
worst task factors (thus retainingm−k best factors). Our algorithm

makes use of Equation 12 and has a provable approximation guar-

antee. It works in a backward greedy manner and eliminates the

factors iteratively. It works in k iterations, and in the i-th iteration,

from the not yet selected set of factors, it selects a question qj and

eliminates it which marginally minimizes Trace(T T
Q\qj
TQ\qj )

−1
.

Once the kth iteration completes the eliminated k questions are

the selected k-factors for explicit elicitation. The pseudo code of

the algorithm is presented in Algorithm 1.

Algorithm 1 Algorithm k-ExFactor: Greedy Question Selector

Require: Task factor matrix T , set of questions Q

1: TQ ← T
2: Qs ← Q
3: for j ← 1 to k do
4: qj ← arдminq∈Q Trace(T T

Q\qTQ\q )
−1

5: TQ ← TQ\j
6: Qs ← Qs \ qj
7: end for
8: Return Q − Qs

Running Time. The algorithm runs in k iterations. Line 4 in

Algorithm 1 requires a O (m2n) time for matrix multiplication and

inversion for the question under consideration. Therefore, the over-

all complexity is O (km2n2). Notice that most of the complexity is

actually in the process of recomputing the model error and the

actual question selection is rather efficient.

Theorem 3.2. Algorithm k-ExFactor has an approximation fac-
tor of m

m−k .

Proof. (sketch): The proof adapts from an existing result [2, 8]

that uses backward greedy algorithm for subset selection formatrices

and retains a given smaller number of columns such that the pseudo-

inverse of the smaller sub-matrix has the smallest norm possible.

These results adapt, as this is akin to removing k worst task factors

and retaining the best m − k factors. It is also shown in recent

work [3] that the objective function is not submodular, nor is it

supermodular or monotone. Exploration of a better approximation

factor is deferred to future work. □

Running Example: Using Example 2.1, if k = 3,

{sentiment, Payoff, Duration} are the three task factors for which

worker feedback is solicited.

3.3 Preference Aggregator
We can now describe how to aggregate worker responses and incor-

porate her provided preferences into the model F . Recall Section 2

and note that the worker provides either a full order among the

selected questions (task factors), a partial order, or possibly no an-

swer. For the last scenario, since the worker does not provide any

feedback, we simply update F implicitly. This is done by updating

the model without any constraints. However, for both full and par-

tial orders, worker preference adds a set of linear constraints in the

optimization function in F .

3.3.1 Efficient Algorithm. Our solution treats partial and full

order in a similar fashion. In both cases, they add linear constraints

to the objective function. With the linear constraints added to

our objective function in Equation 1, updating the Worker Model
under preference aggregation problem becomes a constrained least

squares problem.

Specifically, our problem corresponds to a box-constrained least

squares one as the solution vector must fall between known lower

and upper bounds. The solution to this problem can be catego-

rized into active-set or interior-point [23]. The active-set based

methods construct a feasible region, compute the corresponding

active-set, and use the variables in the active constraints to form an

alternate formulation of a least squares optimization with equality

constraints [30]. We use the interior-point method that is more scal-

able and encodes the convex set (of solutions) as a barrier function.

It uses primal Newton Barrier method to ensure the KKT equality

conditions to optimize the objective function [23].

Running Time. Our proposed primal Newton Barrier interior-

point is iterative and the exact complexity depends on the barrier

parameter and the number of iterations, but the algorithm is shown

to be polynomial [30].

Running Example: Using Example 2.1 again, if the worker

says that she prefers Duration > Sentiment > Payoff, then the

new weights that the preference aggregator estimates for F are,

tagging=0.1, ranking= 0.1, sentiment=0.12, payoff=0.11, duration=0.97.
Notice that the order of the task factors provided by the worker is

satisfied in the updated model.

4 EXPERIMENTAL EVALUATIONS
We describe our experimental setup, steps, and findings in this

section. All algorithms are implemented in Python 3.5.1 using Intel

Core i7 4GHz CPU and 16GB of memory and Linux operating

system. All the numbers are presented as an average of 10 runs.
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4.1 Dataset Description
We use 165, 168 micro-tasks from CrowdFlower. A task belongs

to one of the 22 different categories, such as, tweet classification,

searching information on the web, audio transcription, image tag-

ging, sentiment analysis, entity resolution, etc. Each task type is

assigned a set of keywords that best describe its content and a

payment, ranging between $0.01 and $0.12. These are micro-tasks
that take less than a minute to complete.

Initially, we group a subset of micro-tasks into 240Human Intelli-

gence Tasks (HITs) and publish them on Amazon Mechanical Turk.

Each HIT contains 20 tasks and has a duration of 30 minutes. A

worker who accepts a HIT is redirected to our platform to complete

the tasks. A worker may complete several HITs in a work session

and gets paid for every completed micro-task.
Task Factors. The task types along with other factors, such

as, payment and duration, form the task factors. Our original data

has 41 task factors that are continuous, categorical or binary. By

involving domain experts, we binarized these them to obtain a total

of 100 factors that uniquely characterize the tasks.

Worker and Keywords. Each hired worker has to previously

complete at least 100 HITs that are approved, and to have an ap-

proval rate above 80%. Overall, 58 different workers complete tasks.

When a worker is hired for the first time, she is asked to select a

set of keywords from a given list of keywords that capture her pref-

erences. We create a uniqueWorker Model for all the 58 different
workers that participate in our experiments.

When a worker first joins, we ask her to choose the top-5 key-

words of her preference. We use these chosen keywords for a case

study, shown in Section 4.5.6.

Ground Truth. For each micro-task, we record the ground-

truth, which is the amount of time the worker spent on it in sec-

onds. This is encoded in the task completion time vector for the

corresponding Worker Model.

4.2 Implemented Algorithms
4.2.1 Worker Model. The linear model in Section 3.1 is im-

plemented with a regularization parameter α . When implementing

statistical models, this is a standard practice to avoid overfitting.

The overall objective function thus becomes,

min

w⃗ ∈Rm



y − w⃗

T · T



2 + α



w⃗

22 (13)

The best value of α is chosen by generalized cross validation [23].

Model Initialization. We set a fixed budget b which we use to

initialize theWorker Model iteratively (Section 2.2.1) and implement

the following algorithms:

1. Random Initialization. RandomInit selects a randomly se-

lected task iteratively, presents it to the worker and records the

task completion time. The algorithm stops when the budget b is

exhausted.

2. Active Initialization. ActiveInit implements our algorithm

given in Section 3.1.1.

3. Uniform Initialization. UniformInit initializes the model by

assigning uniform weights to the worker preference vector.

4.2.2 Explicit Feedback. This has two important components

- one is the Question Selector that selects the task factors for

explicit preference elicitation, the other is Preference Aggregator
that updates the Worker Model using elicited preferences.

Question Selector. We have implemented two algorithms to

find the best set of questions to ask as described in Section 3.2.

1. Optimization-Aware Question Selector. k-ExFactor is our

proposed algorithm described in Section 3.2.

2. k-random Question Selector. k-Random is a simple baseline

that randomly selects k-task factors for preference elicitation.

Preference Aggregator: This is our implemented solution for

preference aggregation, as described in Section 3.3.

4.2.3 Implicit Feedback. We also implement implicit feed-

back computation to be compared against explicit feedback.

Algorithm Implicit-1 is an adaption of recent work [24] that in-

vestigates how to implicitly capture worker motivation and use

that for task assignment. While we do not necessarily focus on mo-

tivation as a factor in this work, we adapt the algorithm in [24] to

estimate and update the worker preference vector over time. We do

that by taking the average over the worker preference vector of the

worker model obtained in different iterations. Since our focus is not

on task assignment, once we estimate the worker preference vector

using Implicit-1, we use that in conjunction with our Worker
Model to predict a task completion time.

Algorithm Implicit-2 is a further simplification. It relearns the

Worker Model at the end of every iteration as the worker completes

tasks and does not factor in the preference of the worker.

4.3 Invocation of ExPref
For quality experiments, ExPref is invoked iteratively and in an

online fashion: in the beginning, we filter out the tasks and task

completion history by worker id since the framework is personal-

ized per worker. On average, a worker undertakes 200 tasks. We

randomly divide the tasks into three subsets. We use 50% of each

worker’s data as a holdout over which error is computed. Half of

the remaining tasks are used for training/developing the Worker
Model and the rest as the pool of available tasks.

To conduct experiments only related to Worker Model initializa-
tion (specifically for “cold” workers), the training set is empty in

the beginning and all tasks are in the available pool. We use the

budget b to find a subset B of tasks based on our proposed solution

in Equation 11.

After Worker Model is trained, in every iteration, we select a set

x of 20 tasks (unless otherwise stated), randomly from the pool of

available tasks and present them to the worker. After recording task

completion time, we add those x tasks back to the training set. Next,

we invoke theQuestion Selector that seeks explicit feedback from
that worker. Upon receiving worker feedback, the Worker Model is
updated using the Preference Aggregator and the new training

set. We calculate the error over the holdout set after this. All these

steps construe a single iteration of the ExPref.
For scalability experiments, we are only interested tomeasure the

running time of the algorithms in ExPref. Thus, the experimental

set up is rather simple there and we use the entire dataset.

Error. Unless otherwise specified, we calculate the quality of

theWorker Model as the Mean Square Error (MSE) over validation

set, defined as,

MSE =
1

n

n∑
i=1

(
w⃗T T − Y⃗

)
2
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Additionally, we present R2 (co-efficient of determination) which

indicates the proportion of the variance in the task completion time

that is predictable from the task factors. R2 takes values between
[−∞, 1], where higher is better.

R2 = 1 −

∑
t
(
yt − w⃗

T t⃗
)
2

∑
t
(
yt − Ȳ

)
2

where, Ȳ is the average task completion time.

Iteration. We define an iteration as the completion of a HIT

(Human Intelligence Task) of 20 tasks, after which we compute the

MSE and R2 of the Worker Model.
Preference Elicitation. As described in Section 2.2.3, workers

can provide their preference either as a full order, partial order, or

they may not even provide any preference.

Preference History. For every worker, we also maintain her

elicited preferences in all previous iterations (full history), prefer-

ences only in the current iteration (no history), or preferences in

the last few iterations (partial history). Worker Model is updated
accordingly.

4.4 Summary of Results
1. Our proposed explicit preference elicitation framework
outperforms ( with statistical significance) existing implicit
ones after fewer iterations.
• We compare our approach ExPref with two other baseline al-

gorithms Implicit-1 [24] and Implicit-2 (Section 4.5.1). We

present MSE and R2 with statistical significance results (standard

error) and show that ExPref convincingly and significantly outper-

forms the other baselines under varying parameters : 1) Number of

iterations (Figure 2), 2) Number of task factors (Figure 3), and 3)
Number of tasks worker completes in each iteration (Figure 4).

•We compare the effect of different parameters of ExPref with

appropriate baselines (Section 4.5.2). We show with a small number

of questions k (Figure 5), k-ExFactor outperforms the baselines.

Our results demonstrate that ActiveInit is an effective model

initialization algorithm (Figure 8).

• Our results also indicate that task completion time is highly

correlated to task outcome/quality of the completed task. This

further justifies our investigation - indeed, deeper analysis of task

completion time improves the quality of the crowdsourced tasks.

Our case study results show that ExPref is capable to truly capture
worker preference.

2. ExPref is scalable.
•We compare ExPref with other baselines under varying parame-

ters: 1) Number of tasks, 2) Number of task factors, and 3) Number

of questions (k). Unsurprisingly, ExPref is slower but it still scales

very well.

•We compare ourmodel initializationmethod ActiveInit by vary-
ing the budgetb. ActiveInit is slower than the two other baselines.
Despite that, it scales reasonably well. These results demonstrate

the effectiveness of eliciting explicit preferences making ExPref
usable in practice.

4.5 Quality Experiments
The objective of these experiments is to capture the effectiveness

of our explicit feedback elicitation framework and compare it with

Table 2: Parameter Settings

Parameters Range Default

# tasks in each iteration (x ) 5, 10, 15, 20, 25 20

# task factors (m) 5, 10, 25, 50, 80 80

# questions to ask (k) 3, 5, 7, 9 3

# iterations 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 7

initialization budget (b) 5, 15, 30, 50, 75 50

ExPref
k-Random

Implicit-1
Implicit-2

M
SE

0
1000

2000

3000

4000

R
2

−0.4
−0.2
0
0.2
0.4

Iteration
1 2 3 4 5 6 7 8 9 10

Figure 2: Comparison between the error of the 4 models after 10

iterations

appropriate baselines. Specifically, we are interested in answering

the following questions :

1. How ExPref performs compared to implicit ones (Section 4.5.1).

2. Effect of different parameters in ExPref (Section 4.5.2).

3. Relationship between task completion time and task outcome

(Section 4.5.4).

3. A case study on worker’s explicit feedback (Section 4.5.5).

4. A case study on worker preferences (Section 4.5.6).

Parameter Setting. For a given worker, there are four parame-

ters to vary: 1) Number of tasks in each iteration (x ), 2) Number of

task factors (m), 3) Number of questions asked (k), and 4) Number

of iterations. For initializing the model, we additionally vary the

budget b. Table 2 presents the default values alongside the exper-
imental settings for each parameter. To select a different number

of task factors, the bestm features are retained by finding factors

that are highly correlated to the target and discarding the rest. By

default, we always maintain the full history of worker’s preference

while updating the Worker Model under varying iterations.

4.5.1 ExPref vs. Baselines. We compare two explicit solutions

with two implicit ones. We vary # iterations, # task factors, and x (#

tasks assigned to a worker after which the framework is invoked).

Varying the number of iterations.
Figure 2 presents the error of the 4Worker Models in the course of 10
iterations. We notice that after the 7th iteration, all the four models

become stable and their corresponding errors vary only by a very

small margin. This means that ExPref can achieve significantly

better results than the other three baselines after few iterations.

Additionally, we observed that ExPref achieve stability in far fewer

iterations than the baselines. This confirms the fact that worker’s

preference will be helpful to the model.

Varying the number of task factors.
In Figure 3, we observed that by adding more task factors, all the

models perform better but ExPref performs significantly better. We

also see that the number of task factors extracted from the tasks on

ourWorker Model is minimal compared to the other three baselines.

Session 8B: Crowdsourcing CIKM’18, October 22-26, 2018, Torino, Italy

1239



ExPref
k-Random

Implicit-1
Implicit-2

M
SE

0
500
1000
1500
2000
2500

R
2

−0.4
−0.2
0
0.2
0.4

varying	#	factors
5 10 25 50 80

Figure 3: Error varying number of task factors
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Figure 4: Error varying number of tasks in each iteration
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Figure 5: Error varying number of questions
Varying the number of tasks in each iteration.

Figure 4 presents the results for varying the number of tasks a

worker receives in each iteration (denoted by x). ExPref outper-

forms the other three baseline by a large margin in terms of achiev-

ing smaller error. Notice that for x = 20 all the algorithms perform

well but ExPref is better that the other three. For this reason, we
set the default value of x to be 20.

Varying the number of questions.
Since the results of Implicit-1 and Implicit-2 do not change

with k , we present the results in the next section (Section 4.5.2).

4.5.2 Effect of Different Parameters. We do a comparative

study on the effect of different parameters, namely, how we track

worker’s history (recent history vs full history vs partial history),

the number of questions we ask a worker (k), and the budget we

use for model initialization (b).
Number of explicit questions to ask.

As the number of questions increases, the quality of the Worker
Model decreases (Figure 5). This happens for two reasons. First,

when the number of questions is higher than 5, worker responses

are inconsistent. Second, since we keep the full history of responses

for the worker, the number of constraints imposed in our optimiza-

tion problem grows significantly which in turn affects performance.

Similarly, as we ask more questions from workers, most of the

answers provided are in the form of partial ranking rather than

full ranking. It’s likely that the workers simply picked the most

important factors and ignored the rest.

Full, partial, no history.
We present a comparative study between fully or partially cap-

turing the history of the worker’s preferences versus no history,

i.e., using the most recent preferences only. To better understand

the difference between the three, as an example, consider we ask

4 explicit questions to a worker in each iteration, after the third

k-ExFactor k-Random

M
SE

0
500
1000
1500
2000

R
2

−0.1
0
0.1
0.2
0.3
0.4

Full Partial	(last	5	iterations) Recent

Figure 6: Recent history vs partial history vs full history
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M
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1250
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R
2

0
0.1
0.2
0.3
0.4

Worker	preference
Full	Ranking Partial	Ranking No	Answer

Figure 7: Error varying worker preference type
iteration, her full history size is 12, whereas, her most recent history

size is 4; i.e., the recent history represents the number of feedback

in the current iteration. Assuming an expiration time of 2, the par-

tial history is defined as the preference of the worker based on

the last 2 iterations which is of size 8. Figure 6 presents the re-

sults of k-ExFactor against k-Random in the last iteration for four

scenarios. We omit the results for the other two implicit models

since their results is not affected by the worker’s history. Clearly,

maintaining a full history for the worker performs significantly

better. Intuitively, this shows that the model can understand the

worker better when all the information about her is maintained.

This means that theWorker Model can handle variations in worker’s
behavior significantly better compared to using recent information

only.

Full, partial, no order of preference.
Figure 7 presents the results for different types of feedback a worker

can provide. We set the number of questions that we ask in each

iteration to k = 4. Notice that when the worker does not provide

any answer, the results are very similar to Implicit-2. This means

that if the worker does not provide any answer, we fall back to the

implicit model. Similarly, note that the performance of the Worker
Model is not affected by the type of answer a worker provides. This

means that as long as the worker provides some feedback, albeit

partially, our Preference Aggregator can help theWorker Model
better estimate the task completion time.

4.5.3 Model Initialization. Figure 8 presents the difference
in the reconstruction error between the three initialization methods.

ActiveInit performs better overall and for b = 50 it has the lowest

reconstruction error between the three methods. Notice that as the

size of initialization set grows, the reconstruction error drops. This

is attributed to the fact that theWorker Model needs a reasonable
amount of training data to be able to predict the task completion

duration. Another important phenomena is that increasing b be-

yond 50 results in an increase in the reconstruction error. This is

because the Worker Model will overfit the training data and lose its

predictive power.

4.5.4 Task Completion Time vs. Task Outcome. We notice

that completed tasks that have correct answers take more time
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Figure 8: Evaluation of model initialization algorithms

Worker no Worker Keywords Top-2 preference

1 dress,google street view,

airlines, classification,

scene

dress, scene

2 business, body parts,

google street view,

health, classification

classification, google

street view

3 image, south Asia, dis-

ease, animals, text

image, text

Table 3: Worker keywords and preference questions

on average to complete than the tasks that are not. Using Chi-
squared test, we observe a high positive correlation between task

completion time and its outcome/quality (with χ2 = 3796.99 and
p −value = 0.00001). This in fact is one of the motivations behind

our study, as the correct estimation of task completion time will

help us better understand task outcome.

4.5.5 Worker’s Feedback. We profile all 58 workers over the

course of their participation and notice that they always provide

some feedback (partial/full). We notice that if the number of ques-

tions is less than 4, the workers are more likely to provide full

feedback. As we increase the number of questions, worker’s tend

to give partial feedback.

4.5.6 A Case Study. We profile three workers randomly from

our database and analyze their models in conjunction with the key-

words they have initially chosen. Table 3 presents the 5 keywords

chosen by the workers and the top-2 worker preferences. It is easy

to notice that they are highly correlated, which shows that our

proposed model successfully captures worker preference.

4.6 Scalability Experiments
We are interested in answering the following questions :

1. How ExPref scales compared to implicit preference computation

(Section 4.6.1).

2. Effect of different parameters in ExPref (Section 4.6.2).

3. Time Profile of each component of ExPref (Section 4.6.3).

Unless otherwise stated, we report running times in seconds.

Parameter Setting. Our dataset contains 165, 168 tasks and 80

task factors obtained from 58 workers. In these experiments, we

vary the following parameters: # tasks, # task factors, k , and the

initialization budget b. Unless otherwise stated, all the numbers

present the average running time of a single iteration over all the 58

workers. The default values are set as # tasks = 30, 000, # task factors
= 50, k = 3, and b = 20. By default, we consider full order of worker

preference since that adds more constraints to the problem. For the

Worker Model initialization comparison, only the appropriate three

methods are compared.

4.6.1 Efficiency of ExPref vs. Baselines. Figure 9(a) presents
the running times of the four algorithms with varying number of

tasks. Of course, our proposed solution k-ExFactor makes a lot

more computation to ensure optimization and hence has the highest

running time. However, it is easy to notice that with an increasing

number of tasks, it scales well and the running time is comparable

to the other competing algorithms. A similar observation holds

when we vary the number of task factors, as shown in Figure 9(b).

k-ExFactor scales well and never takes more than 80 seconds.

4.6.2 Effect of Parameters on Efficiency. Figure 9(c) repre-
sents the running times by varying k , the number of task factors

chosen for preference elicitation. Here only k-ExFactor is com-

pared with k-Random, as the other two algorithms do not rely on

explicit preference elicitation. Unsurprisingly, k-Random is faster,
but our proposed solution k-ExFactor scales well and has a compa-

rable running time. Finally, in Figure 9(d), we vary the initialization

sample size and present the running time of ActiveInit. Our ini-
tialization model scales well and does not take much time as the size

of initialization set grows. The other two baselines do not perform

any computation and take negligible time to terminate.

4.6.3 Profiling ExPref for Efficiency. We further profile the

individual running time of ExPref with the default settings; i.e., #

tasks = 30, 000, # task factors= 50, k = 3. It takes 8 seconds to train

the Worker Model, 6.15 seconds to solve Question Selector that
finds the best k factors, and 9.1 seconds to run Preference Aggre-
gation that updates the Worker Model with the added constraints.

These results demonstrate that the individual components of the

framework take comparable time.

5 RELATED WORK
The related work can be classified into three categories: preference

elicitation from the crowd, leveraging worker preferences in crowd-

sourcing processes, and worker models.

Preference Elicitation. In [7, 15, 25], the crowd was solicited to

perform max/top-k and clustering operations with the assumption

that workers may make errors. These papers study the relationship

between the number of comparisons needed and error. Efficient

algorithms are proposed with a guarantee to achieve correct results

with high probability. A similar problem was addressed in [14] in

the case of a skyline evaluation. In that setting, it is assumed that

items can only be compared through noisy comparisons provided

by the crowd and the goal is to minimize the number of compar-

isons. A recent work studies the problem of computing the all pair

distance graph [22] by relying on noisy human workers. The au-

thors addressed the challenge of how to aggregate those feedback

and what additional feedback to solicit from the crowd to improve

other estimated distances.

While we also rely on inputs from the crowd, the elicited input
represents each worker’s preference for different factors (as opposed
to completing actual tasks), and is hence not assumed to be noisy or
erroneous. However, as worker preferences evolve over time, we pro-
pose an iterative approach with the goal of improving task completion
time overall.
Leveraging Preferences. Worker preferences for task factors are

heavily leveraged in all crowdsourcing processes. Very few of these

efforts focused on leveraging them in task completion [4, 6, 29]. Au-

thors of [20] investigated 13 worker motivation factors and found
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Figure 9: Scalability study

that workers were interested in skill variety or task autonomy as

much as task reward. Chandler and Kapelner [4] empirically showed

that workers perceived meaningfulness of a task improved through-

put without degrading quality. Shaw et al. [29] assessed 14 incen-

tives schemes and found that incentives based on worker-to-worker
comparisons yield better crowd work quality. Hata et al. [16] stud-

ied worker fatigue and it affects how work quality over extended

periods of time. Other efforts focused on gradually increasing pay

during task completion to improve worker retention [13]. Lately,

adaptive task assignment were studied with a particular focus on

maximizing the quality of crowdwork [11, 17, 18, 24] but primary

for improved task assignment.

Existing work showed the importance of leveraging implicit worker
preferences for task assignment. In contrast, we show explicit elicita-
tion of worker preferences results in a more accurate model that leads
to better estimation of task completion time.

6 CONCLUSION
We present a framework ExPref for eliciting explicit worker’s pref-
erence for task completion time in crowdsourcing platforms by

developing and maintaining a personalized Worker Model. Around
this model, we define two core optimization problems; Question
Selector that selects the best set of questions to obtain a worker’s

preference in the form of a full/partial ranking of task factors,

and Preference Aggregator that updates the worker model with

provided preferences. We present theoretical results showing the

hardness of our problems and algorithms with theoretical guaran-

tees. We conduct large-scale experiments with 165, 168 tasks from
CrowdFlower involving 58workers hired from Amazon Mechanical

Turk. Our quality experiments corroborate the necessity of explicit

preference elicitation by comparing that with state of the art im-

plicit preference computation. Our scalability results demonstrate

that our framework is practical and could be used in real crowd-

sourcing platforms. As an ongoing work, we are investigating how

to adapt this problem, when the explicit feedback is erroneous or

has bias due to malicious user behavior.
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