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ABSTRACT

Current crowdsourcing platforms provide little support for worker
feedback. Workers are sometimes invited to post free text describ-
ing their experience and preferences in completing tasks. They can
also use forums such as Turker Nation! to exchange preferences on
tasks and requesters. In fact, crowdsourcing platforms rely heavily
on observing workers and inferring their preferences implicitly.
On the contrary, we believe that asking workers to indicate their
preferences explicitly will allow us to improve different processes
in crowdsourcing platforms. We initiate a study that leverages ex-
plicit elicitation from workers to capture the evolving nature of
worker preferences and we propose an optimization framework to
better understand and estimate task completion time. We design
a worker model to estimate task completion time whose accuracy
is improved iteratively by requesting worker preferences for task
factors, such as, required skills, task payment, and task relevance.
We develop efficient solutions with guarantees, run extensive ex-
periments with large scale real world data that show the benefit
of explicit preference elicitation over implicit ones with statistical
significance.
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1 INTRODUCTION

The main actors of a crowdsourcing platform are requesters and
tasks, and workers who complete them. Understanding quality
indicators in crowdsourcing has been a recent research focus [6, 12,
13, 20]. Some work focuses on estimating quality indicators such
as engagement and motivation [19, 21, 24], and on revisiting this
estimation periodically in an implicit manner. An important open
question however is, can we improve the estimation of quality
indicators by seeking explicit preferences from workers?
On Amazon Mechanical Turk? or Prolific Academic,’ a task has
factors such as type (e.g., image annotation, ranking, sentiment
analysis), payment and duration, i.e., the time allotted to complete
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a task. Workers are characterized by their preferences for task fac-
tors [1, 27]. Our first contribution is to propose an optimization
framework ExPref, within which an individual worker model, that
captures the preference of workers for task factors, is learned and
maintained to estimate task completion time. Worker Model is “su-
pervised” in nature and it is initialized by deriving principles from
active learning [5]. Indeed, worker preference on task factors, such
as, payment, task types, are indicators of how much time the she
needs to complete the task. Task completion time is an important
quality indicator in crowdsourcing platform, as deeper understand-
ing and analysis of task completion time benefits customization of
payment strategies [12, 13], task assignment, and appropriate re-
cruitment of workforce for crowdsourcing platforms [17, 18, 24, 28].

Unless ExPref is updated periodically, it is likely to become out-
dated, as worker’s preferences evolve over time (e.g., a worker’s
skills improve as she completes tasks). To update the model, we
advocate the need to explicitly elicit from a worker her pref-
erences. That is a stark departure from the literature where
workers are observed and their preferences computed im-
plicitly. An additional challenge arises to address the following
question: in what fashion these preferences should be extracted and
used to produce a scalable and accurate model?. To that end, we
present Question Selector for optimizing preference elicitation
that asks a worker to rank the k task factors that lead to minimize
error in the model. For example, a worker may be asked “Rank task
relevance and payment”. A higher rank for payment will indicate the
worker’s preference for high paying tasks over those most relevant
to her profile. We prove that optimally selecting k questions, i.e., k
task factors, for explicit worker preference is NP-hard, even when
the Worker Model is linear. Consequently, we develop an efficient
alternative using an iterative greedy algorithm that has a provable
approximation bound. Once the worker provides her preference,
the next challenge is how to consume that feedback to update Worker
Model in a principled manner. We present Preference Aggregator
to update the Worker Model with the elicited preferences. To ensure
that ExPref does not necessarily incur additional burden, worker’s
response can be : a total order over those k factors; or a partial pref-
erence over a subset of those k factors, when the worker does not/
can not provide total ordering. Of course, an extreme case is that
the worker does not provide any preference and in that case the
Worker Model is updated implicitly. We formulate those choices as
a constrained optimization problem and develop efficient solutions.

We run experiments that measure the quality and scalability of
ExPref. We use 165, 168 real micro-tasks from CrowdFlower involv-
ing 58 workers hired from Amazon Mechanical Turk. We measure
the accuracy of ExPref against multiple baselines, including exist-
ing ones that leverage implicit preference computation [24]. We
show that soliciting preferences explicitly and using them to
update the model achieves greater stability in a short num-
ber of iterations and outperforms implicit preference based
solutions with statistical guarantees. We also show that task
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Notation | Definition

n,m # tasks, # task factors
r task t represented by a vector of m factors
T Task factor matrix
w worker w’s preference vector

Q* a set of selected k questions

Yr completion time of task ¢
Y vector representing y; over a set of tasks
7 Worker Model

Table 1: Table of important notations

completion time is highly correlated with the quality of the com-
pleted tasks - hence a deeper analysis on task completion time
helps improve crowdsourced task quality. We present case studies
as anecdotal evidence and show that ExPref truly captures worker
preference. We finally measure scalability and demonstrate that
our proposed solutions scale well. CrowdCur [9] is the real world
implementation of these research ideas.
In summary, our contributions are:

e ExPref, a framework that elicits explicit worker preference
to better estimate task completion time. ExPref has a Worker
Model that captures worker preferences for task factors.

o A formalization of two core problems: Question Selector
that asks a worker to rank k task factors, and Preference Ag-
gregator that updates the model with elicited preferences.

e An in-depth analysis and solutions with provable guaran-
tees for the Worker Model, the Question Selector, and the
Preference Aggregator.

o Extensive experiments that corroborate that explicit prefer-
ence elicitation outperforms implicit preference computa-
tion [24] and that our framework scales well.

2 FRAMEWORK AND FORMALISM

We present our proposed framework and formalize the problems.

2.1 ExPref Framework

We propose an iterative framework ExPref (refer to Figure 1) that
is designed to ask personalized questions to a worker to elicit her
preferences. The rationale is that while task factors are stable, a
worker’s preference evolves as workers undertake tasks [16, 24].
We propose a Worker Model that consumes task factors and predicts
for a task, how long will the worker spends on the task, by inferring
her preferences. However, unless the Worker Model is refreshed or
updated periodically, it is likely to become outdated, as worker
preference evolves over time [1, 16, 24]. To update the model, one
has to periodically invoke an explicit preference elicitation step,
called Question Selector that selects a set of k task factors and asks
worker w to rank them. Once the worker provides her preference,
the Worker Model is updated by the Preference Aggregator.
This information could be used in many places to characterize
the workforce of a crowdsourcing platform and enable several
improvements such as the analysis of workers’ fatigue [16] and
motivation, and better task assignment to workers [17, 18, 24, 28].
Two computational problems form the heart of this framework. 1.
Question Selector: - when invoked, selects the best set of k ques-
tions to elicit a worker’s preference for task factors. 2. Preference
Aggregator: - takes a worker’s preference to the questions into
account, and updates the Worker Model. The last two components
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work in sequence, given the necessity to refine the learned model.
The technical challenge is to update the model while satisfying the
preference the worker has provided.

The remainder of the paper focuses on a particular worker w, un-
less otherwise stated - i.e., each of the components of the framework
is designed or invoked for her.

2.2 Data Model and Problem Definitions

Task Factors. Task characteristics are commonly defined by the
platform and their values by requesters. Each task t in a set of n
given tasks is characterized by a set of m factors whose values are
either explicitly present or could be extracted (such as keywords,
duration, pay-off). For this work, we assume that for every task, its
factors are given. This gives rise to a task factor matrix 7.

Example 2.1. The matrix in Table 2.1 contains 6 tasks charac-
terized by factors, such as type, payoff, duration. Example types
are image annotation, ranking and sentiment analysis. Payoff de-
termines the $ value the workers receives as payment, whereas,
duration is an indication of the maximum time a worker needs to
complete that task.

task —id ~ annotation  ranking  sentiment  payoff ~ duration | completion time
t1 1 0 0 20 35 25
t2 1 0 0 5 5 35
t3 0 1 0 5 10 45
t4 0 1 0 5 40 5
t5 0 0 1 10 10 12
t6 0 0 1 20 30 23

Given a task t that a worker w undertakes (either via self-appointment

or via an assignment algorithm), we are interested to understand
and estimate task completion time, the time spent by the worker to
perform the task. The last column of the task factor matrix indicates
completion time of the individual tasks. When the worker is arriv-
ing in the platform for the first time, we use a budget b to initialize
the Worker Model by asking workers b questions. Afterwards, we
periodically update the model by seeking explicit feedback through
Question Selector and update workers preference using Prefer-
ence Aggregator in the Worker Model.

Worker Preferences. The preferences of a worker w are repre-
sented by a vector w of length m that takes real values and deter-
mines the preferences over the task factors. Using Example 2.1, w
could be represented as a set of weights for the task factors, such
as, {duration,payment}.

Worker Model. Central to our framework is a model that con-
sumes task factors and given a worker’s history, infers her prefer-
ence vector to estimate task completion time. It is easy to notice
that task completion time is continuous in nature.

Explicit Questions. An explicit question q is asked to elicit
w’s preference on a particular task factor, assuming there is an
one to one correspondence between the questions and task factors
(thus, every task factor is a potential question and total possible
questions m). A set of k questions is asked to obtain a preferred
order among a set of k task factors (where k is part of the input). As
an example, one may ask to “Rank task duration, annotation tasks,
ranking tasks, sentiment analysis tasks, payment”. A worker may
provide a full order among these 5 factors as her preference, or may
provide partial order of preference. As an example of the former,
she may rank payment, then duration, then ranking tasks, followed
by sentiment analysis, and finally annotation tasks. On the contrary,
her preference is partial, when the worker prefers, payment over
duration, but does not explicitly say anything about the rest.
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Figure 1: The ExPref Framework

2.2.1 Problem Definition: Worker Model. Given the task
factor matrix 7~ of a set of n tasks, where each task t is described
by m factors and associated with a continuous variable y; denoting
the time the worker spends on ¢, we are interested in estimating
the worker preference vector w. The Worker Model F is a linear
aggregate function over 7~ and w , denoted as ¥ = w! - 7.

Optimization goal. Our objective is to estimate w in ¥, such
that it minimizes the reconstruction error [10], i.e.,

E=wl -7 -2 1)

Once the model is built, it can estimate the completion time of
a future task by the worker. Using Example 2.1, ¥ can estimate
the completion time of any of the 6 tasks or other future tasks, by
consuming 7.

Initialization. How to initialize the Worker Model is a challenge.
Initially when a brand new worker w joins the platform, as no past
history of w is available, she is treated akin to a “cold worker”.
Initially we have no information of task completion, hence w can’t
be estimated accurately. The objective of the model initialization
is to select a subset of tasks B (|B| = b, given as a budget) to be
completed by w and build ¥ using that.

One obvious choice is to randomly select b samples (tasks) to
initialize the model. However, we argue there does exist further
merit in careful selection of initial set of b tasks (training inputs), as
a careful selection of the training examples (inputs), will generally
need far fewer examples in comparison to selecting them at random
from some underlying distribution.

Our proposed formalism is inspired from active learning in Ma-
chine Learning [5] that is iterative in nature and is optimized to
select one more input (i.e., a task) at a time that maximizes the
accuracy of the underlying model. For us, from the available candi-
date pool of tasks that are not yet undertaken by the worker, this
translates to selecting one task ¢ (input) at a time, the worker w
undertakes it, and we record its completion time y;. *

Optimization goal. During the model initialization phase, in a
single iteration, our objective is to select that task ¢ that will give
rise to a worker preference vector w, which is a good estimation of
true worker preference w by minimizing the mean squared error
of the maximum likelihood estimates between w and w.

4An offline formulation of this problem, that is selecting the entire set 8
in one shot is computationally more expensive and we defer this study to
future work.
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E(|lw - wl])? ()
Given Example 2.1, if b = 3 and we have already selected two

tasks (t1, £2), the objective would be to select the next best task that
minimizes the mean squared error between w and w.

2.2.2 Problem Definition : Question Selector. This module
selects the best set of k questions for a worker w. The objective
is to select those task factors that are responsible for the model’s
inaccuracy, i.e., removing them would improve the reconstruction
error of # the most.

Optimization goal. Let & denote the current reconstruction
error of ¥ and & denote it when k task factors are removed. Given
Q, the k questions are selected such that the model reconstruction
error improves the most, i.e., argmax gk ¢ .| @k |=k1 (6 — SQka).

Using Example 2.1, if k = 2, this will select any two of the five
task factors in the task factor matrix.

2.2.3 Problem Definition : Preference Aggregator. The pref-
erences provided by a worker for task factors, could be expressed
as a set of constraints of the form, i > j, j > I. Worker preference
could take one of the three following forms:

(1) Full Order: The worker can provide a full order over the k se-
lected factors. The full ranking will be in the form of i > j > k > I,
if i, j, k, I are the task factors (questions). This preference could be
expressed as a set of k — 1 pairwise linear constraints of the form,
i>j,j>k,and etc.

(2) Partial Order: The worker can provide a partial order instead,
especially when she can not provide full order. Given the set of k
factors, a partial order takes the form of i > j, but no preference is
elicited between for k, [.

(3) No Preference: The worker does not provide any preference.

Optimization goal. Worker’s preferences are taken as hard
constraints. Given her preference, the objective is to relearn ¥
that satisfies the preferences such that its reconstruction error is
minimized. The objective therefore is to minimize & such that the
constraints are satisfied.

Using Example 2.1, if worker w explicitly states that she prefers
annotation tasks to ranking tasks, this preference is translated
into constraints expressed on the worker preference vector. Those
are then used by the preference aggregator to update ¥ .

3 ALGORITHMS

We present solutions that are efficient and come with guarantees.

3.1 Worker Model

As formalized in Section 2.2.1, the Worker Model F is a linear com-
bination of task factors and worker preference over those factors.
We design algorithms for the optimization problem that is intrinsic
to the model, and then a solution for model initialization.

Efficient Algorithm. We first derive an alternative form of our
optimization function and then show that we can use simple matrix
algebraic techniques to solve the problem.

Equation 1 could be rewritten as

Y @ T = ming W TTT % - 2w 7TV + ¥TY)

(3)

min g (w!
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To minimize Equation 3, we compute the gradient and set it to 0.
ie.,

Vw) =27 TTw—-27TY =0 (4)
This allows us to solve w by computing the matrix inverse.
TT7w=7TY (5)
Which finally gives,
w= (T 7Y ©)

(7 T‘7')717'T in Equation 6 is known as the Moore-Penrose
pseudo-inverse matrix of 7. This alternative representation is valid
as long as the task factor matrix 7~ is invertible (or could be inverted
by adding an additional term, refer to [3]).

With this alternative representation in Equation 6, computing the
best estimation of w is done by matrix inversion and multiplication
techniques.

Running Time. The overall running time of the algorithm is
dictated by matrix multiplication (multiplying (77 7"), Matrix in-
version (inverting TT‘T_I), followed by matrix multiplication (to
obtain (TTT)_I‘TT), and a final matrix multiplication (to obtain

(TTT)_I‘TT). The asymptotic complexity is O(m?n + m?).

3.1.1 Initializing the Worker Model. One major challenge
to develop the “supervised” Worker Model is how to handle “cold
workers” - brand new workers. If the platform does not have any
information about such workers, we initialize the Worker Model
¥ by judiciously selecting one task at a time and repeating this
process b times.

Efficient Algorithm. As described in Section 2.2.1, we present
an online problem formulation, which selects one task ¢ at a time,
the worker undertakes the task, we record the completion time and
update ¥ . We repeat this process for b iterations. As expressed in
Equation 2, our objective is to estimate w which is a good estimator
of w (the true preference vector of the worker). The model initial-
ization algorithm has to select a task whose completion time is not
yet known. Therefore, the challenge is, how to select a task without
knowing its completion time, so that we meet the optimization
goal.

We present an alternative representation of Equation 2 that lies
at the heart of our algorithm. Interestingly, this alternative repre-
sentation does not involve task completion time. Hence, just by
looking at the task factor matrix, we can select the next best task
that optimizes Equation 2. At a given run of this algorithm, let us
assume then that we already have selected a few tasks that gives
rise to 7 task factor matrix. Equation 2 can be rewritten as (we
omit the details for brevity and refer to [10, 26] for details)

E(lw = w27 = Trace[(T'T7")] " (7)

Therefore, minimizing the error is same as minimizing
Trace[(T'T77)]71, where Trace[.] is the matrix trace, the sum of
its diagonal components.

Now, we are ready to describe the algorithm. Consider Equa-
tion 7 and let us assume A = (7'T77)"1. (assuming it is already
invertible). We are now trying to select another input task ¢ that
adds one additional row [t] to 7 /. Therefore, now 7’ becomes
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’

[77 7] [;TT] =777+ [t] [t] 8)

This is equal to AA™! + t¢T. Therefore, we would like to find a ¢
that minimizes

Trace[(A! + t¢7) '] )

This matrix inverse could actually be carried out in closed form
and it becomes

tT AAt
1+ tTAt

Now that Trace[A] = Trace[(7’T7 )]}, to minimize the mean
squared error by adding a task, we choose that task that maximizes

Trace[(A™! + ttT)_l] = Trace[A] - (10)

tT AAt (1)
1+ 1T At

Therefore, at a given iteration, the algorithm selects a task that
maximizes Equation 11. To select the set 8, this process is repeated
b times.

Running Time. This algorithm takes O(m?n + m3) time to
1{;}’% of a single candidate task. In each iteration, it has
to consider the entire pool of tasks to decide the best candidate. If
the number of tasks is upper-bounded by n, one iteration of this
algorithm takes O(m?n® + m>n)

Running Example: Suppose we have selected the first two
tasks in Table 2.1. We describe how to select the third task to com-
plete the set of b = 3 tasks for model initialization. Suppose the
following two tasks have been selected in the previous iteration,

compute

annotation ranking sentiment  payoff duration
g = 0 20 35
0 1 0 5 10

Assume that A = (7 T7)71. After calculating the value of A,
we start by examining the 4 remaining tasks one at a time and we
tTAAL fo1 each of them. Out of the 4

1+tT At , .
remaining tasks, one can see that 1t+ ;‘%‘Xt 1t+ ﬁé\tt =

0.512) for the task t4,

will calculate the value of

is maximized (

duration
40

ranking sentiment

_ annotation
t4 = 0 1 0

payoff
5
Therefore, this task is selected and given to the worker. Once
she returns it, task completion time is recorded.

3.2 Question Selector

The Question Selector intends to select the k-task factors (i.e.,

questions) whose removal maximizes the improvement of the Worker
Model ¥ . The idea is to present those factors to the worker and seek

her explicit preference. A careful review of the objective function

(refer to Section 2.2.1) shows that since & is a constant at a given

point - thus, maximizing (& — SQ_Qk) {QF € Q: 1QF| = K} s

same as minimizing the reconstruction error of SQ_Qk, i.e., retain-
ing the best m — k factors (thus eliminating the worst k factors)

that has the smallest reconstruction error of #. The problem thus

becomes selecting the best m — k factors that have the smallest

reconstruction error. The remaining k factors would therefore be

chosen as the explicit questions for preference elicitation.
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THEOREM 3.1. Optimally selecting k questions for explicit worker
preference is NP-hard.

PrOOF. (Sketch): When a linear model such as the one in Equa-
tion 1 is assumed, the problem of identifying and removing the k
worst factors, i.e., retaining the best m — k factors, is akin to select-
ing a subset of m — k columns from the task factor matrix 7~ such
that the pseudo-inverse of this sub-matrix has the smallest norm.

Under the {3 norm, using the rigorous NP-hardness proof de-
scribed in [3], our proof follows. Given an instance of that prob-
lem [3], we set k (the k worst factors to remove) as the difference
between the total number of columns and k” (k’= the best set of
k’ columns giving rise to the submatrix whose pseudo-inverse has
the smallest norm). The rest of the proof is trivial and omitted for
brevity. O

3.2.1 Efficient Algorithm. Under the linear model such as the
one described in Equation 1 and its equivalent representation using
a pseudo-inverse matrix, the objective of identifying the set QX of
k selected questions (thereby identifying m — k best factors) out of
a set Q of m questions (a task factor is a question) is equivalent to
retaining the task factor submatrix with m — k columns that is of
the following form [26]:

argmin (12)
QkcQ,1Qk|=k

We now describe a greedy algorithm K-ExFactor to identify k
worst task factors (thus retaining m — k best factors). Our algorithm
makes use of Equation 12 and has a provable approximation guar-
antee. It works in a backward greedy manner and eliminates the
factors iteratively. It works in k iterations, and in the i-th iteration,
from the not yet selected set of factors, it selects a question g; and

Trace('ibT\QkTQ\Qk)*l

eliminates it which marginally minimizes Trace(‘TQT\qj%\qj)—l.

Once the k" iteration completes the eliminated k questions are
the selected k-factors for explicit elicitation. The pseudo code of
the algorithm is presented in Algorithm 1.

Algorithm 1 Algorithm k-ExFactor: Greedy Question Selector

Require: Task factor matrix 7, set of questions Q

: ‘7'Q —T

Q°—Q

: for j « 1to k do

gj < argmingeq Trace(‘TQ{q‘TQ\q)_1

L

To < Tg\j
Q<@g
: end for

: Return Q — Q°

® N o ow

Running Time. The algorithm runs in k iterations. Line 4 in
Algorithm 1 requires a O(m?n) time for matrix multiplication and
inversion for the question under consideration. Therefore, the over-
all complexity is O(km?n?). Notice that most of the complexity is
actually in the process of recomputing the model error and the
actual question selection is rather efficient.

THEOREM 3.2. Algorithm k-ExFactor has an approximation fac-
tor of .
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ProOF. (sketch): The proof adapts from an existing result [2, 8]
that uses backward greedy algorithm for subset selection for matrices
and retains a given smaller number of columns such that the pseudo-
inverse of the smaller sub-matrix has the smallest norm possible.
These results adapt, as this is akin to removing k worst task factors
and retaining the best m — k factors. It is also shown in recent
work [3] that the objective function is not submodular, nor is it
supermodular or monotone. Exploration of a better approximation
factor is deferred to future work. O

Running Example: Using Example 2.1, if k = 3,
{sentiment, Payoff, Duration} are the three task factors for which
worker feedback is solicited.

3.3 Preference Aggregator

We can now describe how to aggregate worker responses and incor-
porate her provided preferences into the model ¥ . Recall Section 2
and note that the worker provides either a full order among the
selected questions (task factors), a partial order, or possibly no an-
swer. For the last scenario, since the worker does not provide any
feedback, we simply update ¥ implicitly. This is done by updating
the model without any constraints. However, for both full and par-
tial orders, worker preference adds a set of linear constraints in the
optimization function in ¥ .

3.3.1 Efficient Algorithm. Our solution treats partial and full
order in a similar fashion. In both cases, they add linear constraints
to the objective function. With the linear constraints added to
our objective function in Equation 1, updating the Worker Model
under preference aggregation problem becomes a constrained least
squares problem.

Specifically, our problem corresponds to a box-constrained least
squares one as the solution vector must fall between known lower
and upper bounds. The solution to this problem can be catego-
rized into active-set or interior-point [23]. The active-set based
methods construct a feasible region, compute the corresponding
active-set, and use the variables in the active constraints to form an
alternate formulation of a least squares optimization with equality
constraints [30]. We use the interior-point method that is more scal-
able and encodes the convex set (of solutions) as a barrier function.
It uses primal Newton Barrier method to ensure the KKT equality
conditions to optimize the objective function [23].

Running Time. Our proposed primal Newton Barrier interior-
point is iterative and the exact complexity depends on the barrier
parameter and the number of iterations, but the algorithm is shown
to be polynomial [30].

Running Example: Using Example 2.1 again, if the worker
says that she prefers Duration > Sentiment > Payoff, then the
new weights that the preference aggregator estimates for ¥ are,

tagging=0.1, ranking= 0.1, sentiment=0.12, payoff=0.11, duration=0.97.

Notice that the order of the task factors provided by the worker is
satisfied in the updated model.

4 EXPERIMENTAL EVALUATIONS

We describe our experimental setup, steps, and findings in this
section. All algorithms are implemented in Python 3.5.1 using Intel
Core i7 4GHz CPU and 16GB of memory and Linux operating
system. All the numbers are presented as an average of 10 runs.
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4.1 Dataset Description

We use 165, 168 micro-tasks from CrowdFlower. A task belongs
to one of the 22 different categories, such as, tweet classification,
searching information on the web, audio transcription, image tag-
ging, sentiment analysis, entity resolution, etc. Each task type is
assigned a set of keywords that best describe its content and a
payment, ranging between $0.01 and $0.12. These are micro-tasks
that take less than a minute to complete.

Initially, we group a subset of micro-tasks into 240 Human Intelli-
gence Tasks (HITs) and publish them on Amazon Mechanical Turk.
Each HIT contains 20 tasks and has a duration of 30 minutes. A
worker who accepts a HIT is redirected to our platform to complete
the tasks. A worker may complete several HITs in a work session
and gets paid for every completed micro-task.

Task Factors. The task types along with other factors, such
as, payment and duration, form the task factors. Our original data
has 41 task factors that are continuous, categorical or binary. By
involving domain experts, we binarized these them to obtain a total
of 100 factors that uniquely characterize the tasks.

Worker and Keywords. Each hired worker has to previously
complete at least 100 HITs that are approved, and to have an ap-
proval rate above 80%. Overall, 58 different workers complete tasks.
When a worker is hired for the first time, she is asked to select a
set of keywords from a given list of keywords that capture her pref-
erences. We create a unique Worker Model for all the 58 different
workers that participate in our experiments.

When a worker first joins, we ask her to choose the top-5 key-
words of her preference. We use these chosen keywords for a case
study, shown in Section 4.5.6.

Ground Truth. For each micro-task, we record the ground-
truth, which is the amount of time the worker spent on it in sec-
onds. This is encoded in the task completion time vector for the
corresponding Worker Model.

4.2 Implemented Algorithms

4.2.1 Worker Model. The linear model in Section 3.1 is im-
plemented with a regularization parameter «. When implementing
statistical models, this is a standard practice to avoid overfitting.
The overall objective function thus becomes,

min [ly—w" - T, + e |l#]3 (13)

weR™

The best value of « is chosen by generalized cross validation [23].
Model Initialization. We set a fixed budget b which we use to

initialize the Worker Model iteratively (Section 2.2.1) and implement

the following algorithms:

1. Random Initialization. RandomInit selects a randomly se-

lected task iteratively, presents it to the worker and records the

task completion time. The algorithm stops when the budget b is

exhausted.

2. Active Initialization. ActiveInit implements our algorithm

given in Section 3.1.1.

3. Uniform Initialization. UniformInit initializes the model by

assigning uniform weights to the worker preference vector.

4.2.2 Explicit Feedback. This has two important components
- one is the Question Selector that selects the task factors for
explicit preference elicitation, the other is Preference Aggregator
that updates the Worker Model using elicited preferences.
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Question Selector. We have implemented two algorithms to
find the best set of questions to ask as described in Section 3.2.
1. Optimization-Aware Question Selector. k-ExFactor is our
proposed algorithm described in Section 3.2.
2. k-random Question Selector. k-Random is a simple baseline
that randomly selects k-task factors for preference elicitation.
Preference Aggregator: This is our implemented solution for
preference aggregation, as described in Section 3.3.

4.2.3 Implicit Feedback. We also implement implicit feed-
back computation to be compared against explicit feedback.
Algorithm Implicit-1 is an adaption of recent work [24] that in-
vestigates how to implicitly capture worker motivation and use
that for task assignment. While we do not necessarily focus on mo-
tivation as a factor in this work, we adapt the algorithm in [24] to
estimate and update the worker preference vector over time. We do
that by taking the average over the worker preference vector of the
worker model obtained in different iterations. Since our focus is not
on task assignment, once we estimate the worker preference vector
using Implicit-1, we use that in conjunction with our Worker
Model to predict a task completion time.

Algorithm Implicit-2 is a further simplification. It relearns the
Worker Model at the end of every iteration as the worker completes
tasks and does not factor in the preference of the worker.

4.3 Invocation of ExPref

For quality experiments, ExPref is invoked iteratively and in an
online fashion: in the beginning, we filter out the tasks and task
completion history by worker id since the framework is personal-
ized per worker. On average, a worker undertakes 200 tasks. We
randomly divide the tasks into three subsets. We use 50% of each
worker’s data as a holdout over which error is computed. Half of
the remaining tasks are used for training/developing the Worker
Model and the rest as the pool of available tasks.

To conduct experiments only related to Worker Model initializa-
tion (specifically for “cold” workers), the training set is empty in
the beginning and all tasks are in the available pool. We use the
budget b to find a subset B of tasks based on our proposed solution
in Equation 11.

After Worker Model is trained, in every iteration, we select a set
x of 20 tasks (unless otherwise stated), randomly from the pool of
available tasks and present them to the worker. After recording task
completion time, we add those x tasks back to the training set. Next,
we invoke the Question Selector that seeks explicit feedback from
that worker. Upon receiving worker feedback, the Worker Model is
updated using the Preference Aggregator and the new training
set. We calculate the error over the holdout set after this. All these
steps construe a single iteration of the ExPref.

For scalability experiments, we are only interested to measure the
running time of the algorithms in ExPref. Thus, the experimental
set up is rather simple there and we use the entire dataset.

Error. Unless otherwise specified, we calculate the quality of
the Worker Model as the Mean Square Error (MSE) over validation
set, defined as,

1 n
MSE =~ (! -
i=1

7)*
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Additionally, we present R? (co-efficient of determination) which
indicates the proportion of the variance in the task completion time
that is predictable from the task factors. R? takes values between
[—o0, 1], where higher is better.

RP=1- Zt(yt _WTFZ)Z
Zt(yt—Y)

where, Y is the average task completion time.

Iteration. We define an iteration as the completion of a HIT
(Human Intelligence Task) of 20 tasks, after which we compute the
MSE and R? of the Worker Model.

Preference Elicitation. As described in Section 2.2.3, workers
can provide their preference either as a full order, partial order, or
they may not even provide any preference.

Preference History. For every worker, we also maintain her
elicited preferences in all previous iterations (full history), prefer-
ences only in the current iteration (no history), or preferences in
the last few iterations (partial history). Worker Model is updated
accordingly.

4.4 Summary of Results

1. Our proposed explicit preference elicitation framework
outperforms ( with statistical significance) existing implicit
ones after fewer iterations.

® We compare our approach ExPref with two other baseline al-
gorithms Implicit-1 [24] and Implicit-2 (Section 4.5.1). We
present MSE and R? with statistical significance results (standard
error) and show that ExPref convincingly and significantly outper-
forms the other baselines under varying parameters : 1) Number of
iterations (Figure 2), 2) Number of task factors (Figure 3), and 3)
Number of tasks worker completes in each iteration (Figure 4).

® We compare the effect of different parameters of ExPref with
appropriate baselines (Section 4.5.2). We show with a small number
of questions k (Figure 5), k-ExFactor outperforms the baselines.
Our results demonstrate that ActiveInit is an effective model
initialization algorithm (Figure 8).

® Our results also indicate that task completion time is highly
correlated to task outcome/quality of the completed task. This
further justifies our investigation - indeed, deeper analysis of task
completion time improves the quality of the crowdsourced tasks.
Our case study results show that ExPref is capable to truly capture
worker preference.

2. ExPref is scalable.

® We compare ExPref with other baselines under varying parame-
ters: 1) Number of tasks, 2) Number of task factors, and 3) Number
of questions (k). Unsurprisingly, ExPref is slower but it still scales
very well.

® We compare our model initialization method ActiveInit by vary-
ing the budget b. ActiveInit is slower than the two other baselines.
Despite that, it scales reasonably well. These results demonstrate
the effectiveness of eliciting explicit preferences making ExPref
usable in practice.

4.5 Quality Experiments

The objective of these experiments is to capture the effectiveness
of our explicit feedback elicitation framework and compare it with
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Table 2: Parameter Settings

Parameters Range Default

# tasks in each iteration (x) 5,10, 15, 20, 25 20

# task factors (m) 5,10, 25, 50, 80 80

# questions to ask (k) 3,5,7,9 3

# iterations 1,2,3,4,5,6,7,8,9,10 7

initialization budget (b) 5,15,30,50,75 50
4000

= . B oman ]

£2000

1000F

20 +,..!++-.f+'-!+ r l l r wlw

l 2
Figure 2: Comparison between the error of the 4 models after
iterations

o
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Iteration

appropriate baselines. Specifically, we are interested in answering
the following questions :

1. How ExPref performs compared to implicit ones (Section 4.5.1).
2. Effect of different parameters in ExPref (Section 4.5.2).

3. Relationship between task completion time and task outcome
(Section 4.5.4).

3. A case study on worker’s explicit feedback (Section 4.5.5).

4. A case study on worker preferences (Section 4.5.6).

Parameter Setting. For a given worker, there are four parame-
ters to vary: 1) Number of tasks in each iteration (x), 2) Number of
task factors (m), 3) Number of questions asked (k), and 4) Number
of iterations. For initializing the model, we additionally vary the
budget b. Table 2 presents the default values alongside the exper-
imental settings for each parameter. To select a different number
of task factors, the best m features are retained by finding factors
that are highly correlated to the target and discarding the rest. By
default, we always maintain the full history of worker’s preference
while updating the Worker Model under varying iterations.

4.5.1 ExPref vs.Baselines. We compare two explicit solutions
with two implicit ones. We vary # iterations, # task factors, and x (#
tasks assigned to a worker after which the framework is invoked).

Varying the number of iterations.

Figure 2 presents the error of the 4 Worker Models in the course of 10
iterations. We notice that after the 7th iteration, all the four models
become stable and their corresponding errors vary only by a very
small margin. This means that ExPref can achieve significantly
better results than the other three baselines after few iterations.
Additionally, we observed that ExPref achieve stability in far fewer
iterations than the baselines. This confirms the fact that worker’s
preference will be helpful to the model.

Varying the number of task factors.

In Figure 3, we observed that by adding more task factors, all the
models perform better but ExPref performs significantly better. We
also see that the number of task factors extracted from the tasks on
our Worker Model is minimal compared to the other three baselines.
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Varying the number of tasks in each iteration.
Figure 4 presents the results for varying the number of tasks a
worker receives in each iteration (denoted by x). ExPref outper-
forms the other three baseline by a large margin in terms of achiev-
ing smaller error. Notice that for x = 20 all the algorithms perform
well but ExPref is better that the other three. For this reason, we
set the default value of x to be 20.

Varying the number of questions.
Since the results of Implicit-1 and Implicit-2 do not change
with k, we present the results in the next section (Section 4.5.2).

4.5.2 Effect of Different Parameters. We do a comparative
study on the effect of different parameters, namely, how we track
worker’s history (recent history vs full history vs partial history),
the number of questions we ask a worker (k), and the budget we
use for model initialization (b).

Number of explicit questions to ask.

As the number of questions increases, the quality of the Worker
Model decreases (Figure 5). This happens for two reasons. First,
when the number of questions is higher than 5, worker responses
are inconsistent. Second, since we keep the full history of responses
for the worker, the number of constraints imposed in our optimiza-
tion problem grows significantly which in turn affects performance.

Similarly, as we ask more questions from workers, most of the
answers provided are in the form of partial ranking rather than
full ranking. It’s likely that the workers simply picked the most
important factors and ignored the rest.

Full, partial, no history.

We present a comparative study between fully or partially cap-
turing the history of the worker’s preferences versus no history,
i.e., using the most recent preferences only. To better understand
the difference between the three, as an example, consider we ask
4 explicit questions to a worker in each iteration, after the third
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Figure 6: Recent history vs partial history vs full history
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Figure 7: Error varying worker preference type
iteration, her full history size is 12, whereas, her most recent history
size is 4; i.e., the recent history represents the number of feedback
in the current iteration. Assuming an expiration time of 2, the par-
tial history is defined as the preference of the worker based on
the last 2 iterations which is of size 8. Figure 6 presents the re-
sults of k-ExFactor against k-Random in the last iteration for four
scenarios. We omit the results for the other two implicit models
since their results is not affected by the worker’s history. Clearly,
maintaining a full history for the worker performs significantly
better. Intuitively, this shows that the model can understand the
worker better when all the information about her is maintained.
This means that the Worker Model can handle variations in worker’s
behavior significantly better compared to using recent information
only.
Full, partial, no order of preference.

Figure 7 presents the results for different types of feedback a worker
can provide. We set the number of questions that we ask in each
iteration to k = 4. Notice that when the worker does not provide
any answer, the results are very similar to Implicit-2. This means
that if the worker does not provide any answer, we fall back to the
implicit model. Similarly, note that the performance of the Worker
Model is not affected by the type of answer a worker provides. This
means that as long as the worker provides some feedback, albeit
partially, our Preference Aggregator can help the Worker Model
better estimate the task completion time.

4.5.3 Model Initialization. Figure 8 presents the difference
in the reconstruction error between the three initialization methods.
ActivelInit performs better overall and for b = 50 it has the lowest
reconstruction error between the three methods. Notice that as the
size of initialization set grows, the reconstruction error drops. This
is attributed to the fact that the Worker Model needs a reasonable
amount of training data to be able to predict the task completion
duration. Another important phenomena is that increasing b be-
yond 50 results in an increase in the reconstruction error. This is
because the Worker Model will overfit the training data and lose its
predictive power.

4.5.4 Task Completion Time vs. Task Outcome. We notice
that completed tasks that have correct answers take more time
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Figure 8: Evaluation of model initialization algorithms
Worker no | Worker Keywords Top-2 preference
1 dress,google street view, | dress, scene
airlines, classification,
scene
2 business, body parts, | classification, google
google street view, | street view
health, classification
3 image, south Asia, dis- | image, text
ease, animals, text

Table 3: Worker keywords and preference questions

on average to complete than the tasks that are not. Using Chi-
squared test, we observe a high positive correlation between task
completion time and its outcome/quality (with y? = 3796.99 and
p — value = 0.00001). This in fact is one of the motivations behind
our study, as the correct estimation of task completion time will
help us better understand task outcome.

4.5.5 Worker’s Feedback. We profile all 58 workers over the
course of their participation and notice that they always provide
some feedback (partial/full). We notice that if the number of ques-
tions is less than 4, the workers are more likely to provide full
feedback. As we increase the number of questions, worker’s tend
to give partial feedback.

45.6 A Case Study. We profile three workers randomly from
our database and analyze their models in conjunction with the key-
words they have initially chosen. Table 3 presents the 5 keywords
chosen by the workers and the top-2 worker preferences. It is easy
to notice that they are highly correlated, which shows that our
proposed model successfully captures worker preference.

4.6 Scalability Experiments

We are interested in answering the following questions :

1. How ExPref scales compared to implicit preference computation

(Section 4.6.1).

2. Effect of different parameters in ExPref (Section 4.6.2).

3. Time Profile of each component of ExPref (Section 4.6.3).
Unless otherwise stated, we report running times in seconds.
Parameter Setting. Our dataset contains 165, 168 tasks and 80

task factors obtained from 58 workers. In these experiments, we

vary the following parameters: # tasks, # task factors, k, and the
initialization budget b. Unless otherwise stated, all the numbers

present the average running time of a single iteration over all the 58

workers. The default values are set as # tasks = 30, 000, # task factors

=50, k = 3, and b = 20. By default, we consider full order of worker
preference since that adds more constraints to the problem. For the

Worker Model initialization comparison, only the appropriate three

methods are compared.
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4.6.1 Efficiency of ExPref vs. Baselines. Figure 9(a) presents
the running times of the four algorithms with varying number of
tasks. Of course, our proposed solution k-ExFactor makes a lot
more computation to ensure optimization and hence has the highest
running time. However, it is easy to notice that with an increasing
number of tasks, it scales well and the running time is comparable
to the other competing algorithms. A similar observation holds
when we vary the number of task factors, as shown in Figure 9(b).
k-ExFactor scales well and never takes more than 80 seconds.

4.6.2 Effect of Parameters on Efficiency. Figure 9(c) repre-
sents the running times by varying k, the number of task factors
chosen for preference elicitation. Here only k-ExFactor is com-
pared with k-Random, as the other two algorithms do not rely on
explicit preference elicitation. Unsurprisingly, k-Random is faster,
but our proposed solution k-ExFactor scales well and has a compa-
rable running time. Finally, in Figure 9(d), we vary the initialization
sample size and present the running time of ActiveInit. Our ini-
tialization model scales well and does not take much time as the size
of initialization set grows. The other two baselines do not perform
any computation and take negligible time to terminate.

4.6.3 Profiling ExPref for Efficiency. We further profile the
individual running time of ExPref with the default settings; i.e., #
tasks = 30, 000, # task factors= 50, k = 3. It takes 8 seconds to train
the Worker Model, 6.15 seconds to solve Question Selector that
finds the best k factors, and 9.1 seconds to run Preference Aggre-
gation that updates the Worker Model with the added constraints.
These results demonstrate that the individual components of the
framework take comparable time.

5 RELATED WORK

The related work can be classified into three categories: preference
elicitation from the crowd, leveraging worker preferences in crowd-
sourcing processes, and worker models.

Preference Elicitation. In [7, 15, 25], the crowd was solicited to
perform max/top-k and clustering operations with the assumption
that workers may make errors. These papers study the relationship
between the number of comparisons needed and error. Efficient
algorithms are proposed with a guarantee to achieve correct results
with high probability. A similar problem was addressed in [14] in
the case of a skyline evaluation. In that setting, it is assumed that
items can only be compared through noisy comparisons provided
by the crowd and the goal is to minimize the number of compar-
isons. A recent work studies the problem of computing the all pair
distance graph [22] by relying on noisy human workers. The au-
thors addressed the challenge of how to aggregate those feedback
and what additional feedback to solicit from the crowd to improve
other estimated distances.

While we also rely on inputs from the crowd, the elicited input
represents each worker’s preference for different factors (as opposed
to completing actual tasks), and is hence not assumed to be noisy or
erroneous. However, as worker preferences evolve over time, we pro-
pose an iterative approach with the goal of improving task completion
time overall.

Leveraging Preferences. Worker preferences for task factors are
heavily leveraged in all crowdsourcing processes. Very few of these
efforts focused on leveraging them in task completion [4, 6, 29]. Au-
thors of [20] investigated 13 worker motivation factors and found



Session 8B: Crowdsourcing

CIKM’18, October 22-26, 2018, Torino, Italy

200 T

175F M ExPref

[ k-Randon
150F B Implicit-1
P Inplicit-2

<| E ExPref
W k-Randon
W Inplicit-1
B Inplicit-2

100

Time (Seconds)
Time (Seconds)

30K

60K 90K

# Tasks

120K 150K 40 60 80 100

# Task factors

(a) varying # tasks (b) varying # task factors

Time (Seconds)

B k-ExFactor

=

3 T T
<[ @ Activelnit _—

ol
0

250 500 750 1000 1250

# Questions (k)

# Samples for initialization

(c) varying k (d) varying b

Figure 9: Scalability study

that workers were interested in skill variety or task autonomy as
much as task reward. Chandler and Kapelner [4] empirically showed
that workers perceived meaningfulness of a task improved through-
put without degrading quality. Shaw et al. [29] assessed 14 incen-
tives schemes and found that incentives based on worker-to-worker
comparisons yield better crowd work quality. Hata et al. [16] stud-
ied worker fatigue and it affects how work quality over extended
periods of time. Other efforts focused on gradually increasing pay
during task completion to improve worker retention [13]. Lately,
adaptive task assignment were studied with a particular focus on
maximizing the quality of crowdwork [11, 17, 18, 24] but primary
for improved task assignment.

Existing work showed the importance of leveraging implicit worker
preferences for task assignment. In contrast, we show explicit elicita-
tion of worker preferences results in a more accurate model that leads
to better estimation of task completion time.

6 CONCLUSION

We present a framework ExPref for eliciting explicit worker’s pref-
erence for task completion time in crowdsourcing platforms by
developing and maintaining a personalized Worker Model. Around
this model, we define two core optimization problems; Question
Selector that selects the best set of questions to obtain a worker’s
preference in the form of a full/partial ranking of task factors,
and Preference Aggregator that updates the worker model with
provided preferences. We present theoretical results showing the
hardness of our problems and algorithms with theoretical guaran-
tees. We conduct large-scale experiments with 165, 168 tasks from
CrowdFlower involving 58 workers hired from Amazon Mechanical
Turk. Our quality experiments corroborate the necessity of explicit
preference elicitation by comparing that with state of the art im-
plicit preference computation. Our scalability results demonstrate
that our framework is practical and could be used in real crowd-
sourcing platforms. As an ongoing work, we are investigating how
to adapt this problem, when the explicit feedback is erroneous or
has bias due to malicious user behavior.
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