

1 **Measurement of Ultrasound-Enhanced Diffusion Coefficient**
2 **of Nanoparticles in an Agarose Hydrogel**
3

4 Dong Ma¹, Jeffrey S. Marshall² and Junru Wu¹
5

6 ¹Department of Physics
7 ²Department of Mechanical Engineering
8 The University of Vermont
9 Burlington, Vermont, U.S.A.
10

11
12
13
14
15 Corresponding Author: Junru Wu, Department of Physics, The University of Vermont,
16 Burlington, VT 05405, U.S.A. PHONE: 1 (802) 656-8357, EMAIL: jwu@uvm.edu.
17

18 Keywords: biofilms, oscillating diffusion, nanoparticles, ultrasound
19 Running title: Acoustic enhancement of diffusion in a hydrogel

20

Abstract

21 An experimental study has been performed to measure the effect of ultrasound on nanoparticle
22 diffusion in an agarose hydrogel. Agarose hydrogel is often used as a simulant for biofilms and
23 certain biological tissues, such as muscle and brain tissue. The work was motivated by recent
24 experiments indicating that ultrasonic excitation of moderate intensity can significantly enhance
25 nanoparticle diffusion in a hydrogel. The objective of the current study was to obtain detailed
26 measurements of the effect of ultrasound on nanoparticle diffusion in comparison to the
27 molecular diffusion in the absence of acoustic excitation. Experiments were conducted with 1
28 MHz ultrasound waves and nanoparticle diameters of 20nm and 100nm, using fluorescent
29 imaging to measure particle concentration distribution. Under ultrasound exposure, the
30 experiments yield estimates for both acoustic diffusion coefficients as well as acoustic streaming
31 velocity within the hydrogel. Measured values of acoustic streaming velocity were on the order
32 of 0.1 $\mu\text{m/s}$, which agree well with a theoretical estimate. Measured values of the acoustic
33 diffusion coefficient were found to be 74% larger than the molecular diffusion coefficient of the
34 nanoparticles for 20nm particles and 133% larger than the molecular diffusion coefficient for
35 100nm particles.

36

37

38

39 **1. Introduction**

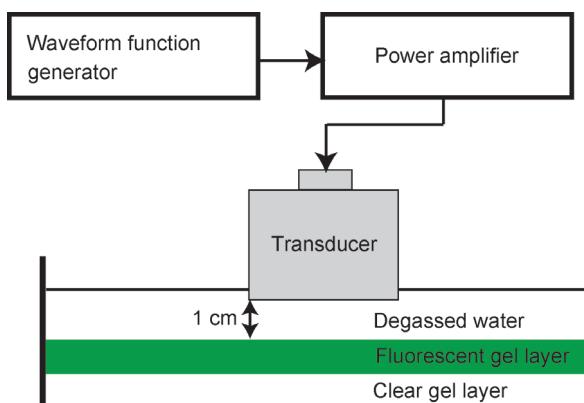
40 A biofilm consists of bacteria immersed in a network of proteins called extracellular
41 polymeric substances (EPS), through which nutrients and minerals necessary for growth of the
42 bacteria are transported. Diffusion is the primary mechanism for transport of particles and
43 chemicals in a biofilm (Stewart, 2003; Zhang et al., 2011). A promising method for delivery of
44 antibiotics to bacterial colonies within biofilms is via attachment to liposomes, nanoparticles or
45 lipid-polymer hybrid nanoparticles, with particle sizes below 100nm being found optimal for use
46 as a carrier (Forier et al., 2014a, 2014b; Li et al., 2015; Cheow et al., 2011). One mechanism by
47 which biofilms protect bacteria is by chemically deactivating antimicrobial agents in the outer
48 EPS layers of the biofilm. Encapsulation of these antimicrobial agents within liposomes or solid
49 nanoparticles can be effective for carrying the antibiotic past this chemical barrier. Liposomes
50 and nanoparticles can also be targeted to attach to bacterial outer membranes, thereby delivering
51 the antibiotic agent directly to the bacterial cell (Forier et al., 2014a).

52 It was observed by Ma et al. (2015) that low intensity ultrasound (far below the intensity
53 necessary to induce acoustic cavitation) can significantly enhance transport of liposomes into an
54 alginate gel, including both the liposome transport from solution to the hydrogel outer surface
55 and liposome penetration into the gel. Similar acoustic enhancement of diffusive processes in
56 more general porous media was noted by Vogler and Chrysikopoulos (2002) for the problem of
57 diffusion of a passive tracer in a packed column of glass spheres. These authors proposed a
58 phenomenological model that accounted for the acoustic enhancement effect by introducing a
59 modified diffusion coefficient that is a function of the amplitude of particle velocity of the
60 acoustic wave in situ.

61 A stochastic model was proposed by Marshall (2016) for acoustic diffusion coefficient of
62 particles in a porous medium. The model assumes that the diffusion of a particulate phase in a
63 porous medium is produced by the combination of acoustic oscillations and random retention,
64 where the latter is produced by hindered motion of the diffused phase by the pore walls of the
65 porous medium. Retention occurs in a variety of diffusion processes when the diffusing material
66 is partially or temporarily blocked by structures within the conducting medium (Bevilacqua et al.,
67 2011). In the case of polymeric gels, such as biofilms or hydrogels, retention is associated with
68 the phenomenon of *hindered diffusion*, in which the transport rate of solute molecules and
69 nanoparticles is reduced by near-wall effects as the large molecules or particles pass through
70 small pores within the gel (Buck et al., 1999; Kätelhön and Compton, 2014). A study of the
71 effects of hindered diffusion on nanoparticle diffusion within agarose gels was given by Fatin-
72 Rouge et al. (2004).

73 While previous work suggests that ultrasound excitation can enhance the diffusion of
74 nanoparticles within a hydrogel, there are no detailed measurements to verify this hypothesis or
75 to characterize the exact extent of diffusion enhancement by ultrasound excitation. The objective
76 of the current study is to conduct detailed experiments that measure diffusion in a hydrogel of
77 different size particles both without ultrasound (called the *control* samples) and with ultrasound
78 exposure (called the *treated* samples). The experiments verify the effect of ultrasound on
79 enhancement of nanoparticle diffusion within a hydrogel and provide a measurement of the
80 enhanced diffusion coefficient. In order to make the porous medium more uniform between
81 experimental runs, we performed our experiments with an agarose hydrogel instead of a natural
82 biofilm. Alginate and agarose hydrogels are common physical models for biofilms since they
83 share similar extracellular matrix, porous structures and mechanical properties (Jung et al., 2015;

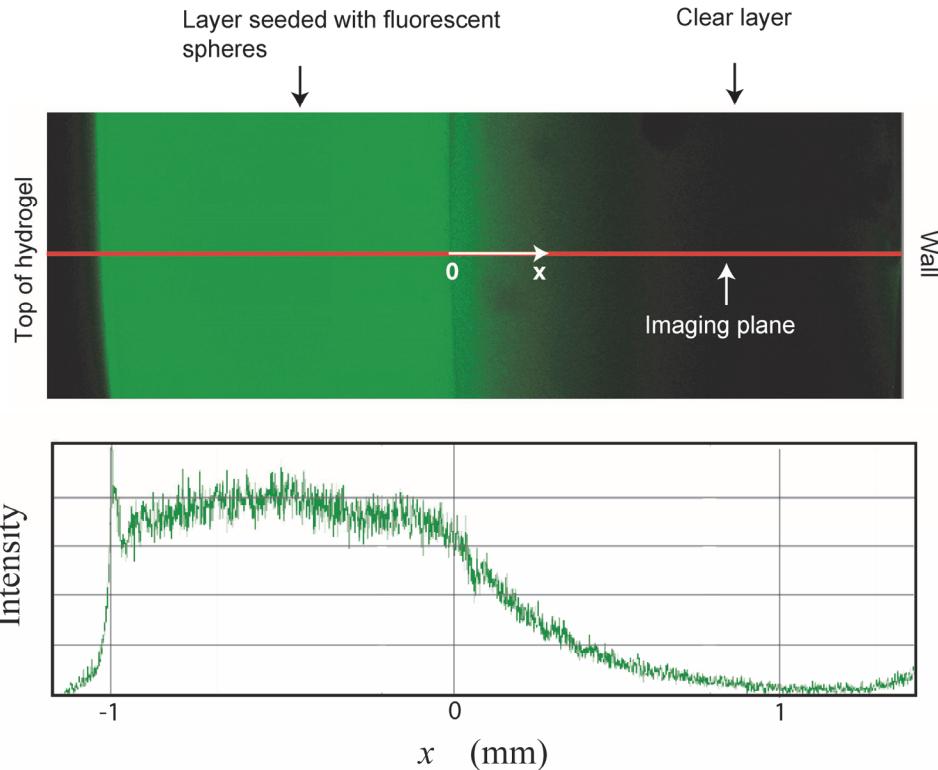
84 Rowley et al., 1990; Smidsrød et al., 1990), but the agarose or alginate hydrogels have the
85 advantages of fast setup and consistent properties and thickness compared to natural biofilms.
86 Use of agarose hydrogel in this study allows our experiments to be more consistent and
87 controlled than would be the case with living biofilms.


88 The experimental method is described in Section 2. The method for analysis of
89 experimental data to extract diffusion coefficients is described in Section 3. The experimental
90 results and related discussion are presented in Section 4. Conclusions are given in Section 5.

91

92 **2. Experimental Method**

93 The agarose hydrogel was formed using a 0.8% agarose solution, which was prepared by
94 adding 0.8g agarose to a 98ml, 50mM calcium chloride solution in a 125ml flask. The solution
95 was mixed using a magnetic stirring bar, placed in a microwave oven for 1 minute's heating, and
96 then moved back to a magnetic stirrer and mixed at a temperature of 90 °C. Meanwhile, 2ml of
97 5% sodium dodecyl sulfate (SDS) (5g per 100ml) was added to the solution. A sample of 40ml of
98 the agarose solution was moved to another flask, to which was added 2ml of fluorescent sphere
99 suspension (FluoSpheres, F8803, ThermoFisher, USA). The solution was then continuously
100 mixed at the same temperature. At this point, the experimental procedure resulted in one flask of
101 clear agarose solution and another flask of fluorescent agarose solution. The experiments were
102 performed using a two-layer agarose model, which was formed by first moving 12ml of the clear
103 agarose solution to a petri dish and letting it sit for 3 minutes to form the first gel layer. The
104 second layer was formed by seeding 10ml of the agarose mixture with fluorescent spheres, and
105 then pouring it on top of the first layer and letting it sit for another 3 minutes until a gel formed.


106 The ultrasound transducer used in experiments was a single-element non-focusing piezo-
107 ceramic transducer (Olympus NDT Inc., Waltham, MA) operated at 1.0 MHz, with active radius
108 $b = 9.5$ mm and Rayleigh distance $a_R = b^2 / \lambda \cong 6.0$ cm. The transducer was immersed in water
109 and suspended a distance of about 1cm over the hydrogel sample, so the hydrogel was clearly in
110 the transducer near-field region and the acoustic waves can be taken to be approximately one-
111 dimensional (Lewin and Ziskin, 1992). An arbitrary waveform function generator (33250A,
112 Agilent, Santa Clara, CA) was programmed to produce a tone-burst sinusoidal signal with 20%
113 duty cycle for insonation duration t_A of either 5 or 10 minutes, and the output of the waveform
114 generator was used as the input of a 55 dB RF power amplifier (ENI A300, Rochester, NY)
115 whose output was used to drive the transducer. The spatially- and temporally-averaged intensity
116 (I_{SATA}) used in the experiment was 2.32 W/cm^2 , which was measured by using the radiation force
117 measurement (Beissner, 1993). A schematic diagram showing the experimental setup is given in
118 Figure 1. In each case where the hydrogel was exposed to ultrasonic excitation (which we call
119 the *treated sample*), another sample from the same gel was extracted that was not exposed to
120 ultrasound (called the *control sample*).

121
122 Figure 1. Experimental set-up for measuring ultrasound-enhanced diffusion of nanoparticles.
123 (Not to scale)

124 Optical imaging of the hydrogel to measure fluorescent intensity profile was performed
125 after a time interval t_f following gel formation. A sample of the hydrogel was obtained by
126 cutting a cross section out of the two-layer agarose layer for each run. Imaging of the sample was
127 performed using a computer-controlled confocal microscope (Zeiss LSM 510 META) to obtain
128 the fluorescence intensity profile. An example of this process is shown in Figure 2. A sample of
129 the fluorescent hydrogel is shown in Fig. 2a. At the initial time, the sample appears green on its
130 left side (which is initially seeded with fluorescent particles) and it is clear on its right side (with
131 no initial particles). Over time, the fluorescent particles diffuse from the particle-rich left-hand
132 side to the particle-poor right-hand side, producing a more gradual fluorescence intensity
133 distribution as shown in Fig. 2a. The corresponding fluorescence intensity profile was obtained
134 by averaging the measurements from three repeated experiments. An example fluorescence
135 intensity profile is shown in Fig. 2b, which plots fluorescence intensity versus distance along the
136 imaging plane (denoted by x). The origin of the distance coordinate x is set as the location where
137 the imaging plane intersects the boundary between the two hydrogel layers.

138

141 Figure 2. Plots showing an example of the fluorescent imaging of the hydrogel. (a) Image of
 142 fluorescent gel showing two layers and imaging plane. The left-hand layer is initially seeded
 143 with fluorescent particles and the right-hand layer is initially clear. (b) Example showing
 144 fluorescence intensity variation with distance x on the imaging plane.

145

146 **3. Data Analysis**

147 The fluorescence data was processed to estimate the diffusion coefficient by numerical
 148 solution for the particle concentration $c(x,t)$ for both the treated samples (samples with
 149 ultrasound exposure) and for the control samples (samples without ultrasound exposure). It is
 150 assumed that the molecular diffusion coefficient D_M (associated with thermal molecular motion)
 151 and the acoustic diffusion coefficient D_A (associated with enhancement of diffusion via
 152 ultrasonic excitation) are additive, so that the total diffusion coefficient can be written as

153

154
$$D = D_M + D_A. \quad (1)$$

155

156 For the treated samples, we wish to estimate both the acoustic streaming velocity and the
157 acoustic contribution D_A to the diffusion coefficient. For control samples, we wish to estimate
158 the molecular diffusion coefficient D_M . For convenience, the concentration is normalized by its
159 initial value c_0 within the part of the film that is seeded with fluorescent particles. The particle
160 concentration is proportional to the fluorescence intensity $J(x,t)$, such that

161

162
$$\hat{c}(x,t) \equiv \frac{c(x,t)}{c_0} = \frac{J(x,t)}{J_0}, \quad (2)$$

163

164 where $\hat{c}(x,t)$ is the normalized concentration and J_0 is the initial fluorescence intensity of the
165 seeded part of the film.

166 The normalized concentration for the control samples is governed by the standard
167 diffusion equation

168

169
$$\frac{\partial \hat{c}}{\partial t} = D_M \frac{\partial^2 \hat{c}}{\partial x^2} \quad \text{for } 0 \leq t \leq t_f, \quad (3)$$

170

171 where t is time since formation of the hydrogel, x is depth within the agarose hydrogel film, and
172 t_f is the time period that imaging is performed following hydrogel formation. The initial particle
173 concentration is assumed to be a step function $\hat{c}(x,0) = 1 - U(x)$, where the step function is

174 defined by $U(x) = 0$ for $x < 0$ and $U(x) = 1$ for $x \geq 0$. The origin $x = 0$ coincides with the
 175 discontinuity in the initial fluorescence distribution (the position in-between the two layers of the
 176 hydrogel). The final value of $\hat{c}(x, t)$ at time t_f for the control samples is denoted by
 177 $F_C(x) \equiv \hat{c}(x, t = t_f)$.

178 For the samples that have been treated with ultrasound, it is convenient to split the
 179 molecular and acoustic diffusion processes into two parts. The molecular diffusion process is the
 180 same as for the control samples, whereas the additional acoustic diffusion process involves both
 181 a diffusion term associated with the acoustic diffusion coefficient D_A and an acoustic streaming
 182 term associated with the (constant) streaming velocity u . Letting τ be a pseudo time variable,
 183 the additional nanoparticle transport caused by the combination of advection by acoustic
 184 streaming and acoustic diffusion is governed by the advection-diffusion equation

185

186
$$\frac{\partial \hat{c}}{\partial \tau} + u \frac{\partial \hat{c}}{\partial x} = D_A \frac{\partial^2 \hat{c}}{\partial x^2} \quad \text{for } 0 \leq \tau \leq t_A, \quad (4)$$

187

188 where t_A is the time interval over which ultrasound excitation is applied. Equation (4) is solved
 189 numerically with the initial condition $\hat{c}(x, \tau = 0) = F_C(x)$, and the final value of the normalized
 190 concentration obtained from (4) at $\tau = t_A$ is denoted by $F_T(x) \equiv \hat{c}(x, \tau = t_A)$.

191 We note that the acoustic radiation pressure may also potentially influence particle
 192 motion. However, the radiation force is proportional to the particle volume (King, 1934) whereas
 193 the Stokes drag is proportional to particle diameter d . The ratio of the radiation force to the
 194 Stokes drag is proportional to d^2 , indicating that the radiation force becomes negligible for
 195 sufficiently small particle diameters. An analysis (and experimental validation) of the effect of

196 acoustic radiation force versus acoustic streaming on suspended particles was given by Barnkob
 197 et al. (2012), who found that the particle acoustic streaming velocity u_{str} was approximately
 198 equal to the velocity u_{rad} induced by acoustic radiation force for particles of diameter
 199 $d_{crit} \cong 1.4 \mu\text{m}$ in water. The largest particles used in the current experiments have diameter of
 200 100 nm , for which case we would expect the ratio $u_{rad} / u_{str} \cong 0.005$. While the above estimate
 201 was made for particles in water, it should be reasonably valid for nanoparticles that are
 202 sufficiently small to move in the aqueous solution within the pore space of the agarose hydrogel.
 203 As a final confirmation that radiation force is negligible in our experiments, we note that our
 204 measured results for particle velocity u are nearly independent of particle size, which does not fit
 205 the hypothesis that acoustic radiation pressure plays a significant role in the particle motion. By
 206 contrast, the acoustic streaming velocity is independent of particle diameter, so the hypothesis
 207 that particles are advected with the acoustic streaming velocity is in good agreement with our
 208 findings.

209 It is convenient to define dimensionless variables $x' = x/L$ and $t' = t/T$, where the
 210 length scale L is set equal to the measurement depth in the film and the time scale T is set equal
 211 to t_f in the molecular diffusion problem (3) and to the ultrasound exposure time t_A for the
 212 acoustic diffusion problem (4). The diffusion problem is solved on the interval $-2 \leq x' \leq 1$ with
 213 a Dirichlet boundary condition $\hat{c}(-2, t') = 1$ on the left-hand side and the Neumann boundary
 214 condition $\partial\hat{c}/\partial x'(1, t') = 0$ on the right-hand side. The resulting dimensionless problem for
 215 molecular diffusion on the control samples is given by

216

$$217 \frac{\partial \hat{c}}{\partial t'} = D'_M \frac{\partial^2 \hat{c}}{\partial x'^2} \quad \text{for } 0 \leq t' \leq 1 \text{ and } -2 \leq x' \leq 1 \quad (5)$$

218

219 with initial condition $\hat{c}(x', 0) = 1 - U(x')$. The dimensionless problem for acoustic diffusion on
 220 the treated samples is given by

221

$$222 \quad \frac{\partial \hat{c}}{\partial t'} + u' \frac{\partial \hat{c}}{\partial x'} = D'_A \frac{\partial^2 \hat{c}}{\partial x'^2} \quad \text{for } 0 \leq t' \leq 1 \text{ and } -2 \leq x' \leq 1. \quad (6)$$

223

224 The dimensionless acoustic streaming velocity u' and diffusion coefficient D' are defined by

225

$$226 \quad u' = uT / L, \quad D' = DT / L^2. \quad (7)$$

227

228 Numerical solution of (5) and (6) was performed using the Crank-Nicholson method for the
 229 diffusion terms and second-order upwind differencing for the advection term. Computations are
 230 performed with time and spatial steps sizes $\Delta t' = 0.001$ and $\Delta x' = 0.01$.

231 The experimental data for the control and treated normalized concentration fields
 232 measured at imaging time t_f are denoted by $\hat{e}_C(x)$ and $\hat{e}_T(x)$, respectively. For the control
 233 samples, a least-square error measure E_C was defined by the integral over the domain $0 \leq x' \leq 1$
 234 of the square of the difference between the experimental data for the control samples and the
 235 result $F_C(x') \equiv \hat{c}(x', 1)$ of the numerical solution of (5), giving

236

$$237 \quad E_C \equiv \int_0^1 [\hat{e}_C(x') - F_C(x')]^2 dx', \quad (8)$$

238

239 The numerical computation of (5) was repeated for a range of values of D'_M and the error E_C for
240 each case was tabulated. The optimal value of D'_M was selected as that which yields a minimal
241 value of E_C .

242 For the treated samples, a similar least-square error measure was defined by

243

244

$$E_T \equiv \int_0^1 [\hat{e}_T(x') - F_T(x')]^2 dx', \quad (9)$$

245

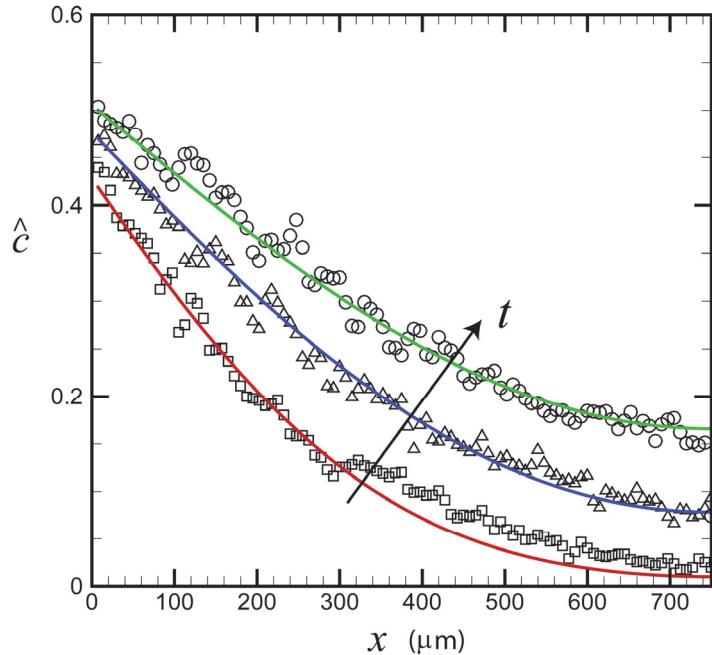
246 where $F_T(x') \equiv \hat{c}(x', 1)$ is the numerical solution of (6). The numerical computation of (6) was
247 repeated for a range of values of both u' and D'_A , and the error E_T for each case was tabulated.
248 Optimal values of u' and D'_A were selected as those which yielded a minimal value of E_T .

249

250 **4. Results and Discussion**

251 A summary of the parameter values for the different experimental runs conducted is
252 given in Table 1. Experiments for particle diffusion were performed with particles of diameter
253 20nm and 100nm. No diffusion was observed in experiments conducted with even larger
254 particles, with 200nm diameter, from which we deduce that the pore size of the hydrogel must be
255 between 100-200nm. In Table 1, the length scale L indicates the depth that imaging is performed
256 into the hydrogel below the interface ($x = 0$) separating the layer initially seeded with
257 fluorescent particles from the unseeded layer. Each experiment is denoted as either molecular
258 (for control samples with no ultrasound exposure) or acoustic (for treated samples with
259 ultrasound exposure). For molecular experiments, the time scale T denotes the time period t_f at
260 which imaging is performed following initial formation of the hydrogel. For the acoustic

261 experiments, the time scale T denotes the length of the time interval t_A that the hydrogel is
262 exposed to ultrasound.


263

264 Table 1. List of experimental cases examined and relevant parameters.

Case	Particle diameter (nm)	Length scale L (μm)	Exposure time T (min)	Acoustic or Molecular
Set 1.1	20	763.805	15	Molecular
Set 1.2	20	763.805	30	Molecular
Set 1.3	20	763.805	45	Molecular
Set 2.1	20	393.75	15	Molecular
Set 2.2	20	393.75	5	Acoustic
Set 3.1	100	393.75	70	Molecular
Set 3.2	100	393.75	10	Acoustic

265

266 A set of experiments (Set 1.1-1.3) was first conducted with 20 nm diameter particles to
267 examine time variation of the molecular diffusion results, in order to confirm that the observed
268 phenomenon is adequately described by the diffusion equation. Imaging results for particle
269 fluorescence were taken at intervals of 15 min, 30 min and 45 min following hydrogel formation.
270 The experimental results for concentration profile are compared in Figure 3 with predictions
271 from numerical solution of (5) starting with a step function initial condition, indicated by lines at
272 the three different times. For this experiment, the best-fit molecular diffusion coefficient is given
273 by $D_M = 54.0 \mu\text{m}^2/\text{s}$, which is used for all three prediction curves in Figure 3 and is observed to
274 provide a good fit to the experimental data.

275

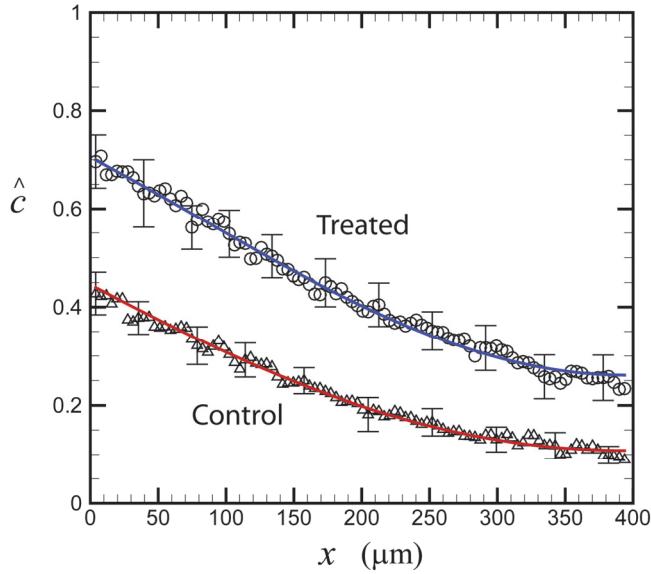
276 Figure 3. Comparison of experimental data and prediction from solution of the diffusion equation
 277 for 20 nm diameter particles with molecular diffusion (no ultrasound) at three different imaging
 278 times. Experimental data are shown at times t_f after hydrogel formation of 15 minutes (square
 279 symbols), 30 minutes (delta symbols), and 45 minutes (circular symbols). Predictions are shown
 280 for a best-fit molecular diffusion coefficient of $D_M = 54 \mu\text{m}^2/\text{s}$, starting from a step function
 281 initial condition, at times 15 min (red line), 30 min (blue line) and 45 min (green line). (Color
 282 online)

283

284 For the experiments with acoustically-enhanced diffusion, three different sets of
 285 experiments were performed using three different hydrogels on different days for each case
 286 examined. One case was also repeated a total of 10 times in order to verify that the uncertainty
 287 does not change significantly with increase in sample size. The first set of experiments (Set 2.1-
 288 2.2) was performed for 20nm diameter particles, and the second set of experiments (Set 3.1-3.2)
 289 was performed for 100nm diameter particles. Best-fit values for the diffusion coefficient and

290 (when applicable) for the acoustic streaming velocity from these experiments are recorded in
291 Table 2, including both dimensionless and dimensional values.

292

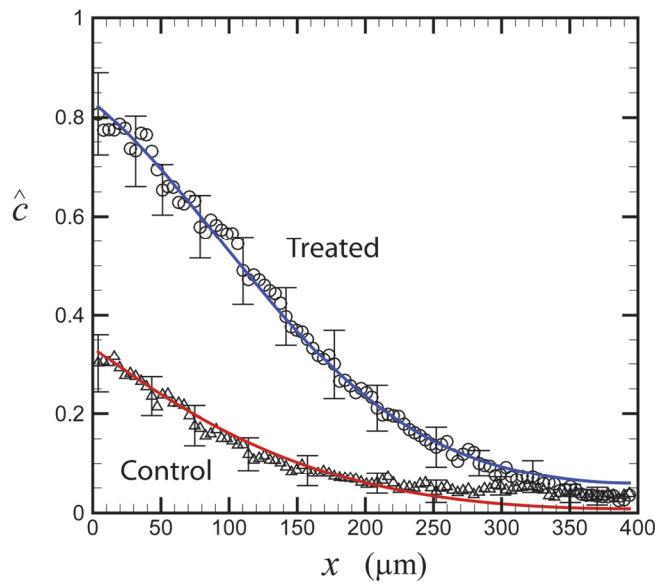

293 Table 2. List of best-fit diffusion coefficient and acoustic streaming velocity for the different
294 experimental cases. Both dimensionless values (primed) and dimensional values are listed.

Case	Streaming Velocity, u' (dimensionless)	Molecular Diffusion Coefficient, D'_M (dimensionless)	Acoustic Diffusion Coefficient, D'_A (dimensionless)	Streaming Velocity, u ($\mu\text{m/s}$)	Molecular Diffusion Coefficient, D_M ($\mu\text{m}^2/\text{s}$)	Acoustic Diffusion Coefficient, D_A ($\mu\text{m}^2/\text{s}$)
Set 1.1	-	0.0865	-	-	54.0	-
Set 1.2	-	0.173	-	-	54.0	-
Set 1.3	-	0.258	-	-	54.0	-
Set 2.1	-	0.232	-	-	40.0	-
Set 2.2	0.12	-	0.134	0.157	-	69.4
Set 3.1	-	0.103	-	-	3.80	-
Set 3.2	0.20	-	0.0342	0.131	-	8.84

295

296 Results for the experiments with 20nm diameter particles are shown in Figure 4. The
297 control data are denoted using deltas and the ultrasound treated data using circles. The numerical
298 prediction of (5) for molecular diffusion in the control data is indicated by a red line, and the
299 best-fit numerical solution of (6) for the treated data is indicated by a blue line. Both curves fit
300 the experimental data very well. The acoustic diffusion coefficient D_A for the 20 nm particles
301 was found to be 1.74 times the molecular diffusion coefficient D_M . The value of molecular
302 diffusion coefficient for Set 2.1 is about 25% lower than the molecular diffusion coefficient

303 obtained from the results in Set 1.1-1.3, which is likely attributable to variation in the hydrogel
304 structure from one experiment to another.



305
306 Figure 4. Comparison of data and prediction for 20 nm particles. Data is shown for the control
307 group (deltas) and the treated group (circles) after 10 minutes ultrasound exposure. The
308 measurement was made 70 minutes after the experiment onset. The lower solid line (red color
309 online) indicates the prediction for a molecular diffusion coefficient $D_M = 40.0 \mu\text{m}^2/\text{s}$, starting
310 from a step function initial condition. The upper solid line (blue color online) represents the
311 prediction for an acoustic diffusion coefficient $D_A = 69.4 \mu\text{m}^2/\text{s}$ and an acoustic streaming
312 velocity of $u = 0.157 \mu\text{m}/\text{s}$, with the control group data as an initial condition. Error bars
313 represent root-mean-square of experimental data.

314
315 A plot showing the control data (deltas, Set 3.1) and the treated data (circles, Set 3.2) for
316 the experiments with 100nm diameter particles is given in Figure 5. The best prediction from
317 numerical solution of (5) for the molecular diffusion is indicated by the red line. The best
318 prediction from numerical solution of (6) for acoustic-enhanced diffusion is indicated by the blue

319 line in Figure 5, which was obtained using the experimental data for the control sample as an
320 initial value. The measured acoustic diffusion coefficient for 100nm diameter particles is 2.3
321 times larger than the molecular diffusion coefficient for the given ultrasound conditions used for
322 this experiment. It is noted that the diffusion coefficients for the 20nm particles are nearly an
323 order of magnitude larger than those for the 100nm diameter particles, whereas the best-fit
324 acoustic streaming velocity differs only by about 20% between the two sets of particles. This
325 difference in acoustic streaming velocity could easily be accounted for by experimental
326 uncertainty or differences in the hydrogel samples that were tested for the two experimental sets.

327

328

329 Figure 5. Comparison of data and prediction for 100 nm particles. Data is shown for the control
330 group (deltas) and the treated group (circles) after 10 minutes ultrasound exposure. The
331 measurement was made 70 minutes after the experiment onset. The lower solid line (red color
332 online) indicates the prediction for a molecular diffusion coefficient $D_M = 3.80 \mu\text{m}^2/\text{s}$, starting
333 from a step function initial condition. The upper solid line (blue color online) represents the
334 prediction for an acoustic diffusion coefficient $D_A = 8.84 \mu\text{m}^2/\text{s}$ and an acoustic streaming

335 velocity of $u = 0.131 \text{ } \mu\text{m/s}$, with the control group data as an initial condition. Error bars
336 represent root-mean-square of experimental data.

337

338

339 The measured values of acoustic streaming velocity of the particles can be compared to
340 the theoretical expression

341
$$U_0 = \frac{\alpha_F \delta_V^2 I_{SATA}}{\mu c}. \quad (10)$$

342 obtained by Green et al. (2016) via a scaling estimate. Here, α_F is the acoustic attenuation
343 coefficient, δ_V is a characteristic length scale for viscous dissipation of the fluid flow, I_{SATA} is
344 the spatial-average and temporal-average acoustic intensity, μ is the fluid viscosity, and c is the
345 speed of sound. The attenuation coefficient for agarose hydrogels varies with agar dosage and
346 ultrasound frequency. A study using an agarose gel similar to that examined in the current study,
347 and at the same ultrasound frequency $f = 1 \text{ MHz}$, was reported by Menikou and Damianou
348 (2017) for a hydrogel used as a muscle simulant. This study gave the acoustic attenuation
349 coefficient and speed of sound in the hydrogel as $\alpha_F \approx 0.05 \text{ Np/m}$ and $c = 1529 \text{ m/s}$. This
350 attenuation coefficient is about 2.5 times that of pure water. The viscosity of hydrogels also
351 varies widely, with cited values ranging from $0.1\text{-}1000 \text{ Pa}\cdot\text{s}$; however, a typical value is $\mu \approx 10$
352 $\text{Pa}\cdot\text{s}$ (Paquet-Mercier et al., 2016). The viscous dissipation length scale δ_V is assumed to be on
353 the order of the hydrogel film thickness, about $\delta_V \approx 1 \text{ mm}$. Substituting these values into (10)
354 gives an estimate for the order of magnitude of the acoustic streaming velocity as
355 $U_0 = \mathcal{O}(0.1 \mu\text{m})$, which is consistent with the measured values shown in Table 2.

356 The stochastic model of Marshall (2016) assumes that the nanoparticles move via a series
357 of discrete time steps Δt with an oscillation velocity amplitude A . At each time step, there is a
358 probability α that retention will occur and the particle will not move during that time step.
359 Marshall (2016) showed that in the limit of many time steps, the stochastic process reduces to the
360 solution of a diffusion equation, where the effective acoustic diffusion coefficient D_A is related
361 to the parameters of the stochastic model by

362

363
$$D_A = \frac{\alpha}{4} A^2 \Delta t . \quad (11)$$

364

365 The time step Δt in (11) represents the time interval at which retention decisions occur within
366 the porous medium. Setting Δt equal to the time interval required for the particle to move a
367 distance of one pore size a of the porous matrix gives $\Delta t = O(a / A)$. Substituting this estimate
368 into (11) yields the acoustic diffusion coefficient as $D_A = O(\alpha A a)$. The particle velocity
369 amplitude A in a pure fluid is related to the acoustic intensity amplitude I_0 by $A = (2I_0 / \rho c)^{1/2}$.
370 A pore size for the current study is estimated as $a \approx 200$ nm, based on our observation that
371 200nm diameter particles did not diffusion in the hydrogel. Using the above estimate for A gives
372 $A \approx 0.17$ m/s for our experiments, which results in $D_A = O(\alpha \times 10^4 \mu\text{m}^2 / \text{s})$. A retention
373 probability α of about 0.1-1% gives values for acoustic diffusion coefficient in the range of the
374 observed values. It is likely that the particle velocity amplitude A would be lower in a porous
375 medium due to the effect of the pore walls on impeding particle motion. As noted in the review
376 by Wham et al. (1996) for the problem of a spherical particle in a tube, the presence of the

377 confining walls of the tube can increase drag on the particle by up to 1-2 orders of magnitude
378 depending on the ratio of the particle radius to the tube radius.

379

380 **5. Conclusions**

381 An experimental study was conducted to measure the effect of ultrasound excitation on
382 diffusion of nanoparticles in a hydrogel. The experiments were conducted with 20nm and 100nm
383 particles in an agarose hydrogel film of about 1mm thick, using a 1 MHz ultrasound source.
384 Measurements of the molecular diffusion coefficient were obtained with no acoustic excitation,
385 and then measurements were conducted using the same hydrogel of acoustic streaming velocity
386 and acoustic diffusion coefficient in the presence of ultrasound excitation. The diffusion
387 coefficients and streaming velocity were estimated by selecting a best fit between experimental
388 measurements of the film fluorescence intensity profile and numerical predictions from solution
389 of the advection-diffusion equation. The order of magnitude of the measured values of the
390 streaming velocity and acoustic diffusion coefficient were found to compare reasonably well
391 with theoretical estimates using parameter values typical of the agarose hydrogel.

392 The current detailed experimental study confirms the hypothesis proposed by Ma et al.
393 (2015) that ultrasonic excitation can significantly enhance nanoparticle diffusion in a hydrogel.
394 The mechanism for this enhancement proposed by Marshall (2016) is also in reasonable
395 agreement with our measured results. This finding has potential significance for injecting
396 material into biofilms, such as injection of lipid shells containing antibiotics for biofilm
397 mitigation or injection of nutrients to promote biofilm growth. The observation that ultrasound
398 emission enhances nanoparticle diffusion is also relevant to issues involving nanoparticle
399 transport in tissues, for which ultrasound excitation of drug-encapsulated liposomes and

400 nanoparticles are sometimes used for targeted drug delivery (Tiukinhoy-Laing et al., 2006; Paul
401 et al., 2014; Schroeder et al., 2009; Huang, 2008; Wu et al., 2006).

402

403

404 **Acknowledgements**

405 The authors wish to thank Matthew Wargo for useful discussions on this research. This work was
406 supported by NASA under cooperative agreement number NNX16AQ96A.

407

408

409

References

410 Barnkob, R., Augustsson, P., Laurell, T., and Bruus, H., Acoustic radiation- and streaming-
411 induced microparticle velocities determined by microparticle image velocimetry in an ultrasound
412 symmetry plane. *Physical Review E* **86**, 056307 (2012).

413

414 Bevilacqua, A.C., Galeão, N.R., and Costa, F.P., A new analytical formulation of retention
415 effects on particle diffusion processes. *Anais da Brasileira de Ciências (Annals of the Brazilian
416 Academy of Sciences)* **83**(4), 1443-1464 (2011).

417

418 Beissner, K., Radiation force and force balances. In *Ultrasonic Exposimetry*, Lewin, P.A. &
419 Ziskin, M.C. (Eds.), CRC Press Inc., Boca Raton, pp. 127-142 (1993).

420

421 Buck, K.K.S., Dungan, S.R., and Phillips, R.J., The effect of solute concentration on hindered
422 gradient diffusion in polymeric gels. *Journal of Fluid Mechanics* **396**, 287-317 (1999).

423

424 Cheow, W.S., Chang, M.W., and Hadinoto, K., The roles of lipid in anti-biofilm efficacy of
425 lipid-polymer hybrid nanoparticles encapsulating antibiotics. *Colloids and Surfaces A: Physicochemical and Engineering Aspects* **389**, 158-165 (2011).

427

428 Fatin-Rouge, N., Starchev, K., and Buffle, J., Size effects on diffusion processes within agarose
429 gels. *Biophysical Journal* **86**, 2710–2719 (2004).

430

431 Forier, K., Messiaen, A.S., Raemdonck, K., De Smedt, S., Demeester, J., Coenye, T., and
432 Braeckmans, K., Probing the size limit for nanomedicine penetration into *Burkholderia*
433 *multivorans* and *Pseudomonas aeruginosa* biofilms. *Journal of Controlled Release* **195**, 21-28
434 (2014a).

435

436 Forier, K., Raemdonck, K., De Smedt, S.C., Demeester, J., ye, T., and Braeckmans, K., Lipid
437 and polymer nanoparticles for drug delivery to bacterial biofilms. *Journal of Controlled Release*
438 **190**, 607-623 (2014b).

439

440 Green, A.M., Marshall, J.S., Ma, D., and Wu, J.R., Acoustic streaming and thermal instability of
441 flow generated by ultrasound in a cylindrical container. *Physics of Fluids* **28**, 104105 (2016).

442

443 Huang, S.L., Liposomes in ultrasonic drug and gene delivery. *Advanced Drug Delivery Reviews*
444 **60**, 1167-1176 (2008).

445

446 Jung, Y.-G., Choi, J., Kim, S.-K., Lee, J.-H., and Kwon, S., Embedded biofilms, a new biofilm
447 model based on the embedded growth of bacteria. *Applied and Environmental Microbiology*
448 **81**(1), 211-219 (2015).

449

450 Kätelhön, E., and Compton, R.G., Understanding nano-impacts: impact times and near-wall
451 hindered diffusion. *Chemical Science* **5**, 4592-4598 (2014).

452

453 King, L.V., On the acoustic radiation pressure of spheres. *Proceedings of the Royal Society of*
454 *London A* **147**(861), 212-240 (1934).

455

456 Lewin, P.A., and Ziskin, M.C., An overview of ultrasonic exposimetry and its clinical relevance.

457 In *Ultrasonic Exposimetry*, M.C. Ziskin and P.A. Lewin (eds.), CRC Press, p. 50 (1992).

458

459 Li, X., Yeh, Y.C., Giri, K., Mout, R., Landis, R.F., Prakash, Y.S., and Rotello, V.M., Control of
460 nanoparticle penetration into biofilms through surface design. *Chemical Communications* **51**,
461 282-285 (2015).

462

463 Ma, D., Green, A.M., Willsey, G.G., Marshall, J.S., Wargo, M.J., and Wu, J.R., Effects of
464 acoustic streaming from moderate-intensity pulsed ultrasound for enhancing biofilm mitigation
465 effectiveness of drug-loaded liposomes. *Journal of the Acoustical Society of America* **138**(2),
466 1043-1051 (2015).

467

468 Marshall, J.S., A model of ultrasound-enhanced diffusion in a biofilm. *Journal of the Acoustical
469 Society of America* **139**(6), EL228-EL233 (2016).

470

471 Menikou, G., and Damianou, C., Acoustic and thermal characterization of agar based phantoms
472 used for evaluating focused ultrasound exposures. *Journal of Therapeutic Ultrasound* **5**, 14
473 (2017). DOI 10.1186/s40349-017-0093-z

474

475 Moudjed, B., Botton, V., Henry, D., Ben Hadid, H., and Garandet, J.-P., Scaling and dimensional
476 analysis of acoustic streaming jets. *Physics of Fluids* **26**, 093602 (2014).

477

478 Nyborg, W.L., Acoustic streaming. In *Physical Acoustics*, Mason, W.P. Ed., IIB. Academic
479 Press, New York, pp. 265-331 (1965).

480

481 Paquet-Mercier, F., Gashti, P., Bellavance, M.J., Taghavi, S.M., and Greener, J., Through thick
482 and thin: a microfluidic approach for continuous measurements of biofilm viscosity and the
483 effect of ionic strength. *Lab on a Chip* **16**(24), 4710-4717 (2016).

484

485 Paul, S., Nahire, R., Mallik, S., and Sarkar, K., Encapsulated microbubbles and achogenic
486 liposomes for contrast ultrasound imaging and targeted drug delivery. *Computational Mechanics*
487 **53**, 413-436 (2014).

488

489 Rowley JA, Madlambayan G, Mooney DJ . Agarose hydrogels as synthetic extracellular matrix
490 materials. *Biomaterials* **20**(1), 45-53 (1999).

491

492 Schroeder, A., Kost, J., and Barenholz, Y., Ultrasound, liposomes, and drug delivery: principles
493 for using ultrasound to control the release of drugs from liposomes. *Chemistry and Physics of*
494 *Lipids* **162**, 1-16 (2009).

495

496 Smidsrød, O., and Skjåk-Brik, G., Agarose as immobilization matrix for cells. *Trends in*
497 *Biotechnology* **8**, 71-78 (1990).

498

499 Stewart, P.S., Diffusion in biofilms. *Journal of Bacteriology* **185**(5), 1485–1491 (2003).

500

501 Tiukinhoy-Laing, S.D., Huang, S., Klegerman, M., Holland, C.K., McPherson, D.D.,
502 Ultrasound-facilitated thrombolysis using tissue-plasminogen activator-loaded echogenic
503 liposomes. *Thrombosis Research* **119**(7), 777-784 (2006).

504

505 Vogler, T., and Chrysikopoulos, C.V., Experimental investigation of acoustically enhanced
506 solute transport in porous media. *Geophysical Research Letters* **29**(15), 1710 (2002).

507

508 Wham, R.M., Basaran, O.A., and Byers, C.H., Wall effects on flow past solid spheres at finite
509 Reynolds number. *Industrial & Engineering Chemistry Research* **35**(3), 864-874 (1996).

510

511 Wu, J., Chen, D., Pepe, J., Himberg, B., and Mercedes, R., Application of liposomes to
512 sonoporation. *Ultrasound in Medicine and Biology* **32**(3), 429–437 (2006).

513

514 Wu, J. and Du, G., Temperature elevation in tissues generated by finite-amplitude bursts of
515 ultrasound. *Journal of the Acoustical Society of America* **88**(3), 1562-1577 (1990).

516

517 Zhang, Z., Nadezhina, E., and Wilkinson, K.J., Diffusion in a biofilm of *Streptococcus mutans*.
518 *Antimicrobial Agents and Chemotherapy* **55**(3), 1075–1081 (2011).

519

520

521

523

Figure Captions

524 Figure 1. Experimental set-up for measuring ultrasound-enhanced diffusion of nanoparticles.

525

526 Figure 2. Plots showing an example of the fluorescent imaging of the hydrogel. (a) Image of
527 fluorescent gel showing two layers and imaging plane. (b) Example showing fluorescence
528 intensity variation with distance on the imaging plane. (Color online)

529

530 Figure 3. Comparison of data and prediction for 20 nm particles with molecular diffusion (no
531 ultrasound) at three different imaging times: 15 minutes (squares), 30 minutes (deltas), and 45
532 minutes (circles). Predictions are shown for a best-fit molecular diffusion coefficient of
533 $D_M = 54 \text{ } \mu\text{m}^2/\text{s}$, starting from a step function initial condition, at times 15 min (red line), 30 min
534 (blue line) and 45 min (green line). (Color online)

535

536 Figure 4. Comparison of data and prediction for 20 nm particles. Data is shown for the control
537 group (deltas) and the treated group (circles) after 10 minutes ultrasound exposure. The
538 measurement was made 70 minutes after the experiment onset. The lower solid line (red color
539 online) indicates the prediction for a molecular diffusion coefficient $D_M = 40.0 \text{ } \mu\text{m}^2/\text{s}$, starting
540 from a step function initial condition. The upper solid line (blue color online) represents the
541 prediction for an acoustic diffusion coefficient $D_A = 69.4 \text{ } \mu\text{m}^2/\text{s}$ and an acoustic streaming
542 velocity of $u = 0.157 \text{ } \mu\text{m/s}$, with the control group data as an initial condition. Error bars
543 represent root-mean-square of experimental data.

544

545 Figure 5. Comparison of data and prediction for 100 nm particles. Data is shown for the control
546 group (deltas) and the treated group (circles) after 10 minutes ultrasound exposure. The
547 measurement was made 70 minutes after the experiment onset. The lower solid line (red color
548 online) indicates the prediction for a molecular diffusion coefficient $D_M = 3.80 \mu\text{m}^2/\text{s}$, starting
549 from a step function initial condition. The upper solid line (blue color online) represents the
550 prediction for an acoustic diffusion coefficient $D_A = 8.84 \mu\text{m}^2/\text{s}$ and an acoustic streaming
551 velocity of $u = 0.131 \mu\text{m}/\text{s}$, with the control group data as an initial condition. Error bars
552 represent root-mean-square of experimental data.

553

554

555

556

557

558

559