
Polynomial Pass Lower Bounds for Graph Streaming
Algorithms∗

Sepehr Assadi
†

Princeton University

Princeton, NJ, USA

Yu Chen
‡

University of Pennsylvania

Philadelphia, PA, USA

Sanjeev Khanna
‡

University of Pennsylvania

Philadelphia, PA, USA

ABSTRACT
We present new lower bounds that show that a polynomial number

of passes are necessary for solving some fundamental graph prob-

lems in the streaming model of computation. For instance, we show

that any streaming algorithm that finds a weighted minimum s-t

cut in an n-vertex undirected graph requires n2−o(1) space unless it

makes nΩ(1) passes over the stream.

To prove our lower bounds, we introduce and analyze a new

four-player communication problem that we refer to as the hidden-
pointer chasing problem. This is a problem in spirit of the standard

pointer chasing problem with the key difference that the pointers

in this problem are hidden to players and finding each one of them

requires solving another communication problem, namely the set

intersection problem. Our lower bounds for graph problems are then

obtained by reductions from the hidden-pointer chasing problem.

Our hidden-pointer chasing problem appears flexible enough to

find other applications and is therefore interesting in its own right.

To showcase this, we further present an interesting application of

this problem beyond streaming algorithms. Using a reduction from

hidden-pointer chasing, we prove that any algorithm for submodu-

lar function minimization needs to make n2−o(1) value queries to
the function unless it has a polynomial degree of adaptivity.

CCS CONCEPTS
• Theory of computation → Streaming, sublinear and near
linear time algorithms; Graph algorithms analysis; Lower bounds
and information complexity.

KEYWORDS
Graph streaming, Lower bounds, Communication complexity

∗
A full version of the paper including all the missing proofs is available on arXiv [10].

†
Supported in part by the Simons Collaboration on Algorithms and Geometry. Majority

of work done while the author was a graduate student at University of Pennsylvania

and was supported in part by the National Science Foundation grant CCF-1617851.

Email: sassadi@princeton.edu.
‡
Supported in part by the National Science Foundation grants CCF-1617851 and CCF-

1763514. Email: {chenyu2,sanjeev}@cis.upenn.edu.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

STOC ’19, June 23–26, 2019, Phoenix, AZ, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-6705-9/19/06. . . $15.00

https://doi.org/10.1145/3313276.3316361

ACM Reference Format:
Sepehr Assadi, Yu Chen, and Sanjeev Khanna. 2019. Polynomial Pass Lower

Bounds for Graph Streaming Algorithms. In Proceedings of the 51st Annual
ACM SIGACT Symposium on the Theory of Computing (STOC ’19), June
23–26, 2019, Phoenix, AZ, USA. ACM, New York, NY, USA, 12 pages. https:

//doi.org/10.1145/3313276.3316361

1 INTRODUCTION
Graph streaming algorithms are algorithms that solve computa-

tional problems on graphs, say, finding a maximummatching, when

the input is presented as a sequence of edges, under the usual con-

straints of the streaming model, namely sequential access to the

stream and limitedmemory. Formally, in the graph streamingmodel,

the edges of a graph G(V ,E) are presented one by one in an arbi-

trary order. The algorithm can make one or a limited number of

sequential passes over this stream, while using a small memory to

process the graph, preferablyO(n · polylog(n))memory, referred to

as semi-streaming restriction [58] (n is the number of vertices inG).
It turns out allowing for multiple passes over the stream greatly

enhances the capability of graph streaming algorithms. A striking

example is the (global) minimum cut problem: While Ω(n2) space is
needed for computing an exact minimum cut in a single pass [113],

a recent result of [104] implies that a minimum cut of an undirected

unweighted graph can be computed in Õ(n) space in only two

passes over the stream
1
. Several other examples of this phenome-

non include algorithms for triangle counting [29, 87], approximate

matching [82, 93], single-source shortest path [28, 59], maximal

independent set [11, 61], and minimum dominating set [13, 70].

Multi-pass streaming algorithms have been gaining increasing

attention in recent years and for many well-studied graph problems,

space efficient algorithms have been designed that use at most a log-

arithmic number of passes (see, e.g. [3, 4, 28, 29, 41, 52, 58, 66, 70, 73,

80, 82–84, 93, 95, 106]). But for many other problems, such results

have proved elusive. Examples include shortest path and diameter

computation [89], random walks [90], and directed reachability

and maximum flow [94] (see also [91]). At the same time, known

techniques for proving streaming lower bounds are unable to prove

essentially any bounds beyond logarithmic number of passes (see

Section 1.1 for an exception to this rule and the inherent limitation

behind it). For example, the best known lower bounds for several

key problems such as shortest path, directed reachability, and per-

fect matchings, only imply Ω(
logn

log logn) passes for semi-streaming

algorithms [59, 66], while none of these problems so far admit an

algorithm with n2−Ω(1) space and no(1) passes.

1
The result of [104] is not stated as a streaming algorithm. However, the algorithm

in [104] combined with the known graph streaming algorithms for cut sparsifiers (see,

e.g. [94]) immediately imply the claimed result.

265

https://doi.org/10.1145/3313276.3316361
https://doi.org/10.1145/3313276.3316361
https://doi.org/10.1145/3313276.3316361

STOC ’19, June 23–26, 2019, Phoenix, AZ, USA Sepehr Assadi, Yu Chen, and Sanjeev Khanna

Our goal in this paper is to remedy this situation by presenting
new tools for proving stronger multi-pass graph streaming
lower bounds. To better understand the challenges along the way,
we first briefly revisit the current state-of-affairs.

1.1 Landscape of Graph Streaming Lower
Bounds

A vast body of work in graph streaming lower bounds concerns al-

gorithms that make only one or a few passes over the stream. Exam-

ples of single-pass lower bounds include the ones for diameter [59],

approximate matchings [14, 15, 62, 82], exact minimum/maximum

cuts [113], and maximal independent sets [11, 46]. Examples of

multi-pass lower bounds include the ones for BFS trees [59], per-

fect matchings [66], shortest path [66], and minimum vertex cover

and dominating set [70]. These lower bounds are almost always

obtained by considering communication complexity of the problem

with limited number of rounds of communication which gives a

lower bound on the space complexity of streaming algorithms with

proportional number of passes to the limits on rounds of commu-

nication (see e.g. [6, 65]). The communication lower bounds are

then typically proved via reductions from (variants of) the pointer
chasing problem [39, 100, 101] for multi-pass lower bounds and

the indexing problem [2, 85] and boolean hidden (hyper-)matching
problem [60, 108] for single-pass lower bounds.

In the pointer chasing problem, Alice and Bob are given func-

tions f ,д : [n] → [n] and the goal is to compute f (д(· · · f (д(0))))
for k iterations. Computing this function in less than k rounds re-

quires Ω̃(n/k) communication [112] (see also [51, 100–102]). The

reductions from pointer chasing to graph streaming lower bounds

are based on using vertices of the graph to encode [n] and each edge
to encode a pointer [59, 66]. Directly using pointer chasing does

not imply lower bounds stronger than Ω(n) and hence variants of

pointer chasing with multiple pointers such as multi-valued pointer

chasing [59, 77] and set pointer chasing [66], were considered. Us-

ing multiple pointers however has the undesired side effect that the

lower bound deteriorates exponentially with number of rounds. As

such, these lower bounds do not go beyond O(logn) passes even
for algorithms with O(n) space.

There are however a number of results that prove lower bounds

for a very large number of passes (even close ton). Examples include

lower bounds for approximating clique and independent set [69],

approximating dominating set [9], computing girth [59], estimating

the number of triangles [25, 29, 47, 79], and finding minimum vertex

cover or coloring [1]. These results are all proven by considering the

communication complexity of the problem with no limits on rounds
of communication. Such bounds then imply lower bounds on the

product of space and number of passes of streaming algorithms

(see, e.g. [6]). The communication lower bounds themselves are

proven by reductions from a handful of communication problems,

mainly the set disjointness problem [16, 24, 81, 103].

This approach suffers from two main drawbacks. Firstly, these

lower bounds only exhibit space bounds that scale with the re-

ciprocal of the number of passes and are hence unable to capture

more nuanced space/pass trade-offs. More importantly, there is an

inherit limitation to this approach since the computational model

considered here is much stronger than the streaming model. This

means that many problems of interest admit efficient communica-

tion protocols in this model and hence one simply cannot prove

interesting lower bounds for them. An illustrating example is the

directed s-t reachability problem which admits anO(n) communica-

tion protocol, ruling out the possibility of essentially any non-trivial

lower bound using this approach (even “harder” problems such as

maximum matching admit non-trivial protocols with Õ(n3/2) com-

munication [50, 74]).

1.2 Our Contributions
We introduce and analyze a new communication problem simi-

lar in spirit to standard pointer chasing, which we refer to as the

hidden-pointer chasing (HPC) problem. What differentiate HPC

from previous variants of pointer chasing is that the pointers are

“hidden” from players and finding each one of them requires solv-

ing another communication problem, namely the set intersection
problem, in which the goal is to find the unique element in the

intersection of players input. We limit ourselves to the following

informal definition of HPC here and postpone the formal definition

to Section 3.1. There are four players in HPC paired into groups of

size two each. Each pair of players inside a group shares n instances

of the set intersection problem on n elements. The intersecting

element in each instance of each group “points” to an instance in

the other group. The goal is to start from a fixed instance and follow

these pointers for a fixed number of steps. We prove the following

communication complexity lower bound for HPC.

Result 1. Any r -round protocol that with constant proba-
bility finds the (r + 1)-th pointer in the hidden-pointer chasing
problem requires Ω(n2/r2) communication.

Result 1 implies a new approach towards proving graph stream-

ing lower bounds that sits squarely in the middle of previous meth-

ods: HPC is a problem that admits an “efficient” protocol when

there is no limit on rounds of communication and yet is “hard” with

even a polynomial limitation on number of rounds. We use this

result to prove strong pass lower bounds for some fundamental

problems in graph streams via reductions from HPC.

Cut and Flow Problems. One of the main applications of Result 1

is the following result.

Result 2. Any p-pass streaming algorithm that with a constant
probability outputs the minimum s-t cut value in a weighted graph
(undirected or directed) requires Ω(n2/p5) space.

Prior to our work, the best lower bound known for this problem

was an n1+Ω(1/p) space lower bound for p-pass algorithms [66]

(for weighted undirected graphs and unweighted directed graphs).

Result 2 significantly improves upon this. In particular, it implies

that Ω̃(n1/5) passes are necessary for semi-streaming algorithms,

exponentially improving upon the Ω(
logn

log logn) lower bound of [66].

At the same time, Result 2 also shows that any streaming algorithm

for this problem with a small number of passes, namely polylog(n)

passes, requires Ω̃(n2) space, almost the same space as the trivial

single-pass algorithm that stores the input graph entirely.

266

Polynomial Pass Lower Bounds for Graph Streaming Algorithms STOC ’19, June 23–26, 2019, Phoenix, AZ, USA

Our Result 2 should be contrasted with the results of [104] that

imply an Õ(n5/3) space algorithm for unweighted minimum s-t cut
on undirected graphs in only two passes (see Footnote 1).

By max-flow min-cut theorem, Result 2 also implies identical

bounds for computing the value of maximum s-t flow in capacitated

graphs, making progress on a question raised in [94] regarding the

streaming complexity of maximum flow in directed graphs.

Lexicographically-First Maximal Independent Set. A maximal in-

dependent set (MIS) returned by the sequential greedy algorithm

that visits the vertices of the graph in their lexicographical order

is called the lexicographically-first MIS. We prove the following

result for this problem.

Result 3. Any p-pass streaming algorithm that with constant
probability finds a lexicographically first maximal independent set of
in a graph requires Ω(n2/p5) space.

The lexicographically-first MIS has a rich history in computer

science and in particular parallel algorithms [5, 30, 44, 92]. How-

ever, even though multiple variants of the independent set problem

have been studied in the streaming model [11, 45, 46, 61, 67–69], we

are not aware of any work on this particular problem (we remark

that standard MIS problem admits an Õ(n) space O(log logn) pass
algorithm [61]). Besides being a fundamental problem in its own

right, what makes this problem appealing for us is that it nicely

illustrates the power of our techniques compared to previous ap-

proaches. The lexicographically-first MIS can be computed with

O(n) communication in the two-player communication model (or

for any constant number of players) with no restriction on number

of rounds by a direct simulation of the sequential algorithm. Hence,

this problem perfectly fits the class of problems for which previous

techniques cannot prove lower bounds beyond logarithmic passes.

To our knowledge, this is the first super-logarithmic pass lower

bound for any graph problem that admits an efficient protocol with

no restriction on number of rounds.

Beyond Graph Streams: An Application to Submodular Minimization.
We also use Result 1 to prove query/adaptivity tradeoffs for the

submodular function minimization (SFM) problem. In SFM, we have

a submodular function f : 2
[n] → [M] and our goal is to find a

set S∗ ⊆ [n] that minimizes f (S∗) by making value queries to f .
SFM has been studied extensively over the years [42, 48, 63, 75,

76, 88, 107], culminating in the currently best algorithms of [88]

and [42] with Õ(n2) and Õ(n ·M3) queries, respectively. The best

lower bound for SFM is Ω(n) queries [71, 72] and determining

the query complexity of this problem remains a fascinating open

question [72, 104].

Another question in this area that has received a significant

attention in recent years is to understand the query/adaptivity

tradeoffs in submodular optimization [17–22, 54–57]. An algorithm

for SFM is called k-adaptive iff it makes at most k rounds of adaptive

queries, where the queries in each round are performed in parallel.

We prove the following result using a reduction from HPC.

Result 4. For any constant δ ∈ (0, 1), there exists an ε := ε(δ) in
(0, 1) such that any algorithm for submodular function minimization
on a universe of size N with query complexity N 2−δ requires at least
N ε rounds of adaptive queries to succeed with constant probability.

The only other adaptivity lower bound for SFM that we are

aware of is an exponential lower bound on query complexity of

non-adaptive algorithms (even for approximation) [21]. However,

once we allow even two rounds of adaptivity, no lower bounds

better than Ω(n) queries were known.

1.3 Our Techniques
Our reductions in this paper take a different path than previous

pointer chasing based reductions that used edges of the graph to

directly encode pointers. In particular, our hidden-pointer chasing

problem allows us encode a single pointer among Θ(n) edges and
thus work with graphs with density Ω(n2) and still keep a polyno-

mial dependence on number of rounds in the communication lower

bound. This results in space lower bounds of the form n2/pO (1)
for

p-pass streaming algorithms.

The main technical contribution of our paper is the communi-

cation complexity lower bound for HPC in Result 1. This result is

proved by combining inductive arguments for round/communication

tradeoffs (see, e.g. [100, 112]) with direct-sum arguments for infor-

mation complexity (see, e.g. [24, 26, 31, 36]) to account for the role

of set intersection inside HPC. To make this argument work, we

also need to prove a stronger lower bound for set intersection than

currently known results (see, e.g. [37]). In particular, we prove that

any protocol that can even slightly reduce the “uncertainty” about

the intersecting element must have a “large” communication and

information complexity.

Our new lower bound for set intersection is also proved using

tools from information complexity to reduce this problem to a prim-

itive problem, namely set intersection itself on a universe of size

two. This requires a novel argument to handle the protocols for

set intersection that reduce the uncertainty about the intersecting

element without necessarily making much “progress” on finding

this element. Another challenge is that unlike typical direct-sum re-

sults in this context, say reducing disjointness to the AND problem;

see, e.g. [24, 32, 34, 109], set intersection cannot be decomposed

into independent instances of the primitive problem (this is similar-

in-spirit to challenges in analyzing information complexity of set

disjointness on intersecting distributions [43, 78] as opposed to

(more standard) non-intersecting ones). Finally, we prove a lower

bound for the primitive problem using the product structure of

Hellinger distance for communication protocols (see, e.g. [24, 109]).

1.4 Further Related Work
Understanding space/pass tradeoffs for streaming algorithms dates

all the way back to the early results on median-finding [98] more

than four decades ago and has remained a focus of attention since;

we refer the reader to [38, 39, 64, 65] and references therein.

A closely related line of work to graph streaming algorithms

that have received a significant attention in recent years is on

streaming algorithms for submodular optimization and in particular

set cover and maximum coverage [9, 12, 13, 27, 40, 41, 49, 53, 70, 86,

96, 105]. Particularly relevant to our work, [41] uses a reduction

from the multi-party tree pointer chasing problem [39] to prove an

Ω(
logn

log logn) pass lower bound for approximating set cover withm

sets and n elements using O(n · poly {logn, logm}) space (this can

also be interpreted as a lower bound for the edge-cover problem

267

STOC ’19, June 23–26, 2019, Phoenix, AZ, USA Sepehr Assadi, Yu Chen, and Sanjeev Khanna

on hyper-graphs with n vertices andm hyper-edges in the graph

streaming model). For the set cover problem, a lower bound of

Ω(m ·n1/α

p) space for p-pass streaming α-approximation algorithms

is established in [9] using a reduction from the set disjointness

problem (this can also be interpreted as a lower bound for the

dominating set problem on graphs with n =m vertices in the graph

streaming model).

Similar-in-spirit round/communication tradeoffs for distributed

computation of many graph and related problems have also been

studied in the literature [7, 8, 12, 33, 35, 50]. For example, [35]

proves an Ω(
logn

log logn) round lower bound for protocols with low

communication that can approximate matchings in a communica-

tion model in which players correspond to vertices of an n-vertex

graph. Similarly, [12] proves an Ω(
logn

log logn) round lower bound for

constrained submodular maximization in a communication model

where n elements of a universe are partitioned between the players.

Adaptivity lower bounds for submodular optimization [17–22,

54–57] is another topic related to ourwork. For example, [22] proves

that Ω(
logn

log logn) rounds of adaptivity are necessary for constrained

submodular maximization with polynomial query complexity. Ad-

ditionally, [21] proved that no non-adaptive algorithm can obtain a

better than 1/2 approximation to submodular minimization with

polynomially many queries. Finally, if one goes (way) beyond sub-

modular optimization and considers minimizing a non-smooth

convex function, then an Ω̃(n1/3) lower bound on rounds of adap-

tivity is known for any algorithm that makes polynomially many

queries [23, 99].

Organization. The rest of the paper is organized as follows. We set

up our notation in Section 2. Section 3 contains a detailed tech-

nical overview of our approach, including the definition of the

hidden-pointer chasing (HPC) problem (Section 3.1), a sketch of

the reduction from HPC for proving Result 2 (Section 3.1), and the

proof sketch of the communication lower bounds for HPC (Sec-

tion 3.3) and (a new variant of) set intersection (Section 3.4). Finally,

Section 4, presents the proof of Result 1 which is the main technical

result of this paper. Due to space limitations, we only present the

high level overview of the proofs here and postpone most of the

formal arguments to the full version of the paper [10].

2 PRELIMINARIES
Notation. For any integer a, we define [a] := {1, . . . ,a}. For a

tuple (X1, . . . ,Xn) and integer i ∈ [n], X<i
:= (X1, . . . ,Xi−1) and

X−i := (X1, . . . ,Xi−1,Xi+1, . . . ,Xn). We use capital ‘san-serif’ font

to denote the random variables, e.g. X. US denotes the uniform

distribution over S .
For random variables X,Y, H(X) denotes the Shannon entropy

of X and I(X ;Y) denotes the mutual information. For distributions

µ,ν ,D(µ | | ν) denotes the KL-divergence, ∆TV(µ,ν) denotes the total
variation distance, and h(µ,ν) denotes the Hellinger distance. Nec-
essary background on information theory, including the definitions

and basic tools, is provided in the full version of the paper [10]

Communication Complexity and Information Complexity. We con-

sider the standard communication model of Yao [110]. We use π
to denote the protocol used by players and use CC(π) to denote

the communication cost of π defined as the worst-case bit-length

of the messages communicated between the players. We further

use internal information cost [26] for protocols that measures the

average amount of information each player learns about the input

of the other in the protocol, defined formally as follows. Consider

an input distribution D and a protocol π . Let (X,Y) ∼ D and Π
denote the random variables for the inputs and the transcript of the

protocol (including the public randomness). The information cost of
π with respect to D is ICD (π) := ID (Π ;X | Y) + ID (Π ;Y | X). As
one bit of communication can only reveal one bit of information,

information cost of a protocol lower bounds its communication

cost (see, e.g. [36] or the full version of the paper [10]).

We provide further relevant background and definitions on com-

munication complexity and information complexity in the full ver-

sion of the paper [10].

Set Intersection Problem. We use the set intersection problem in

construction of our HPC problem. Set intersection (Set-Int) is a
two-player communication problem in which Alice and Bob are

given sets A and B from [n], respectively, with the promise that

there exists a unique element t such that {t} = A ∩ B. The goal is
for players to find the target element t . An Ω(n) communication

lower bound for Set-Int follows directly from lower bounds for set

disjointness [24, 32, 34, 81, 103]; see, e.g. [37] (this lower bound by

itself is however not useful for our application).

3 TECHNICAL OVERVIEW
We start with defining the hidden-pointer chasing (HPC) problem

and briefly discuss a reduction from HPC that establishes the lower

bound for minimum cut problem in Result 2. We then sketch the

proof of the communication lower bound for HPC in Result 1. Along

the way, we also present a new lower bound for set intersection that

is needed for establishing Result 1. We emphasize that this section

oversimplifies many details and the discussions will be informal

for the sake of intuition.

3.1 The Hidden-Pointer Chasing Problem
The hidden-pointer chasing (HPC) problem is a four-party com-

munication problem with players PA, PB , PC , and PD . Let X :=

{x1, . . . ,xn } and Y := {y1, . . . ,yn } be two disjoint universes.

(1) For any x ∈ X, PA and PB are given an instance (Ax ,Bx)
of Set-Int over the universe Y where Ax ∩ Bx = {tx } for
tx ∈ Y.

(2) Similarly, for any y ∈ Y, PC and PD are given an instance

(Cy ,Dy) of Set-Int over the universe X where Cy ∩ Dy ={
ty

}
for ty ∈ X.

(3) We define two mappings fAB : X → Y and fCD : Y → X

such that:

(a) for any x ∈ X, fAB (x) = tx ∈ Y in the instance (Ax ,Bx)
of Set-Int.

(b) for any y ∈ Y, fCD (y) = ty ∈ X in the instance (Cy ,Dy)

of Set-Int.
(4) Let x1 ∈ X be an arbitrary fixed element of X known to all

players. The pointers z0, z1, z2, z3, . . . are defined inductively
as follows: z0 := x1, z1 := fAB (z0), z2 := fCD (z1), z3 :=

fAB (z2), · · · .

268

Polynomial Pass Lower Bounds for Graph Streaming Algorithms STOC ’19, June 23–26, 2019, Phoenix, AZ, USA

X : x1 xi xn

Y : y1 yj ynyj

Axi Bxi

xi

Cy1 Dy1

(a) The sets Axi , Bxi ⊆ Y of PA and PB for xi ∈ X, and
Cy1, Dy1 ⊆ X of PC and PD for y1 ∈ Y.

X : x1 xi xn

Y : y1 yj yn

(1)

(2)

(3)

(b) z0 = x1, z1 = y1, z2 = xi , z3 = yj , implying that the answer to
HPC3 in this example is yj .

Figure 1: Illustration of the HPC problem.

The k-step hidden-pointer chasing problem (HPCk) is defined as

the communication problem of finding the pointer zk . See Figure 1
for an illustration.

We define a phase (similar to a round) for protocols that solve

HPC. In an odd (resp. even) phase, only PC and PD (resp. PA and

PB) are allowed to communicate with each other, and the phase

ends once a message is sent to PA or PB (resp. PC or PD). A protocol

is called a k-phase protocol iff it uses at most k phases.

It is easy to see that in k + 1 phases, we can compute HPCk
with O(k · n) total communication by solving the Set-Int instances
corresponding to z0, z1, . . . , zk one at a time in each phase. We

prove that if we only havek phases however, solvingHPCk requires

a large communication.

Theorem 1. Any k-phase protocol that outputs the correct solution
to HPCk with constant probability requires Ω(n2/k2 + n) bits of
communication.

We give a proof sketch of the Ω(n2/k2) term in Theorem 1 in

Section 3.3 (the Ω(n) term follows immediately from set intersection

lower bound). Before that, we show an application of this result

in proving graph streaming lower bounds to illustrate our general

approach.

3.2 A Streaming Lower Bound for Minimum
Weighted s-t Cut Problem

We sketch the proof of Result 2 for directed graphs in this sec-

tion. The proof is by a reduction from HPC. We show how to turn

any instance of HPCk for k ≥ 1 into a weighted directed graph G
such that the minimum s-t cut weight in G determines the pointer

zk in HPCk . The rest of the proof then follows by standard argu-

ments that relate communication complexity to space complexity

of streaming algorithms. For the purpose of this proof, it would

be more convenient to consider the maximum s-t flow problem

instead and then use min-cut max-flow duality.

The high level construction of G is as follows. The vertices in

graph G consists of k + 1 layers each of size n plus source and

sink vertices s and t . The even layers of this graph correspond to

elements in X while the odd layers correspond to Y. The edges

between the layers are then created by using the sets in the instances

of Set-Int inside the HPCk problem. The idea is to place the edges

such that each vertex corresponding to xi (resp. yi) in an even layer

(resp. odd layer) can send a “larger” flow to the vertex corresponding

to the target element of the instance (Axi ,Bxi) (resp. target element

of (Cyi ,Dyi)) than any other vertex in the next layer. By choosing

the weight of edges carefully and adding some extra gadgets, we

ensure that themaximum s-t flow should route the flow from s along
the path that corresponds to pointers z0, z1, . . . , zk . The vertices in
the last layer have capacities that encode their identity and hence

the maximum s-t flow value in this graph reveals the identity of zk ,
thus solving HPCk . See Figure 2 for an illustration.

It is now easy to show that any (k/3)-pass streaming algorithm

for minimum weighted s-t cut with space S can be turned into

a k-phase protocol for HPCk with communication cost O(k · S)
using this reduction. As the graphG constructed above hasO(k ·n)
vertices, we obtain the desired lower bound in Result 2 by the

communication complexity lower bound for HPC in Theorem 1.

The formal proof of Result 2 as well as the other reductions that

establish Results 3 and 4 appear in the full version of the paper [10].

3.3 Communication Complexity of
Hidden-Pointer Chasing

We now sketch the proof of Theorem 1 which is the main technical

contribution of this paper. Let DSI be a hard distribution on in-

stances (A,B) for Set-Int. In this distribution A and B are each sets

of size almostn/3 such that they intersect in a unique element in the

universe chosen uniformly at random. We define the distribution

DHPC over inputs of HPC as the distribution in which all instances

(Ax ,Bx) and (Cy ,Dy) for x ∈ X and y ∈ Y are sampled indepen-

dently from DSI (note that DHPC is not a product distribution as

DSI is not a product distribution).

Fix any k-phase deterministic protocol πHPC for HPCk through-

out and suppose towards a contradiction thatCC(πHPC) = o(n2/k2)
(the lower bound extends to randomized protocols by Yao’s mini-

max principle [111]). For any j ∈ [k], we define Πj as the set of all

messages communicated by πHPC in phase j and Π := (Π1, . . . ,Πk)

as the transcript of the protocol πHPC. We further define Z =
(z1, . . . , zk), Ej := (Π<j ,Z<j) for any j > 1, and E1 = z0. We

think of Ej as the information “easily known” to players at the

beginning of phase j. The main step of the proof of Theorem 1 is

the following key lemma which we prove inductively.

Lemma 3.1 (Informal). For all j ∈ [k]:

E
(Ej ,Πj)

[
∆TV(dist(Zj | Ej ,Πj), dist(Zj))

]
= o(1).

Lemma 3.1 states that if the communication cost of a protocol is

“small”, i.e., iso(n2/k2), then even after communicating themessages

269

STOC ’19, June 23–26, 2019, Phoenix, AZ, USA Sepehr Assadi, Yu Chen, and Sanjeev Khanna

V0 V1 V2 V3

s t

Figure 2: Illustration of the graph in the reduction forminimum s-t cut fromHPC3 withn = 5. The black (thin) edges form input-
independent gadgets while blue, red , brown, and green (thick) edges depend on the inputs of PA, PB , PC , and PD , respectively.
Marked nodes denote the vertices corresponding to pointers z0, . . . , z3. The input-dependent edges incident on “non-pointer”
vertices are omitted. This construction has parallel edges but they can be removed; see the full version [10].

in the first j phases of the protocol, distribution of zj is still “close”
to being uniform. This in particular implies that at the end of the

protocol, i.e., at the end of phasek , the target pointer zk is essentially

distributed as in its original distribution (which is uniform over Y

or X depending on whether k is odd or even). Hence πHPC should

not be able to find zk at the end of phase k . The proof of Theorem 1

follows easily from this intuition.

Proof Sketch of Lemma 3.1. The first step of proof is to show that

finding the target element of a uniformly at random chosen instance

of Set-Int (as opposed to an instance corresponding to any particular
pointer) in HPC is not possible with low communication. For any

x ∈ X and anyy ∈ Y, define the random variables Tx ∈ Y and Ty ∈

X, which correspond to the target elements of Set-Int on (Ax ,Bx)
and (Cy ,Dy), respectively. The following lemma formalizes the

above statement. For simplicity, we only state it for Tx for x ∼ UX ;

an identical bound also hold for Ty for y ∼ UY .

Lemma 3.2 (Informal). For j ∈ [k]:

E
(Ej ,Πj)

E
x∼UX

[
∆TV(dist(Tx | Ej ,Πj), dist(Tx))

]
= o(1).

Let us first see why Lemma 3.2 implies Lemma 3.1. The proof is

by induction. Consider some phase j ∈ [k] and suppose j is odd by

symmetry. The goal is to prove that distribution of Zj conditioned
on (Ej ,Πj) = (z1, . . . , zj−1,Π1, . . . ,Πj−1,Πj) is close to original

distribution of Zj (on average over choices of (Ej ,Πj)). Notice that

since we assumed j is odd, Zj is a function of the inputs to PA and

PB . On the other hand, in an odd phase, only the players PC and

PD communicate and hence Πj is a function of the inputs to these

players. Conditioning on Ej and using the rectangle property of

deterministic protocols, together with the fact that inputs to PA, PB
are independent of inputs to PC , PD , implies that Zj ⊥ Πj | Ej . We

now have:

(i) Conditioned on zj−1, Zj is the target element of the instance

(Azj−1 ,Bzj−1), i.e., Zj = Tzj−1 .
(ii) zj−1 itself is distributed according to dist(Zj−1 | Ej−1,Πj−1)

(because we removed the conditioning on Πj by the above

argument).

(iii) dist(Zj−1 | Ej−1,Πj−1) is close to the uniform distribution

by induction.

As such we can now simply apply Lemma 3.2 (by replacing x
with zj−1 since they essentially have the same distribution) and

obtain that distribution ofZj = Tzj−1 with andwithout conditioning
on (Ej ,Πj) is almost the same (averaged over choices of (Ej ,Πj)),

proving the lemma.

Proof Sketch of Lemma 3.2. The proof of this lemma is based

on a direct-sum style argument combined with a new result that

we prove for Set-Int. The direct-sum argument implies that since

x is chosen uniformly at random from n elements in X, and pro-

tocol πHPC is communicating o(n2) bits in total, then it can only

reveal o(n) bits of information about the instance (Ax ,Bx). This
part follows the standard direct-sum arguments for information

complexity (see, e.g. [26, 36]) but we also need to take into account

that if x is one of the pointers we conditioned on in Ej , then πHPC
may reveal more information about (Ax ,Bx); fortunately, this event
happens with negligible probability for k ≪ n and so the argument

continues to hold.

By above argument, proving Lemma 3.2 reduces to showing that

if a protocol reveals o(n) bits of information about an instance of

Set-Int, then the distribution of the target element varies from the

uniform distribution in total variation distance by only o(1). This is
the main part of the proof of Lemma 3.2 and is precisely the content

of our next technical result in the following section.

3.4 A New Communication Lower Bound for
Set Intersection

We say that a protocol πSI ε-solves Set-Int on the distribution DSI
iff it can alter the distribution of the target element from its original

distribution by at least ε in total variation distance, i.e.,

E
ΠSI∼ΠSI

[
∆TV(dist(T | ΠSI), dist(T))

]
≥ ε .

Here ΠSI and T are the random variables for the transcript of the

protocol (including public randomness) and the target element,

respectively.

270

Polynomial Pass Lower Bounds for Graph Streaming Algorithms STOC ’19, June 23–26, 2019, Phoenix, AZ, USA

To finish the proof of Lemma 3.2, we need to prove that a pro-

tocol that Ω(1)-solves Set-Int has Ω(n) communication cost (even

information cost). Note that ε-solving is an algorithmically simpler

task than finding the target element. For example, a protocol may

change the distribution of T to having (1+ε)/n probability onn/2 el-
ements and (1−ε)/n probability on the remaining n/2. This ε-solves
Set-Int yet the target element can only be found with probability

(1 + ε)/n in this distribution. On the other hand, any protocol that

finds the target element with probability p ∈ (0, 1) also p-solves
Set-Int. Because of this, the lower bounds mentioned in Section 2

for set intersection do not suffice for our purpose. Instead, we prove

the following theorem in this paper.

Theorem 2. Any protocol πSI that ε-solves Set-Int on distribution
DSI has internal information cost ICDSI (πSI) = Ω(ε2 · n).

As information cost lower bounds communication cost, Theo-

rem 2 also proves a communication lower bound for Set-Int (al-
though we need the stronger result for information cost in our

proofs). By our discussion earlier, Theorem 2 can be used to finalize

the proof of Lemma 3.2 (and hence Theorem 1). We now give an

overview of the proof of Theorem 2.

For an instance (A,B) of Set-Int, with a slight abuse of notation,

we write A := (a1, . . . ,an) and B := (b1, . . . ,bn) for ai ,bi ∈ {0, 1}

as characteristic vector of the sets given to Alice and Bob. Under

this notation, the target element corresponds to the unique index

t ∈ [n] such that (at ,bt) = (1, 1). The proof of Theorem 2 is based

on reducing Set-Int to a special case of this problem on only 2

coordinates, which we define as the Pair-Int problem. In Pair-Int,
Alice and Bob are given (x1,x2) and (y1,y2) in {0, 1}2 and their goal

is to find the unique index k ∈ {1, 2} such that (xk ,yk) = (1, 1). We

use DPI to denote the hard distribution for this problem which is

equivalent to DSI for n = 2.

Given a protocol πSI for ε-solving Set-Int on DSI, we design a

protocol πPI for finding the index k in instances of Pair-Int sampled

from DPI with probability 1/2 + Ω(ε). The reduction is as follows.

Reduction: Alice and Bob publicly sample i, j ∈ [n] uniformly

at random without replacement. Then, Alice sets ai = x1 and

aj = x2 and Bob sets bi = y1 and bj = y2, using their given

inputs in Pair-Int. The players sample the remaining coordinates

of (A,B) in [n] \ {i, j} using a combination of public and private

randomness that we explain later in the proof sketch of Lemma 3.4.

This sampling ensures that the resulting instance (A,B) of Set-Int
is sampled from DSI such that its target element is i when k = 1

and is j when k = 2. After this, the players run the protocol πSI
on (A,B) and let ΠSI be the transcript of this protocol. Using this,

Bob computes the distribution dist(T | ΠSI) = (p1, . . . ,pn) which
assigns probabilities to elements in [n] as being the target element.

Finally, Bob checks the value of pi and pj and return k = 1 if pi > pj
and k = 2 otherwise (breaking the ties consistently when pi = pj).
The remainder of the proof consists of three main steps:

(i) Proving the correctness of protocol πPI:

Lemma 3.3 (Informal). Protocol πPI outputs the correct an-
swer with probability 1

2
+ Ω(ε).

(ii) Proving an upper bound on “information cost” of πPI (the
reason for quotations is that strictly speaking this quantity

is not the information cost of πPI but rather a lower bound
for it).

Lemma 3.4 (Informal). Let ΠPI denote the random variable
for the transcript of the protocol πPI and K be the random
variable for the index k in distribution DPI. We have,

IDPI (X1,X2 ;ΠPI | Y1,Y2,K)

+ IDPI (Y1,Y2 ;ΠPI | X1,X2,K) ≤
1

n − 1

· ICDSI (πSI).

(iii) Proving a lower bound on “information cost” (as used in Part

(ii)) of protocols for Pair-Int:

Lemma 3.5 (Informal). If πPI outputs the correct answer on
DPI with probability at least 1

2
+ Ω(ε), then,

IDPI (X1,X2 ;ΠPI | Y1,Y2,K)

+ IDPI (Y1,Y2 ;ΠPI | X1,X2,K) = Ω(ε2).

By Lemma 3.4, ICDSI (πSI) isΩ(n) times larger than LHS of Lemma 3.5,

and this, combined with Lemma 3.3, implies that information cost

of πSI needs to be Ω(ε2) · Ω(n), proving Theorem 2.

Proof Sketch of Lemma 3.3. Let us again consider a protocol πSI
such that dist(T | ΠSI) is putting (1 + ε)/n mass over n/2 elements

and (1− ε)/n mass on the remaining ones. Suppose that the correct

answer to the instance of Pair-Int is index 1. We know that in this

case, the index i chosen by πPI will be the target index t in the

instance (A,B). A key observation here is that the index j however
can be any of the coordinates in instance (A,B) other than the

target element with the same probability. As such, parameters pi
and pj used to decide the answer in πPI are distributed as follows:

pi is sampled from dist(T | ΠSI) and hence has value (1 + ε)/n with

probability (1 + ε)/2 and (1 − ε)/n with probability (1 − ε)/2. On
the other hand, pj is chosen uniformly at random from (p1, . . . ,pn)
and hence is (1+ ε)/n or (1− ε)/n with the same probability of half.

Thus pi > pj with probability 1/2 + Ω(ε) and hence πPI has Ω(ε)
advantage over random guessing.

The proof of Lemma 3.3 then formalizes the observations above

and extend this argument to any protocol πSI that ε-solves Set-Int
no matter how it alters the distribution of the target element.

Proof Sketch of Lemma 3.4. Wefirst note that the LHS in Lemma 3.4

is not the internal information cost of πPI due to further condi-

tioning on K (this can only be smaller than ICDPI (πPI)). Hence,
Lemma 3.4 is proving a “weaker” statement than a direct-sum re-

sult for information cost of πPI. The reason for settling for this

weaker statement has to do with the fact that the coordinates in

distribution DSI are not chosen independently.

The intuition behind the proof is as follows. The LHS in Lemma 3.5

is the information revealed about the input of players (in Pair-Int)
averaged over choices of k = 1 and k = 2. Let us assume k = 1

by symmetry. In this case, this quantity is simply the information

revealed about (x2,y2) by the protocol as (x1,y1) = (1, 1) and hence

has no entropy. However, when k = 1, (x2,y2) is embedded in index

j, i.e., (x2,y2) = (aj ,bj) and has the same distribution as all other

coordinates inA−i ,B−i . As such, since the protocol πSI called inside
πPI is oblivious to the choice of j, the information revealed about

(aj ,bj) in average is smaller than the information revealed by πSI

271

STOC ’19, June 23–26, 2019, Phoenix, AZ, USA Sepehr Assadi, Yu Chen, and Sanjeev Khanna

a1 a2 x1 a4 a5 a6 x2 a8

b1 b2 y1 b4 b5 b6 y2 b8

a1 a4 a5

b2 b6 b8

i j

(a) An example with ℓ = 3 and S = {1, 4, 5}:
{a1, a4, a5, b2, b6, b8 } is sampled publicly.
{a2, a6, a8 } and {b1, b4, b5 } are sampled privately.

a1 a2 x1 a4 a5 a6 x2 a8

b1 b2 y1 b4 b5 b6 y2 b8

a6

b1 b2 b4 b5 b8

i j

(b) An example with ℓ = 1 and S = {6}:
{a6, b1, b2, b4, b5, b8 } is sampled publicly.
{a1, a2, a4, a5, a8 } and {b6 } are sampled privately.

Figure 3: Illustration of the process of sampling of instances of Set-Int in πPI for n = 8. In these examples, i = 3 and j = 7 and
hence (a3,a7) = (x1,x2) and (b3,b7) = (y1,y2). of ℓ and S .

about A−i ,B−i (which itself is at most the information cost of πSI)
by a factor of n − 1.

This outline oversimplifies many details. One such detail is the

way of ensuring a “symmetric treatment” of both indices i and j.
This is crucial for the above argument to work for both k = 1 and

k = 2 cases simultaneously, without the players knowing which

index the “averaging” of information is being done for (index j
in the context of the discussion above). The key step in making

this information-theoretic argument work is the following public-

private sampling: Alice and Bob use public randomness to pick

an integer ℓ ∈ [n − 2] uniformly at random and then pick a set S
of size ℓ uniformly at random from [n] \ {i, j}. Next, the players
sample ai′ and bj′ for i

′ ∈ S and j ′ ∈ ([n] \ {i, j}) \ S from DSI
again using public randomness. Finally, each player samples the

remaining coordinates in the input using private randomness from

DSI. Figure 3 gives an example.

Proof Sketch of Lemma 3.5. Let Π
[x1x2, y1y2] denote the transcript

of the protocol condition on the inputs (x1,x2) and (y1,y2) to Al-

ice and Bob. Suppose towards a contradiction that the LHS of

Lemma 3.5 is o(ε2). By focusing on the conditional terms when

k = 1, we can show that distribution of Π
[1x ′

2
, 1y′

2
]
and Π

[1x ′′
2
, 1y′′

2
]

for all choices of (x ′
2
,y′

2
) and (x ′′

2
,y′′

2
) in the support of DPI are

quite close. This is intuitively because the information revealed

about (x2,y2) by πPI conditioned on k = 1 is small (the same result

holds for Π
[x ′

2
1, y′

2
1]
and Π

[x ′′
2
1, y′′

2
1]
by k = 2 terms).

Up until this point, there is no contradiction as the answer to

inputs (1, ∗),(1, ∗) to Alice and Bob is always 1 and hence there is no

problem with the corresponding transcripts in Π
[1∗, 1∗] to be sim-

ilar (similarly for Π
[∗1, ∗1] separately). However, we combine this

with the cut-and-paste property of randomized protocols based on

Hellinger distance to argue that in fact the distribution of Π
[10, 10]

and Π
[01, 01] are also similar. This then implies that Π

[1∗, 1∗] has

almost the same distribution as Π
[∗1, ∗1], and now this is a contra-

diction as the answer to the protocol (a function of the transcript)

needs to be different between these two types of inputs.

This concludes the high-level overview of our proofs (for more

details, see the full version of the paper [10]).

4 COMMUNICATION COMPLEXITY OF
HIDDEN-POINTER CHASING

We give the proof of Theorem 1 in this section. We start with

defining our hard distribution of instances for HPCk and then use

this distribution to prove the lower bound.

A Hard Distribution for HPC. The hard distribution for HPC is

simply the product of distribution DSI for every x ∈ X and y ∈ Y.

DistributionDHPC on tuples (A,B,C,D) from the universes X

and Y:

(1) For any x ∈ X, sample (Ax ,Bx) ∼ DSI from the universe

Y independently.
(2) For any y ∈ Y, sample (Cy ,Dy) ∼ DSI from the universe

X independently.

The following simple observation is in order.

Observation 4.1. DistributionDHPC is not a product distribution.
However, in this distribution:

(i) The inputs to PA and PB are independent of the inputs to PC
and PD , i.e., (A,B) ⊥ (C,D).

(ii) For any x ∈ X, (Ax ,Bx) is independent of all other (Ax ′ ,Bx ′)

for x ′ , x ∈ X. Similarly for all y,y′ ∈ Y and (Cy ,Dy) and
(Cy′ ,Dy′).

Based on this observation, we also have the following simple

property (proof is a simple application of rectangle property of

protocols and is deferred to the full version [10]).

Proposition 4.2. Let πHPC be any deterministic protocol for
HPCk onDHPC. Then, for any transcriptΠ ofπHPC, (A,B) ⊥ (C,D) |
Π = Π.

4.1 Proof of Theorem 1: A Communication
Lower Bound for HPCk

We prove the lower bound for any arbitrary deterministic protocol

πHPC and then apply Yao’s minimax principle [111] to extend it to

randomized protocols as well. We first setup some notation.

272

Polynomial Pass Lower Bounds for Graph Streaming Algorithms STOC ’19, June 23–26, 2019, Phoenix, AZ, USA

Notation. Fix any k-phase deterministic protocol πHPC for HPCk
throughout the proof. We use j = 1 to k to index the phases of

this protocol, as well as the pointers z1, . . . , zk . For any j ∈ [k],
we define Πj as the set of all messages communicated by πHPC
in phase j and Π := (Π1, . . . ,Πk) as the transcript of the protocol

πHPC.

For any x ∈ X and any y ∈ Y, we define the random variables

Tx ∈ Y and Ty ∈ X, which correspond to the target elements of

the Set-Int problem on (Ax ,Bx) and (Cy ,Dy), respectively.

We further define Ej := (Π<j ,Z<j) for any j > 1 and E1 = z0,
i.e., the first pointer. We can think of Ej as the information “easily

known” to all players at the beginning of phase j.

The main step of the proof of Theorem 1 is the following key

lemma which we prove inductively.

Lemma 4.3. Let CC(πHPC) := CCDHPC (πHPC). There exists an
absolute constant c > 0 such that for all j ∈ [k]:

E
(Ej ,Πj)

[
∆TV(dist(Zj | Ej ,Πj), dist(Zj))

]
≤ j · c ·

(√CC(πHPC) + k · logn + k

n

)
.

We first use Lemma 4.3 to prove Theorem 1 and then present a

proof of Lemma 4.3.

Proof of Theorem 1 (assuming Lemma 4.3). The Ω(n) term in

the lower bound trivially follows from the Ω(n) lower bound for

set intersection (e.g. Theorem 2 with constant ε). In the following

we prove the first (and the main) term. Note that for this purpose,

we can assume k = o(
√
n) as otherwise the dominant term would

already be the second term.

Let πHPC be any deterministic protocol for HPCk for k = o(
√
n)

with communication cost CCDHPC (πHPC) = o(n2/k2). Recall that
dist(Zk) = UX if k is even and dist(Zk) = UY if k is odd. Let us

assume by symmetry that k is even. By Lemma 4.3, we have,

E
(Ek ,Πk)

[
∆TV(dist(Zk | Ek ,Πk),UX)

]
≤ k · c ·

(√CC(πHPC) + k · logn + k

n

)
= k · c ·

(
o(
1

k
) + o(

√
logn

n3/4
) + o(

k

n
)

)
= o(

k

k
) + o(

k ·
√
logn

n3/4
) + o(

k2

n
) = o(1), (1)

as c is an absolute constant.

On the other hand, (Ek ,Πk) contains the whole transcript Π of

the protocol and hence the output of the protocol πHPC is fixed

conditioned on (Ek ,Πk). We use O(Ek ,Πk) to denote this output.

We have,

Pr

(Ek ,Πk)
(πHPC is correct)

= E
(Ek ,Πk)

Pr

Zk |(Ek ,Πk)
(Zk = O(Ek ,Πk))

≤ E
(Ek ,Πk)

[
Pr

Zk∼UX

(Zk = O(Ek ,Πk)) + ∆TV(dist(Zk | Ek ,Πk),UX)

]

≤
1

n
+ E

(Ek ,Πk)

[
∆TV(dist(Zk | Ek ,Πk),UX)

]
≤

Eq (1)

1

n
+ o(1).

Hence, πHPC cannot output the correct solution with at least a

constant probability of success, proving the lower bound for deter-

ministic algorithms.

To finalize, we can extend this (distributional) lower bound to

randomized protocols by the easy direction of Yao’s minimax prin-

ciple [111], namely an averaging argument that picks the “best”

randomness of the protocol. This concludes the proof. □

4.2 Proof of Lemma 4.3
The proof of Lemma 4.3 consists of two main steps. We first show

that finding the target element of a uniformly at random chosen

instance of Set-Int (as opposed to the instance corresponding to any
particular pointer) in HPC is not possible unless we make a large

communication. Then, we prove inductively that in each phase j,
the distribution of the pointer zj is close to uniform and hence by

the argument in the first step, we should not be able to find the

target element tzj associated with zj and use this to finalize the

proof. The following lemma captures the first part (we only write

this for x ∼ UX ; an analogous statement also holds for y ∼ UY).

Lemma 4.4. There exists an absolute constant c > 0 such that for
any j ∈ [k],

E
(Ej ,Πj)

E
x∼UX

[
∆TV(dist(Tx | Ej ,Πj), dist(Tx))

]
≤ c ·

(√CC(πHPC) + j · logn + j
n

)
.

The proof of this lemma is based on a direct-sum style argument

combined with Theorem 2. For intuition, consider a protocol that

uses o(n2) communication in its first j phases and assume by way

of contradiction that it can reduce the LHS of one of the equations

in Lemma 4.4 by Ω(1). Using a direct-sum style argument, we can

then argue that the transcript of the first j phases of this protocol
only reveal o(n) bits of information about a uniformly at random

chosen instance (Ax ,Bx) of Set-Int but is enough to Ω(1)-solve the
instance (Ax ,Bx), which is in contradiction with our bounds in

Theorem 2. Note that in this discussion, for the sake of simplicity,

we neglected the role of extra conditioning on Z<j
in Ej in the LHS

of equations; handling this extra conditioning results in the extra

additive factor in RHS. Proof of Lemma 4.4 is quite technical and is

postponed to the full version of the paper [10].

Before getting to the proof of Lemma 4.3, we also need the fol-

lowing simple claim based on the rectangle property of the protocol

πHPC (proof appears in full version [10]).

Claim 4.5. For any j ∈ [k] and choice of (Ej ,Πj), dist(Zj |

Ej ,Πj) = dist(Zj | Ej).

We are now finally ready to prove Lemma 4.3.

Proof of Lemma 4.3. Let c be the constant in Lemma 4.4. We

prove Lemma 4.3 by induction. We start with the proof of the base

case for j = 1 and then prove the inductive step.

Base case. Recall that we defined E1 = z0 which is determinis-

tically fixed. This, together with Claim 4.5, implies that dist(Z1 |

E1,Π1) = dist(Z1), which finalizes proof of the base case.

273

STOC ’19, June 23–26, 2019, Phoenix, AZ, USA Sepehr Assadi, Yu Chen, and Sanjeev Khanna

Induction step. Let us now prove the lemma inductively for

j > 1.

E
(Ej ,Πj)

[
∆TV(dist(Zj | Ej ,Πj), dist(Zj))

]
=

Claim 4.5

E
Ej

[
∆TV(dist(Zj | Ej), dist(Zj))

]
= E

(Z < j ,Π< j)

[
∆TV(dist(Zj | Z<j ,Π<j), dist(Zj))

]
(by definition of Ej := (Z<j ,Π<j))

= E
(Z < j ,Π< j)

[
∆TV(dist(Tzj−1 | Z<j−1, zj−1,Π

<j), dist(Zj))
]
.

(by definition, the pointer Zj = Tzj−1)

We can write the RHS above as:

E
(Ej ,Πj)

[
∆TV(dist(Zj | Ej ,Πj), dist(Zj))

]
= E

(Z < j−1,Π< j)
E

zj−1∼Zj−1 |(Z < j−1,Π< j)[
∆TV(dist(Tzj−1 | Z<j−1,Π<j), dist(Zj))

]
.

This is because Tzj−1 ⊥ (Zj−1 = zj−1) | Z
<j−1,Π<j

: if j − 1 is odd,

Tzj−1 is a function of (C,D) and if j − 1 is even, Tzj−1 is a function
of (A,B). On the other hand, if j − 1 is odd, then Zj−1 is a function
of (A,B) and if even, then Zj−1 is a function of (C,D). Finally, by
Proposition 4.2, (A,B) ⊥ (B,D) | Π<j

, proving the conditional

independence.

Now notice that distribution of zj−1 in the expectation-term

above is dist(Zj−1 | Ej−1,Πj−1). By symmetry, let us assume j − 1 is

odd and hence zj−1 ∈ Y. Since total variation distance is bounded

by 1 always, we can upper bound RHS above with:

E
(Ej ,Πj)

[
∆TV(dist(Zj | Ej ,Mj), dist(Zj))

]
≤ E

(Z < j−1,Π< j)

[
E

(zj−1∼UY)

[
∆TV(dist(Tzj−1 | Z<j−1,Π<j), dist(Zj))

]]
+ E

(Z < j−1,Π< j)

[
∆TV(dist(Zj−1 | Ej−1,Πj−1),UY)

]
= E

(Ej−1,Πj−1)
E

y∼UY

[
∆TV(dist(Ty | Ej−1,Πj−1), dist(Zj))

]
+ E

(Ej−1,Πj−1)

[
∆TV(dist(Zj−1 | Ej−1,Πj−1), dist(Zj−1))

]
,

where in the first term above we only changed the name of variable

zj−1 to y and in the second term we used dist(Zj−1) = UY . By

Lemma 4.4, we can bound the first term and by induction, we can

bound the second one. Hence,

E
(Ej ,Πj)

[
∆TV(dist(Zj | Ej ,Πj), dist(Zj))

]
≤ c ·

(√CC(πHPC) + j · logn + j
n

)
+ (j − 1) · c ·

(√CC(πHPC) + k · logn + k

n

)
≤ j · c ·

(√CC(πHPC) + k · logn + k

n

)
.

(where we replaced j ≤ k by k in the first term)

This concludes the proof. □

REFERENCES
[1] Amir Abboud, Keren Censor-Hillel, Seri Khoury, and Ami Paz. 2019. Smaller

Cuts, Higher Lower Bounds. CoRR abs/1901.01630 (2019).

[2] Farid M. Ablayev. 1993. Lower Bounds for One-way Probabilistic Communica-

tion Complexity. In Automata, Languages and Programming, 20nd International
Colloquium, ICALP93, Lund, Sweden, July 5-9, 1993, Proceedings. 241–252.

[3] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. 2012. Analyzing Graph

Structure via Linear Measurements. In Proceedings of the Twenty-third Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA ’12). SIAM, 459–467. http:

//dl.acm.org/citation.cfm?id=2095116.2095156

[4] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. 2012. Graph sketches:

sparsification, spanners, and subgraphs. In Proceedings of the 31st ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems, PODS 2012, Scotts-
dale, AZ, USA, May 20-24, 2012. 5–14. https://doi.org/10.1145/2213556.2213560

[5] Noga Alon, László Babai, and Alon Itai. 1986. A Fast and Simple Randomized

Parallel Algorithm for the Maximal Independent Set Problem. J. Algorithms 7, 4
(1986), 567–583.

[6] Noga Alon, Yossi Matias, and Mario Szegedy. 1996. The space complexity of

approximating the frequency moments. In STOC. ACM, 20–29.

[7] Noga Alon, Noam Nisan, Ran Raz, and Omri Weinstein. 2015. Welfare Maximiza-

tion with Limited Interaction. In IEEE 56th Annual Symposium on Foundations of
Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015. 1499–1512.

[8] Sepehr Assadi. 2017. Combinatorial Auctions Do Need Modest Interaction. In

Proceedings of the 2017 ACM Conference on Economics and Computation, EC ’17,
Cambridge, MA, USA, June 26-30, 2017. 145–162.

[9] Sepehr Assadi. 2017. Tight Space-Approximation Tradeoff for the Multi-Pass

Streaming Set Cover Problem. In Proceedings of the 36th ACM SIGMOD-SIGACT-
SIGAI Symposium on Principles of Database Systems, PODS 2017, Chicago, IL,
USA, May 14-19, 2017. 321–335.

[10] Sepehr Assadi, Yu Chen, and Sanjeev Khanna. 2019. Polynomial Pass Lower

Bounds for Graph Streaming Algorithms. CoRR abs/1904.04720 (2019).

[11] Sepehr Assadi, Yu Chen, and Sanjeev Khanna. 2019. Sublinear Algorithms

for (∆ + 1) Vertex Coloring. In Proceedings of the Thirtieth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA,
January 6-9, 2019. 767–786.

[12] Sepehr Assadi and Sanjeev Khanna. 2018. Tight Bounds on the Round Com-

plexity of the Distributed Maximum Coverage Problem. In Proceedings of the
Twenty-Nine Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018.

[13] Sepehr Assadi, Sanjeev Khanna, and Yang Li. 2016. Tight bounds for single-pass

streaming complexity of the set cover problem. In Proceedings of the 48th Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge, MA,
USA, June 18-21, 2016. 698–711.

[14] Sepehr Assadi, Sanjeev Khanna, and Yang Li. 2017. On Estimating Maximum

Matching Size in Graph Streams. In Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain,
Hotel Porta Fira, January 16-19. 1723–1742.

[15] Sepehr Assadi, Sanjeev Khanna, Yang Li, and Grigory Yaroslavtsev. 2016. Maxi-

mum Matchings in Dynamic Graph Streams and the Simultaneous Communica-

tion Model. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016.
1345–1364.

[16] László Babai, Peter Frankl, and Janos Simon. 1986. Complexity classes in com-

munication complexity theory (preliminary version). In 27th Annual Symposium
on Foundations of Computer Science, 27-29 October 1986. 337–347.

[17] Eric Balkanski, Adam Breuer, and Yaron Singer. 2018. Non-monotone Submod-

ular Maximization in Exponentially Fewer Iterations. CoRR abs/1807.11462. To

appear in NIPS 2018. (2018).

[18] Eric Balkanski, Aviad Rubinstein, and Yaron Singer. 2016. The Power of Opti-

mization from Samples. In Advances in Neural Information Processing Systems
29: Annual Conference on Neural Information Processing Systems 2016, December
5-10, 2016, Barcelona, Spain. 4017–4025.

[19] Eric Balkanski, Aviad Rubinstein, and Yaron Singer. 2017. The limitations of

optimization from samples. In Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, June
19-23, 2017. 1016–1027.

[20] Eric Balkanski, Aviad Rubinstein, and Yaron Singer. 2018. An Exponential

Speedup in Parallel Running Time for Submodular Maximization without Loss

in Approximation. CoRR abs/1804.06355. To appear in SODA 2019. (2018).

[21] Eric Balkanski and Yaron Singer. 2017. Minimizing a Submodular Function

from Samples. In Advances in Neural Information Processing Systems 30: Annual
Conference on Neural Information Processing Systems 2017, 4-9 December 2017,
Long Beach, CA, USA. 814–822.

[22] Eric Balkanski and Yaron Singer. 2018. The adaptive complexity of maximizing a

submodular function. In Proceedings of the 50th Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018.
1138–1151.

274

http://dl.acm.org/citation.cfm?id=2095116.2095156
http://dl.acm.org/citation.cfm?id=2095116.2095156
https://doi.org/10.1145/2213556.2213560

Polynomial Pass Lower Bounds for Graph Streaming Algorithms STOC ’19, June 23–26, 2019, Phoenix, AZ, USA

[23] Eric Balkanski and Yaron Singer. 2018. Parallelization does not Accelerate

Convex Optimization: Adaptivity Lower Bounds for Non-smooth Convex Mini-

mization. CoRR abs/1808.03880 (2018).

[24] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and D. Sivakumar. 2002. An Informa-

tion Statistics Approach to Data Stream and Communication Complexity. In 43rd
Symposium on Foundations of Computer Science (FOCS 2002), 16-19 November
2002, Proceedings. 209–218.

[25] Ziv Bar-Yossef, Ravi Kumar, and D. Sivakumar. 2002. Reductions in streaming

algorithms, with an application to counting triangles in graphs. In Proceedings
of the Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms, January
6-8, 2002, San Francisco, CA, USA. 623–632.

[26] Boaz Barak, Mark Braverman, Xi Chen, and Anup Rao. 2010. How to compress

interactive communication. In Proceedings of the 42nd ACM Symposium on
Theory of Computing, STOC 2010, 5-8 June 2010. 67–76.

[27] MohammadHossein Bateni, Hossein Esfandiari, and Vahab S. Mirrokni. 2017.

Almost Optimal Streaming Algorithms for Coverage Problems. In Proceedings of
the 29th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA
2017, Washington DC, USA, July 24-26, 2017. 13–23.

[28] Ruben Becker, Andreas Karrenbauer, Sebastian Krinninger, and Christoph

Lenzen. 2017. Near-Optimal Approximate Shortest Paths and Transshipment

in Distributed and Streaming Models. In 31st International Symposium on Dis-
tributed Computing, DISC 2017, October 16-20, 2017, Vienna, Austria. 7:1–7:16.

[29] Suman K. Bera and Amit Chakrabarti. 2017. Towards Tighter Space Bounds

for Counting Triangles and Other Substructures in Graph Streams. In 34th
Symposium on Theoretical Aspects of Computer Science, STACS 2017, March 8-11,
2017, Hannover, Germany. 11:1–11:14.

[30] Guy E. Blelloch, Jeremy T. Fineman, and Julian Shun. 2012. Greedy sequential

maximal independent set and matching are parallel on average. In 24th ACM
Symposium on Parallelism in Algorithms and Architectures, SPAA ’12, Pittsburgh,
PA, USA, June 25-27, 2012. 308–317.

[31] Mark Braverman, Faith Ellen, Rotem Oshman, Toniann Pitassi, and Vinod

Vaikuntanathan. 2013. A Tight Bound for Set Disjointness in the Message-

Passing Model. In 54th Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA. 668–677.

[32] Mark Braverman, Ankit Garg, Denis Pankratov, and OmriWeinstein. 2013. From

information to exact communication. In Symposium on Theory of Computing
Conference, STOC’13, June 1-4, 2013. 151–160.

[33] Mark Braverman, Jieming Mao, and S. Matthew Weinberg. 2018. On Simulta-

neous Two-player Combinatorial Auctions. In Proceedings of the Twenty-Ninth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, January 7-10,
2018. 2256–2273.

[34] Mark Braverman and Ankur Moitra. 2013. An information complexity approach

to extended formulations. In Symposium on Theory of Computing Conference,
STOC’13, June 1-4, 2013. 161–170.

[35] Mark Braverman and Rotem Oshman. 2017. A Rounds vs. Communication

Tradeoff for Multi-Party Set Disjointness. In 58th IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17,
2017. 144–155.

[36] Mark Braverman and Anup Rao. 2011. Information Equals Amortized Commu-

nication. In IEEE 52nd Annual Symposium on Foundations of Computer Science,
FOCS 2011, October 22-25, 2011. 748–757.

[37] Joshua Brody, Amit Chakrabarti, Ranganath Kondapally, David P. Woodruff,

and Grigory Yaroslavtsev. 2014. Beyond set disjointness: the communication

complexity of finding the intersection. In ACM Symposium on Principles of
Distributed Computing, PODC ’14, Paris, France, July 15-18, 2014. 106–113.

[38] Amit Chakrabarti, Graham Cormode, Ranganath Kondapally, and Andrew Mc-

Gregor. 2010. Information Cost Tradeoffs for Augmented Index and Streaming

Language Recognition. In 51th Annual IEEE Symposium on Foundations of Com-
puter Science, FOCS 2010, October 23-26, 2010, Las Vegas, Nevada, USA. 387–396.

[39] Amit Chakrabarti, Graham Cormode, and Andrew McGregor. 2008. Robust

lower bounds for communication and stream computation. In Proceedings of
the 40th Annual ACM Symposium on Theory of Computing, May 17-20, 2008.
641–650.

[40] Amit Chakrabarti and Sagar Kale. 2014. Submodular Maximization Meets

Streaming: Matchings, Matroids, and More. In Integer Programming and Combi-
natorial Optimization - 17th International Conference, IPCO 2014, Bonn, Germany,
June 23-25, 2014. Proceedings. 210–221.

[41] Amit Chakrabarti and Anthony Wirth. 2016. Incidence Geometries and the Pass

Complexity of Semi-Streaming Set Cover. In Proceedings of the Twenty-Seventh
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington,
VA, USA, January 10-12, 2016. 1365–1373.

[42] Deeparnab Chakrabarty, Yin Tat Lee, Aaron Sidford, and Sam Chiu-wai Wong.

2017. Subquadratic submodular function minimization. In Proceedings of the 49th
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal,
QC, Canada, June 19-23, 2017. 1220–1231.

[43] Arkadev Chattopadhyay and Sagnik Mukhopadhyay. 2015. Tribes Is Hard in the

Message Passing Model. In 32nd International Symposium on Theoretical Aspects
of Computer Science, STACS 2015, March 4-7, 2015, Garching, Germany. 224–237.

[44] Stephen A. Cook. 1985. A Taxonomy of Problems with Fast Parallel Algorithms.

Information and Control 64, 1-3 (1985), 2–21.
[45] Graham Cormode, Jacques Dark, and Christian Konrad. 2018. Approximating

the Caro-Wei Bound for Independent Sets in Graph Streams. In Combinatorial
Optimization - 5th International Symposium, ISCO 2018, Marrakesh, Morocco,
April 11-13, 2018, Revised Selected Papers. 101–114.

[46] Graham Cormode, Jacques Dark, and Christian Konrad. 2018. Independent Sets

in Vertex-Arrival Streams. CoRR abs/1807.08331 (2018).

[47] Graham Cormode and Hossein Jowhari. 2017. A second look at counting

triangles in graph streams (corrected). Theor. Comput. Sci. 683 (2017), 22–30.
[48] William H. Cunningham. 1985. On submodular function minimization. Combi-

natorica 5, 3 (1985), 185–192.
[49] Erik D. Demaine, Piotr Indyk, Sepideh Mahabadi, and Ali Vakilian. 2014. On

Streaming and Communication Complexity of the Set Cover Problem. In Dis-
tributed Computing - 28th International Symposium, DISC 2014, Austin, TX, USA,
October 12-15, 2014. Proceedings. 484–498.

[50] Shahar Dobzinski, Noam Nisan, and Sigal Oren. 2014. Economic efficiency

requires interaction. In Symposium on Theory of Computing, STOC 2014, New
York, NY, USA, May 31 - June 03, 2014. 233–242.

[51] Pavol Duris, Zvi Galil, and Georg Schnitger. 1984. Lower Bounds on Communi-

cation Complexity. In Proceedings of the 16th Annual ACM Symposium on Theory
of Computing, April 30 - May 2, 1984, Washington, DC, USA. 81–91.

[52] Sebastian Eggert, Lasse Kliemann, and Anand Srivastav. 2009. Bipartite Graph

Matchings in the Semi-streaming Model. In Algorithms - ESA 2009, 17th Annual
European Symposium, September 7-9, 2009. Proceedings. 492–503.

[53] Yuval Emek and Adi Rosén. 2014. Semi-Streaming Set Cover - (Extended Ab-

stract). In Automata, Languages, and Programming - 41st International Collo-
quium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part I.
453–464.

[54] Alina Ene and Huy L. Nguyen. 2018. Submodular Maximization with

Nearly-optimal Approximation and Adaptivity in Nearly-linear Time. CoRR
abs/1804.05379. To appear in SODA 2019. (2018).

[55] Alina Ene, Huy L. Nguyen, and Adrian Vladu. 2018. Submodular Maximization

with Packing Constraints in Parallel. CoRR abs/1808.09987 (2018).

[56] Matthew Fahrbach, Vahab S. Mirrokni, and Morteza Zadimoghaddam. 2018.

Non-monotone Submodular Maximization with Nearly Optimal Adaptivity

Complexity. CoRR abs/1808.06932 (2018).

[57] Matthew Fahrbach, Vahab S. Mirrokni, and Morteza Zadimoghaddam. 2018.

Submodular Maximization with Optimal Approximation, Adaptivity and Query

Complexity. CoRR abs/1807.07889. To appear in SODA 2019. (2018).

[58] Joan Feigenbaum, Sampath Kannan, AndrewMcGregor, Siddharth Suri, and Jian

Zhang. 2005. On graph problems in a semi-streaming model. Theor. Comput.
Sci. 348, 2-3 (2005), 207–216. https://doi.org/10.1016/j.tcs.2005.09.013

[59] Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and

Jian Zhang. 2008. Graph Distances in the Data-Stream Model. SIAM J. Comput.
38, 5 (2008), 1709–1727.

[60] Dmitry Gavinsky, Julia Kempe, Iordanis Kerenidis, Ran Raz, and Ronald de

Wolf. 2007. Exponential separations for one-way quantum communication

complexity, with applications to cryptography. STOC (2007), 516–525.

[61] Mohsen Ghaffari, Themis Gouleakis, Christian Konrad, Slobodan Mitrovic, and

Ronitt Rubinfeld. 2018. Improved Massively Parallel Computation Algorithms

for MIS, Matching, and Vertex Cover. In Proceedings of the 2018 ACM Symposium
on Principles of Distributed Computing, PODC 2018, Egham, United Kingdom,
July 23-27, 2018. 129–138.

[62] Ashish Goel, Michael Kapralov, and Sanjeev Khanna. 2012. On the Communica-

tion and Streaming Complexity of Maximum Bipartite Matching. In Proceedings
of the Twenty-third Annual ACM-SIAM Symposium on Discrete Algorithms (SODA
’12). SIAM, 468–485. http://dl.acm.org/citation.cfm?id=2095116.2095157

[63] Martin Grötschel, László Lovász, and Alexander Schrijver. 1981. The ellipsoid

method and its consequences in combinatorial optimization. Combinatorica 1, 2
(1981), 169–197.

[64] Sudipto Guha and Andrew McGregor. 2007. Lower Bounds for Quantile Estima-

tion in Random-Order and Multi-pass Streaming. In Automata, Languages and
Programming, 34th International Colloquium, ICALP 2007, Wroclaw, Poland, July
9-13, 2007, Proceedings. 704–715.

[65] Sudipto Guha and Andrew McGregor. 2008. Tight Lower Bounds for Multi-pass

StreamComputation Via Pass Elimination. InAutomata, Languages and Program-
ming, 35th International Colloquium, ICALP 2008, July 7-11, 2008, Proceedings,
Part I: Tack A: Algorithms, Automata, Complexity, and Games. 760–772.

[66] Venkatesan Guruswami and Krzysztof Onak. 2013. Superlinear Lower Bounds

for Multipass Graph Processing. In Proceedings of the 28th Conference on Compu-
tational Complexity, CCC 2013, K.lo Alto, California, USA, 5-7 June, 2013. 287–298.

[67] Bjarni V. Halldórsson, Magnús M. Halldórsson, Elena Losievskaja, and Mario

Szegedy. 2010. Streaming Algorithms for Independent Sets. In Automata, Lan-
guages and Programming, 37th International Colloquium, ICALP 2010, Bordeaux,
France, July 6-10, 2010, Proceedings, Part I. 641–652.

275

https://doi.org/10.1016/j.tcs.2005.09.013
http://dl.acm.org/citation.cfm?id=2095116.2095157

STOC ’19, June 23–26, 2019, Phoenix, AZ, USA Sepehr Assadi, Yu Chen, and Sanjeev Khanna

[68] Bjarni V. Halldórsson, Magnús M. Halldórsson, Elena Losievskaja, and Mario

Szegedy. 2016. Streaming Algorithms for Independent Sets in Sparse Hyper-

graphs. Algorithmica 76, 2 (2016), 490–501.
[69] Magnús M. Halldórsson, Xiaoming Sun, Mario Szegedy, and Chengu Wang.

2012. Streaming and Communication Complexity of Clique Approximation. In

Automata, Languages, and Programming - 39th International Colloquium, ICALP
2012, Warwick, UK, July 9-13, 2012, Proceedings, Part I. 449–460.

[70] Sariel Har-Peled, Piotr Indyk, SepidehMahabadi, and Ali Vakilian. 2016. Towards

Tight Bounds for the Streaming Set Cover Problem. In Proceedings of the 35th
ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems,
PODS 2016, San Francisco, CA, USA, June 26 - July 01, 2016. 371–383.

[71] Nicholas James Alexander Harvey. 2008. Matchings, matroids and submodular
functions. Ph.D. Dissertation. Massachusetts Institute of Technology.

[72] Nicholas J. A. Harvey. 2008. Matroid intersection, pointer chasing, and Young’s

seminormal representation of Sn . In Proceedings of the Nineteenth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2008, San Francisco, California,
USA, January 20-22, 2008. 542–549.

[73] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. 2016. A de-

terministic almost-tight distributed algorithm for approximating single-source

shortest paths. In Proceedings of the 48th Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016.
489–498.

[74] Gábor Ivanyos, Hartmut Klauck, Troy Lee, Miklos Santha, and Ronald de Wolf.

2012. New bounds on the classical and quantum communication complexity of

some graph properties. In IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science, FSTTCS 2012, December 15-17, 2012,
Hyderabad, India. 148–159.

[75] Satoru Iwata, Lisa Fleischer, and Satoru Fujishige. 2000. A combinatorial,

strongly polynomial-time algorithm for minimizing submodular functions. In

Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Comput-
ing, May 21-23, 2000, Portland, OR, USA. 97–106.

[76] Satoru Iwata and James B. Orlin. 2009. A simple combinatorial algorithm

for submodular function minimization. In Proceedings of the Twentieth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2009, New York, NY, USA,
January 4-6, 2009. 1230–1237.

[77] Rahul Jain, Jaikumar Radhakrishnan, and Pranab Sen. 2003. A Direct Sum

Theorem in Communication Complexity viaMessage Compression. InAutomata,
Languages and Programming, 30th International Colloquium, ICALP 2003, June
30 - July 4, 2003. Proceedings. 300–315.

[78] T. S. Jayram, Ravi Kumar, and D. Sivakumar. 2003. Two applications of informa-

tion complexity. In Proceedings of the 35th Annual ACM Symposium on Theory
of Computing, June 9-11, 2003, San Diego, CA, USA. 673–682.

[79] Hossein Jowhari and Mohammad Ghodsi. 2005. New Streaming Algorithms for

Counting Triangles in Graphs. In Computing and Combinatorics, 11th Annual
International Conference, COCOON 2005, Kunming, China, August 16-29, 2005,
Proceedings. 710–716.

[80] Sagar Kale and Sumedh Tirodkar. 2017. Maximum Matching in Two, Three,

and a Few More Passes Over Graph Streams. In Approximation, Randomization,
and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM
2017, August 16-18, 2017, Berkeley, CA, USA. 15:1–15:21.

[81] Bala Kalyanasundaram and Georg Schnitger. 1992. The Probabilistic Commu-

nication Complexity of Set Intersection. SIAM J. Discrete Math. 5, 4 (1992),

545–557.

[82] Michael Kapralov. 2013. Better bounds for matchings in the streaming model.

In Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2013, New Orleans, Louisiana, USA, January 6-8, 2013. 1679–
1697. https://doi.org/10.1137/1.9781611973105.121

[83] Michael Kapralov and David P. Woodruff. 2014. Spanners and sparsifiers in

dynamic streams. In ACM Symposium on Principles of Distributed Computing,
PODC ’14, Paris, France, July 15-18, 2014. 272–281.

[84] Christian Konrad, Frédéric Magniez, and Claire Mathieu. 2012. Maximum

Matching in Semi-streaming with Few Passes. In Approximation, Randomization,
and Combinatorial Optimization. Algorithms and Techniques - 15th International
Workshop, APPROX 2012, and 16th International Workshop, RANDOM 2012, Cam-
bridge, MA, USA, August 15-17, 2012. Proceedings. 231–242.

[85] Ilan Kremer, Noam Nisan, and Dana Ron. 1995. On randomized one-round

communication complexity. In Proceedings of the Twenty-Seventh Annual ACM
Symposium on Theory of Computing, 29 May-1 June 1995, Las Vegas, Nevada,
USA. 596–605.

[86] Ravi Kumar, Benjamin Moseley, Sergei Vassilvitskii, and Andrea Vattani. 2013.

Fast greedy algorithms in mapreduce and streaming. In 25th ACM Symposium
on Parallelism in Algorithms and Architectures, SPAA ’13, Montreal, QC, Canada -
July 23 - 25, 2013. 1–10.

[87] Konstantin Kutzkov and Rasmus Pagh. 2014. Triangle Counting in Dynamic

Graph Streams. InAlgorithm Theory - SWAT 2014 - 14th Scandinavian Symposium
and Workshops, Copenhagen, Denmark, July 2-4, 2014. Proceedings. 306–318.

[88] Yin Tat Lee, Aaron Sidford, and Sam Chiu-wai Wong. 2015. A Faster Cutting

Plane Method and its Implications for Combinatorial and Convex Optimization.

In IEEE 56th Annual Symposium on Foundations of Computer Science, FOCS 2015,
Berkeley, CA, USA, 17-20 October, 2015. 1049–1065.

[89] List of Open Problems in Sublinear Algorithms: Problem 14 [n. d.]. List of Open

Problems in Sublinear Algorithms: Problem 14. https://sublinear.info/14.

[90] List of Open Problems in Sublinear Algorithms: Problem 22 [n. d.]. List of Open

Problems in Sublinear Algorithms: Problem 22. https://sublinear.info/22.

[91] List of Open Problems in Sublinear Algorithms: Problem 29 [n. d.]. List of Open

Problems in Sublinear Algorithms: Problem 29. https://sublinear.info/29.

[92] Michael Luby. 1986. A Simple Parallel Algorithm for the Maximal Independent

Set Problem. SIAM J. Comput. 15, 4 (1986), 1036–1053.
[93] Andrew McGregor. 2005. Finding Graph Matchings in Data Streams. In Ap-

proximation, Randomization and Combinatorial Optimization, Algorithms and
Techniques, 8th International Workshop on Approximation Algorithms for Combi-
natorial Optimization Problems, APPROX 2005 and 9th InternationalWorkshop
on Randomization and Computation, RANDOM 2005, Berkeley, CA, USA, August
22-24, 2005, Proceedings. 170–181. https://doi.org/10.1007/11538462_15

[94] Andrew McGregor. 2014. Graph stream algorithms: a survey. SIGMOD Record
43, 1 (2014), 9–20. http://doi.acm.org/10.1145/2627692.2627694

[95] Andrew McGregor, Sofya Vorotnikova, and Hoa T. Vu. 2016. Better Algorithms

for Counting Triangles in Data Streams. In Proceedings of the 35th ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems, PODS 2016, San
Francisco, CA, USA, June 26 - July 01, 2016. 401–411.

[96] Andrew McGregor and Hoa T. Vu. 2017. Better Streaming Algorithms for

the Maximum Coverage Problem. In 20th International Conference on Database
Theory, ICDT 2017, March 21-24, 2017, Venice, Italy. 22:1–22:18.

[97] Peter Bro Miltersen, Noam Nisan, Shmuel Safra, and Avi Wigderson. 1995. On

data structures and asymmetric communication complexity. In Proceedings of
the Twenty-Seventh Annual ACM Symposium on Theory of Computing, 29 May-1
June 1995, Las Vegas, Nevada, USA. 103–111.

[98] J. Ian Munro and Mike Paterson. 1978. Selection and Sorting with Limited

Storage. In 19th Annual Symposium on Foundations of Computer Science, Ann
Arbor, Michigan, USA, 16-18 October 1978. 253–258.

[99] Arkadi Nemirovski. 1994. On Parallel Complexity of Nonsmooth Convex Opti-

mization. J. Complexity 10, 4 (1994), 451–463.

[100] Noam Nisan and Avi Wigderson. 1991. Rounds in Communication Complexity

Revisited. In Proceedings of the 23rd Annual ACM Symposium on Theory of
Computing, May 5-8, 1991, New Orleans, Louisiana, USA. 419–429.

[101] Christos H. Papadimitriou andMichael Sipser. 1984. Communication Complexity.

J. Comput. Syst. Sci. 28, 2 (1984), 260–269.
[102] Stephen Ponzio, Jaikumar Radhakrishnan, and Srinivasan Venkatesh. 1999. The

Communication Complexity of Pointer Chasing: Applications of Entropy and

Sampling. In Proceedings of the Thirty-First Annual ACM Symposium on Theory
of Computing, May 1-4, 1999, Atlanta, Georgia, USA. 602–611.

[103] Alexander A. Razborov. 1992. On the Distributional Complexity of Disjointness.

Theor. Comput. Sci. 106, 2 (1992), 385–390.
[104] Aviad Rubinstein, Tselil Schramm, and S. Matthew Weinberg. 2018. Computing

Exact Minimum Cuts Without Knowing the Graph. In 9th Innovations in Theo-
retical Computer Science Conference, ITCS 2018, January 11-14, 2018, Cambridge,
MA, USA. 39:1–39:16.

[105] Barna Saha and Lise Getoor. 2009. On Maximum Coverage in the Streaming

Model & Application to Multi-topic Blog-Watch. In Proceedings of the SIAM
International Conference on Data Mining, SDM 2009, Sparks, Nevada, USA. 697–
708.

[106] Atish Das Sarma, Sreenivas Gollapudi, and Rina Panigrahy. 2011. Estimating

PageRank on graph streams. J. ACM 58, 3 (2011), 13:1–13:19.

[107] Alexander Schrijver. 2000. A Combinatorial Algorithm Minimizing Submodular

Functions in Strongly Polynomial Time. J. Comb. Theory, Ser. B 80, 2 (2000),

346–355.

[108] Elad Verbin and Wei Yu. 2011. The Streaming Complexity of Cycle Counting,

Sorting by Reversals, and Other Problems. In Proceedings of the Twenty-Second
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, January
23-25, 2011. 11–25.

[109] OmriWeinstein andDavid P.Woodruff. 2015. The Simultaneous Communication

of Disjointness with Applications to Data Streams. In Automata, Languages,
and Programming - 42nd International Colloquium, ICALP 2015, July 6-10, 2015,
Proceedings, Part I. 1082–1093.

[110] Andrew Chi-Chih Yao. 1979. Some Complexity Questions Related to Distribu-

tive Computing (Preliminary Report). In Proceedings of the 11h Annual ACM
Symposium on Theory of Computing, April 30 - May 2, 1979, Atlanta, Georgia,
USA. 209–213.

[111] Andrew Chi-Chih Yao. 1983. Lower Bounds by Probabilistic Arguments (Ex-

tended Abstract). In 24th Annual Symposium on Foundations of Computer Science,
Tucson, Arizona, USA, 7-9 November 1983. 420–428.

[112] Amir Yehudayoff. 2016. Pointer chasing via triangular discrimination. Electronic
Colloquium on Computational Complexity (ECCC) 23 (2016), 151.

[113] Mariano Zelke. 2011. Intractability of min- and max-cut in streaming graphs.

Inf. Process. Lett. 111, 3 (2011), 145–150.

276

https://doi.org/10.1137/1.9781611973105.121
https://sublinear.info/14
https://sublinear.info/22
https://sublinear.info/29
https://doi.org/10.1007/11538462_15
http://doi.acm.org/10.1145/2627692.2627694

	Abstract
	1 Introduction
	1.1 Landscape of Graph Streaming Lower Bounds
	1.2 Our Contributions
	1.3 Our Techniques
	1.4 Further Related Work

	2 Preliminaries
	3 Technical Overview
	3.1 The Hidden-Pointer Chasing Problem
	3.2 A Streaming Lower Bound for Minimum Weighted s-t Cut Problem
	3.3 Communication Complexity of Hidden-Pointer Chasing
	3.4 A New Communication Lower Bound for Set Intersection

	4 Communication Complexity of Hidden-Pointer Chasing
	4.1 Proof of Theorem 1: A Communication Lower Bound for HPC k
	4.2 Proof of Lemma 4.3

	References

