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ABSTRACT

We present new lower bounds that show that a polynomial number
of passes are necessary for solving some fundamental graph prob-
lems in the streaming model of computation. For instance, we show
that any streaming algorithm that finds a weighted minimum s-¢
cut in an n-vertex undirected graph requires n2-o() space unless it

Q1)

makes n>*'") passes over the stream.

To prove our lower bounds, we introduce and analyze a new
four-player communication problem that we refer to as the hidden-
pointer chasing problem. This is a problem in spirit of the standard
pointer chasing problem with the key difference that the pointers
in this problem are hidden to players and finding each one of them
requires solving another communication problem, namely the set
intersection problem. Our lower bounds for graph problems are then
obtained by reductions from the hidden-pointer chasing problem.

Our hidden-pointer chasing problem appears flexible enough to
find other applications and is therefore interesting in its own right.
To showcase this, we further present an interesting application of
this problem beyond streaming algorithms. Using a reduction from
hidden-pointer chasing, we prove that any algorithm for submodu-
lar function minimization needs to make n2~°® value queries to
the function unless it has a polynomial degree of adaptivity.
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1 INTRODUCTION

Graph streaming algorithms are algorithms that solve computa-
tional problems on graphs, say, finding a maximum matching, when
the input is presented as a sequence of edges, under the usual con-
straints of the streaming model, namely sequential access to the
stream and limited memory. Formally, in the graph streaming model,
the edges of a graph G(V, E) are presented one by one in an arbi-
trary order. The algorithm can make one or a limited number of
sequential passes over this stream, while using a small memory to
process the graph, preferably O(n - polylog(n)) memory, referred to
as semi-streaming restriction [58] (n is the number of vertices in G).
It turns out allowing for multiple passes over the stream greatly
enhances the capability of graph streaming algorithms. A striking
example is the (global) minimum cut problem: While Q(n?) space is
needed for computing an exact minimum cut in a single pass [113],
arecent result of [104] implies that a minimum cut of an undirected
unweighted graph can be computed in 0o(n) space in only two
passes over the stream'. Several other examples of this phenome-
non include algorithms for triangle counting [29, 87], approximate
matching [82, 93], single-source shortest path [28, 59], maximal
independent set [11, 61], and minimum dominating set [13, 70].
Multi-pass streaming algorithms have been gaining increasing
attention in recent years and for many well-studied graph problems,
space efficient algorithms have been designed that use at most a log-
arithmic number of passes (see, e.g. [3, 4, 28, 29, 41, 52, 58, 66, 70, 73,
80, 82-84, 93, 95, 106]). But for many other problems, such results
have proved elusive. Examples include shortest path and diameter
computation [89], random walks [90], and directed reachability
and maximum flow [94] (see also [91]). At the same time, known
techniques for proving streaming lower bounds are unable to prove
essentially any bounds beyond logarithmic number of passes (see
Section 1.1 for an exception to this rule and the inherent limitation
behind it). For example, the best known lower bounds for several
key problems such as shortest path, directed reachability, and per-

. . logn . .
fect matchings, only imply Q(w) passes for semi-streaming
algorithms [59, 66], while none of these problems so far admit an
algorithm with n2=) space and n°® passes.

! The result of [104] is not stated as a streaming algorithm. However, the algorithm

in [104] combined with the known graph streaming algorithms for cut sparsifiers (see,
e.g. [94]) immediately imply the claimed result.
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Our goal in this paper is to remedy this situation by presenting
new tools for proving stronger multi-pass graph streaming
lower bounds. To better understand the challenges along the way,
we first briefly revisit the current state-of-affairs.

1.1 Landscape of Graph Streaming Lower
Bounds

A vast body of work in graph streaming lower bounds concerns al-
gorithms that make only one or a few passes over the stream. Exam-
ples of single-pass lower bounds include the ones for diameter [59],
approximate matchings [14, 15, 62, 82], exact minimum/maximum
cuts [113], and maximal independent sets [11, 46]. Examples of
multi-pass lower bounds include the ones for BFS trees [59], per-
fect matchings [66], shortest path [66], and minimum vertex cover
and dominating set [70]. These lower bounds are almost always
obtained by considering communication complexity of the problem
with limited number of rounds of communication which gives a
lower bound on the space complexity of streaming algorithms with
proportional number of passes to the limits on rounds of commu-
nication (see e.g. [6, 65]). The communication lower bounds are
then typically proved via reductions from (variants of) the pointer
chasing problem [39, 100, 101] for multi-pass lower bounds and
the indexing problem [2, 85] and boolean hidden (hyper-)matching
problem [60, 108] for single-pass lower bounds.

In the pointer chasing problem, Alice and Bob are given func-
tions f,g : [n] — [n] and the goal is to compute f(g(-- - £(g(0))))
for k iterations. Computing this function in less than k rounds re-
quires Q(n/k) communication [112] (see also [51, 100-102]). The
reductions from pointer chasing to graph streaming lower bounds
are based on using vertices of the graph to encode [n] and each edge
to encode a pointer [59, 66]. Directly using pointer chasing does
not imply lower bounds stronger than Q(n) and hence variants of
pointer chasing with multiple pointers such as multi-valued pointer
chasing [59, 77] and set pointer chasing [66], were considered. Us-
ing multiple pointers however has the undesired side effect that the
lower bound deteriorates exponentially with number of rounds. As
such, these lower bounds do not go beyond O(log n) passes even
for algorithms with O(n) space.

There are however a number of results that prove lower bounds
for a very large number of passes (even close to n). Examples include
lower bounds for approximating clique and independent set [69],
approximating dominating set [9], computing girth [59], estimating
the number of triangles [25, 29, 47, 79], and finding minimum vertex
cover or coloring [1]. These results are all proven by considering the
communication complexity of the problem with no limits on rounds
of communication. Such bounds then imply lower bounds on the
product of space and number of passes of streaming algorithms
(see, e.g. [6]). The communication lower bounds themselves are
proven by reductions from a handful of communication problems,
mainly the set disjointness problem [16, 24, 81, 103].

This approach suffers from two main drawbacks. Firstly, these
lower bounds only exhibit space bounds that scale with the re-
ciprocal of the number of passes and are hence unable to capture
more nuanced space/pass trade-offs. More importantly, there is an
inherit limitation to this approach since the computational model
considered here is much stronger than the streaming model. This

266

Sepehr Assadi, Yu Chen, and Sanjeev Khanna

means that many problems of interest admit efficient communica-
tion protocols in this model and hence one simply cannot prove
interesting lower bounds for them. An illustrating example is the
directed s-t reachability problem which admits an O(n) communica-
tion protocol, ruling out the possibility of essentially any non-trivial
lower bound using this approach (even “harder” problems such as
maximum matching admit non-trivial protocols with O(n%/2) com-
munication [50, 74]).

1.2 Our Contributions

We introduce and analyze a new communication problem simi-
lar in spirit to standard pointer chasing, which we refer to as the
hidden-pointer chasing (HPC) problem. What differentiate HPC
from previous variants of pointer chasing is that the pointers are
“hidden” from players and finding each one of them requires solv-
ing another communication problem, namely the set intersection
problem, in which the goal is to find the unique element in the
intersection of players input. We limit ourselves to the following
informal definition of HPC here and postpone the formal definition
to Section 3.1. There are four players in HPC paired into groups of
size two each. Each pair of players inside a group shares n instances
of the set intersection problem on n elements. The intersecting
element in each instance of each group “points” to an instance in
the other group. The goal is to start from a fixed instance and follow
these pointers for a fixed number of steps. We prove the following
communication complexity lower bound for HPC.

REsurT 1. Any r-round protocol that with constant proba-
bility finds the (r + 1)-th pointer in the hidden-pointer chasing
problem requires Q(n*/r%) communication.

Result 1 implies a new approach towards proving graph stream-
ing lower bounds that sits squarely in the middle of previous meth-
ods: HPC is a problem that admits an “efficient” protocol when
there is no limit on rounds of communication and yet is “hard” with
even a polynomial limitation on number of rounds. We use this
result to prove strong pass lower bounds for some fundamental
problems in graph streams via reductions from HPC.

Cut and Flow Problems. One of the main applications of Result 1
is the following result.

RESULT 2. Any p-pass streaming algorithm that with a constant
probability outputs the minimum s-t cut value in a weighted graph
(undirected or directed) requires Q(n?/p°) space.

Prior to our work, the best lower bound known for this problem
was an n!T1/p) space lower bound for p-pass algorithms [66]
(for weighted undirected graphs and unweighted directed graphs).
Result 2 significantly improves upon this. In particular, it implies
that Q(n!/%) passes are necessary for semi-streaming algorithms,
exponentially improving upon the Q(blgol%) lower bound of [66].
At the same time, Result 2 also shows that any streaming algorithm
for this problem with a small number of passes, namely polylog(n)
passes, requires Q(n?) space, almost the same space as the trivial

single-pass algorithm that stores the input graph entirely.
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Our Result 2 should be contrasted with the results of [104] that
imply an O(n®/?) space algorithm for unweighted minimum s-¢ cut
on undirected graphs in only two passes (see Footnote 1).

By max-flow min-cut theorem, Result 2 also implies identical
bounds for computing the value of maximum s-t flow in capacitated
graphs, making progress on a question raised in [94] regarding the
streaming complexity of maximum flow in directed graphs.

Lexicographically-First Maximal Independent Set. A maximal in-
dependent set (MIS) returned by the sequential greedy algorithm
that visits the vertices of the graph in their lexicographical order
is called the lexicographically-first MIS. We prove the following
result for this problem.

RESULT 3. Any p-pass streaming algorithm that with constant
probability finds a lexicographically first maximal independent set of
in a graph requires Q(n? /p°) space.

The lexicographically-first MIS has a rich history in computer
science and in particular parallel algorithms [5, 30, 44, 92]. How-
ever, even though multiple variants of the independent set problem
have been studied in the streaming model [11, 45, 46, 61, 67-69], we
are not aware of any work on this particular problem (we remark
that standard MIS problem admits an O(n) space O(log log n) pass
algorithm [61]). Besides being a fundamental problem in its own
right, what makes this problem appealing for us is that it nicely
illustrates the power of our techniques compared to previous ap-
proaches. The lexicographically-first MIS can be computed with
O(n) communication in the two-player communication model (or
for any constant number of players) with no restriction on number
of rounds by a direct simulation of the sequential algorithm. Hence,
this problem perfectly fits the class of problems for which previous
techniques cannot prove lower bounds beyond logarithmic passes.
To our knowledge, this is the first super-logarithmic pass lower
bound for any graph problem that admits an efficient protocol with
no restriction on number of rounds.

Beyond Graph Streams: An Application to Submodular Minimization.
We also use Result 1 to prove query/adaptivity tradeoffs for the
submodular function minimization (SFM) problem. In SFM, we have
a submodular function f : 2lnl — [M] and our goal is to find a
set $* C [n] that minimizes f(S*) by making value queries to f.
SFM has been studied extensively over the years [42, 48, 63, 75,
76, 88, 107], culminating in the currently best algorithms of [88]
and [42] with O(n?) and O(n - M?3) queries, respectively. The best
lower bound for SFM is Q(n) queries [71, 72] and determining
the query complexity of this problem remains a fascinating open
question [72, 104].

Another question in this area that has received a significant
attention in recent years is to understand the query/adaptivity
tradeoffs in submodular optimization [17-22, 54-57]. An algorithm
for SFM is called k-adaptive iff it makes at most k rounds of adaptive
queries, where the queries in each round are performed in parallel.
We prove the following result using a reduction from HPC.

RESULT 4. For any constant § € (0, 1), there exists an ¢ := &(5) in
(0, 1) such that any algorithm for submodular function minimization
on a universe of size N with query complexity N9 requires at least
N¥ rounds of adaptive queries to succeed with constant probability.
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The only other adaptivity lower bound for SFM that we are
aware of is an exponential lower bound on query complexity of
non-adaptive algorithms (even for approximation) [21]. However,
once we allow even two rounds of adaptivity, no lower bounds
better than Q(n) queries were known.

1.3 Our Techniques

Our reductions in this paper take a different path than previous
pointer chasing based reductions that used edges of the graph to
directly encode pointers. In particular, our hidden-pointer chasing
problem allows us encode a single pointer among ©(n) edges and
thus work with graphs with density Q(n?) and still keep a polyno-
mial dependence on number of rounds in the communication lower
bound. This results in space lower bounds of the form n?/ po(1> for
p-pass streaming algorithms.

The main technical contribution of our paper is the communi-
cation complexity lower bound for HPC in Result 1. This result is
proved by combining inductive arguments for round/communication
tradeofTs (see, e.g. [100, 112]) with direct-sum arguments for infor-
mation complexity (see, e.g. [24, 26, 31, 36]) to account for the role
of set intersection inside HPC. To make this argument work, we
also need to prove a stronger lower bound for set intersection than
currently known results (see, e.g. [37]). In particular, we prove that
any protocol that can even slightly reduce the “uncertainty” about
the intersecting element must have a “large” communication and
information complexity.

Our new lower bound for set intersection is also proved using
tools from information complexity to reduce this problem to a prim-
itive problem, namely set intersection itself on a universe of size
two. This requires a novel argument to handle the protocols for
set intersection that reduce the uncertainty about the intersecting
element without necessarily making much “progress” on finding
this element. Another challenge is that unlike typical direct-sum re-
sults in this context, say reducing disjointness to the AND problem;
see, e.g. [24, 32, 34, 109], set intersection cannot be decomposed
into independent instances of the primitive problem (this is similar-
in-spirit to challenges in analyzing information complexity of set
disjointness on intersecting distributions [43, 78] as opposed to
(more standard) non-intersecting ones). Finally, we prove a lower
bound for the primitive problem using the product structure of
Hellinger distance for communication protocols (see, e.g. [24, 109]).

1.4 Further Related Work

Understanding space/pass tradeoffs for streaming algorithms dates
all the way back to the early results on median-finding [98] more
than four decades ago and has remained a focus of attention since;
we refer the reader to [38, 39, 64, 65] and references therein.

A closely related line of work to graph streaming algorithms
that have received a significant attention in recent years is on
streaming algorithms for submodular optimization and in particular
set cover and maximum coverage [9, 12, 13, 27, 40, 41, 49, 53, 70, 86,
96, 105]. Particularly relevant to our work, [41] uses a reduction
from the multi-party tree pointer chasing problem [39] to prove an

Q(%) pass lower bound for approximating set cover with m
sets and n elements using O(n - poly {log n, log m}) space (this can

also be interpreted as a lower bound for the edge-cover problem
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on hyper-graphs with n vertices and m hyper-edges in the graph
streaming model). For the set cover problem, a lower bound of
Q(M) space for p-pass streaming a-approximation algorithms
is established in [9] using a reduction from the set disjointness
problem (this can also be interpreted as a lower bound for the
dominating set problem on graphs with n = m vertices in the graph
streaming model).

Similar-in-spirit round/communication tradeoffs for distributed
computation of many graph and related problems have also been

studied in the literature [7, 8, 12, 33, 35, 50]. For example, [35]
logn
loglogn
communication that can approximate matchings in a communica-

tion model in which players correspond to vertices of an n-vertex

proves an Q( ) round lower bound for protocols with low

graph. Similarly, [12] proves an Q(b;%) round lower bound for
constrained submodular maximization in a communication model
where n elements of a universe are partitioned between the players.

Adaptivity lower bounds for submodular optimization [17-22,
54-57] is another topic related to our work. For example, [22] proves
that Q(lolgol%) rounds of adaptivity are necessary for constrained
submodular maximization with polynomial query complexity. Ad-
ditionally, [21] proved that no non-adaptive algorithm can obtain a
better than 1/2 approximation to submodular minimization with
polynomially many queries. Finally, if one goes (way) beyond sub-
modular optimization and considers minimizing a non-smooth
convex function, then an ﬁ(nl/ 3) lower bound on rounds of adap-
tivity is known for any algorithm that makes polynomially many
queries [23, 99].

Organization. The rest of the paper is organized as follows. We set
up our notation in Section 2. Section 3 contains a detailed tech-
nical overview of our approach, including the definition of the
hidden-pointer chasing (HPC) problem (Section 3.1), a sketch of
the reduction from HPC for proving Result 2 (Section 3.1), and the
proof sketch of the communication lower bounds for HPC (Sec-
tion 3.3) and (a new variant of) set intersection (Section 3.4). Finally,
Section 4, presents the proof of Result 1 which is the main technical
result of this paper. Due to space limitations, we only present the
high level overview of the proofs here and postpone most of the
formal arguments to the full version of the paper [10].

2 PRELIMINARIES

Notation. For any integer a, we define [a] := {1,...,a}. For a
tuple (X1, ...,X,) and integer i € [n], X! := (X1,...,Xj—1) and
X_i=(X1,...,Xi-1,Xi+1, - - - » Xn). We use capital ‘san-serif” font

to denote the random variables, e.g. X. Us denotes the uniform
distribution over S.

For random variables X, Y, H(X) denotes the Shannon entropy
of X and I(X; Y) denotes the mutual information. For distributions
1, v, D(u || v) denotes the KL-divergence, Aty (y, v) denotes the total
variation distance, and h(y, v) denotes the Hellinger distance. Nec-
essary background on information theory, including the definitions
and basic tools, is provided in the full version of the paper [10]

Communication Complexity and Information Complexity. We con-
sider the standard communication model of Yao [110]. We use ©
to denote the protocol used by players and use CC () to denote
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the communication cost of 7 defined as the worst-case bit-length
of the messages communicated between the players. We further
use internal information cost [26] for protocols that measures the
average amount of information each player learns about the input
of the other in the protocol, defined formally as follows. Consider
an input distribution O and a protocol 7. Let (X,Y) ~ D and II
denote the random variables for the inputs and the transcript of the
protocol (including the public randomness). The information cost of
7 with respect to D is ICp () :=Ip(I1; X | Y) + Ip(II;Y | X). As
one bit of communication can only reveal one bit of information,
information cost of a protocol lower bounds its communication
cost (see, e.g. [36] or the full version of the paper [10]).

We provide further relevant background and definitions on com-
munication complexity and information complexity in the full ver-
sion of the paper [10].

Set Intersection Problem. We use the set intersection problem in
construction of our HPC problem. Set intersection (Set-Int) is a
two-player communication problem in which Alice and Bob are
given sets A and B from [n], respectively, with the promise that
there exists a unique element ¢ such that {t} = AN B. The goal is
for players to find the target element t. An Q(n) communication
lower bound for Set-Int follows directly from lower bounds for set
disjointness [24, 32, 34, 81, 103]; see, e.g. [37] (this lower bound by
itself is however not useful for our application).

3 TECHNICAL OVERVIEW

We start with defining the hidden-pointer chasing (HPC) problem
and briefly discuss a reduction from HPC that establishes the lower
bound for minimum cut problem in Result 2. We then sketch the
proof of the communication lower bound for HPC in Result 1. Along
the way, we also present a new lower bound for set intersection that
is needed for establishing Result 1. We emphasize that this section
oversimplifies many details and the discussions will be informal
for the sake of intuition.

3.1 The Hidden-Pointer Chasing Problem

The hidden-pointer chasing (HPC) problem is a four-party com-
munication problem with players P4, Pg, Pc, and Pp. Let X :=
{x1,...,xp}and Y := {y1,...,yn} be two disjoint universes.

(1) For any x € X, P4 and Pp are given an instance (Ay, By)
of Set-Int over the universe Y where Ay N By = {ix} for
tx €Y.

(2) Similarly, for any y € Y, Pc and Pp are given an instance
(Cy, Dy) of Set-Int over the universe X where Cy N Dy =
{ty} forty € X.

(3) We define two mappings fap: X - Y and fep: Y - X

such that:
(a) for any x € X, fap(x) = tx € Y in the instance (Ay, By)
of Set-Int.
(b) forany y € Y, fcp(y) = ty € X in the instance (Cy, Dy)
of Set-Int.

(4) Let x1 € X be an arbitrary fixed element of X known to all
players. The pointers zg, z1, 22, 23, . . . are defined inductively
as follows: zg := x1,z1 := fap(z0),22 = fcp(z1),23 :

faB(z2), - .
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X: | «1 B0 ;x,-x{/ SN *n
7 400 i et e
Cyr /Dy,
Ax, \ By,
Y: |0 7 ; Yn
K:////
(a) The sets Ay,,Bx; € Y of P4 and Pp for x; € X, and

Cy,» Dy, € X of Pc and Pp, for y; € Y.
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X: X1 Xi Xn
5 ®
(@)
Y: |0 Yj Yn

(b) zo = x1, z1 = y1, 22 = Xxi, 23 = Y, implying that the answer to

HPCj3 in this example is y;.

Figure 1: Illustration of the HPC problem.

The k-step hidden-pointer chasing problem (HPCy) is defined as
the communication problem of finding the pointer zj. See Figure 1
for an illustration.

We define a phase (similar to a round) for protocols that solve
HPC. In an odd (resp. even) phase, only Pc and Pp (resp. P4 and
Pp) are allowed to communicate with each other, and the phase
ends once a message is sent to P4 or Pg (resp. Pc or Pp). A protocol
is called a k-phase protocol iff it uses at most k phases.

It is easy to see that in k + 1 phases, we can compute HPCy
with O(k - n) total communication by solving the Set-Int instances
corresponding to zo, z1,. .., 2, one at a time in each phase. We
prove that if we only have k phases however, solving HPC. requires
a large communication.

THEOREM 1. Any k-phase protocol that outputs the correct solution
to HPCy. with constant probability requires Q(n?/k? + n) bits of
communication.

We give a proof sketch of the Q(n?/k?) term in Theorem 1 in
Section 3.3 (the Q(n) term follows immediately from set intersection
lower bound). Before that, we show an application of this result
in proving graph streaming lower bounds to illustrate our general
approach.

3.2 A Streaming Lower Bound for Minimum
Weighted s-t Cut Problem

We sketch the proof of Result 2 for directed graphs in this sec-
tion. The proof is by a reduction from HPC. We show how to turn
any instance of HPCy. for k > 1 into a weighted directed graph G
such that the minimum s-t cut weight in G determines the pointer
zg in HPCy. The rest of the proof then follows by standard argu-
ments that relate communication complexity to space complexity
of streaming algorithms. For the purpose of this proof, it would
be more convenient to consider the maximum s-t flow problem
instead and then use min-cut max-flow duality.

The high level construction of G is as follows. The vertices in
graph G consists of k + 1 layers each of size n plus source and
sink vertices s and t. The even layers of this graph correspond to
elements in X while the odd layers correspond to Y. The edges
between the layers are then created by using the sets in the instances
of Set-Int inside the HPC}. problem. The idea is to place the edges
such that each vertex corresponding to x; (resp. y;) in an even layer
(resp. odd layer) can send a “larger” flow to the vertex corresponding
to the target element of the instance (A, By, ) (resp. target element
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of (Cy;, Dy,)) than any other vertex in the next layer. By choosing
the weight of edges carefully and adding some extra gadgets, we
ensure that the maximum s-t flow should route the flow from s along
the path that corresponds to pointers zg, z1, . . ., zx. The vertices in
the last layer have capacities that encode their identity and hence
the maximum s-¢ flow value in this graph reveals the identity of zj.,
thus solving HPC. See Figure 2 for an illustration.

It is now easy to show that any (k/3)-pass streaming algorithm
for minimum weighted s-t cut with space S can be turned into
a k-phase protocol for HPCy with communication cost O(k - S)
using this reduction. As the graph G constructed above has O(k - n)
vertices, we obtain the desired lower bound in Result 2 by the
communication complexity lower bound for HPC in Theorem 1.

The formal proof of Result 2 as well as the other reductions that
establish Results 3 and 4 appear in the full version of the paper [10].

3.3 Communication Complexity of
Hidden-Pointer Chasing

We now sketch the proof of Theorem 1 which is the main technical
contribution of this paper. Let Dg; be a hard distribution on in-
stances (A, B) for Set-Int. In this distribution A and B are each sets
of size almost n/3 such that they intersect in a unique element in the
universe chosen uniformly at random. We define the distribution
Dypc over inputs of HPC as the distribution in which all instances
(Ax,Bx) and (Cy, Dy) for x € X and y € Y are sampled indepen-
dently from Dg (note that Dyypc is not a product distribution as
Dy is not a product distribution).

Fix any k-phase deterministic protocol 7pypc for HPCy through-
out and suppose towards a contradiction that CC (ypc) = o(n?/k?)
(the lower bound extends to randomized protocols by Yao’s mini-
max principle [111]). For any j € [k], we define II; as the set of all
messages communicated by zypc in phase jand IT := (114, . .., II;)
as the transcript of the protocol mypc. We further define Z =
(z1,...,2x), Ej = (I1<J,Z<J) for any j > 1, and E; z9. We
think of E; as the information “easily known” to players at the
beginning of phase j. The main step of the proof of Theorem 1 is
the following key lemma which we prove inductively.

LEMMA 3.1 (INFORMAL). Forallj € [k]:
E [ATv(dist(Zj | Ej.11)). dist(Zj))] = o(1).
E;T;)
Lemma 3.1 states that if the communication cost of a protocol is
“small”,i.e.,is o(n2 / kz), then even after communicating the messages
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Figure 2: Illustration of the graph in the reduction for minimum s-t cut from HPC3 with n = 5. The black (thin) edges form input-
independent gadgets while blue, red , brown, and green (thick) edges depend on the inputs of P4, Pg, Pc, and Pp, respectively.

Marked nodes denote the vertices corresponding to pointers zo, . .

., z3. The input-dependent edges incident on “non-pointer”

vertices are omitted. This construction has parallel edges but they can be removed; see the full version [10].

>

in the first j phases of the protocol, distribution of z; is still “close’
to being uniform. This in particular implies that at the end of the
protocol, i.e., at the end of phase k, the target pointer z. is essentially
distributed as in its original distribution (which is uniform over Y
or X depending on whether k is odd or even). Hence wppc should
not be able to find zj. at the end of phase k. The proof of Theorem 1
follows easily from this intuition.

Proof Sketch of Lemma 3.1. The first step of proof is to show that
finding the target element of a uniformly at random chosen instance
of Set-Int (as opposed to an instance corresponding to any particular
pointer) in HPC is not possible with low communication. For any
x € Xandany y € Y, define the random variables T, € Y and T €
X, which correspond to the target elements of Set-Int on (Ax, Bx)
and (Cy, Dy), respectively. The following lemma formalizes the
above statement. For simplicity, we only state it for Ty for x ~ U x;
an identical bound also hold for Ty, fory ~ Uy.

LEmMA 3.2 (INFORMAL). For j € [k]:

(E,I,En_,->x~% . [Arv(dist(Ty | Ej, ITj), dist(Ty))| = o(1).

Let us first see why Lemma 3.2 implies Lemma 3.1. The proof is
by induction. Consider some phase j € [k] and suppose j is odd by
symmetry. The goal is to prove that distribution of Z; conditioned
on (E;,IIj) = (z1,...,zj-1,11,...,1Ij—1,1I}) is close to original
distribution of Z; (on average over choices of (Ej, II;)). Notice that
since we assumed j is odd, Z; is a function of the inputs to P4 and
Pg. On the other hand, in an odd phase, only the players Pc and
Pp communicate and hence II; is a function of the inputs to these
players. Conditioning on E; and using the rectangle property of
deterministic protocols, together with the fact that inputs to P4, Pg
are independent of inputs to Pc, Pp, implies that Z; 1 II; | E;. We
now have:

(i) Conditioned on zj_1, Z; is the target element of the instance
(Azjy Bz ) ie, Zj =T, .

(ii) zj— itself is distributed according to dist(Z;—1 | Ej-1,1Ij-1)
(because we removed the conditioning on II; by the above
argument).
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(iii) dist(Zj—1 | Ej-1,1Ij-1) is close to the uniform distribution

by induction.

As such we can now simply apply Lemma 3.2 (by replacing x
with z;_; since they essentially have the same distribution) and
obtain that distribution of Z; = T;, | with and without conditioning
on (Ej,II;) is almost the same (averaged over choices of (Ej, I1;)),
proving the lemma.

Proof Sketch of Lemma 3.2. The proof of this lemma is based
on a direct-sum style argument combined with a new result that
we prove for Set-Int. The direct-sum argument implies that since
x is chosen uniformly at random from n elements in X, and pro-
tocol zypc is communicating o(n?) bits in total, then it can only
reveal o(n) bits of information about the instance (A, Bx). This
part follows the standard direct-sum arguments for information
complexity (see, e.g. [26, 36]) but we also need to take into account
that if x is one of the pointers we conditioned on in Ej, then 7Hpc
may reveal more information about (A, By ); fortunately, this event
happens with negligible probability for k < n and so the argument
continues to hold.

By above argument, proving Lemma 3.2 reduces to showing that
if a protocol reveals o(n) bits of information about an instance of
Set-Int, then the distribution of the target element varies from the
uniform distribution in total variation distance by only o(1). This is
the main part of the proof of Lemma 3.2 and is precisely the content
of our next technical result in the following section.

3.4 A New Communication Lower Bound for
Set Intersection

We say that a protocol 7g e-solves Set-Int on the distribution Dg)
iff it can alter the distribution of the target element from its original
distribution by at least ¢ in total variation distance, i.e.,

E

IIs)~IIs

Ary(dist(T | Tg)), dist(T))] >

Here ITg; and T are the random variables for the transcript of the
protocol (including public randomness) and the target element,
respectively.
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To finish the proof of Lemma 3.2, we need to prove that a pro-
tocol that Q(1)-solves Set-Int has Q(n) communication cost (even
information cost). Note that ¢-solving is an algorithmically simpler
task than finding the target element. For example, a protocol may
change the distribution of T to having (1+¢)/n probability on n/2 el-
ements and (1—¢)/n probability on the remaining n/2. This e-solves
Set-Int yet the target element can only be found with probability
(1 + €)/n in this distribution. On the other hand, any protocol that
finds the target element with probability p € (0, 1) also p-solves
Set-Int. Because of this, the lower bounds mentioned in Section 2
for set intersection do not suffice for our purpose. Instead, we prove
the following theorem in this paper.

THEOREM 2. Any protocol rrs| that e-solves Set-Int on distribution
Ds has internal information cost IC p (75)) = Q(? - n).

As information cost lower bounds communication cost, Theo-
rem 2 also proves a communication lower bound for Set-Int (al-
though we need the stronger result for information cost in our
proofs). By our discussion earlier, Theorem 2 can be used to finalize
the proof of Lemma 3.2 (and hence Theorem 1). We now give an
overview of the proof of Theorem 2.

For an instance (A, B) of Set-Int, with a slight abuse of notation,
we write A := (a1, ...,an) and B := (b1, ..., by) for a;, b; € {0,1}
as characteristic vector of the sets given to Alice and Bob. Under
this notation, the target element corresponds to the unique index
t € [n] such that (a;, b;) = (1, 1). The proof of Theorem 2 is based
on reducing Set-Int to a special case of this problem on only 2
coordinates, which we define as the Pair-Int problem. In Pair-Int,
Alice and Bob are given (x1, x2) and (y1, y2) in {0, 1} and their goal
is to find the unique index k € {1, 2} such that (xg, y) = (1,1). We
use Dp to denote the hard distribution for this problem which is
equivalent to Dg| for n = 2.

Given a protocol rg| for e-solving Set-Int on Ds|, we design a
protocol rp| for finding the index k in instances of Pair-Int sampled
from Dp| with probability 1/2 + Q(e). The reduction is as follows.

Reduction: Alice and Bob publicly sample i,j € [n] uniformly
at random without replacement. Then, Alice sets a; x1 and
aj = x2 and Bob sets b; = y; and b; = yz, using their given
inputs in Pair-Int. The players sample the remaining coordinates
of (A, B) in [n] \ {i,j} using a combination of public and private
randomness that we explain later in the proof sketch of Lemma 3.4.
This sampling ensures that the resulting instance (A, B) of Set-Int
is sampled from Dg) such that its target element is i when k = 1
and is j when k = 2. After this, the players run the protocol g
on (A, B) and let ITg| be the transcript of this protocol. Using this,
Bob computes the distribution dist(T | ITs}) = (p1, . ..,pn) which
assigns probabilities to elements in [n] as being the target element.
Finally, Bob checks the value of p; and pj and return k = 1if p; > p;
and k = 2 otherwise (breaking the ties consistently when p; = p;).
The remainder of the proof consists of three main steps:

(i) Proving the correctness of protocol 7p;:

LEmMA 3.3 (INFORMAL). Protocol wp| outputs the correct an-
swer with probability % + Q(e).

(ii) Proving an upper bound on “information cost” of 7p; (the
reason for quotations is that strictly speaking this quantity
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is not the information cost of 7p| but rather a lower bound
for it).

LEMMA 3.4 (INFORMAL). Let Ilp| denote the random variable
for the transcript of the protocol mp) and K be the random
variable for the index k in distribution Dp|. We have,

Ipp, (X1, X253 1Ipy | Y1, Y2, K)
1
+ 1, (Y1, Y23 1py | X1, X2,K) < pl IC pg, (s1).

(iii) Proving a lower bound on “information cost” (as used in Part
(ii)) of protocols for Pair-Int:

LEMMA 3.5 (INFORMAL). If ztp| outputs the correct answer on
Dp| with probability at least% + Q(e), then,

HDP[(XI’ X2 ;HP| | Yl,YZ, K)
+ I (Y1, Y23 Ipy | X1, X2, K) = Q(e?).

By Lemma 3.4, IC p, (75)) is Q(n) times larger than LHS of Lemma 3.5,
and this, combined with Lemma 3.3, implies that information cost
of 51 needs to be Q(¢2) - Q(n), proving Theorem 2.

Proof Sketch of Lemma 3.3. Let us again consider a protocol 7g)
such that dist(T | ITs)) is putting (1 + ¢)/n mass over n/2 elements
and (1 — ¢)/n mass on the remaining ones. Suppose that the correct
answer to the instance of Pair-Int is index 1. We know that in this
case, the index i chosen by zp; will be the target index t in the
instance (A, B). A key observation here is that the index j however
can be any of the coordinates in instance (A, B) other than the
target element with the same probability. As such, parameters p;
and p; used to decide the answer in 7p| are distributed as follows:
pi is sampled from dist(T | IIs;) and hence has value (1 + ¢)/n with
probability (1 + ¢€)/2 and (1 — ¢)/n with probability (1 — £)/2. On
the other hand, p; is chosen uniformly at random from (p1, ..., pn)
and hence is (1 + ¢)/n or (1 — ¢)/n with the same probability of half.
Thus p; > p; with probability 1/2 + Q(¢) and hence zp| has Q(¢)
advantage over random guessing.

The proof of Lemma 3.3 then formalizes the observations above
and extend this argument to any protocol g that e-solves Set-Int
no matter how it alters the distribution of the target element.

Proof Sketch of Lemma 3.4. We first note that the LHS in Lemma 3.4
is not the internal information cost of zp; due to further condi-
tioning on K (this can only be smaller than IC g, (rp;)). Hence,
Lemma 3.4 is proving a “weaker” statement than a direct-sum re-
sult for information cost of zp|. The reason for settling for this
weaker statement has to do with the fact that the coordinates in
distribution Dg) are not chosen independently.

The intuition behind the proof'is as follows. The LHS in Lemma 3.5
is the information revealed about the input of players (in Pair-Int)
averaged over choices of k = 1 and k = 2. Let us assume k = 1
by symmetry. In this case, this quantity is simply the information
revealed about (x2, y2) by the protocol as (x1,y1) = (1, 1) and hence
has no entropy. However, when k = 1, (x2, y2) is embedded in index
J»ie., (x2,y2) = (aj, bj) and has the same distribution as all other
coordinates in A_;, B_;. As such, since the protocol g called inside
7p| is oblivious to the choice of j, the information revealed about
(aj, bj) in average is smaller than the information revealed by 7g)
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ar| az | x1 Yaglas’| as | x2 | as
by "z} Y1 } by | bs ['be ) Y2 | b

(a) An example with £ =3 and S = {1,4,5}:
{a1, a4, as, by, be, bg} is sampled publicly.
{ay, as, as} and {by, by, b5 } are sampled privately.
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i T
ar | az } x1 { ag | as [‘@g’] x2 | as
by by v Pbg | bs | be | Y2 | bs

(b) An example with £ = 1and S = {6}:
{as, b1, by, by, bs, bg} is sampled publicly.
{ai, az, a4, as, as} and {bs} are sampled privately.

Figure 3: Illustration of the process of sampling of instances of Set-Int in 7p| for n = 8. In these examples, i = 3 and j = 7 and

hence (a3, a7) = (x1,x2) and (b3, b7) = (y1,y2). of £ and S.

about A_;, B_; (which itself is at most the information cost of 7s;)
by a factor of n — 1.

This outline oversimplifies many details. One such detail is the
way of ensuring a “symmetric treatment” of both indices i and j.
This is crucial for the above argument to work for both k = 1 and
k = 2 cases simultaneously, without the players knowing which
index the “averaging” of information is being done for (index j
in the context of the discussion above). The key step in making
this information-theoretic argument work is the following public-
private sampling: Alice and Bob use public randomness to pick
an integer ¢ € [n — 2] uniformly at random and then pick a set S
of size ¢ uniformly at random from [n] \ {i,j}. Next, the players
sample ay and by for i’ € S and j* € ([n] \ {i,j}) \ S from Dy
again using public randomness. Finally, each player samples the
remaining coordinates in the input using private randomness from
Ds). Figure 3 gives an example.

Proof Sketch of Lemma 3.5. Let I [y x,, 4,y,] denote the transcript
of the protocol condition on the inputs (x1, x2) and (y1, y2) to Al-
ice and Bob. Suppose towards a contradiction that the LHS of
Lemma 3.5 is o(e2). By focusing on the conditional terms when
k =1, we can show that distribution of II[; x4 1] and I X7 1]
for all choices of (x3,y3) and (x;’,y;') in the support of Dp are
quite close. This is intuitively because the information revealed
about (x2,y2) by 7p) conditioned on k = 1 is small (the same result
holds for 1, y1) and g g1y by k=2 terms).

Up until this point, there is no contradiction as the answer to
inputs (1, %),(1, *) to Alice and Bob is always 1 and hence there is no
problem with the corresponding transcripts in Iy, 1.] to be sim-
ilar (similarly for I}, .1] separately). However, we combine this
with the cut-and-paste property of randomized protocols based on
Hellinger distance to argue that in fact the distribution of ;¢ 19
and IIjg;, 1] are also similar. This then implies that IT[;, 1.] has
almost the same distribution as II[.;, «1}, and now this is a contra-
diction as the answer to the protocol (a function of the transcript)
needs to be different between these two types of inputs.

This concludes the high-level overview of our proofs (for more
details, see the full version of the paper [10]).
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4 COMMUNICATION COMPLEXITY OF
HIDDEN-POINTER CHASING

We give the proof of Theorem 1 in this section. We start with
defining our hard distribution of instances for HPC. and then use
this distribution to prove the lower bound.

A Hard Distribution for HPC. The hard distribution for HPC is
simply the product of distribution D for every x € X and y € Y.

Distribution Dypc on tuples (A, B, C, D) from the universes X
and V:
(1) For any x € X, sample (Ay, Bx) ~ Ds| from the universe
Y independently.
(2) For any y € Y, sample (Cy, Dy) ~ Ds) from the universe
X independently.

The following simple observation is in order.

OBSERVATION 4.1. Distribution Dypc is not a product distribution.
However, in this distribution:

(i) The inputs to P4 and Pg are independent of the inputs to Pc
and Pp, i.e, (A,B) L (C,D).

(ii) For any x € X, (Ax, By) is independent of all other (Ay’, Byx’)
forx" # x € X. Similarly for ally,y’ € Y and (Cy,Dy) and
(Cy. Dy).

Based on this observation, we also have the following simple
property (proof is a simple application of rectangle property of
protocols and is deferred to the full version [10]).

PROPOSITION 4.2. Let nypc be any deterministic protocol for
HPCy on Dypc. Then, for any transcriptIl of typc, (A, B) L (C,D) |
II=1II

4.1 Proof of Theorem 1: A Communication
Lower Bound for HPC,
We prove the lower bound for any arbitrary deterministic protocol

mypc and then apply Yao’s minimax principle [111] to extend it to
randomized protocols as well. We first setup some notation.
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Notation. Fix any k-phase deterministic protocol mypc for HPCy
throughout the proof. We use j = 1 to k to index the phases of
this protocol, as well as the pointers z1,...,z;. For any j € [k],
we define II; as the set of all messages communicated by mpc
in phase j and IT := (IIy, . . ., II) as the transcript of the protocol
THPC-

For any x € X and any y € Y, we define the random variables
Tx € Y and T, € X, which correspond to the target elements of
the Set-Int problem on (Ay, Bx) and (Cy, Dy), respectively.

We further define E; := (II</, Z<) for any j > 1 and E; = z,
i.e., the first pointer. We can think of E; as the information “easily
known” to all players at the beginning of phase j.

The main step of the proof of Theorem 1 is the following key
lemma which we prove inductively.

LEMMA 4.3. Let CC(mypc) := CCyp,pc(mHpc). There exists an
absolute constant ¢ > 0 such that for all j € [k]:

E

=B [ATv(dist(Zj | Ej.11)), dist(Zj))]
jo

\/CC(ﬂ'Hpc) +k- logn +k
n

)

We first use Lemma 4.3 to prove Theorem 1 and then present a
proof of Lemma 4.3.

Sj~c‘(

PROOF OF THEOREM 1 (ASSUMING LEMMA 4.3). The Q(n) term in
the lower bound trivially follows from the Q(n) lower bound for
set intersection (e.g. Theorem 2 with constant ¢). In the following
we prove the first (and the main) term. Note that for this purpose,
we can assume k = o(+/n) as otherwise the dominant term would
already be the second term.

Let ypc be any deterministic protocol for HPCy for k = o(+/n)
with communication cost CC p, . (THpC) = o(n?/k?). Recall that
dist(Zy) = Ux if k is even and dist(Zy) = Uy if k is odd. Let us
assume by symmetry that k is even. By Lemma 4.3, we have,

(EkI,EHk) [ATv(diS’f(Zk | Eg, Hk)»ﬂx)]
<k-c (\/CC(ﬁHpc)+k'10gn+k)
n
Ji k
—kec. (o(%) + o n;’/"i") ‘ o(;))
L PR LT L
n n

as c¢ is an absolute constant.

On the other hand, (Eg, IT;) contains the whole transcript IT of
the protocol and hence the output of the protocol 7pc is fixed
conditioned on (Ey, II}). We use O(Eg, IIx) to denote this output.
We have,

Pr (mypc is correct)

(Ex, 1)
= E Pr  (Zy = O(Eg, )
(Exe,Tge) Zie |(Ee, i)

< E Pr  (Zy = O(Ex,Ig)) + Ary(dist(Zy | Ex, i), Ux)
(Ex,1g) | Ze~Ux
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E
(E k)
Hence, mpc cannot output the correct solution with at least a
constant probability of success, proving the lower bound for deter-
ministic algorithms.

To finalize, we can extend this (distributional) lower bound to
randomized protocols by the easy direction of Yao’s minimax prin-
ciple [111], namely an averaging argument that picks the “best”
randomness of the protocol. This concludes the proof. O

1 1
<4 [ATV(dist(Zk | B ). Ux)| < = +o(1).
n Eq(1) 1

4.2 Proof of Lemma 4.3

The proof of Lemma 4.3 consists of two main steps. We first show
that finding the target element of a uniformly at random chosen
instance of Set-Int (as opposed to the instance corresponding to any
particular pointer) in HPC is not possible unless we make a large
communication. Then, we prove inductively that in each phase j,
the distribution of the pointer z; is close to uniform and hence by
the argument in the first step, we should not be able to find the
target element t;; associated with z; and use this to finalize the
proof. The following lemma captures the first part (we only write
this for x ~ U y; an analogous statement also holds for y ~ U y).

LEMMA 4.4. There exists an absolute constant ¢ > 0 such that for
any j € [k],

E E [Apv(dist(Tyx | Ej,II;), dist(T
(Ej,Hj)x~'LIX[ Tv(dist(T | Ej, IT;), dist( x))]

(\/CC(”HPC)+j'10g"+j
<c-

n
The proof of this lemma is based on a direct-sum style argument
combined with Theorem 2. For intuition, consider a protocol that
uses o(n?) communication in its first j phases and assume by way
of contradiction that it can reduce the LHS of one of the equations
in Lemma 4.4 by Q(1). Using a direct-sum style argument, we can
then argue that the transcript of the first j phases of this protocol
only reveal o(n) bits of information about a uniformly at random
chosen instance (Ay, By ) of Set-Int but is enough to Q(1)-solve the
instance (Ay, Bx), which is in contradiction with our bounds in
Theorem 2. Note that in this discussion, for the sake of simplicity,
we neglected the role of extra conditioning on Z</ in E ' in the LHS
of equations; handling this extra conditioning results in the extra
additive factor in RHS. Proof of Lemma 4.4 is quite technical and is
postponed to the full version of the paper [10].

Before getting to the proof of Lemma 4.3, we also need the fol-
lowing simple claim based on the rectangle property of the protocol
mhpc (proof appears in full version [10]).

CLamM 4.5. For any j € [k] and choice of (Ej,II;), dist(Z; |
Ej,Hj) = diSt(Zj | EJ’).

We are now finally ready to prove Lemma 4.3.
ProoF oF LEMMA 4.3. Let ¢ be the constant in Lemma 4.4. We

prove Lemma 4.3 by induction. We start with the proof of the base
case for j = 1 and then prove the inductive step.

Base case. Recall that we defined E; = zy which is determinis-
tically fixed. This, together with Claim 4.5, implies that dist(Z; |
Eq,114) = dist(Z;), which finalizes proof of the base case.
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Induction step. Let us now prove the lemma inductively for
j>1

E |Arv(dist(Z; | Ej, 1), dist(Z;
oy Atz | B, discz)|

E

E |Arvdist(z; | ). dist(z)))]

Clai; 4.5

E [ATv(dist(Zj | z<) <)), dist(Zj))]
(Z<J,11<J)

(by definition of E; := (Z</,11%))

= 2B |Arvdist (T, | 2997, 20, 1), dist(Z))-

(by definition, the pointer Z; = T, ;)
We can write the RHS above as:
B [ATV(dist(Zj | Ej.I1), dist(Z;))
o1

E E
(Z<j_1,H<j) Zj—l"’zj—l ‘(Z<j—1’H<j)
[ATv(dist(sz,1 | z<J71, 1<), dist(Z j))].

This is because T, , L (Zj—1 = zj-1) | Z<IL IV i j — 1 is odd,
Tz;_, is a function of (C, D) and if j — 1 is even, T, , is a function
of (A, B). On the other hand, if j — 1 is odd, then Z;_; is a function
of (A, B) and if even, then Z;_; is a function of (C, D). Finally, by
Proposition 4.2, (A,B) L (B,D) | II'/, proving the conditional
independence.

Now notice that distribution of zj_; in the expectation-term
above is dist(Z;j—1 | Ej—1,1Ij_1). By symmetry, let us assume j — 1 is
odd and hence zj_; € Y. Since total variation distance is bounded
by 1 always, we can upper bound RHS above with:

E |aw(dist(z; | B M;), dist(z,-))]

(Ej,11;

< E

, <=1 <Y, dist(7.
< o . Eu [ATV(dlst(sz,l | z<i-L 1 ),dlst(Z]))]

(Z<j*I§H<f) [Arv(dist(Zj—1 | Ej—1,TTj-1), Uy)]
- E E [ATV(dist(T | Ej_i,Tlio1), dist(z-))]
(EjorTLjn) y~Uy v !
+ B [Arv(dist(Zjoq | Ej—1.TTjoq), dist(Zj-1))] »
(Ej-1,1T-1)

where in the first term above we only changed the name of variable
zj-1 to y and in the second term we used dist(Zj—1) = Uy. By
Lemma 4.4, we can bound the first term and by induction, we can
bound the second one. Hence,

B [ATV(dist(Zj | E;.1I)), dist(Zj))]

Ej,IT;
<C.(\/CC(7THPC)+J.'10gn+J.)
N n
. CC(JTHpc)+k~10gn+k
R e

<

X \/CC(”HPC) +k ~10gn+k
J.C.( )

n
(where we replaced j < k by k in the first term)

This concludes the proof. O
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