A Human-in-the-loop Attribute Design Framework for
Classification

Md Abdus Salam
The University of Texas at Arlington
mdsalam@uta.edu

Gautam Das
The University of Texas at Arlington
gdas@uta.edu

ABSTRACT

In this paper, we present a semi-automated, “human-in-the-loop’
framework for attribute design that assists human analysts to trans-
form raw attributes into effective derived attributes for classifica-
tion problems. Our proposed framework is optimization guided and
fully agnostic to the underlying classification model. We present an
algebra with various operators (arithmetic, relational, and logical)
to transform raw attributes into derived attributes and solve two
technical problems: (a) the top-k buckets design problem aims at
presenting human analysts with k buckets, each bucket contain-
ing promising choices of raw attributes that she can focus on only
without having to look at all raw attributes; and (b) the top-I snip-
pets generation problem, which iteratively aids human analysts
with top-I derived attributes involving an attribute. For the former
problem, we present an effective exact bottom-up algorithm that is
empowered by pruning capability, as well as random walk based
heuristic algorithms that are intuitive and work well in practice.
For the latter, we present a greedy heuristic algorithm that is scal-
able and effective. Rigorous evaluations are conducted involving
6 different real world datasets to showcase that our framework
generates effective derived attributes compared to fully manual or
fully automated methods.

>

CCS CONCEPTS

« Information systems — Crowdsourcing;

KEYWORDS

human computation; crowdsourcing; attribute design; feature engi-
neering

ACM Reference Format:

Md Abdus Salam, Mary E. Koone, Saravanan Thirumuruganathan, Gautam
Das, and Senjuti Basu Roy. 2019. A Human-in-the-loop Attribute Design
Framework for Classification. In Proceedings of the 2019 World Wide Web
Conference (WWW °19), May 13-17, 2019, San Francisco, CA, USA. ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/3308558.3313547

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.

WWW °19, May 13-17, 2019, San Francisco, CA, USA

© 2019 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.

ACM ISBN 978-1-4503-6674-8/19/05.

https://doi.org/10.1145/3308558.3313547

1612

Mary E. Koone
The University of Texas at Arlington
mary.koone@mavs.uta.edu

Saravanan

Thirumuruganathan
QCRL, HBKU
sthirumuruganathan@hbku.edu.qa

Senjuti Basu Roy
New Jersey Institute of Technology
senjutib@njit.edu

1 INTRODUCTION

Attribute design (also known as feature engineering) is one of the
most challenging aspects of a data science pipeline, and is consid-
ered to be an “arduous process for data scientists”![3, 14], where the
raw attributes often need to be transformed into derived attributes
that can be more effective for building predictive models such as
classifiers. For example, in a healthcare setting involving large, high
dimensional and heterogeneous electronic health records (EHR)
datasets, an attribute such as the average length of prior hospitaliza-
tion can be very useful to build effective predictive or classification
models on future hospitalization (i.e., readmission) [4]); however,
such attributes are not readily available in the raw dataset. For exam-
ple, Table 1 shows that the average length of hospitalization needs
to be computed per hospitalization window considering admission
and discharge date, and taking the average of these windows.

The state-of-the-art attribute design techniques fall into one
of these two extremes: (a) fully manual, painstakingly slow and
heavily reliant on domain expertise, often requiring data scientists
to go through a repetitive trial-and-error exercise until the set of
designed attributes are satisfactorily effective or (b) fully automated
techniques (some notable systems are, Data Science Machine [18]2,
ExploreKit [20]3, One Button Machine [23], or Featuretools*). Such
methods are not model agnostic, require substantial time to identify
derived attributes that are opaque to the human analyst.

In this paper, we investigate a semi-automated “human-in-the-
loop” framework that is agnostic to any classification model. Our
work is inspired by a handful of recent works [8, 36, 50] which pro-
pose a conceptual framework and empirically argue that attribute
design by involving human analysts can effectively substitute for
either of the two extremes (fully manual or fully automated). How-
ever, these do not study how to optimize human involvement in
the process or how to guide it.

Proposed Framework: Our proposed framework is developed
around three fundamental aspects.

Model agnostic measure: We adopt a principled and quan-
tifiable measure of the effectiveness of a derived attribute that is
agnostic to the specifics of any underlying classification model.
We consider Mutual Information (MI in short) [38] to determine

Thttps://www.itproportal.com/features/dont-let-feature-engineering-
stagnate-your-ml-projects/

https://people.csail.mit.edu/kalyan/dsm/
Shttps://github.com/giladkatz/ExploreKit
*https://docs.featuretools.com/#minute-quick-start

https://doi.org/10.1145/3308558.3313547
https://doi.org/10.1145/3308558.3313547

the predictive ability of an attribute. Intuitively, MI is a symmetric
measure that captures “correlation” between a pair of attributes
and quantifies how much information is contained in one attribute
about the other. We are interested in producing derived attributes
that have high MI with the target variable (or the class label). MI is
known to have several desirable properties: (a) MI is proved to have
certain qualitative guarantees when chosen for attribute selection
for multiple popular classification models, such as Naive Bayes [38],
or linear regression [12]; (b) prior works have also shown that MI
optimizes important properties in attribute selection, such as; rele-
vance, complementarity, and redundancy [38] and (c) finally, as we
shall show later in the paper, MI satisfies upward closure [6] which
is useful for designing effective algorithms.

Attributes algebra: The second aspect of our framework is an
algebra that dictates how raw attributes (numerical or categorical)
are to be combined to produce the derived attributes. We study
arithmetic, logical, and relational operators. Our initial example of
average length of prior hospitalization is an example of arithmetic
operator, whereas an example of the logical operation is the fol-
lowing Boolean attribute: elderly AND diabetic OR covered under
medicaid. A patient is more vulnerable to future hospitalization if
she gets an “yes” on this attribute. A logical operator on the other
hand is obesity that is set to True, when BMI > 30.

Guiding human analysts: The third aspect of our framework
is the investigation of how to optimize the involvement of humans
in the attribute design process and ensure their efforts are suc-
cessful. This is motivated by a handful of recent works that argue
that humans must not be left unguided in the attribute design pro-
cess [8, 36, 50], Simply presenting the entire set of raw attributes
or hundreds and thousands of raw records to the human analysts
might overwhelm them. We propose to present each analyst with
small summarized portions of the raw data and raw attributes that
is likely to be most helpful for the human to analyze and create
useful attributes from. We formulate two technical problems that
need to be addressed:

(1) Top-k buckets design: We present each analyst with only k (a
small number) buckets, each with at most x attributes, that are most
predictive. For example, when x = 3, a useful bucket that is likely
to have predictive qualities may contain {elderly, diabetic, covered-
by-medicaid}. We show that generating these buckets is NP-hard.
We provide an exact algorithm, ExBKT, and an even more efficient
heuristic algorithm called RandomizedBKT that performs random
walks on the attribute lattice to design the top-k buckets. However,
just producing buckets that are highly predictive (high MI) may
not be enough. We propose RandomizedCovBKT that finds top-k
buckets that are not only effective wrt MI, but also they together
cover many ‘good” raw attributes of the dataset.

(2) Top-1 snippets generation: Even after the buckets of raw at-
tributes have been generated, the human analyst may have to sift
through large volumes of data (i.e., the tuples with those raw at-
tribute values) to design good derived attributes, and this task may
still be overwhelming. Thus, we propose an interactive procedure
by which an analyst may approach this task. Given a bucket, the
analyst starts designing a derived attribute (i.e., an algebraic expres-
sion involving the raw bucket attributes) interactively (i.e, term by
term). At each iteration, our framework recommends [snippets, i.e.,
it suggests the I best ways to extend the partially created derived

1613

attributes using the algebra. More formally, at a given iteration the
snippet generation process suggests how to augment the partially
composed derived attribute by length j, i.e., combining j new raw at-
tributes with the derived attribute developed thus far. For instance,
if elderly has already been selected by the analyst, and if j = 1, an
example snippet will suggest a visual distribution that shows how
elderly AND diabetic correlates with the prediction target variable
hospital readmission.

Evaluations: Rigorous evaluations are conducted considering 6
real world datasets by comparing our solutions with two fully auto-
mated methods (ExploreKit and Featuretools), and a fully manual
domain expert guided attribute design process, as well as intuitive
baselines. Our experimental results demonstrate that we scale up to
7x — 20x faster compared to fully automated (ExploreKit) and the
fully manual process, while ensuring similar quality (average im-
provement 14%). By leveraging the domain expert, our framework
avoids falling into the pitfall where derived features could actually
be detrimental to the performance (unlike FeatureTools). It also has
other appealing properties, such as being easily parallelizable, and
exhibiting “anytime behavior” whereby it gives meaningful results
at any point of execution. Our scalability results demonstrate that
both bucket design and snippet generation procedures are efficient
and can work interactively with the human in the loop.

In summary, the paper makes the following contributions:

o Proposed Framework: We initiate the study of a model agnos-
tic semi-automated attribute design framework (Section 2)
that judiciously involves human analysts in the loop.

e Technical contributions: We formalize two technical prob-
lems around the framework and present several theoretical
and algorithmic results (Sections 3 and 4).

o Experimental Results: We conduct extensive experiments to
demonstrate both effectiveness and scalability of our pro-
posed solutions (Section 5).

2 PRELIMINARIES AND FORMALISM

In this section, we describe our data model, present our framework,
and formalize the technical problems.

Example 2.1. We present a toy running example in Table 1 that
provides longitudinal data of a heart failure datamart in a hospital.
The objective is to build a classifier that predicts whether a patient
getting discharged from the hospital will be readmitted within 6
months of discharge, considering predictors from base attributes
(first 10 columns) and derived attributes (designed using the base
attributes). The data is augmented by adding the last column, rep-
resenting the class label per patient per admission instance.

2.1 Data Model

Base attributes, records, and target variable: A given dataset
is comprised of a set (A of n attributes and m records, as well as an
additional target attribute (column) Z. These attributes are referred
to as base or raw attributes. In this work, we consider all major
types of attributes including numeric, Boolean, and categorical.
Our proposed approach can work for a wide variety of predictive
modeling tasks including classification and regression (we refer
to them classification in general). Depending on the nature of the

patient-id | admission date | dis. date gender | BMI | income | medicaid | senior | diabetic | primary-diagnosis readmission
pl 10-1-2013 10-23-2013 | M 325 | low Y Y Y Congestive heart failure | N
pl 5-2-2014 5-10-2014 | M 32.2 | low Y Y Y Heart Attack Y
p2 5-12-2014 5-14-2014 | F 26.7 | medium | N N N Arrhythmia N
p3 10-1-2015 11-1-2015 | M 29.9 | low N N Y Cardiomyopathy N
p3 6-10-2016 6-21-2016 | M 29.8 | low N N Y Cardiomyopathy N
p4 12-12-2017 12-14-2017 | F 234 | medium | N N N Arrhythmia N
p4 9-2-2018 9-29-2018 | F 27.8 | medium | N N N Heart Attack Y

Table 1: Example 2.1 toy heart failure datamart

No Readmission [
i Obese
Readmission | “ Not Obese
1
0 50 100

% of patients

Figure 1: A snippet on Obesity

problem, Z is a continuous variable (regression problem), or has
discrete values (classification problem). Using Example 2.1, n = 10
and m = 7, Z corresponds to readmission within 6 months of
discharge (discrete).

Algebra, L: A set of operators (arithmetic, relational and logi-
cal) which are applied to one or more base attributes to combine
them. When the base attributes are numeric, we consider arithmetic
operators to combine them: addition (+), subtraction (—), multipli-
cation (x), division (/). For Boolean attributes, we consider logical
operators, AND, OR. We also support all relational operators that
compare two base attributes or a base attribute with a constant (e.g.
Aj > Aj or A > 100). Our framework is flexible enough to support
arbitrary operators. We also support aggregate operators over a set
of tuples.

Derived Attribute, d: An attribute that combines two or more
base attributes using the algebra L. Using Example 2.1, we can
create a derived attribute length of stay by subtracting discharge
date from the admission date. Another derived attribute obesity
can be obtained through the relational operator > as BMI > 30.

Independent variable, dependent variable: A base attribute or
a derived attribute is an independent variable (V) in our problem as
that is used to predict the target variable Z, which is the dependent
variable. Our overall intention is to craft a set of derived attributes
as independent variables that are highly “predictive” to the target
(dependent) variable.

Mutual Information (MI): We are interested in calculating “pre-
dictiveness” of an independent variable V to the target variable Z.
For that, we use Mutual Information (MI) that captures information
theoretic “correlation” (indeed there exists a relationship between
MI and correlation [25] between two random variables that quan-
tifies the amount of information obtained about one through the

1614

other). When V and Z are discrete >, MI(Z, V) is defined as follows:

p(z,0)
MI(Z,V) = p(z,v)log ———— (1)
2, 2P Gt
where p(z,v) is the joint probability function of Z and V, and p(z)
and p(v) are the marginal probability distribution functions of Z
and V respectively. Of course, V could be a single base attribute, a
small set of base attributes, or a derived attribute.

2.2 Proposed Framework

Our proposed framework consists of two technical steps. We first
design a set of k buckets, each with at most x base attributes. Given
a bucket and the algebra £, the analyst then starts composing a
small number of derived attributes from the bucket. This next step
is referred to as snippet generation, and works iteratively with the
analyst until she decides to stop. In each step in snippet genera-
tion, the analyst extends the currently composed derived attributes
by a small amount. Our algorithmic contributions are focused on
these two steps. In Section 3, we analyze the Top-k buckets design
problem and describe our solutions. In Section 4, we present our
solutions for the Top-/ snippets generation problem.

Definition 2.2. Score of a bucket, sc(b) : For a bucket b with
A1, Az, ...Ax base attributes, the score of b, i.e., sc(b) is the MI
between Z and the Cartesian product of the base attributes that are
part of b.

sc(b) = MI(Z,[A1 X Az X As.... X Ax]) @)

Using Example 2.1, sc(gender, senior) = MI(readmission, [gender
X senior])

Definition 2.3. Coverage of a set of buckets: coverage of a
set of buckets Cov(by, by, ..by) is the size of the union of the base
attributes that are present in these buckets.

Cou(b1,by,..br) = [b1 Uby Ub¢| (3)
Using Example 2.1, if k = 2,x = 2, b; = [gender, senior], by =
[medicaid, gender], then Couv(by, by) = 3.

Definition 2.4. Snippet, s: A snippet s is a visual representation
of a joint distribution between Z and a derived attribute d* in the
snippet.

Figure 1 shows one such snippet between obesity and hospital
readmission.

SWe consider the numeric variables are appropriately discretized, when

needed

Figure 2: Attribute Lattice

Definition 2.5. Score of Snippet, Sc(s): Score of a snippet is
the MI between Z and derived attribute d° in the snippet s, i.e.,
MI(Z,d®).

Using Figure 1, Sc(obesity) = MI(readmission, obesity).

2.3 Problem Definitions

Problem 1: Top-k-Buckets Design: Given a set of attributes A,
number of required buckets k and maximum number of attributes
in each bucket x, our objective here is to design Top-k buckets based
on MJ, i.e., finding the k-buckets (each with at most x attributes)
with the highest MI and present those buckets to the the human
analyst to investigate further for creating derived attributes.

We also investigate the top-k coverage aware bucket generation
problem, where the objective is to create “high quality” buckets
that together cover all base attributes that have high MI with the
target variable.

Problem 2: Coverage Aware Top-k buckets: The objective is to
create Top-k buckets such that the score of each bucket, sc(b) in Top-
k is above a certain threshold § and Cov(by, b, ..by) is maximized.
Problem 3: Top-/ Interactive Snippets Generation: Fach step
of the interactive snippet generation takes as inputs a bucket b, an
integer j, the currently composed set of derived attributes D’, the
algebra £; and produces I snippets with highest scores, where each
derived attribute d]’ in snippet s; is created by extending dj, that
is, by adding j additional attributes that are part of b, involving L.

3 TOP-k BUCKETS DESIGN

Top-k Buckets Design takes x (the maximum size of each bucket),
k (the number of buckets), the dataset (base attributes A, target
variable Z, and the records), and produces Top-k buckets, each of
size at most x that are highest in MI with Z.

THEOREM 3.1. The Top-k Buckets Design Problem is NP-hard, for
an arbitrary x and k.

ProoF. (Sketch): As shown in [46], for an arbitrary maximum
bucket size x and number of buckets k, the problem of identifying
the number of distinct buckets of maximum size x (that have maxi-
mal ML in our case) is #P-Hard. Therefore, the enumeration problem
of finding top-k buckets of maximum size x is NP-hard.]

1615

Intuitively, the bucket design problem bears similarity with the
itemset mining problems based on association rules (support) or
other correlation measures [1], such as Chi-Square [6]. WRT our
problem, a base attribute could be considered an item, and therefore
mining a bucket with at most x-base attributes is akin to mining an
itemset with at most x items that satisfy a certain property. Thereby,
the Top-k buckets generation problem seemingly appears similar
to Top-k itemset mining problems.

Most popular and effective algorithms in this problem space
make use of the upward or downward closure property of the item-
sets based on the underlying measures (for example, support is
downward closed, while chi-square is upward closed [6]). These
properties enable efficient algorithm design for the itemset mining
problems.

Popular algorithms such as Apriori [1] make use of this property
extensively in mining frequent itemsets. They execute in a bottom-
up manner by discarding any itemset from consideration whose
subsets are not frequent based on the support threshold [1].

However, designing an Apriori [1] type of algorithm is imprac-
tical for our problem for several reasons: firstly, because MI is not
downward closed; secondly, because our problem does not have a
support threshold like Apriori, and finally because our problem has
more constraints (x and k) as inputs.

LEmMA 3.2. Mutual Information is upward closed.

Proor. Without loss of generality, let us assume Z is the target
variable and A1, Az, A3 are three base features. We have to prove
MI(Z, [A1, Az]) < MI(Z, [A1, Az, A3)).

Based on MI definition [26]:

MI(Z,[A1,Az]) = H(Z) - H(Z|[A1, A2]) 4)

where H(Z|[A1, A2]) is the conditional entropy of Z given Aj, Az.
Using Equation 4, we therefore prove H(Z|[A1, A2]) > H(Z|[A1,
Az, A3]).
H(Z|[A1, A2, A3])

= zal,ag,a3p(a1, az, az)x
3.p(zlay, az, as) log p(zlai, az, as)

< Xay, a5 asp(a1, a2) X p(asz)2zp(zlai, az) ¥
p(zlas)log p(zla1, az) log p(zla3)

< H(Z|[A1, Az]) X Za;p(a3)2zp(zlas)logp(z|az)
< H(ZI|[A1, Az])

Therefore, H(Z|[A1,Az2]) = H(Z|[A1, A2, A3]), proving MI(Z, [A1,
Az]) < MI(Z, [A1, Az, A3)). mi

An Apriori-Like Algorithm is Impractical. Since MI is up-
ward closed, a level-by-level algorithm such as Apriori must be done
in a top-down fashion for our problem, as opposed to the typical
bottom-up fashion. Our problem has an additional constraint on the
maximum bucket size that requires the algorithm to climb to level
x first before it can start generating possible buckets. Moreover,
our bucket generation problem does not come with any provided
threshold of MI. Instead, it has the number of buckets constraint k.
Therefore, it has to start at level x (which will have (:;) number of
buckets of size x) with the highest MI value possible as the threshold
and determine all the size x buckets that satisfy the threshold. If the

number of generated buckets is less than k, it then has to reduce the
MI threshold value systematically until a total of exactly k buckets
have been generated. Naturally, to faithfully reproduce Apriori for
our problem, one has to make several runs of the algorithm, until
exactly k buckets have been produced. Clearly, such a process is
computationally impractical for large n, x, and k.

Next, we describe our solutions for this problem - first an exact
algorithm (ExBKT) that produces the top-k buckets of at most size x
with the highest ML, and then random walk based algorithms that
are highly efficient and work well in practice.

3.1 Exact Algorithm

Algorithm ExBKT extensively exploits a few observations that we
make about MI. In particular, while computing the MI of a set
of attributes with the target variable Z, we observe that one can
produce effective lower and upper bounds on MIL. These bounds
shall allow us to design a bottom up algorithm that goes level by
level and effectively prunes a set of candidate attributes (buckets) by
using upper bounds. The observation is rather simple - between two
subsets of candidate buckets, if one has higher lower bound of MI
than the other bucket’s upper bound of ML then the former bucket
should get promoted as the winner between these two buckets.
Algorithm ExBKT makes use of this observation to prune buckets
that are never going to be part of the top-k results. Before we
describe this algorithm in detail, we describe how to effectively
compute lower and upper bound (LB and UB respectively) of MI of
a set of attributes (candidate buckets).

THEOREM 3.3. Upper Bound: Given a set of t base attributes A1, Ag,
... Ay and the target variable Z, MI(Z, [A1, A2, ... At]) < H(Z)+
H(A1,Az,.. . Ay)

Proor.

MI(Z,[A1, Az, ... At]) = H(Z) — H(Z|[A1, Az, . . . At])

= H(Z) - H(Z[A1. Ag.. .. A+ (6)
H(Ay, A, . .. Ay) since [H(Y|X) = H(X,Y) — H(X)]
Therefore,
MI(Z,[A1, Az, ... Ar]) <H(Z) + H(AL Aa, ... As) (7)

Applying the chain rule of entropy, the right hand side of the
inequality could be expressed further as H(Z) + H(A1) + H(A2|A1)
+H(A3|A142) + ... H(A|A1 A, . .. Ap_1) O

THEOREM 3.4. Lower Bound: Given a set of t base attributes A1, Ag,
... Ay and the target variable Z, MI(Z,[A1, Az, . . . At]) =
MI(Z,[A1, Az, ... At1])

ProorF. This comes directly from lemma 3.2. O

Algorithm Description: Algorithm ExBKT runs in a bottom-up
fashion. It starts at the bottom of attribute lattice with singleton
base attributes as buckets, and gradually walks up the lattice, level
by level. For illustration purposes, consider only 5 attributes from
Example 2.1, abbreviated {G, I, M, D, S}. The bottom layer refers to
the 5 singleton base attributes and their computed MI wrt the target
variable Z. Once the score of each of size 1 bucket is computed,
then in the next level, the algorithm combines two base attributes
and computes 10 buckets of size 2. For each bucket b;, it maintains

1616

two scores: the lower bound score of b;, sc'?(b;) derived from
Theorem 3.4 and the upper bound score of b;, sc¥?(b;) derived
from Theorem 3.3. Between two buckets b; and bj, if the upper
bound of b; (i.e., scub (bi)) is smaller than the lower bound of score
of bj (ie., sc”’(bj)), then b; and all of its supersets get dropped
from further consideration. Using Figure 2, if sctb{G, I} is larger
than the upper bound score scub {M, D}, then the latter bucket gets
dropped from further consideration. Additionally, all buckets that
contain {M, D} as some base attributes do not need to be considered.
If x = 3, then the algorithm continues to climb up the attribute
lattice to the next level, finding buckets with at most size 3 base
attributes, but applies pruning between the buckets using the lower
and upper bound as before. Once it finishes the traversal, it produces
the top-k buckets with the k-highest MI with the target variable.
The pseudo-code is described in Algorithm 1.

Algorithm 1 Algorithm ExBKT

inputs: A, m records, x, k, target variable Z.
output: Top-k buckets, each of size at most x.
compute all buckets of size 1 and their score.
i=2
while i< xdo

Compute sc”b(b) and sc!? (b) of each bucket b;

IF sc“?(by,) < sc!b(by)

Drop b,, and any superset of b,

i=i+1

end while

LEmMA 3.5. Algorithm ExBKT produces the exact top-k buckets.

Proor. (sketch:) The intuitive argument is that ExBKT only drops
a bucket and its super-set if its upper bound score is not larger than
the lower bound score of other buckets, which will produce the
exact solution, because of Lemma 3.2. [m}

Running Time: In the worst case ExBKT may take O(n*), hence
it is exponential. However, in practice, the pruning can be very
effective and the algorithm converges much sooner.

3.2 Random Walk Based Algorithms

While ExBKT works well in practice, it has an exponential running
time in the worst case. Furthermore, ExBKT is not easily extensi-
ble when we have to optimize any other criteria in addition to
ML Specifically, for our proposed problem Coverage Aware Top-k
buckets, ExBKT can not be adapted to generate the best k-buckets
with the highest coverage. Therefore, we propose faster heuristic
alternatives that provide good solutions most of the time.

Our proposed Algorithm RandomizedBKT is motivated by ran-
dom walk on the attribute lattice [6] and has a unified solution for
both Top-k buckets Design and Coverage Aware Top-k buckets Design
problems. The core idea is to compose a bucket of size x, by perform-
ing a random walk on the attribute lattice (refer to Figure 2). An
attribute is added to a bucket by using weighted sampling without
replacement. The weight of an attribute is based on the optimization
criteria. A bucket is formed by performing a random walk on the
attribute lattice, until its maximum size x has been reached. This

random walk is repeated, until k-unique buckets have been derived
and any additional criteria (e.g., threshold § for the latter problem)
has been satisfied. With this high level description above, now we
describe how to compute the weight of an attribute in different
scenarios. For the Top-k buckets Design problem, the weight of an
item is directly proportional to its ML, i.e., weight(A) = MI(Z, A).
The Coverage Aware Top-k buckets Design problem requires that
in addition to MI threshold &, the coverage of the Top-k buckets
also must be maximized. The weight of an attribute is a ratio; it is
proportional to its MI, but inversely proportional to the number
of times it is present in other buckets that have been computed
thus far. Indeed, this latter criteria is designed to ensure high cover-
age.This condition can be extended to include feature cost as well,
so that costly features are assigned lower preference. As before, the
algorithm terminates when we obtain top-k unique buckets. Using
Figure 2, if k = 5 and x = 2, when the random walk produces the
5th bucket, if M has appeared in all other 4 buckets, the weight
of M is dampened by a factor of 4 even if it is high in MI with
readmission. The pseudo-code is described in Algorithm 2.

Algorithm 2 Algorithm RandomizedBKT

inputs: set of base attributes A, m records, target variable Z, x,
k, & (for the coverage aware problem)
output: Top-k buckets of size at most x
B={}
while |B]| < k do
while size(b;) < x do
weight(A) = MI(Z, A)
we'ight(A) X ¥ATas ggxgzu’s[:a before
aware variant
Sample A based on weight(A) and add it to b;
end while
IF sc(b) <6
Drop b
B=BUb
end while

> for the top-k variant

> for the Coverage

> only for the Coverage aware variant

Running Time: Each run of RandomizedBKT takes at most O(n)
time. The total running time of the algorithm is dominated by the
number of different random walks that needs to be performed
before it returns k buckets.

4 TOP-I INTERACTIVE SNIPPETS
GENERATION

Recall that we propose snippet generation as an interactive process
that continues until the human is done crafting the attributes. Each
step of this process takes as inputs a bucket b, an integer j, the
currently composed set of derived attributes 9’, and the algebra
L to produce [snippets with highest scores (MI with Z), where
each derived attribute d’ in snippet s; is created by extending d
by adding j additional attributes that are part of b, involving L.
Each of these [snippets are recommended to the human as visual
distributions to aid her design derived attributes.

Therefore, our computational challenge is to produce ! snip-
pets effectively in each step involving each d] € D’. A natural

1617

A A [A [A [Z
1 |-1]0 [0 |o
2 -2 1 0 1
3 (3]0 |1 |o
4 |-4]1 |1 |1

Table 2: Example where MI(Z, A; + Aj) < MI(Z, Ay + As)

choice is to investigate a greedy algorithm that builds the final de-
rived attribute bottom-up by selecting the best base attributes from
the bucket and combining them with the best operators to recom-
mend a snippet. In order for this greedy algorithm to provide any
provable guarantee, this greedy selection process needs to satisfy
certain properties. For example, given four attributes A;, A j, Ar, As,
if MI(Z,A;) > MI(Z,A,), and MI(Z,A;) > MI(Z, As), then it
seems intuitive that if we combine the two attributes with higher
MI (A;, Aj) with an operator, the resulting derived attribute should
have higher MI than the combination of the other two attributes
(Ar, Ag) using the same operator. Unfortunately, as we prove below
with counter examples, such a property fails to hold even for very
simple operators such as arithmetic addition. This makes the snip-
pet generation more challenging than the previous step of bucket
generation.

LEMMA 4.1. Given four attributes A;, Aj, Ar, As, if MI(Z, A;) >
MI(Z,Ay), and MI(Z, Aj) > MI(Z, As), MI(Z, A; +Aj) may or may
not be greater than MI(Z, Ay + As)

ProoF. (Sketch): We prove this by counter examples. We present
two examples - one shows MI(Z, A; +Aj) < MI(Z, Ay +As) and the
other shows the inequality other way. Table 2 shows the first sce-
nario. To create the second scenario, if we replace A; with 5,6,7, 8
in the 4 different rows respectively, we have MI(Z,A; + A;j) >
MI(Z, Ay + As). O

Proposed Algorithm: Our proposed algorithm GSnippet is a
greedy algorithm - it still generates a snippet bottom up in each
step. Given a bucket b, it first sorts the base attributes in the bucket
in descending MI. Then given j (the number of additional attributes
to extend a partially created derived attribute d}), it finds the top-j
attributes in b that are not in d;. These are the candidate set of
attributes for the snippets that involve d;. After that, it attempts
to combine these j attributes considering all the operators in £
with df. It ranks each of these created combinations and produces
the [-combinations as snippets that have the top-I MI score with Z.
Algorithm 3 presents the pseudo-code.

The reason that GSnippet exhaustively considers all the opera-
tors in £ (and cannot make any greedy or more efficient look-ups)
is because of Lemma 4.1. In order to avoid exhaustive search, other
alternative metrics to MI need to be explored that can guarantee
upper/lower bound for features combined under algebraic opera-
tors. Nevertheless, as we shall show in our experiment, GSnippet
runs at interactive speeds and produces effective recommendations
for the human analyst.

Using Example 2.1, if b = {admission.date, dis.date}, | = 1,
j =2 L = {+-,%,/}, and current d = {} (i.e., empty), then
GSnippet will rank admission.date + dis.date, admission.date —

dis.date, admission.date X dis.date, admission.date/dis.date, and
take the one which has the highest MI with readmission.

Algorithm 3 Algorithm GSnippet

inputs: bucket b, a derived attribute dlf, target variable Z, j, I, L
output: Top-! snippets involving d;

Sort attributes in b in descending order of MI

Select set S with top-j attributes from b that are not in d;
C=5Ud;

Combinec; ®cj @ ® dlf, ®eL,cieC

Rank each combination wrt MI

Return top-/

Running Time: Each run takes O(|.£}/logl) time, the majority
of which is spent on brute-forcing on the operator set L.

5 EXPERIMENTAL EVALUATION

We conducted comprehensive experimental analysis to compare
our proposed approach with fully automated methods, as well as
fully manual (domain expert guided) solution. We investigated both
quality and running time in this process.

5.1 Experimental Setup

Hardware and Platform. All our experiments were conducted
on a quad-core 2.2 GHz machine with 16 GB of RAM and 1 TB of
hard disk. We used Python to implement our algorithms and used
scikit-learn for building the classification models.

Datasets. We evaluated our algorithms against a wide variety of
datasets that are considered to be popular choice for attribute de-
sign problems. Due to lack of space, we report our results on 5
datasets from UCI repository and one from Kaggle. They cover a
diverse array of domains (agriculture, medicine, and e-commerce)
and contain attributes that are amenable to constructing derived
features. Table 3 has more details.

DataSet # Records | # raw attributes
pollen 3848 5
delta_elevators 9517 6
mammography 11183 6
space 3107 6
diabetes 768 8
home 506 14

Table 3: Reported datasets characteristics

Compared Methods. (1) Fully Automated Methods. We imple-
mented two fully automated state-of-the-art approaches for compar-
ison - Featuretools® and ExploreKit’. They both have open source
repositories that allow us to evaluate them fairly.

(2) Our proposed algorithms. These are the solutions that are
presented in Sections 3 and 4.

Shttps://docs.featuretools.com/#minute-quick-start
"https://github.com/giladkatz/ExploreKit

1618

(3) Buckets Design Baseline algorithms. We compared our pro-
posed buckets design algorithm against an intuitive baseline al-
gorithm (referred to as Greedy) that groups attributes on mutual
information. It started with an empty bucket and x attributes were
added through importance sampling greedily, where the impor-
tance is proportional to the marginal increase in MI. The process
was repeated k times.

(4) Fully manual method. In this scenario, a domain expert was
involved in crafting the derived attributes. We present a case study
towards that in Section 5.5.

Evaluation of our proposed framework. Our proposed frame-
work has two steps: the first one, top-k buckets design, is fully
automated and does not require any human involvement. We have
described three algorithms for that. The second step, top-I snippets
generation, proposes the list of top / snippets for each of the derived
attribute chosen by the human analyst. The human analyst can ei-
ther accept the choice, select another snippet or even construct
a new one. This process is repeated interactively. The framework
continues to retain the top-I choices, if no human guidance is given
and is fast enough to be done in near real-time. Finally, the designed
derived and the base attributes are passed through existing popular
classification models with an average of 10 runs.

Parameter Settings. x, k, j, [, random walk: We varied the size of
a bucket x between 2 to the maximum number of base attribute
with the default value being 5. The snippet extension parameter j
is set to 1. Finally, both k and [were set to 5 by default. We ran the
random walk for 1000 iterations and picked top-k from it.

Classification models. While our process is classifier agnostic, for
the purpose of comparison, we considered two popular classifiers,
Support Vector Machines (SVM) and Random Forests (RF). For the
latter, we use 100 trees using a depth of 2. Training and testing are
performed with a 70% — 30% split of the data, akin to ExploreKit.

Algebra. By default, we used only arithmetic operators. We then

varied the grammar to include logical, relational and other aggre-
gate operators. Overall, our approach can support all the operators
described in both ExploreKit and Featuretools.
Performance Measures. Qualitative measures. For measuring the
classifier performance, we reported the Area Under the Curve
(AUC). This has been used in prior work such as ExploreKit as
it provides a holistic view of the classifier and attribute design.
Higher the AUC, better the classifier performance. We reported
the percentage improvement in AUC with base(raw) attributes and
base+derived attributes. For example, if the classifier had an AUC
of 0.7 with base attributes but 0.8 with base+derived attributes, the
improvement is % = 14%.

Scalability measure. We used time in seconds to evaluate the
efficiency of our algorithms.

5.2 Summary of Results

Our experimental analysis answered the following key questions:

e How did our proposed framework compare against fully
automated or fully manual solutions? We found that we
scale significantly better (10x — 20x faster than ExploreKit,
7x better than fully manual) than both of these extremes,
with comparable AUC improvements (on an average 14%).
Due to human involvement, it also avoided the worst case

0.4

2500

12000

[Greedy [Greedy —s—EXBKT
[RandomizedBKT [RandomizedBKT |—e—RandomizedBKT|
0.3 | [CCIEXBKT 2000 | [CJEXBKT 10000

Improvement in AUC

1500

1000

Run Time in Seconds

o
S
S

Pollen Delta-E Space Diabetes Mamgm

Pollen Diabetes

Delta-E Mamgm

Space

8000

6000

4000

Run Time in Seconds

2000

0 20 30 40 50
Number of Attributes

Figure 3: Comparing Baselines : AUC Figure 4: Comparing Baselines : Run- Figure 5: Varying Number of At-

ning Time tributes
0.5 0.4 0.4
0.35 /
0.4 / 03
S S g o3
< < <
£ —=—Pollen £ £0.25
e 03 —e— Delta-Elevator 3 02]
g —=—Mammogram g g 0.2
5 —=—Space 5 5
3 02 |- piabetes 3 go1s
£ £ £
| 0.1
T 04 T o =
0.05
0 0.1 0
0 5 10 15 20 2 4 6 8 10 12 14 16 2 25 3 35 4 45 5
Number of Operators Bucket Size Snippet Size
Figure 6: Varying Algebra Figure 7: Varying Bucket Size Figure 8: Varying Snippet Size
10000 2000 2000
—=—Pollen
» 8000 —e—Delta-Elevator » »
T —=—Mammogram T 1500 T 1500
§ —=—Space § §
—=—Diabetes
& 6000 3 3
£ £ 1000 £ 1000
] @ @
£ 4000 £ //¢ £
= IS IS
] 5 s 5 s
% 2000 « | N S N «
@% ——— %
0 0 0
0 5 10 15 20 2 25 3 35 4 45 5 2 25 3 35 4 45 5
Number of Operators Bucket Size Snippet Size

Figure 9: Varying Algebra

Figure 10: Varying Bucket Size

Figure 11: Varying Snippet Size

Data EK-SVM | Time (s) | FTI-SVM | Time (s) | MI-SVM | Time (s)
pollen 1.93% 1063 2.07% 93 2.10% 42
delta_elevators 0.23% 3980 -3.20% 465 0.20% 180
mammography | 31.61% 2413 41.93% 204 38.00% 191
space 3.83% 986 1.77% 135 3.20% 186
diabetes 4.63% 343 -13.64% 468 3.60% 390

Table 4: AUC improvement and runtime comparison with fully automated methods using SVM

behavior of the automated methods (FeatureTools showed
decrease in performance at times). Sections 5.3, 5.5 present
these results.

e How did our proposed algorithms compare? We observed
that we attained higher qualitative performance, while being

scalable compared to other baselines. The exact algorithm
ExBKT produced optimal buckets, while RandomizedBKT was
much faster and produced results comparable to ExBKT. Greedy
was inferior in quality. We focused on the coverage variant
of RandomizedBKT so as to provide a diverse set of buckets

1619

Data EK-RF | Time (s) | FT-RF | Time (s) | MI-RF (s) | Time
pollen 10.56% 10233 -3.71% 40 -1.00% 42
delta_elevators | 0.75% 37611 -1.13% 106 0.70% 180
mammography | -0.01% 16502 5.34% 113 4.00% 191
space 4.09% 10676 4.92% 106 4.20% 186
diabetes 4.46% 3474 3.11% 462 3.30% 390

Table 5: AUC improvement and runtime comparison with fully automated methods using RandomForest

to the human analyst. Algorithm GSnippet was interactive
to the human analyst and works in real time. Section 5.4
presents these results.

e What kind of attributes did our proposed framework
generate? We observed that the attributes produced by our
framework were intuitive and meaningful to human analyst.
Section 5.5 presents some of these results.

5.3 Comparison with fully automated methods

We compared the performance of our proposed approach against
automated systems in both classifier performance and efficiency.
Tables 4 and 5 show the results for SVM and RF classifiers respec-
tively. On an average, the AUC improvement of the classifiers were
more than 14% through attribute design. Our proposed framework
was almost 10x-20x faster than ExploreKit, comparable with Fea-
tureTools (but FeatureTools caused sudden decline in AUC at times
with the derived attributes).

5.4 Analysis of presented algorithms

In this section, we present quality and running time study of our
algorithms with the baselines, described in Section 5.1. We note that
the implemented baselines were inferior in AUC improvements,
hence we only present running time of our solutions.
Comparison with Baselines. We began by comparing our algo-
rithms for bucket construction : an exact algorithm ExBKT, a ran-
dom walk based algorithm handling coverage RandomizedBKT and
Greedy. Figures 3 and 4 show the results. As expected, ExBKT took
substantial amount of time but gave the best results. RandomizedBKT
was much faster and provided almost identical results for AUC im-
provement. Greedy was very efficient but qualitatively inferior.
Varying Number of Operators in the Algebra. We began by
supporting arithmetic operators (+, —, X, /, %) and then systemat-
ically added more logical, relational and aggregate operators. As
expected, increasing the number of operators causes a slow down
in our approach. Recall that our first stage of bucket generation was
agnostic to both classifier and grammar. The resulting buckets often
contained only a handful of attributes and hence our algorithm was
quite fast even for a large number of operators. This can be seen in
Figure 9 where the improvement is (sub)-linear in the number of
operators. Figure 6 shows the corresponding impact on AUC. This
shows that the additional operators often only provides negligible
improvement in AUC. We conjuncture that for most attributes, only
a small set of operators are most relevant.

Varying Bucket Size x. Next, we varied the maximum number
of attributes x in each bucket. The impact of k (the number of
buckets to return) was minimal. Our algorithms have a natural
anytime property where it can be stopped at any time and pick the

1620

best k buckets. x affected the length of the random walk and had
a major impact on runtime and AUC. Figures 7 and 10 show the
result. As expected, increasing bucket size improved the AUC but
it stagnated quickly. This confirmed with our hypothesis that most
derived attributes often consist of few base attributes. The bucket
size must not be too small - otherwise, we might miss meaningful
group of attributes. It must also not be too large - otherwise, we
might expend runtime for no meaningful improvement of AUC. We
found a value of 5 to be good both from runtime perspective and
the required cognitive impact on the human analyst. The runtime
increased almost linearly with larger bucket size.

Varying Snippet Size j. In our final set of experiments, we varied
the snippet size. Here we also noted that the impact of / (the number
of snippets to return) was minimal. Figures 8 and 11 show the results.
As expected, increasing snippet size had minimal impact on AUC.
The improvement more or less topped out at snippet of size 3. This
once again confirmed our hypothesis that derived attributes were
often constructed from a handful of base attributes. The increase
in time for larger snippet size was mostly linear.

Varying Number of Attributes. In order to highlight the scala-
bility of our algorithms, we varied the number of base attributes by
duplicating some of the base attributes randomly. Figure 5 shows
the impact on running time of our exact and random walk based
algorithm. As expected, the running time increased dramatically for
ExBKT while the increase was marginal for RandomizedBKT. Our
approach was scalable to large increase in the number of columns.
The impact of increasing number of rows were rather minimal.

5.5 Comparison with fully manual method

We present a case study comparing a fully manual approach (a
typical trial-and-error based attribute design exercise a data scien-
tists goes through) and our approach. We used the popular Boston
dataset from Kaggle & that seeks to predict house prices from from
features like its area, number of bedrooms, etc.

We involved a data scientist to construct the derived attributes
and she came up with the following 6 additional derived attributes
after extensive analysis. Istat / tax, ptratio / tax, dis * rad / tax, black
* crim, rm * (zn + indus) and (nox * indus) / tax. The interpretation
of these attributes are presented in Table 6. The data scientist took
about 10 hours to manually craft these 6 derived attributes, out of
which 3 hours were needed to understand and explore the data.
The remaining 7 hours were needed for a trial and error process,
where the expert tried many possible derived attributes, analyzed
the correlation, tweaked the attributes, and repeated the process.
While another data scientist with similar expertise was guided by

8https://www.kaggle.com/c/boston-housing/data

Attribute | Interpretation

Istat lower status of the population (percent).

tax full-value property-tax rate per $10,000.

ptratio pupil-teacher ratio by town.

dis weighted mean of distances to five
Boston employment centres.

rad index of accessibility to radial high-
ways.

black 1000(Bk — 0.63)% where Bk is the pro-
portion of blacks by town.

crim per capita crime rate by town.

rm average number of rooms per dwelling.

zn proportion of non-retail business acres
per town.

nox nitrogen oxides concentration (parts per
10 million).

Table 6: Boston home dataset attributes

our framework, she took only 1 hour to craft the same 6 derived
attributes. For both cases, we observed an AUC improvement of 14%.
This case study anecdotally showcase that our proposed framework
is capable to drastically reduce the latency (7 hour vs 1 hr, i.e, 7x
improvement) by aiding the domain expert.

6 RELATED WORK

Human-in-the-loop Query Answering : A growing number of
systems make use of lay workers (known as crowdsourced work-
ers) using commercial platforms (e.g., AMT and CrowdFlower) or
for academic use. Examples of applications include not only sen-
tence translation, photo tagging and sentiment analysis, but also
query answering (CrowdDB [11], Qurk [28], Deco [32], sCOOP,
FusionCOMP, MoDaS, CyLog/Crowd4U), entity resolution (such
as CrowdER [40]), planning queries [19], perform matching [41],
or counting [27]. A series of works [39-43] have proposed vari-
ations of crowdsourced join to address entity resolution task for
query answering. Authors in (7, 9, 13, 21, 33, 47] have proposed
various techniques of performing crowdsourced version of top-k
item selection. Crowdsourcing based filtering has been extensively
introduced in [30, 31]. Crowdsourced find focuses on selecting one
or more qualified items [34, 44]. Unlike these works, we involve
humans for attributes design, which occurs at a later stage of the
data science pipeline — therefore these prior works do not extend
to our problem.

Human-in-the-loop Supervised Modeling: Machine learning
literature has involved humans to obtain labels [5, 15, 16, 37] pri-
marily for the classification problem. Active learning involving
humans (expert as well as lay workers) has also been discussed in
recent works such as [10, 29, 45, 49]. These works utilize humans
for accurately predicting class labels, thus the humans function
as an added module to help the algorithm steer toward the cor-
rect assignment of class labels. The main distinction between these
works and ours is that, these works leverage human mainly for data
labeling and not for attribute design.

1621

Attribute Design: How to develop automated methods for design-
ing/engineering attributes (commonly referred to as as feature en-
gineering) has been discussed in recent works [2, 18, 20, 22, 23, 48],
primarily in machine learning literature. Attribute engineering
tools, such as, ExploreKit, Featuretools, Data Science Machine, One
Button Machine [17, 18, 20, 23, 24, 35] rely on fully automated
approaches. Typically they take longer to run and do not offer
adequate explainability or intuition, as the discovered attributes
remain opaque to the human analyst interested in broader ad-hoc
data exploration. They also ignore the availability of humans to
guide their exploration. Finally, the effectiveness of most of these
tools depend on the underlying classification model, whereas, we
present a model agnostic approach. Nevertheless, we use some of
these tools in our experimental analysis for comparison purposes.
A very few recent works [8, 36, 50] propose a conceptual frame-
work and describe how to involve humans for designing attributes
to improve the accuracy of predictive machine learning models,
such as classifiers. While we borrow inspiration from these recent
works [8, 36, 50], we present the framework with mathematical
rigor and investigate optimization opportunities.

7 CONCLUSION

We present an optimization guided semi-automated model-agnostic
“human-in-the-loop” framework for designing derived attributes
by leveraging humans. The main contribution of our work is to
provide an optimization guided framework for data scientists that
will help them to craft meaningful derived attributes much quicker
than a fully manual method. On the other hand, running time of the
fully automated techniques vary greatly; for example, FeatureTools
is significantly faster compared to ExploreKit, but they all have
the limitations of producing derived attributes that are opaque.
Contrarily, the derived attributes produced by our framework are
interpretable.

We present two computational problems inside our proposed
framework - top-k buckets design and top-l snippets generation prob-
lems. We present effective solutions for solving both problems. We
compare our proposed approach with two fully automated state-
of-the-art tools, as well as fully manual domain expert designed
derived attributes. Our rigorous quality evaluations using 6 real
world datasets demonstrate that we are as effective as fully auto-
mated methods and we scale up significantly better compared to a
fully manual solution involving two domain experts. Our scalability
results demonstrate that both bucket design and snippet generation
are interactive and ensure real time response with the analysts.
As an ongoing problem, we are investigating how to revisit these
problems when the datasets contain significant missing values. We
are also investigating how to involve multiple domain experts in
buckets design and snippets generation problems.

ACKNOWLEDGEMENTS

The work of Senjuti Basu Roy is supported by the National Science
Foundation under Grant No.: 1814595 and Office of Naval Research
under Grant No.: N000141812838. The work of Gautam Das is sup-
ported in part by grant W911NF-15-1-0020 from the Army Research
Office, grant 1745925 from the National Science Foundation, and a
grant from AT&T.

—

[

REFERENCES

[1] Rakesh Agarwal, Ramakrishnan Srikant, et al. 1994. Fast algorithms for mining

association rules. In Proc. of the 20th VLDB Conference. 487-499.

Michael R Anderson, Dolan Antenucci, Victor Bittorf, Matthew Burgess, Michael J
Cafarella, Arun Kumar, Feng Niu, Yongjoo Park, Christopher Ré, and Ce Zhang.
2013. Brainwash: A Data System for Feature Engineering.. In CIDR.

Michael R Anderson and Michael Cafarella. 2016. Input selection for fast feature
engineering. In Data Engineering (ICDE), 2016 IEEE 32nd International Conference
on. IEEE, 577-588.

Senjuti Basu Roy, Ankur Teredesai, Kiyana Zolfaghar, Rui Liu, David Hazel,
Stacey Newman, and Albert Marinez. 2015. Dynamic hierarchical classification
for patient risk-of-readmission. In ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. ACM, 1691-1700.

[5] Jonathan Bragg, Daniel S Weld, et al. 2013. Crowdsourcing multi-label classifi-

cation for taxonomy creation. In AAAI Conference on Human Computation and
Crowdsourcing.

Sergey Brin, Rajeev Motwani, and Craig Silverstein. 1997. Beyond market baskets:
Generalizing association rules to correlations. In Acm Sigmod Record, Vol. 26.
ACM, 265-276.

Xi Chen, Paul N Bennett, Kevyn Collins-Thompson, and Eric Horvitz. 2013.
Pairwise ranking aggregation in a crowdsourced setting. In ACM International
Conference on Web Search and Data Mining. ACM, 193-202.

Justin Cheng and Michael S Bernstein. 2015. Flock: Hybrid crowd-machine
learning classifiers. In ACM Conference on Computer Supported Cooperative Work
& Social Computing. ACM, 600-611.

Brian Eriksson. 2013. Learning to top-k search using pairwise comparisons. In
Artificial Intelligence and Statistics. 265-273.

Meng Fang, Jie Yin, and Dacheng Tao. 2014. Active Learning for Crowdsourcing
Using Knowledge Transfer.. In AAAL 1809-1815.

Amber Feng, Michael J. Franklin, Donald Kossmann, Tim Kraska, Samuel Mad-
den, Sukriti Ramesh, Andrew Wang, and Reynold Xin. 2011. CrowdDB: Query
Processing with the Crowd. PVLDB 4, 12 (2011), 1387-1390.

Benoit Frénay, Gauthier Doquire, and Michel Verleysen. 2013. Is mutual infor-
mation adequate for feature selection in regression? Neural Networks 48 (2013),
1-7.

Stephen Guo, Aditya Parameswaran, and Hector Garcia-Molina. 2012. So who
won?: dynamic max discovery with the crowd. In Proceedings of the 2012 ACM
SIGMOD International Conference on Management of Data. ACM, 385-396.

[14] Jeff Heaton. 2016. An empirical analysis of feature engineering for predictive

modeling. In SoutheastCon, 2016. IEEE, 1-6.

Chien-Ju Ho, Shahin Jabbari, and Jennifer W Vaughan. 2013. Adaptive task as-
signment for crowdsourced classification. In International Conference on Machine
Learning. 534-542.

Muhammad Imran, Carlos Castillo, Ji Lucas, Patrick Meier, and Sarah Vieweg.
2014. AIDR: Artificial intelligence for disaster response. In International Confer-
ence on World Wide Web. ACM, 159-162.

Yanggqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross
Girshick, Sergio Guadarrama, and Trevor Darrell. 2014. Caffe: Convolutional
architecture for fast feature embedding. In ACM International Conference on
Multimedia. ACM, 675-678.

[18] James Max Kanter and Kalyan Veeramachaneni. 2015. Deep feature synthesis:

Towards automating data science endeavors. In IEEE International Conference on
Data Science and Advanced Analytics. IEEE, 1-10.

Haim Kaplan, Ilia Lotosh, Tova Milo, and Slava Novgorodov. 2013. Answering
Planning Queries with the Crowd. In PVDLB.

Gilad Katz, Eui Chul Richard Shin, and Dawn Song. 2016. Explorekit: Auto-
matic feature generation and selection. In Data Mining (ICDM), 2016 IEEE 16th
International Conference on. IEEE, 979-984.

Asif R Khan and Hector Garcia-Molina. 2014. Hybrid strategies for finding the
max with the crowd: technical report. Technical Report. Stanford InfoLab.
Udayan Khurana, Deepak Turaga, Horst Samulowitz, and Srinivasan Parthasrathy.
2016. Cognito: Automated feature engineering for supervised learning. In IEEE
International Conference on Data Mining Workshops. IEEE, 1304-1307.

Hoang Thanh Lam, Johann-Michael Thiebaut, Mathieu Sinn, Bei Chen, Tiep Mai,
and Oznur Alkan. 2017. One button machine for automating feature engineering
in relational databases. arXiv preprint arXiv:1706.00327 (2017).

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. Nature
521, 7553 (2015), 436.

Wentian Li. 1990. Mutual information functions versus correlation functions.
Journal of statistical physics 60, 5-6 (1990), 823-837.

1622

[26

[27]

(28]

[29]

[31

[32

[33

[34

[36

[37

[38

[39

[40

[41

[42

[43

[44

=
i)

[46

(47]

[48

[49]

[50]

Mokshay Madiman. 2008. On the entropy of sums. In Information Theory Work-
shop, 2008. ITW’08. IEEE. IEEE, 303-307.

Adam Marcus, David Karger, Samuel Madden, Robert Miller, and Sewoong Oh.
2012. Counting with the crowd. Proceedings of the VLDB Endowment 6, 2, 109-120.

Adam Marcus, Eugene Wu, David Karger, Samuel Madden, and Robert Miller.
2011. Human-powered sorts and joins. Proceedings of the VLDB Endowment 5, 1

(2011), 13-24.
Barzan Mozafari, Purna Sarkar, Michael Franklin, Michael Jordan, and Samuel

Madden. 2014. Scaling up crowd-sourcing to very large datasets: a case for active
learning. Proceedings of the VLDB Endowment 8, 2 (2014), 125-136.

Aditya Parameswaran, Stephen Boyd, Hector Garcia-Molina, Ashish Gupta, Neok-
lis Polyzotis, and Jennifer Widom. 2014. Optimal crowd-powered rating and
filtering algorithms. Proceedings of the VLDB Endowment 7, 9 (2014), 685-696.
Aditya G Parameswaran, Hector Garcia-Molina, Hyunjung Park, Neoklis Poly-
zotis, Aditya Ramesh, and Jennifer Widom. 2012. Crowdscreen: Algorithms
for filtering data with humans. In ACM SIGMOD International Conference on
Management of Data. ACM, 361-372.

Hyunjung Park and Jennifer Widom. 2013. Query optimization over crowd-
sourced data. Proceedings of the VLDB Endowment 6, 10, 781-792.

Thomas Pfeiffer, Xi Alice Gao, Yiling Chen, Andrew Mao, and David G Rand.
2012. Adaptive Polling for Information Aggregation.. In AAAL

Anish Das Sarma, Aditya Parameswaran, Hector Garcia-Molina, and Alon Halevy.
2014. Crowd-powered find algorithms. In IEEE International Conference on Data
Engineering. IEEE, 964-975.

Frank Seide, Gang Li, Xie Chen, and Dong Yu. 2011. Feature engineering in
context-dependent deep neural networks for conversational speech transcription.
In [EEE Workshop on Automatic Speech Recognition and Understanding. IEEE,
24-29.

Micah J Smith, Roy Wedge, and Kalyan Veeramachaneni. 2017. FeatureHub:
Towards collaborative data science. In IEEE International Conference on Data
Science and Advanced Analytics. IEEE, 590-600.

Chong Sun, Narasimhan Rampalli, Frank Yang, and AnHai Doan. 2014. Chimera:
Large-scale classification using machine learning, rules, and crowdsourcing.
Proceedings of the VLDB Endowment 7, 13 (2014), 1529-1540.

Jorge R Vergara and Pablo A Estévez. 2014. A review of feature selection methods
based on mutual information. Neural computing and applications 24, 1 (2014),
175-186.

Norases Vesdapunt, Kedar Bellare, and Nilesh Dalvi. 2014. Crowdsourcing algo-
rithms for entity resolution. Proceedings of the VLDB Endowment 7, 12 (2014),
1071-1082.

Jiannan Wang, Tim Kraska, Michael] Franklin, and Jianhua Feng. 2012. Crowder:
Crowdsourcing entity resolution. Proceedings of the VLDB Endowment 5, 11
(2012), 1483-1494.

Jiannan Wang, Guoliang Li, Tim Kraska, Michael] Franklin, and Jianhua Feng.
2013. Leveraging transitive relations for crowdsourced joins. In ACM SIGMOD
International Conference on Management of Data. ACM, 229-240.

Sibo Wang, Xiaokui Xiao, and Chun-Hee Lee. 2015. Crowd-based deduplication:
An adaptive approach. In ACM SIGMOD International Conference on Management
of Data. ACM, 1263-1277.

Steven Euijong Whang, Peter Lofgren, and Hector Garcia-Molina. 2013. Question
selection for crowd entity resolution. Proceedings of the VLDB Endowment 6, 6
(2013), 349-360.

Tingxin Yan, Vikas Kumar, and Deepak Ganesan. 2010. Crowdsearch: exploiting
crowds for accurate real-time image search on mobile phones. In International
Conference on Mobile Systems, Applications and Services. ACM, 77-90.

Yan Yan, Romer Rosales, Glenn Fung, and Jennifer G Dy. 2011. Active learning
from crowds.. In International Conference on Machine Learning, Vol. 11. 1161—
1168.

Guizhen Yang. 2004. The complexity of mining maximal frequent itemsets and
maximal frequent patterns. In Proceedings of the tenth ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 344-353.

Peng Ye and David Doermann. 2013. Combining preference and absolute judge-
ments in a crowd-sourced setting. In International Conference on Machine Learning.
1-7.

Ce Zhang, Arun Kumar, and Christopher Ré. 2016. Materialization optimizations
for feature selection workloads. ACM Transactions on Database Systems 41, 1
(2016), 2.

Jinhong Zhong, Ke Tang, and Zhi-Hua Zhou. 2015. Active Learning from Crowds
with Unsure Option.. In IJCAL 1061-1068.

James Y Zou, Kamalika Chaudhuri, and Adam Tauman Kalai. 2015. Crowd-
sourcing feature discovery via adaptively chosen comparisons. arXiv preprint
arXiv:1504.00064 (2015).

	Abstract
	1 Introduction
	2 Preliminaries and Formalism
	2.1 Data Model
	2.2 Proposed Framework
	2.3 Problem Definitions

	3 Top-k Buckets Design
	3.1 Exact Algorithm
	3.2 Random Walk Based Algorithms

	4 Top-l Interactive Snippets Generation
	5 Experimental Evaluation
	5.1 Experimental Setup
	5.2 Summary of Results
	5.3 Comparison with fully automated methods
	5.4 Analysis of presented algorithms
	5.5 Comparison with fully manual method

	6 Related Work
	7 Conclusion
	References

