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Abstract—The proliferation of Android applications has re-
sulted in many malicious apps entering the market and causing
significant damage. Robust techniques that determine if an
app is malicious are greatly needed. We propose the use of
network-based approaches to effectively separate malicious from
benign apps, based on a small labeled dataset. The apps in
our dataset come from the Google Play Store and have been
scanned for malicious behavior using VirusTotal to produce a
ground truth dataset with labels malicious or benign. The apps
in the resulting dataset have been represented in the form of
binary feature vectors (where the features represent permissions,
intent actions, discriminative APIs, obfuscation signatures, and
native code signatures). We have used these vectors to build a
weighted network that captures the “closeness” between apps.
We propagate labels from the labeled apps to unlabeled apps,
and evaluate the effectiveness of the approaches studied using the
F1-measure. We have conducted experiments to compare three
variants of the label propagation approaches on datasets that
consist of increasingly larger amounts of labeled data.

Index Terms—Classification, Semi-supervised learning, An-
droid Malware,

I. INTRODUCTION

As the number of Android applications becoming available
and subsequently downloaded is rapidly growing, there has
been a similar increase in the number of malicious software,
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referred to as malware, appearing on the market. Malware can
have many different purposes and perhaps the most prolific is
obtaining personal information. This can include medical and
financial information as well as passwords, which can be used
for malicious purposes. With the threat of such information
getting into the wrong hands, it is important to find a solution
to the Android malware detection problem.

There are many techniques that determine if an application
is malicious, and they are ever-changing. Ideally, techniques
to identify malware must be robust, as the schemes of cre-
ating malicious apps are changing as well. When working
with Android applications, there are two main hurdles: the
lack of labeled data and the imbalance of data (i.e., the
number of malware apps is significantly smaller than the
number of benign apps). To address the lack of labeled data,
we explore semi-supervised learning approaches, specifically
network-based transductive learning approaches. To address
data imbalance, we explore a class mass normalization (CMN)
approach.

Network-based transductive learning approaches make use
of a small number of labeled instances and propagate the given
labels to a typically much larger set of unlabeled instances. In
our case, the instances are the apps. Each app is represented as
a binary vector, where features represent permissions, intent
actions, discriminative APIs, obfuscation signatures and native
code signatures [1]. To construct the app network, we test
several methods for evaluating the similarity between apps,
including the Gaussian and the k-nearest-neighbors kernel
(k−NN). We compare three network-based transductive learn-
ing variants: Label Propagation (a.k.a., hard clamping) and
Label Spreading (a.k.a., soft-clamping), as implemented in
Python through scikit-learn [2], and a variant proposed as part
of our research. We also compare the transductive approaches
with two supervised baselines, specifically k-nearest-neighbors
(k-NN) and naive Bayes (NB).
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Our contributions in the Android application domain are the
following:
• We assess the impacts of standard similarity metrics

(Gaussian kernel, and k-NN kernel) on our data.
• We compare transductive network-based approaches

(hard clamping, soft clamping and a variation) to super-
vised learning techniques (naive Bayes and k-NN).

• We evaluate the robustness of these methods in the
presence of data imbalance, which is prevalent in security.

• We analyze the impacts of CMN on transductive learning
when the datasets used exhibit different levels of class
imbalance (including no class imbalance).

II. RELATED WORK

Many researchers have studied labeling techniques in many
different applications including malware detection. In partic-
ular, machine learning has been used in malware detection
by [1], [3] and many others. Social networks have also been
explored in the context of malware detection [4], [5].

Furthermore, this is not the first time when semi-supervised
learning, specifically, transductive learning, has been used
for Android malware detection. For example, [6] used semi-
supervised learning where each edge is the file delivery
relation between various files, URLs, and IPs. Their proposed
approach first used a supervised classifier for each node type,
then used those the resulting probabilities as priors for the label
propagation. They specifically used Bayesian Label Propaga-

tion, with the iterative function fi =

∑
vj∈Ni

fj+γŷi∑
vj∈Ni

fj+γ
, where γ

is a shape parameter, ŷi is the prior, fi =
|N+

i |+γŷi
|Ni|+γ , and |Ni| is

the set of neighbors to point i with |N+
i | being neighbors with

positive labels. Semi-supervised learning techniques were also
used in [7]. Here, the authors defined their similarity metric
as the strength of co-occurrences using the Jaccard similarity
measure. In their research, they used the label propagation
technique called hard-clamping [8], which we outline in
our Methods section. In [9], the authors used an attributed
function call graph. In this setup, each vertex represents a
local function which is first translated into an intermediate
language, where six types of attributes are extracted. Then, to
determine distances between applications, they first performed
a pairwise function distance computation, malware distance
computation, then a pairwise malware similarity computation
using the Gaussian kernel. Finally, a maximum confidence
label propagation technique was used.

III. METHODS

A. Hard Clamping (HC) Algorithm

The hard clamping algorithm described in this subsection
was proposed in [8]. Let (x1, y1)...(xl, yl) be our labeled data
where the set of Yl = {y1, ...yl} are the class labels. The
number of classes, c, is assumed to be known. In our specific
case, the number of classes is 2, class 1 being benign and
class 2 being malicious. We also have a set of unlabeled data,
(xl+1, yl+1)...(xl+u, yl+u), for which we are trying to assign

labels. Let Yu = {yl+1, ...yl+u} be the set of unobserved
labels and X = {x1, ...xl+u} be the data points.

We define weight matrix W , where wi,j ∈W is the weight
between nodes i and j. This weight is given by the similarity
of the feature vectors of the corresponding apps; thus, the more
similar apps are, the larger the edge weight.

We define a (l+u)×(l+u) matrix T . This is a probabilistic
transition matrix where Tij = P (j → i) =

wij∑l+u
k=1 wkj

. We can
think of this as the probability to move from node j to node
i. We also define matrix Y , a (l + u)× c matrix, where each
row, i, corresponds to the probability distribution of node xi.

We start by initializing Y for the first l nodes, which are
labeled. The algorithm works as follows:

1) Propagate Y ← TY
2) Row-normalize Y
3) Clamp the labeled data. Repeat step 1 until Y converges.

To expand, in step 2), we row normalize Y , as each row
represents a probabilistic matrix, thus each row must sum
up to one. In step 3), by clamping the labeled data, we are
resetting the values of Y for the labeled data back to the initial
values, thus, ensuring that the nodes that have a ground truth
associated with them do not change their labels. The final
labeling for application i is given by the maximum of row Yi.
Reference [8] proves that this iterative method does converge.

B. Soft Clamping (SC) Algorithm

The soft clamping variant of the label propagation algo-
rithm was proposed in [10]. Given a set of points X =
{x1, ..., xl, xl+1..., xl+u}, where the first l points are labeled
and the remaining are unlabeled, let Y be an n × c matrix,
where n is the number of apps and c is the number of classes.
Entry Yi,1 is the probability of application i being benign and
Yi,2 the probability of application i being malware. We build
an affinity matrix W , which in our case is the matrix, where
the wij entry is the edge weight between apps i and j and we
define wii = 0. By this definition, W is a symmetric matrix.
We construct S = D−

1
2WD−

1
2 , where D is a diagonal matrix

such that Dii is the sum of the elements of the ith row of W .
Entry-wise we have Sij =

Wij√
DiiDjj

. Let F = [FT1 , ..., F
T
n ]T ,

where each Fi is an 1 × c matrix that corresponds to the
classification of app i. The algorithm then iterates

F (t+ 1) = αSF (t) + (1− α)Y (1)

until convergence [10]. In this algorithm, Y = F (0) represents
the initial labels and α is a scalar. We can interpret α as the
amount of information received from neighboring apps and
the app’s own initial labeling. To get the final label for app i,
we look at row i of the final iteration, and the label is chosen
to correspond to the column where the maximum occurs.

C. Proposed Variant for Label Propagation

As mentioned, the final algorithm we used is a combination
of both soft and hard clamping. We build the matrix S =
D−

1
2WD−

1
2 as outlined in the soft clamping algorithm. We

also define Λ as a diagonal matrix with the same dimensions



as S, where λii = αi. Note that αi corresponds to the i-th
app and 0 ≤ αi ≤ 1 for all i. For apps with highly accurate
initial labels, such as apps that were manually verified, we use
a low α value, while we use a high α value for the unlabeled
apps. Specifically, for apps with highly accurate labels, we
use α = 0, while for unlabeled apps α = 0.9. Thus, we are
ensuring that hard clamping is used for the quality ground truth
data, and soft clamping for the unlabeled data. Our variant is
based on the iterative equation from soft clamping:

F (t+ 1) = ΛSF (t) + (I − Λ)Y (2)

Similar to soft clamping, we proved that this iterative
method will converge as well. To determine the label of app i,
we look at row i of F at convergence, and the label is chosen
to correspond to the column where the maximum occurs.

D. Class Mass Normalization (CMN)

For each of the methods, upon convergence, the label of
each app is determined by the maximum of the two column
values for that app. Alternatively, one can use the CMN tech-
nique, introduced in [8]. Intuitively, CMN takes into account
the class imbalance ratio for labeled data and imposes that
imbalance on the unlabeled data after propagation. Working
with a domain where class imbalance is prevalent, we can
apply CMN to mitigate the imbalance.

Further explanation of CMN is available in [11]. Let yi,k
be the initial label of app i and let pk be the prior prob-
ability of class k based on the labeled data. We define pk
as pk = 1

l

∑l
i=1 yi,k. The average of estimated weights for

class k on the unlabeled data is given by mk = 1
u

∑l+u
i=l+1 ŷi,k

where ŷi,k is the class produced by hard clamping. Then, the
class normalization occurs by taking arg maxk wkŷi,k where
wk = pk

mk
. Using this evaluation, we take into account the

imbalance of data. We compare the label propagation methods
with CMN and without CMN, for imbalanced as well as
balanced data.

E. Similarity Matrix

Label propagation methods rely on an affinity matrix to
define how similar applications are to one another. Results are
highly dependent on the choice of the similarity metric. We
tested three different similarity metrics, specifically, the k-NN
and Gaussian kernels, and the similarity metric derived from
the Hamming distance. We found in initial trials (results not
shown) that the Gaussian kernel performed the best. Results
and other resources suggested that this is due to the fact that
the Gaussian kernel is much smoother than k-NN and the
Hamming distance. Therefore, the Gaussian kernel was used
to produce the results in this work. The Gaussian kernel for
apps x and y is defined as K(x, y) = exp(−γ||x − y||2),
where γ is a parameter that needs to be tuned.

IV. EXPERIMENTAL SETUP AND RESULTS

A. Experimental Data

The set of apps in this work was curated by [1] this set
contains over 1.3 million apps. Associated with each app in the

set is a binary feature vector with 471 entries which represent
various features. The features fall into the following categories:
permissions, intent actions, discriminative APIs, obfuscation
signatures, and native code signatures. In our base dataset, an
app is labeled malware or benign based on the number of
VirusTotal [12] programs that predict the app to be malware.

B. Research Questions

Our experiments are designed to answer the following
questions:

Research Question 1: How do the transductive label propa-
gation techniques compare to each other, and also to standard
supervised classifiers, specifically k-NN and naive Bayes
(NB)?

Research Question 2: How do the label propagation tech-
niques perform in the presence of class imbalance?

Research Question 3: How does the CMN technique impact
results in both balanced and imbalanced data cases?

C. Experimental Setup

Each method that is being studied has respective param-
eters which need to be tuned. Given a dataset, we selected
parameter values based on the best performance of a method
on that particular dataset. To estimate the performance of
the methods, we calculated the average F-measure over five
random labeled/unlabeled splits. The F-measure is given by
2× precision×recall

precision+recall .
In order to find good parameter values for each method,

we performed a grid search for both the k-NN kernel and
the Gaussian kernel. For the k-NN kernel, we used the fol-
lowing values for k: {3, 5, 7, 9, 11}. For the Gaussian kernel,
we used the following values for γ, as suggested by [13]:
{2−15, 2−13, ..., 23}. Results showed that any γ less than 2−3

performed poorly in all methods. Thus, the following results
are obtained using γ ≥ 2−3. For soft clamping and the
proposed variant, α must also be tuned. We used the following
values for α: {0.1, 0.2, ..., 0.9}.

We trained the approaches studied on datasets that contain
increasingly larger labeled data, as shown in Table I for
balanced data in the upper portion and unbalanced in the lower.
A smaller labeled dataset is a proper subset of a larger labeled
dataset.

We read the table as follows: in row one, our first dataset, we
started with 50 labeled malicious and 50 labeled benign apps,
as well as 5,000 ‘unlabeled’ malicious and 5,000 ‘unlabeled’
benign apps. By ‘unlabeled’, we are referring to the fact that
we know the ground truth for these applications but we have
the program treat them as though they are unknown, allowing
us to evaluate the performance of the approaches studied. We
trained the transductive label propagation techniques on the
graph constructed from both labeled and unlabeled apps. We
evaluated the performance on the unlabeled apps. To compare
with supervised classifiers, we trained the models on the
labeled data and evaluated them on the unlabeled data.



TABLE I
NUMBER OF LABELED AND UNLABELED INSTANCES IN THE EXPERIMENTS

WITH BALANCED (UPPER) AND UNBALANCED (LOWER) DATA

Labeled Labeled Unlabeled Unlabeled
Malware Benign Malware Benign

50 50 5000 5000
100 100 5000 5000
500 500 5000 5000
1000 1000 5000 5000
5000 5000 5000 5000
10 100 500 5000
25 250 500 5000
50 500 500 5000

250 2500 500 5000

D. Experimental Results

We outline the results from the testing of each algorithm:
hard-clamping (HC), soft-clamping (SC) and the variation
(VAR). We compare these against each other and also against
well-known supervised algorithms, k-nearest-neighbors and
naive Bayes. Table II (upper), shows the average F1-measure
of the best tuned models, over five splits, for balanced datasets.

Comparing the transductive label propagation techniques,
we found that hard-clamping performed the best. With the ex-
ception of the iteration with 100 labeled malware applications,
the transductive label propagation techniques did perform
better than the supervised counterparts. As can be seen, the
results show that CMN did not offer consistent improvements
for balanced data.

In the case of imbalanced data, the class ratio was 1:10,
and the results of the best tuned models over five data
splits are shown in Table II (lower). In comparison to the
balanced case, the average F1-measure values are lower for
imbalanced data. Comparing the transductive label propagation
techniques, we found that the soft-clamping technique and
the variant performed almost equally and better than hard-
clamping. This does change, however, when we apply CMN.
We see a significant improvement in performance for hard-

TABLE II
F1-MEASURE RESULTS FOR BALANCED (UPPER) AND UNBALANCED

(LOWER) DATASETS.

Data NB k-NN HC HC SC SC VAR VAR
size CMN CMN CMN
50 0.771 0.858 0.879 0.878 0.872 0.876 0.871 0.876

100 0.873 0.931 0.907 0.908 0.902 0.899 0.899 0.899
500 0.803 0.937 0.940 0.939 0.937 0.937 0.937 0.937

1000 0.811 0.941 0.945 0.945 0.946 0.945 0.945 0.945
5000 0.866 0.958 0.965 0.964 0.965 0.964 0.965 0.965

10 0.456 0.343 0.602 0.716 0.622 0.640 0.622 0.639
25 0.532 0.749 0.680 0.793 0.714 0.720 0.714 0.721
50 0.518 0.783 0.748 0.843 0.760 0.793 0.760 0.794

250 0.526 0.907 0.831 0.918 0.847 0.897 0.847 0.897

clamping after implementing CMN, making the hard-clamping
technique with CMN the best method overall. As can be seen
from the table, the CMN technique did help in the case of
imbalanced data. With the exception of the smallest dataset,
k-NN performed better than the transductive label propagation
techniques without CMN. However, as mentioned above, this
was not the case after CMN was applied to the transductive
label propagation techniques.

V. CONCLUSIONS AND FUTURE WORK

In this study, we compared several transductive label prop-
agation techniques on the Android malware identification
problem. We performed experiments on both balanced and
imbalanced datasets. We used the Gaussian kernel to con-
struct the app graph. In the balanced case, we found that
hard-clamping performed the best out of all of the methods
which were tested. As intuition suggests, CMN lead to no
significant improvements in the models for balanced data. For
the imbalanced data with ratio 1:10, CMN offered significant
improvements. We found that hard-clamping with CMN was
the best approach overall among those that we compared.

For future work, we would like to study the impacts of noise
on the performance by artificially introducing noise into our
data. The ground truth for Android app detection is generally
noisy, thus this is a worthwhile task.
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