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Abstract
A computational study was performed both of a single agglomerate and of the collision of two
agglomerates in a shear flow. The agglomerates were extracted from a direct numerical
simulation of a turbulent agglomeration process, and had the loosely-packed fractal structure
typical of agglomerate structures formed in turbulent agglomeration processes. The computation
was performed using a discrete-element method for adhesive particles with four-way coupling,
accounting both for forces between the fluid and the particles (and vice versa) as well as force
transmission directly between particles via particle collisions. In addition to understanding and
characterizing the particle dynamics, the study focused on illuminating the fluid flow field
induced by the agglomerate in the presence of a background shear and the effect of collisions on
this particle-induced flow. Perhaps the most interesting result of the current work was the
observation that the flow field induced by a particle agglomerate rotating in a shear flow has the
form of two tilted vortex rings with opposite sign circulation. These rings are surrounded by a
sea of stretched vorticity from the background shear flow. The agglomerate rotates in the shear
flow, but at a slower rate than the ambient fluid elements. In the computations with two colliding
agglomerates, we observed cases resulting in agglomerate merger, bouncing and fragmentation.
However, the bouncing cases were all observed to also result in an exchange of particles between
the two colliding agglomerates, so that they were influenced both by elastic rebound of the
agglomerate structures as well as by tearing away of particulate matter between the
agglomerates. Overall, the problems of agglomerate-flow interaction and of the collision of two
agglomerates in a shear flow are considerably richer in physical phenomena and more complex
than can be described by the common approximation that represents each agglomerate by an

'equivalent sphere'.



1. Introduction

Collision of particle agglomerates with each other and with container walls or other
obstacles in turbulent flow fields is important during both the agglomerate formation and
breakup processes. The significance of agglomerate collisions has been studied for important
industrial processes such as drug particle dispersion in dry powder inhalers (Tong et al., 2013,
2016; Yang et al., 2014), cyclone operation (Tong et al., 2010), and particle filtration (Iimura et
al., 2009a,b). Similar agglomerate-agglomerate collision processes occur in astrophysics during
formation of protoplanatary disks (Ormel et al, 2007, 2009) and in the dynamics of planetary
rings (Schéfer et al., 2007).

The development of particle agglomerates in turbulent flows occurs through a series of
processes in which individual particles collide and adhere to form small agglomerates, and these
small agglomerates then collide and adhere to each other to form larger agglomerates, and so
forth (Dizaji and Marshall, 2016, 2017). As they increase in size, the agglomerates begin to lose
particles by processes such as erosion of small groups of particles from an agglomerate surface
or rupture of the agglomerate into smaller pieces in response to the fluctuating turbulent shear
flow (Serra et al., 1997; Higashitani et al., 2001), eventually balancing the agglomerate
formation processes to achieve a quasi-equilibrium state (provided that the turbulence itself is in
an equilibrium state). As discussed by Sayvet and Navard (2000), a dominant agglomerate
breakup process for turbulent flows at lower shear stress values is fragmentation of agglomerates
during collisions with other agglomerates. The question of whether two colliding agglomerates
will merge together, bounce off each other, or split apart into a larger number of fragments is
thus one of central importance for a wide range of processes. All three of these outcomes were

observed under different conditions in a microgravity experiment of particle agglomerates in a



vibrating box by Brisset et al. (2016) for different values of the collision velocity and in a normal
gravity experiment by lhalainen et al. (2012) in which agglomerates were impacted onto a flat
surface.

An important simplification that is often made in modeling turbulent agglomeration is
replacement of a particle agglomerate by single 'effective particle', often selected as a sphere
with the same mass as the agglomerate. This assumption is integral to the traditional population
balance model for agglomerate formation (Smoluchowski. 1917; Lu and Wang, 2006; Reinhold
and Briesen, 2012), and it plays an important part in many analytical statistical models for the
early stages of agglomerate formation in turbulence (Brunk et al., 1998; Chun and Koch, 2005;
Koch and Pope, 2002; Wang et al., 1998). The equivalent sphere assumption is also used in the
'extended hard-sphere' discrete-element method (DEM), which seeks to use the hard-sphere
approach for binary collisions to study formation of particle agglomerates (Kosinski and
Hoffmann, 2010; Balakin et al., 2011). All such applications of this equivalent sphere
approximation must impose some external criterion for whether or not an agglomerate will stick
or bounce upon collision. Although the equivalent sphere approximation is commonly made for
simulation of turbulent flows of adhesive particles, the accuracy of this approximation has not
been addressed in detail. Can mechanical properties be assigned to the effective particle such that
its collision with another effective particle accurately approximates the collision of two
agglomerates? Are agglomerate collisions more complex than can be represented by a simple
stick or bounce decision? Addressing these questions is one of the primary objectives of the
current paper.

There is a fairly large literature on use of the discrete element method for examining

collision of tightly-packed agglomerates with a wall (Kafui and Thornton, 2000; Lian et al.,



1998; Moreno et al., 2003; Moreno-Atanasio et al., 2006; Thornton et al., 1999; Ning et al.,
1997; Thornton and Liu, 2004), with each other (Kun and Herrmann, 1999; Schéfer et al., 2007,
Seizinger and Kley, 2013; Tong et al., 2009), or with some other obstacle, such as a cylinder or
sphere in the flow field (Iimura et al., 2009a,b; Yang et al., 2014). Experimental studies of
compressed particle aggregates with each other (Beitz et al., 2011) and with a wall (Samimi et
al., 2004) have also been reported. Much of this work is motivated by the problem of
deagglomeration of particles in dry powder inhalers (Tong et al., 2013, 2016; Yang et al., 2014),
used to break up agglomerates and deliver small drug particles to the lungs, where they are
absorbed. In this application, the particles are initially compressed into tightly-packed aggregates
at the time of manufacture, which then need to be broken up to release the small drug particles at
time of use. Alternatively, ice particles can form tightly-packed aggregates in planetary rings
(Schifer et al., 2007), and the dynamics of their collision plays a central role in understanding
the ring dynamics.

A useful definition of agglomerate strength was given by Moreno-Atanasio and Ghadiri
(2006), based on the work of Rumph (1962), as “the force that is required to break all contacts
simultaneously on a prescribed failure plane”. This force depends both on the strength of the
individual contacts and the number of contacts in the failure plane. The number of contacts in
any given cross-sectional plane increases with the agglomerate fractal dimension, with higher

values for tightly-packed agglomerates with fractal dimension close to d, =3 and lower values

for the loosely-structured agglomerates more typically formed in turbulent flocculation

processes, with fractal dimension closer to d, ~2. For instance, in experiments with turbulent
agglomeration of latex particles in stirred tanks, Selomulya et al. (2001) reported d, between

1.7 - 2.1 and Waldner et al. (2005) reported d, between 1.8 - 2.6. The above definition of



agglomerate strength is based on the idea of pulling an agglomerate apart in tension, whereas the
agglomerate response to collision is also dependent on its behavior under compression. In
compressive deformation, agglomerates with lower values of particle concentration are more
susceptible to buckling of force chains due to having fewer surrounding particles (Marangoni
and Narine, 2001). The sensitivity of agglomerate collisions to particle concentration ¢ (or void
fraction & =1—c¢) was noted in DEM simulations by Gunkelmann et al. (2016), who in a study
of head-on collision of two agglomerates in a vacuum found that agglomerates with higher
porosities are more fragile during collision and have higher tendency to fragment. These
conclusions are also supported by the simulations of Nguyen et al. (2014) of the collision of a
loose-structured agglomerate of fine particles with a larger spherical particle, who found a higher
tendency of the loose-structured agglomerate to fragment compared to simulations with highly
packed agglomerates.

The current paper examines the collision of two particle agglomerates in a shear flow
under conditions typical of agglomerate collision in turbulent flows. The primary objective of the
paper is to address two issues: (1) to understand the flow field induced by a particle agglomerate
in a shear flow and (2) to evaluate the accuracy of the equivalent sphere approximation by
examining the physics of actual agglomerate-agglomerate collisions with loosely-structured
agglomerates. The agglomerate collision is computed using a CFD-DEM approach based on the
soft-sphere method with four-way coupling. The CFD-DEM approach does not resolve flow
around individual particles, but instead it introduces a distributed body force that accounts for the
influence of particles on the bulk fluid flow. The bulk flow within the agglomerates can be
resolved by the fluid flow computation since the agglomerates selected consist of several

hundred particles, and so are much larger than the individual particle size. Loosely-structured



agglomerates are first generated from a direct numerical simulation of turbulent agglomeration
(Dijazi and Marshall, 2016), and from which agglomerates are extracted and placed in a shear
flow. We first examine agglomerate evolution and breakup in shear with no collision, and then
examine the effect of two-agglomerate collision on agglomerate merger, bouncing, and
fragmentation. The paper differs from previous work in its focus on agglomerate collision in
shear flows, in its use of loosely-structured agglomerates typical of turbulent flocculation

processes, and in its focus on fluid flow effects on the agglomerate collision.

2. Computational Method

The agglomerate breakup and collision is computed using the four-way coupled CFD-
DEM approach, using an adhesive soft-sphere discrete-element method for the particles and a
high-order finite-difference method for the fluid. The DEM approach is based on evolving the
motion of each individual particle by solution of the particle momentum and angular momentum
equations, while accounting for the many different forces and torques acting between the
particles due to collision and van der Waals adhesion effects as well as between the particles and
the surrounding fluid via a set of model equations. The flow around each individual particle is
not resolved, but rather the computational method introduces the force imposed by the particles
on the fluid as a smooth body force field, which is generated by the combined forces acting on
many particles in a local region. A conservative particle blob method (Marshall and Sala, 2013)
is used in the current paper to translate between forces on individual particles and the body force
acting on the fluid grid in a manner that is well suited for cases where the ratio of particle

diameter to the grid cell spacing is of order unity.



The soft-sphere DEM formulation can be used both to simulate isolated particles and to
simulate particles contained in agglomerates. An agglomerate is defined in the current paper as
an assemblage of particles in which each particle in the agglomerate is in contact with at least
one other particle in the agglomerate, in such a manner that one can continuously travel between
any two particles in the agglomerate by following a chain of contacts. With use of the soft-sphere
DEM approach, the motion and deformation of the agglomerate is simulated by evolving the
motion and rotation of its constituent parts.

As is standard in DEM, the drag on each particle is given by the Stokes drag expression
multiplied by a particle crowding factor that accounts for the effect of surrounding particles on
the drag force and an inertia factor that accounts for finite particle inertia. The particle crowding
factor was determined empirically as a function of the local particle concentration and the
particle Reynolds number based on experiments with a fluidized particle bed (Di Felice, 1994).
While this approach is commonly employed, we note that it does not account for the effects of
strongly heterogeneous concentration along the sides of the agglomerate. The pairwise-
interaction extended point-particle (PIEPP) method recently proposed by Akiki et al. (2017a,b)
might be one approach that could be used to account for the effect of heterogeneity in future
studies of agglomerate flows. However, even without such corrections previous studies with the
CFD-DEM method, such as that of Bosse et al. (2005) for a particle suspension droplet falling
under gravity, have produced predictions for agglomerate formation and dynamics in excellent
agreement with experimental observations. A review of the CFD-DEM approach by Zhu et al.
(2007) provides a detailed discussion of the modeling approximations used in this method.

The computations proceed in two parts. The first part is concerned with the initial

formation of agglomerates in a turbulent flow, and the approach used for these computations



have been described in detail in a previous paper (Dizaji and Marshall, 2017). The second part
conducts a detailed examination of the collision process that occurs when either one or two of the
agglomerates are extracted and placed in a plane shear flow, which is intended to represent a
very small section of the overall turbulent flow. A summary of the DEM and CFD methods used
to simulate the particles and the fluid flow, and of the turbulent flow computations used to

initialize the agglomerate structure, is given below.

2.1. Discrete element method

The computations of particle agglomerate breakup and collision are performed using a
soft-sphere adhesive discrete element method (Marshall, 2009). Because particle collision and
adhesion processes involve a wide range of time scales, a multiple time step algorithm is used in
the current paper in which the fluid time step At=O0(//u,), the particle time step
At, =O(d/u,), and the collision time step Az, = O(d(p, /E u,)'"") satisfy Ar>At, > At
Here d is the particle diameter, p, is the particle density, and E, is the particle elastic modulus.

The method follows the motion of individual particles in the three-dimensional fluid flow by

solution of the particle momentum and angular momentum equations

dv dQ
mE=FF+FA, IE:MFJFMA’ (1)
subject to forces and torques induced by the fluid flow (F,, M, ) and by particle collision and

van der Waals adhesion (F,, M ,). In this equation, m is the particle mass, / is the moment of

inertia, and v and Q are the particle velocity and rotation rate, respectively. The dominant fluid



force is the drag force, given by the Stokes drag law modified to account for the effects of

particle inertia and local particle crowding as
F, =3mud(u-v)f, 2)

where u is the fluid velocity evaluated at the particle centroid. The friction factor f =C,C, is
written as the product of an inertial correction term C, and a particle crowding correction term

C. . An expression for the inertial correction was given by Schiller and Naumann (1933) as
C, :1+0.15Reg'687, 3)

where Re , = p dv / u is the particle Reynolds number and v, = |V - u| is the magnitude of the

particle slip velocity relative to the fluid. This expression is valid to within 5% of comparison
experimental data for particle Reynolds number up to about 800. An expression for the crowding
correction factor was determined empirically by Di Felice (1994) for particle Reynolds numbers

in the range 0.01 to 10* as a function of the void fraction & as

C.=¢&"", £ =3.7-0.65 exp(—%[l.S - ln(Rep)]zj . 4)

10



This expression approaches the Wen and Yu (1966) expression for low particle Reynolds
number. A viscous fluid torque arises from a difference in rotation rate of the particle and the

local fluid element (Crowe et al., 2012), and is given by
M, :—nyd3(ﬂ—%co), (5)

where ® is the fluid vorticity vector. While the drag is the primary fluid force acting on the
particles, we also include in the computations several secondary forces such as the added mass
force and the Saffman and Magnus lift forces (Saffman, 1965; Rubinow and Keller, 1961).

Particle collision and van der Waals adhesion forces are simulated using the classical
Johnson-Kendell-Roberts (JKR) theory (Johnson et al., 1971). This theory assumes that particle
diameter is much larger than the effective length scale over which the van der Waals adhesion
force acts (approximately 10nm), so that the adhesion force can be assumed to only act within
the flattened contact region between two colliding particles. No adhesion force acts between the
particles prior to or following collision, when the particles are not in contact. Since the size of
the contact region depends on both the elastic and adhesive forces, these forces are nonlinearly
combined to yield the total contact/adhesion force on any pair of particles in contact with each
other.

The collision and adhesion force and torque fields acting on particle i, with radius r,, are
given by

F,=Fn+Ftg, M =rF (nxts)+ M, (t,xn), (6)

11



where n=(x; —xi)/‘x ; —xi‘ is the unit normal vector oriented along the line connecting the

centers of the two colliding particles, i and j. The normal component of the collision and

adhesion force F), is further divided into an elastic-adhesion part F,, and a dissipative part F,.
The sliding resistance is composed of a force with magnitude F, acting in a direction tg,
corresponding to the direction of relative motion of the particle surfaces at the contact point

projected onto the contact plane (the plane orthogonal to n), as well as a related torque in the

nxt, direction. The rolling resistance, which arises due to the effects of particle adhesion,

exerts a torque of magnitude M, on the particle in the t, xn direction, where t, is the

direction of the “rolling” velocity. While all of these various collision-adhesion forces and
torques are included in the current computations, the dynamics of small adhesive particles are
dominated by the normal elastic-adhesive force and the rolling resistance torque.

The effective elastic modulus £ and the effective radius R are defined by

+—, (7)

where E,, o,, and r, are the elastic modulus, Poisson ratio, and radius of particle i, respectively.

The adhesive force between the two particles depends on the surface energy potential y, where

the work required to separate two spheres colliding over a contact region of radius a(¢) is given

by27zya’ in the absence of further elastic deformation. Particle normal elastic rebound force and

van der Waals adhesion force are simulated using the JKR theory, which can be written in terms

12



of the contact region radius a(z) and the normal particle overlap &, =7, +r, —‘xi -X j‘ as

(Chokshi et al. 1993)

5 2 4 1/2 F 3 3/2
—N:6”32i _ara , Tne _ gyl 4| _y4 & , (8)
0. a, 3\ a, F, a, a,

The critical overlap J., the critical normal force F., and the equilibrium contact region radius a,

are given by (Johnson et al. 1971)

2 2 1/3
F =3mR &= to . o =|27E ) ©)
2(6) R E

As two particles move away from each other following collision, they remain in contact until the

point where F, =—F and 6, =—0. due to the necking of the material in the contact region.

Beyond this state any further separation leads the two particles to break apart.

The effect of lubrication forces within the fluid squeeze-film within the contact region is
to limit the minimum approach distance between the particles (i.e., the contact region gap size)
and to reduce the particle restitution coefficient. Experimental studies of particle collisions at
different Stokes numbers (e.g., Joseph et al., 2001) indicate that the coefficient of restitution is
essentially zero when the Stokes number is less than about 10 due to dissipation in the squeeze-
film. We use the model of Tsuji et al. (1992) for the dissipative part of the normal collision force

F , and set the damping parameter such that the restitution coefficient vanishes.

13



The second major effect of particle adhesion is to introduce a torque that resists particle
rolling. For uniform-size spherical particles, the “rolling velocity” v, of particle i is given by

(Bagi and Kuhn 2004)

vV, =—R(L,-Q,)xn . (10)
A linear expression for the rolling resistance torque M, is postulated as

M, =—k, &, (11)

where & =( .[ v,(r)dr)-t, is the rolling displacement in the direction t, =v, /|V L|. Rolling

L
involves an upward motion of the particle surfaces within one part of the contact region and a
downward motion in the other part of the contact region. The presence of an adhesion force
between the two contacting surfaces introduces a torque resisting rolling of the particles. An
expression for the rolling resistance due to van der Waals adhesion was derived by Dominik and

Tielens (1995), which yields the coefficient &k, as
ky =4F,(ala,)"?. (12)

Dominik and Tielens (1995) further argue that the critical resistance occurs when the rolling

displacement & achieves a critical value, corresponding to a critical rolling angle 6., =&, /R .

crit

14



For >0

crit

the rolling displacement & in (11) is replaced by &

... - Data for critical rolling
angle for particles having diameter of approximately 10 um were reported by Ding et al. (2008),

who found critical rolling angles @, of between 0.02 and 0.06 radians.

t
A simplified expression for the effect of van der Waals adhesion on tangential sliding

resistance was proposed by Thornton (1991). In this model, the sliding resistance force F, is

given by a spring-like expression of the form (Cleary et al., 1998)
t
Fs:_kr(jvs(f)df)'ts (13)

when F, is less than a critical value F,

crit *

In (13), the sliding velocity v(#) is the relative

tangential surface velocity of the particles at the contact point projection. The tangential stiffness
coefficient k, is derived by Mindlin (1949) and can be written in terms of the contact region

radius a(t) as
k, =8G a(t). (14)
The critical sliding force is approximated using the expression

F

crit

= u,|F, +2F,], (15)

15



where F, is the critical force for pull-off given in (9) and g, is the friction coefficient. The

expression (15) was shown by Thornton (1991) to provide results in reasonable agreement to

F

N

> F

crit 2

experiments. For

the sliding resistance is given by the Amonton expression

F =-F

s crit *

2.2. Agglomerate formation

The agglomerates are formed using a turbulent agglomeration process similar to that
described by Dizaji and Marshall (2017). The computations employed a pseudo-spectral method
for forced turbulence in a triply-periodic domain with side length 27 and with 128 grid points in
each direction. The turbulence is initiated with random perturbations and allowed to develop
with no particles until it approached a quasi-steady state corresponding to microscale Reynolds

number Re, =u,A/v =99. Particles are then added to the computation, with 46,656 particles

spread randomly over the flow field with diameter d = 0.04 and particle-to-fluid density ratio

P,/ p, =10. Over time as the particles are advected by the flow, small agglomerates first form

and then collide with each other to form progressively larger agglomerates.
The computation was stopped once the agglomerates achieved a broad range of sizes.

One common way to measure the size of an agglomerate is the radius of gyration R, , which for

an agglomerate with N particles is defined by

R, {ﬁ: |xi—i|2} . (16)

i=1

16



In this equation, X denotes the position vector of the agglomerate centroid and x, is the centroid

of the i™ particle within the agglomerate. Particle agglomerates admit a power law relating N and

R, given by (Adachi and Ooi, 1990)

N=K(R,/r,)", (17)

where K is a coefficient (called the fractal pre-factor), 7, is the individual particle radius, and the
exponent d, is the fractal dimension of the agglomerate. The value of d, for particle
agglomerates varies over the interval 1<d, <3 depending on the agglomeration formation

mechanism (Brasil et al., 2001); however, typical values for turbulent particle agglomeration
processes are between about 1.7 - 2.8 (Selomulya et al., 2001; Waldner et al.). A log-log plot of

N versus R, /r, for the current turbulent flow simulation is given in Figure 1. The best-fit line to
the computational predictions has slope d, =2.12, which is consistent with the range of fractal

dimension observed in the experimental turbulent particle agglomeration studies listed above.

2.3. Shear flow simulation

The agglomerates extracted from the turbulent agglomeration calculation described in
Section 2.2 are immersed in a linear shear flow, where the initial configuration appears as shown
in Figure 2a for cases with a single agglomerate in the shear flow and as shown in Figure 2b for
cases with agglomerate collision. Over time, the shear flow is modified by the presence of the
particles, as described below. The fluid flow is assumed to be incompressible and is governed by

the continuity and momentum equations of the form

17



Vu=0, (18a)

a—u+(u-V)u:—LVervVZquFP. (18b)
ot Py

In this equation, u, p and F, are the fluid velocity, the pressure and the particle-induced body

force per unit mass, respectively. The void fraction ¢ =1—c¢ was not included in (18) since our
computations indicate that local void fraction remains above 90% even within the agglomerates
for current computations due to the loose structuring of agglomerates typical of turbulent flow.
Since the grid cell size is on the same order as the particle size in these computations, we
have not used the standard point-force approach in which the force imposed on the fluid by a
particle is assigned to the grid cell containing the particle center. Instead, in computing both the
particle-induced body force and the particle concentration field, we have smoothed the particle
field with use of the conservative particle blob method proposed by Marshall and Sala (2013). In

this method, the particle body force field F,(x,7) is written as the sum of some number N

particle ‘blobs’, centered at positions x, , as

Fp(x,t)=ﬁ: A f (x-x,,R). (19)

The Gaussian weight f, is a function of position and of the characteristic blob ‘radius’ R, and

can be written as

18



f,(x=x,,R )= Y exp[—|x—xn ? /R?]. (20)
The blob amplitude, A, is given by
—F
A, = Fr) : (21)

Q
Gcellwa(gj _Xn’Rn)
Jj=1

where g is the location of the centroid of grid cell j, x,, is the centroid of particle n, G, is the

n

grid cell volume, and F,, is the fluid-induced force acting on particle n (which imposes an equal

and opposite force —F,, back on the fluid). The force F,, is given by the sum of the drag force

in (2) plus minor forces such as lift, added mass force, and pressure gradient force. Each particle
distributes part of its force to a set O of surrounding grid cells, and the sum in the denominator of
(21) is evaluated over all grid cells in this set Q. With the choice (21) for blob amplitude, the
discrete-to-continuum conversion operation is discretely conservative. This method can be
applied to the particle concentration simply by replacing the particle force with the particle
volume.

The fluid flow computations were performed using a fractional-step method (Rai and
Moin, 1991; Verzicco and Orlandi, 1996; Uhlmann, 2005), with time advancement performed
using a third-order Runga-Kutta method for convective terms and the 2nd order Crank-Nicholson
method for viscous terms. Algorithms for all spatial derivatives except the convective terms are
approximated using second-order centered finite differences (three-point stencil) on a non-

staggered grid. The discretized equations for the kth Runge-Kutta step are given by

19



u=u""+At (20{,‘1/V2u"‘l —2akVpk_l)

B s (22a)

~ Aty [(@-V)u-F, 1"+, [(u-VIu-F, ]2
(VA TR L N v (22b)

o, VAt o, VAt
Vu'

V- (Vgh)= , 22¢
( ¢) 2a,At (22¢)
u‘ =u 20, AV ¢, (22d)
p'=p" 7+ —a AV, (22¢)

where «,, y,,and ¢, are coefficients given by Rai and Moin (1991). Continuity is enforced by
a projection method leading to equation (22c) for the pseudo-pressure, denoted by ¢. In the
multigrid solution of this equation, the five-point stencil produced by successive application of
the gradient operation followed by the divergence operation was employed, rather than the finite-
difference approximation to the Laplacian. The Crank-Nicholson method was used to solve the
Helmholtz problem, given in (22b). A tenth-order approximation was used for the convective
terms, requiring an 11-point stencil. To control non-linear instabilities, at the end of each time
step the velocity components were filtered using a tenth-order filter (again using an 11-point
stencil)(Lele, 1992; Steijl, 2001). After filtering to obtain u/*“ | the velocity u was replaced by
(1-g)u + gu™** | with ¢ = 0.05.

The flow was initialized in the x-direction with linear variation in the y-direction. The
upper wall at y = 2 was maintained at a velocity u = 1 and the lower wall at y = -2 was

maintained at a velocity of # = -1, giving a dimensionless shear rate of S =0.5. The no-slip

20



boundary condition was applied at both the top and bottom wall in the y-direction, and the flow
was assumed to be periodic in the x- and z-directions. A layer of five ghost points in each
direction surrounded the computational domain, so that no adjustment of the differentiation
schemes was needed near the domain boundaries. The velocity on the ghost points was set at the
upper and lower edges of the grid by linearly extrapolating the velocity from the point on the
wall and the first point off of the wall. The velocity on the ghost points in the x- and z-directions
were set so as to enforce periodicity. The fluid flow calculations were carried out on a Cartesian
grid with equal spacing in each direction. The computations were performed on a 128’ grid
covering the interval (-2,2) in each coordinate direction. The time step was held fixed at
At =0.005. The dimensionless fluid kinematic viscosity was set to v =0.0003 for all

computations.

3. Agglomerate Motion and Breakup in Shear Flow

In this section we examine the dynamics of a single particle agglomerate exposed to shear
flow, with particular focus on examination of the particle-induced flow field associated with
rotation of the agglomerate in the shear flow and on the conditions for agglomerate breakup. This
section helps to set the stage for the study of agglomerate collision in shear flow in the next
section. The problem of agglomerate dynamics in a shear flow has been previously examined by
a number of authors. A series of experiments on this problem were reported by Sonntag and

Russel (1986), who found that the average radius of gyration of the agglomerates could be

expressed as a power law function of the shear rate as R; oc §7% Since the average number of

particles in the agglomerate, N, was related to radius of gyration by a power law expression of
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the form (17), with d, =2.48 in their experiments, their expression for agglomerate size in the

shear flow could alternatively be expressed as N oc $7%*

A number of DEM simulations of agglomerate dynamics in a shear flow have been
reported (Potanin, 1993; Higashitani et al., 2001; Fanelli et al., 2006; Becker et al., 2009) based
on the so-called free-draining approximation, which assumes that the particles do not influence
the fluid flow (one-way coupling). Potanin (1993) and Becker et al. (2009) further assumed that
particles did not influence fluid forces on each other (even under close packing in the
agglomerate), whereas Higashitani et al. (2001) and Fanelli et al. (2006) assumed that fluid drag
forces act only on particle surfaces on the outside of the agglomerate (i.e., that fluid does not

penetrate into the agglomerate). Higashitani et al. (2001) observed that the average number of

particles in broken agglomerate fragments, N, varies with the adhesion parameter as N oc Ad*"",
where Ad represents a ratio of adhesive to hydrodynamic force. Since Ad is inversely
proportional to shear rate, this observation is consistent with the scaling found experimentally by
Sonntag and Russel (1986). Becker et al. (2009) compared the DEM simulations using the free-
draining approximation to a full finite-element simulation of the flow field and found that the
free-draining approximation breaks down as the agglomerate size increases. This observation is
consistent with that made in a recent CFD-DEM study of turbulent agglomeration by Dizaji and
Marshall (2017), who compared results with one-way and two-way coupling and found
significant deviance between the two as the agglomerate size increased. Becker et al. (2009)
observed that small agglomerates rotate in an almost rigid-body fashion in the shear flow, large
agglomerates break up into pieces, and agglomerates of an intermediate size undergo a

restructuring process, in which they deform and change form as they rotate but do not break up.
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A full CFD-DEM study of agglomerate dynamics in a shear flow was reported by Zeidan
et al. (2007), but the computations were restricted to two dimensions and the models used for
particle collision and adhesion forces were highly simplified. For instance, no tangential forces
on the particles were included to resist rolling and sliding motions, which as noted by Becker et
al. (2009) are important in modeling agglomerate deformation under the shear flow.

In the current section, we report on a three-dimensional CFD-DEM study of agglomerate
dynamics in a shear flow using a complete and well-validated DEM approach, with a focus on
resolving and understanding the flow field induced by the particles. In order to work with
agglomerate structures typical of those found in turbulent agglomeration processes, the
computations were initiated by extracting an agglomerate from the turbulent flow computation
described in Section 2.2 and inserting it into an initially linear shear flow. The flow evolution is
then computed using the CFD method described in Section 2.3 and the DEM model described in
Section 2.1.

The shear flow acts to rotate and stretch the agglomerate, whereas the adhesion force acts
to hold the agglomerate together as a rigid body. The competition between these two effects

determines the agglomerate behavior in the shear flow. We let R, denote the initial radius of

gyration of the agglomerate and S denote the ambient shear rate. The characteristic length, time

and velocity scales of the flow were selected as R ,, 1/, and SR, , respectively. The primary

dimensionless parameter governing the agglomerate behavior in the shear flow is the adhesion
parameter, which for current purposes is defined as the ratio of the adhesion force between

individual particles (O(yd)) to the viscous force (O(udU)) imposed on a particle by the fluid
flow. Using U ~ SR, as the typical velocity scale, the adhesion parameter for this problem takes

the form
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Ad=—71 (23)
/LlSRgO

This measure is essentially the same as the inverse of the fragmentation number proposed by
Hansen et al. (1998). A secondary parameter characterizing the particle motion is the particle
Stokes number St, which is interpreted as the ratio of particle characteristic time scale

7, =m/3mud to the fluid time scale 7, =1/§, giving

ppsz
18u

St = (24)

The values of the adhesion parameter Ad, the initial number of particles N, and the ratio
R, /d of initial agglomerate gyration radius to particle diameter are given for all single-

agglomerate runs in Table 1. All computations reported in the paper have Stokes number of St =

1.4 and density ratio of p,/p, =10. The shear Reynolds number can be defined in terms of

shear rate and radius of gyration as Re; = SR’ /v, which is found to have a value ranging from

52-102 in the current computations, depending on which of the three extracted agglomerates are
under consideration. In a turbulent flow, the parameters used in these computations would
therefore be larger than the Kolmogorov scale and smaller than the integral scale, perhaps typical
of the Taylor microscale of the turbulent motion.

Computations in this section were performed using three different agglomerates selected

from the turbulent agglomeration simulation, and for four different adhesion parameter values
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for each agglomerate. A time series of the particle positions during a typical run (Case A.4) for a
case where the agglomerate rotates without breakup, but exhibits some restructuring during the
rotation, is shown in Figure 3. The particles are immersed in a fluid flow, for which a velocity
can be defined both outside and inside the particle agglomerate. The particles in Figure 3 are
colored by the magnitude of the particle velocity relative to the fluid, which is called the relative
particle velocity and defined by w = v—u, where v and u denote the particle velocity and fluid
velocity at the particle centroid, respectively. We will also later refer to the relative fluid velocity

u,, =u—Sye_, which is set equal to the computed fluid velocity u minus the velocity of the
ambient shear flow (Sye ).

In the reported computations, the initial velocity of the fluid was set equal to the shear

flow velocity Sye . The initial velocity of the agglomerate particles is set equal to a rigid body

rotation at the rotation rate S/2 of the shear flow, for which there exists a vertical y-component of
velocity in addition to the x-component of velocity characteristic of the ambient shear. This
initial rotation rate of the agglomerate gives rise to a linear variation of the relative particle
velocity extending outward from the agglomerate center, as shown in Figure 3a. At later times,
the size of the region of low relative particle velocity near the agglomerate center appears to
grow and the particles with higher values of relative particle velocity are restricted to the outer
parts of the agglomerate.

In the following, we shall examine in detail the results for Case A.4, which is typical of a
case where the agglomerate does not break up in the shear flow. The particle coordination
number for this computation remains nearly constant with time at a value of 3.9. The radius of

gyration R, and the particle concentration ¢, within the agglomerate oscillate in time, as

shown in Figure 4b. The value of ¢, is computed by dividing the volume of all particles
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associated with the agglomerate, V, = (7 / 6)Nd”, by the effective volume ¥

.7 occupied by the

3

.. » Where the

agglomerate. The agglomerate effective volume is estimated by V,, = (47/3)R

effective radius of the agglomerate R, is related to the radius of gyration by R, =+/5/2R,.

This expression is based on the expression for radius of gyration of a solid sphere of uniform
density. The particle volume fraction of the agglomerate can be related to the fractal dimension

by (Jiang et al., 1991; Kusters et al., 1997)

Coggs = Co(Ry, 1), (25)

agg,i

where ¢, is a constant. If the fractal dimension d, <3, an increase in agglomerate size results

in a decrease in average particle volume fraction (Olfert et al., 2007). Both the radius of gyration

and the particle concentration c,,, within the agglomerate oscillate during the computation as

agglomerate restructuring occurs, with oscillation amplitude of about 3% of the mean radius of
gyration and 9% of the mean particle concentration.

The time variation of the magnitude of the particle velocity v and the relative particle
velocity w are plotted in Figure 5a. The particle velocity magnitude oscillates during the
computation and the relative particle velocity exhibits a rapid initial decrease and then oscillates
during the remainder of the computation. The latter result indicates that the fluid flow within the
agglomerate responds quickly to changes in the particle velocity. While the relative velocity
changes quickly in the time interval 0 <z <1, we do not observe significant deformation or

breakup of the agglomerate during this interval. The fact that the relative particle velocity
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magnitude is lower than the particle velocity magnitude for most of the computation is a result of
the particle-induced flow, which acts to decrease the relative velocity.
The distribution of different quantities within the agglomerate is examined by computing

the second-moment measure g, (F') of a given field F(x) for each agglomerate i as

(26)

where X; is the centroid of agglomerate i and £, is the value of the function F(x) evaluated at
the centroid x; of the /™ particle within the agglomerate (Dizaji and Marshall, 2017). The

second-moment measure is shown in Figure 5b for three different fields — the particle

coordination number #_, the magnitude of the relative particle velocity magnitude w, and the

magnitude of the relative particle rotation rate about the agglomerate center

2

Qe = (X=X, )XW / ‘x ~ X, 1ge (27)

A value of the second moment (F') equal to unity indicates that the function F(x) is uniform
(or statistically randomly varying) across the agglomerate, whereas a value of g, (F') that is less
(greater) than unity implies that particles with higher (lower) values of F(x) are found near the

center of the agglomerate compared to particles on the outer parts of the agglomerate. Figure 5b

shows that the second moment measure for the coordination number is consistently less than
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unity (close to 0.9), indicating that the agglomerate is more compact near its center than in its
outer parts, as would be expected of a fractal agglomerate structure. The second moment of the
relative velocity magnitude oscillates as the agglomerate restructures during rotation in the shear
flow, but its value remains well above unity, varying from about 1.35 to 1.95. This observation
supports the statement made earlier that small values of relative particle velocity are found near
the center of the agglomerate and larger values are found only on the outermost particles. While
this difference is related, in part, simply to the rotation of the agglomerate about its centroid, it is
evident by comparison of Figure 3a and 3d that this effect becomes more pronounced with time,
indicating that the particle-induced flow also plays a role. The relative particle rotation rate about
the agglomerate centroid also oscillates in time, increasing from near unity at the start of the
computation to an average value of about 1.2 in the second half of the computation. This quantity
can be viewed as a measure of the effect of the particle-induced fluid flow - if there were no
particle-induced flow the value of this quantity would remain at unity. The fact that this measure
increases above unity is an indication that the particle-induced flow shields the inner parts of the
agglomerate, resulting in a lower ratio of the relative velocity to radial distance in this region
than in the outer part of the agglomerate. A somewhat similar observation of shielding of the
center parts of agglomerates falling in a fluid was noted by Kusters et al. (1997).

The rotation frequency of a fluid element in the shear flow is equal to

Smia =(872)/27 =0.0398. The rotation period of the agglomerate was estimated by labeling

each particle and observing the time required for one rotation. This measurement is necessarily
somewhat imprecise since there is some restructuring of the agglomerate during the rotation, but
we took care to also estimate the uncertainty in the estimate. Taking the inverse of the rotation

period, our estimate of agglomerate rotation frequency for this computation is
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Suge £1/37.3=0.027£0.002. Consequently, we observe that the particle agglomerate is

rotating about 30% more slowly than would a fluid element in the shear flow. This observation is
consistent with the findings of Li et al. (2016), who found that a porous circular particle in a two-
dimensional shear flow rotates in the flow more slowly than a fluid element. In Figure 6a, we

plot contours of the relative fluid velocity in the streamwise (x) direction, u, ,, at time ¢ = 20,

el >
which is typical of the results observed throughout the computation. The relative fluid velocity is
found to be oriented in a direction opposite to the ambient shear velocity, with negative value for
v >0 and positive value for y < 0. A profile of the relative fluid velocity along the y-axis (x =z =

0) is shown in Figure 6b as dots, with the ambient shear flow drawn as a solid line. We again see

that the computed velocity in the region near the agglomerate (| y| < 0.4) lags behind the ambient

shear velocity, which is due to the fact that the particle agglomerate is rotating more slowly than
the fluid element so that the forces induced by the particles retard the fluid flow.

A series of plots in the three cross-sectional planes (x-y, x-z, and y-z) are shown in Figure
7, where for each plane we plot the in-plane streamlines (obtained by setting the normal velocity
component to zero) and the contours of both the normal vorticity and velocity components. The
plots do not include the entire computational domain, but instead focus on the central part of the
domain near the agglomerate. In Fig. 7a, the streamlines in the x-y plane are seen to exhibit a
vortex at the origin (i.e., at the center of the agglomerate); however, we note that the fluid
velocity near the vortex center is very weak, and hence the normal vorticity magnitude at the
vortex center is small. In all three cross-sectional planes, the normal vorticity component has a
quadrapole structure, with four vorticity patches of alternating sign. From these cross-sectional
plots, the velocity and vorticity fields associated with the rotating particle agglomerate appear to

have the form of two tilted vortex rings with opposite circulation immersed in the shear flow.
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To better illustrate this flow field, we compute the relative fluid vorticity ®,, = o + Se_,
where we recall that the vorticity of the ambient shear flow is —Se_ . The iso-surface w,, = 0.46
of the magnitude of w,, is plotted in Figure 8 in both the x-y plane (looking from the side) and

the x-z plane (looking from the top). The same two views of this iso-surface are also shown in

Figure 8 showing contours of @,, on a slice of the flow field in the normal plane. The o, iso-

surfaces clearly show that the particle-induced flow field for a single rotating agglomerate in a
shear flow has the form of a pair of tilted vortex rings of opposite sign, with tilt angle of
approximately 45° relative to the ambient shear flow (x-direction). As seen in the slices of the
flow field in Figures 8c and 8d, each vortex ring is surrounded by stretched and reoriented
vorticity from the ambient shear flow that trails behind the vortex rings in each direction. The
dynamics of a single vortex ring in a linear shear flow was studied by Cheng et al. (2009), who
found that the vortex ring becomes tilted relative to the shear and maintains a ring-like form
while it drifts upward in the shear field (in the y-direction). This upward drift is negated in the
current situation by the mutually-induced flow field when two rings of opposite sign co-exist,
leading to a quasi-stationary flow with a quadrapole far-field structure (as is evident in the
streamlines in Fig. 7¢). For computations where the shear flow does not trigger breakup of the
agglomerate, such as for Case A.4, this flow structure is observed to remain nearly constant with
time as the agglomerate rotates in the shear flow.

As the adhesion parameter is varied in different computations, different behavior of the
particle agglomerates in the shear flow is observed. For sufficiently low adhesion parameter
values, some agglomerates are observed to break up into multiple fragments in the presence of
the shear flow. A time series illustrating agglomerate breakup in the shear flow is shown in

Figure 9 for Case A.1. We note from this example that while the fragments that shed from the
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agglomerate are limited by the maximum size that the agglomerate can attain without breakup in
the shear flow, there are also many agglomerates that are formed of a much smaller size. The set
of fragments thus has a wide size distribution. A set of plots summarizing the computed
agglomerate evolution for all of the single-agglomerate computations (Cases A.1 - A.12) is given

in Figure 10. In Figure 10a, we plot the number of fragments N . into which the agglomerate

Jfrag
breaks up as a function of the adhesion parameter Ad, defined in (22). The data are from three
agglomerates extracted from the turbulent agglomeration computation, and different symbols are
used in Figure 10 to denote the data from each agglomerate. For sufficiently high values of

adhesion parameter, the agglomerate doesn't break up and the value of N, =1 in Figure 10a.

JSrag
The number of particles N in each fragment at the end of the computation (¢ =30) is plotted
versus adhesion parameter in Figure 10b on a log-log plot. The power law expression

N oc S of Sonntag and Russel (1986) can be written in terms of the adhesion parameter as

N oc Ad"®®. This expression is plotted as a dashed line in Figure 10b, where the coefficient of
proportionality is fit to the data. The expression is found to be a reasonable fit for the maximum
values of N, thus setting the largest size agglomerates that can survive without breakup in the

shear flow.

4. Agglomerate Pair Collision in Shear Flow

In this section, we examine the collision of two agglomerates in a shear flow. As stated in
Section 2, each particle in an agglomerate is in contact with at least one other particle in the
agglomerate. Two agglomerates collide when at least one particle in each agglomerate come in
contact with each other. For the computations of agglomerate collision reported in this section,

three different agglomerates were extracted from the turbulent agglomeration computation
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described in Section 2.2, which were used to conduct 30 computations of agglomerate collision,
the parameters for which are listed in Table 2. For each computation, the agglomerates are
initialized as shown in Figure 2b, with orientations of +45° and displacement of the

agglomerate centroid by an amount +D, in the y-direction. Each computation examines

collision of an agglomerate with an exact copy, and we did not consider collisions of different
size agglomerates. Consideration of the computational results indicates three different types of
behaviors, which are illustrated in scatter plots in Figure 11. In these plots, each particle is
colored either red or blue to indicate the agglomerate from which the particle originated. The
first type of collision outcome is merger of the agglomerates into a single agglomerate, which
then rotates in the shear flow. The second type of behavior, referred to as a bouncing collision,
results in two separate agglomerates following the collision. As seen in Figure 11, it is common
for some particles to be exchanged between the two colliding agglomerates during bouncing
collisions. The third type of behavior is referred to as fragmentation, which describes collisions
that result in three or more agglomerates. In the case shown in Figure 11, the collision results in
three agglomerates - one composed entirely of red particles, one composed entirely of blue
particles, and one composed of a combination of red and blue particles. In other cases, more than
three agglomerates will form in a fragmentation collision, often yielding a wide variation in
agglomerate sizes. Sometimes it is not clear whether a collision should be classified as a
bouncing case or a fragmentation case; for instance, cases where two colliding agglomerates
break away from each other but leave behind a very small third 'satellite' agglomerate composed
of just a few particles can be regarded as somewhat in-between these two classifications. For
purposes of this paper, collisions are classified as bouncing cases if only a single ‘satellite’

particle is separated from the two main agglomerates, and they are classified as fragmentation
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cases if the satellite agglomerate consists of two or more particles. More typical fragmentation
cases are similar to that shown in Figure 11, however, producing at least three large
agglomerates and sometimes also several smaller agglomerates.

The question of whether a given collision will be of the merger, bouncing or
fragmentation type depends primarily on the values of the adhesion parameter Ad and the ratio

of the y-direction offset distance D, to the initial radius of gyration R, of the two

agglomerates. A plot identifying the type of collision for all computations conducted is shown in

a mapping of Ad versus D,/R,, in Figure 12, and details of the number of particles in each

agglomerate following collision are listed in Table 2. Regions of the map in Figure 12 are

marked to provide a rough identification of values of Ad and D,/R,, for which the

agglomerates individually break up in the shear flow (to the far left of the plot) and values
resulting in merger, bouncing and fragmentation type collisions. The dashed line separating the

merger and bouncing regimes is given by the line D, /R,, =0.45+0.0002Ad. The numbers

indicate the number of agglomerates present at the conclusion of the computation, where an
agglomerate is defined as a group of two or more touching particles. In general, collisions

resulting in mergers occurred for smaller values of dimensionless offset distance D, /R, and

values of Ad well above the critical value for breakup of the individual agglomerate in shear

flow. Bouncing collisions occur for larger values of D, /R,,, resulting in glancing collisions of
the agglomerates. Fragmentation occurs for moderate values of D,/R,, with adhesion

parameter values just slightly larger than the critical value for breakup of a single agglomerate in
the shear flow. Two cases in Figure 12 requiring special discussion are indicated with asterisks.

One of these cases, indicated by 2", was identified as a bouncing collision because it resulted in
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two agglomerates, but a much larger number of particles were exchanged between the two
agglomerates than was the case for other bouncing collision cases. Indeed, 172 particles
originating in the red agglomerate, out of an initial 577 particles, were torn off and captured by
the blue agglomerate during the collision. The case indicated by 4 in Figure 12 was, on the other
hand, a fairly typical fragmentation case, resulting in three fairly large agglomerates with 263,
315 and 69 particles and one smaller 'satellite’ agglomerate with 8 particles. The presence of this
fragmentation case in a region where we otherwise see a lot of bouncing cases is a reminder that
each agglomerate has its own unique structure and each collision involves different parts of these
unique agglomerates, so one must expect substantial variation from case to case. The plot in
Figure 12 should therefore be regarded as providing only a rough indication of the conditions
under which different types of collisions occur and not as a strict regime map.

For the problem of collision of two particles, the criterion for sticking or bouncing of the
particles can usually be expressed as a critical value of the particle Stokes number St, which is a
function of the adhesion parameter Ad. Applying this same idea for the problem of agglomerate
collision, we can define an agglomerate Stokes number St as the ratio of an agglomerate time

scale 7, =m, /37uR , and the fluid time scale 7, = L/U = R,/ SD, , giving

D
St, = m,S_ D,

- . (28)
37TIURg0 RgO

In this expression, m , is the agglomerate mass, U = SD, is the characteristic velocity difference
between the agglomerates, and R,, is an agglomerate length scale. The agglomerate Stokes

number is therefore found to vary linearly with the ratio D, / R, used in Figure 12.
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While we have used the term bouncing collision to be in conformity with terminology
used in previous literature (e.g., Brisset et al., 2016), it is clear that the bouncing agglomerate
collisions for the loosely-structured agglomerates examined in the current study differ
substantially from the traditional bouncing collision of two elastic particles. In a traditional
bouncing process, two colliding elastic bodies deform locally near the collision point, resulting
in an elastic (or sometimes plastic) repulsion force pushing the two bodies away from each other.
In a bouncing case, this repulsion force is sufficiently strong to overcome the adhesive force
between the bodies, so that the two bodies will detach and continue to move away from each
other. The bouncing collisions of two loosely-structured agglomerates observed in the current
paper are characterized more by tearing away and eventual capture of particles from the
opposing agglomerate by the particle adhesion force. It is not that the elastic force between the
agglomerates overcomes the adhesive force between the bodies, but rather that the adhesion
force imposed on the captured particles by one agglomerate overcomes the adhesion force from
the agglomerate to which the captured particles were originally attached. A plot showing number
of captured particles from both agglomerates during the different bouncing collisions computed
is given in Figure 13. As we see from this plot, all bouncing collisions included captured
particles. In some cases only one agglomerate captures particles, and in other cases both
colliding agglomerates capture particles from the other agglomerate.

While exchange of particles was a characteristic feature of all bouncing collisions, this is
not to say that there was no rebound force between the agglomerates. An examination of the
rebound force is reported below for the bouncing collision in Case B.19, in which 28 particles
originating in the red agglomerate are captured by the blue agglomerate and one blue particle is

captured by the red agglomerate. The number of touching red-blue particles (i.e., touching
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particles originating from opposite agglomerates) is plotted as a function of time in Figure 14a.
This number is zero until # = 5, at which time the collision occurs, and then suddenly spikes up to
a peak value of 18 at a time of about # = 6.5. After this point the number of touching red-blue
particles decreases to 14 and remains there, with the exception of a small blip at t = 10 due to
restructuring. The fact that the number of red-blue touching particles does not reduce to zero
following the collision is due to the presence of captured particles. The total compressive force
between the two agglomerates (which is characteristic of the elastic rebound force) is plotted as a
function of time in Figure 14b. We again observe a sudden increase at collision onset at # = 5 and
a peak value at ¢ = 6.5, followed by a gradual decrease of the compression force as the two
agglomerates tear away from each other.

The position of particles carrying the compressive load between the two colliding
agglomerates is illustrated in Figure 15 at a time of # = 7, close to the peak time of the collision.
In Figure 15a, we color the particle scatter plot with red or blue to identify the originating
agglomerate for each particle. In Figure 15b, each particle is colored by the magnitude of the
total compressive force acting on the particle. The highest compressive loads are borne by a core
of particles on the inside of the agglomerate, shown in Figure 15¢ with the lower-compression
particles removed, within a tube of force chains radiating outward from the collision point. The
highest compressive load occurs on the particles just at the collision point, indicated by red or
orange in Figure 15c. We have thus confirmed that a rebound force does occur in bouncing
collisions, and it may be reasonable to characterize this aspect of the collision phenomenon by
some type of effective elastic modulus assigned to an effective spherical body representing the

agglomerate. However, this effective sphere representation does not include the important
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phenomenon of particle capture during bouncing collisions, which in most of the cases that we
have examined is very important to the agglomerate behavior during collision.

In Section 3, we discussed the observation that the particle-induced flow field from a
single agglomerate in a shear flow has the form of two tilted vortex rings of opposite sign. In the
event of a collision of two agglomerates, one naturally wonders what happens to the particle-
induced flow during the collision. To examine this question, an iso-surface of the relative

vorticity magnitude w,, is plotted at four different times during a collision resulting in merger

(Figure 16 for Case B.15) and during a collision resulting in bouncing (Figure 17 for Case B.19).
The relative-vorticity iso-surface for fragmentation cases depends on the number of fragments
produced, and so are highly variable. The agglomerate centroids and initial radius of gyration are
indicated in these figures by a black dot and a circle, respectively, for each agglomerate. Below
each figure is given a scatter plot showing the particle positions at that time, with color used to
identify the agglomerate of origin for each particle.

In Figure 16, the particle-induced flow field at time ¢ = 6 (just before the collision) has
the form of two opposite-sign tilted vortex rings for each agglomerate, hence four tilted vortex
rings in all. At time ¢ = 8 the agglomerates are in the midst of colliding and the innermost vortex
rings of each agglomerate collide with one another. At # = 10, the inner vortex rings have
significantly decayed while the outer vortex rings have grown in strength. The inner rings
continue to break up and be swept downstream by ¢ = 12, leaving the two strong outer vortex
rings, which have opposite sign from each other. With the exception of the small-scale remnants
of the inner rings, the particle-induced flow for the merged agglomerates at ¢t = 12 thus appears
similar to that for a single agglomerate in a shear flow, as discussed in the previous section, but

the vortex rings are larger and stronger for the merged agglomerate.
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In Figure 17, a time series of iso-relative vorticity magnitude surfaces are plotted for a
case with bouncing agglomerate collision. The first two images in Figure 17 appear similar to
those in Figure 16 for a merging collision. The two inner rings collide at time ¢ = 6 and nearly
extinguish each other by time ¢ = 8 as the agglomerate collision occurs. However, as the
agglomerates bounce and move away from each other, the inner rings reform, such that by = 12
we see a pair of vortex rings for each agglomerate moving away from each other. A trail of
vorticity connects these two vortex ring pairs, which is either left over from the collision or

generated by stretching of the background shear vorticity.

5. Conclusions

A computational study was reported examining rotation and breakup of a single particle
agglomerate and collision of two particle agglomerates in a shear flow. The agglomerates are
extracted from a direct numerical simulation of turbulent agglomeration, and therefore have the
characteristic loose fractal structure typical of turbulent agglomeration processes. Computations
are performed with four-way coupling between the particles and the fluid and with sufficient
resolution of the agglomerates to capture the details of the particle-induced flow field.
Simulations of a single agglomerate rotating in the shear flow with high values of the adhesion
parameter indicate that the agglomerate rotates more slowly than would an ambient fluid element
in the shear flow. The flow field induced by the particles of a rotating agglomerate in a shear
flow are found to exhibit a very distinctive form, characterized by a pair of tilted vortex rings
with opposite sign circulation, surrounded by a sea of stretched vorticity from the ambient shear
flow. To our knowledge, this is the first time that the particle-induced flow of an agglomerate in

shear flow has been examined in detail and the first time that the interesting vortex ring pair
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structure of this flow has been described. This vortex pair ring structure remains with constant
orientation and strength as the particle agglomerate rotates. For sufficiently low values of the
adhesion parameter, the agglomerate is observed to break up in the shear flow, where the exact
value of adhesion parameter at breakup varies slightly with the specific choice of the
agglomerate under examination.

The problem of collision of two agglomerates was found to result in either merger,
bouncing or fragmentation, depending on the value of the adhesion parameter and the ratio of
offset distance to agglomerate radius of gyration. In merger collisions, the inner vortex rings of
the particle-induced flow from each agglomerate interact with each other and eventually break
up into small scale structures, and the outer vortex rings grow stronger leading to development of
the vortex ring pair structure typical of that observed for a single agglomerate. It was observed
that bouncing collisions result both in repulsive force between the agglomerates due to elastic
deformation as well as exchange of particles between agglomerates. The innermost vortex ring
structures of the particle-induced flow for bouncing collisions similarly exhibit interaction of the
two inner vortex rings, but these inner rings are found to quickly reform as the agglomerates
bounce and move away from each other. Fragmentation collisions may result in three or more
agglomerates with widely different sizes, many of which are formed of a combination of
particles originating in different agglomerate structures.

Many theoretical and computation models of turbulent agglomeration processes make use
of the common approximation that an agglomerate can be replaced by an 'effective particle', in
which some effective elastic modulus of the agglomerate is assigned. The current study
demonstrates that this effective particle approximation omits certain important physical

phenomena associated with agglomerate collision, including fragmentation collisions (resulting
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in three or more agglomerates) and exchange of particles between agglomerates in bouncing
collisions. The particle-induced flow field is also quite different for a loosely-structured
agglomerate than it is for an equivalent sphere due to the fact that the fluid flow can penetrate
into the outer parts of the agglomerate. This penetration affects the rotation rate of an
agglomerate in a shear flow and gives rise to the tilted vortex ring structure of the particle-
induced flow.

The current study suggests the need for future work in a number of areas. The current
study has focused on collision of particle agglomerates with exact copies of themselves, using a
relatively small number of agglomerates in order to focus on the effect of the adhesion number

and the spacing ratio D,/R,,. There is a need to conduct runs with larger number of

agglomerates, including cases involving collisions of agglomerates of different sizes. The current
study considered agglomerates suspended in a simple shear flow, whereas in practice
agglomerates will also experience a mean drift relative to the surrounding flow, either from
inertia or from a body force such as gravity. An agglomerate falling under gravity in a fluid is
known to induce a single vortex ring within the agglomerate (Nitsche & Batchelor, 1997), in
contrast to the pair of tilted vortex rings that we have observed to be induced by an agglomerate
in a shear flow. The particle-induced flow for an agglomerate experiencing a combination of
shear and mean drift would therefore be of interest for future study. Finally, resolution of the
flow within the agglomerate using the CFD-DEM approach employed in the current paper
requires that the agglomerate size is significantly larger than the particle size. It would be of
interest to examine fluid flow effects and collision of smaller agglomerates, for which a

computational method capable of resolving flow around individual particles would be necessary.
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Tables

Table 1. Listing of parameter values for cases examined with a single agglomerate in a shear
flow, including adhesion parameter, initial number of particles, and ratio of initial gyration radius
to particle diameter. For all cases examined St= 1.4 and p,/p, =10.

Case Number Ad N, R, /d
Al 133 328 4.81
A2 333 328 4.81
A3 666 328 4.81
A4 999 328 4.81
A5 146 269 4.40
A.6 364 269 4.40
A7 728 269 4.40
A8 1092 269 4.40
A9 104 577 6.17
A.10 259 577 6.17
A.ll 518 577 6.17
A.12 778 577 6.17
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Table 2. Listing of parameter values for cases examined for collision of two agglomerates,
including adhesion parameter, initial numbers of particles in each agglomerate (N ), ratio of
initial gyration radius (R, ) of each agglomerate to particle diameter d, and ratio of initial offset

distance D, to R,,. For each case examined St = 1.4 and p,/p, =10. Also listed was the

observed type of collision - merger (M), bouncing (B) or fragmentation (F) — and the number of
particles in each remaining agglomerate (Aggl 1-5) after the collision.

Case Collision | Aggl | Aggl | Aggl | Aggl | Aggl
Number | Ad | N, R,/d | D,/R, Type 1 2 3 4 5
B.1 333 | 328 | 4.81 0.52 F 213 | 392 | 51 - -
B.2 666 | 328 | 4.81 0.52 M 656 - - - -
B.3 999 | 328 | 4.81 0.52 M 656 - - - -
B.4 1998 | 328 | 4.81 0.52 M 656 - -
B.5 333 | 328 | 4.81 0.78 F 338 | 168 8 5 3
B.6 666 | 328 | 4.81 0.78 F 331 | 317 8 - -
B.7 999 | 328 | 4.81 0.78 F 276 | 380 - - -
B.8 1998 | 328 | 4.81 0.78 M 656 - - - -
B.9 333 | 328 | 4.81 1.04 F 262 | 315 | 69 8 -
B.10 666 | 328 | 4.81 1.04 B 350 | 305 - - -
B.11 999 | 328 | 4.81 1.04 B 358 | 298 - - -
B.12 1998 | 328 | 4.81 1.04 B 326 | 330 - - -
B.13 364 | 269 | 4.40 0.57 F 326 | 161 51 - -
B.14 728 | 269 | 4.40 0.57 M 538 - - - -
B.15 1092 | 269 | 4.40 0.57 M 538 - - - -
B.16 | 2184 | 269 | 4.40 0.57 M 538 - - - -
B.17 364 | 269 | 4.40 0.85 B 291 | 247 - - -
B.18 728 | 269 | 4.40 0.85 B 286 | 252 - - -
B.19 1092 | 269 | 4.40 0.85 B 296 | 242 - - -
B.20 | 2184 | 269 | 4.40 0.85 M 538 - - - -
B.21 364 | 269 | 4.40 1.14 B 268 | 270 - - -
B.22 728 | 269 | 4.40 1.14 B 268 | 270 - - -
B.23 1092 | 269 | 4.40 1.14 B 268 | 270 - - -
B.24 | 2184 | 269 | 4.40 1.14 B 268 | 270 - - -
B.25 778 | 577 | 6.17 0.41 B 749 | 405 - - -
B.26 1556 | 577 | 6.17 0.41 M 1154 - - - -
B.27 778 | 577 | 6.17 0.61 F 171 | 619 | 364 - -
B.28 1556 | 577 | 6.17 0.61 M 1154 - - - -
B.29 778 | 577 | 6.17 0.81 B 579 | 575 - - -
B.30 1556 | 577 | 6.17 0.81 B 607 | 547 - - -
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Figure Captions

Figure 1. Plot of the number of particles in an agglomerate N versus the ratio of the radius and
gyration of the agglomerate R, and the individual particle radius r,. The slope of the plot

indicates the dimension d , = 2.12 of the power law in Eq. (17).

Figure 2. Schematic diagram of the initial conditions for the problems of (a) a single agglomerate
in a shear flow and (b) two-agglomerate collision in a shear flow. Circles indicate the radius of
gyration R,, and the offset distance D, is indicated in (b) in both positive and negative

directions.

Figure 3. Particle positions at times (a) ¢ = 0, (b) 10, (c) 20, and (d) 30 for Case A.4. The
particles are colored by the magnitude of the relative velocity vector. The agglomerate is rotating
clockwise in the shear flow and completes approximately one rotation in the time interval shown.

Figure 4. Plot showing the time-variation of the gyration radius R, (solid line, left-hand axis)

and the particle concentration within the agglomerate ¢, (dashed line, right-hand axis) for Case
A4,

Figure 5. Plot showing the time-variation of (a) the average value of the magnitude of the
particle velocity v (dashed line) and the relative particle velocity vector w = v—u (solid line)
and (b) the second-moment measure for particle coordination number (black line), relative
rotation rate about the agglomerate centroid (blue line), and relative velocity magnitude (red line)
for Case A 4.

Figure 6. (a) Contour plot of the x-component u,, of the relative velocity in the x-y plane, for

Case A.4 at t = 26. (b) Profile of the x-component of velocity u along the y-axis. The solid line
denotes the ambient shear flow and the dots denote the computed velocity profile.

Figure 7. (Left) contours of normal vorticity and streamlines of the in-plane velocity field and
(right) contours of normal component of the relative velocity u,, in three orthogonal planes

passing through the agglomerate, for Case A.4 at ¢ = 26.

Figure 8. Iso-surface of the relative vorticity magnitude ®,, = 0.46 obtained from the velocity

field for Case A.4 at ¢ = 26, showing two tilted vortex rings generated by the particle-induced
velocity field near the rotating agglomerate. The top two plots show iso-surfaces in the (a) x-y
plane and (b) x-z plane. The bottom two plots, (c) and (d), show the same iso-surface views
together with a slice showing ,,, contours in the normal plane.

Figure 9. Time series showing breakup of single agglomerate in a shear flow, for Case A.1 at
times (a) =0, (b) 5, (c) 10, (d) 15 and (e) 20.
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Figure 10. Plots showing measures characterizing breakup of a single agglomerate in a shear
flow. (a) Number of fragments that an agglomerate breaks up into versus adhesion parameter.

When the agglomerate does not break up, N, . =1. (b) Number of particles N in agglomerates
following breakup versus adhesion parameter. The dashed line is the experimental power-law fit
N oc Ad**” from Sonntag and Russel (1986) for maximum number of particles, where the
proportionality coefficient is fit to the data. The data is plotted for Cases A.1-A.4 (red deltas),

A.5-A.8 (green circles), and A.9-A.12 (blue diamonds) from Table 1.

Figure 11. Scatter plots illustrating three types of agglomerate interactions: merger (Case B.15),
bouncing (Case B.19) and fragmentation (Case B.13).

Figure 12. Summary of results for all agglomerate collision runs, showing the number of
agglomerates ( N, ) remaining after collision as a function of adhesion parameter and the ratio

D,/R

agglomerates. Numbers indicate cases with agglomerate merger (N,,, =1), bounce (N, =2),

agg
of offset distance to initial radius of gyration. Colors indicate results from different

g.ave

and fragmentation (N, > 2).

Figure 13. Plot indicating the number of captured particles in bouncing collisions versus the total
number of particles in an agglomerate. The number of red particles captured by blue
agglomerates is plotted in red, and the number of blue particles captured by red agglomerates is
plotted in blue. Different symbols are used to indicate different computations, with one red and
one blue symbol for each computation.

Figure 14. Time variation of (a) number of touching particles originating in different
agglomerates and (b) total dimensionless compressive force between the agglomerates for a
typical bouncing case (Case B.19). Collision onset occurs at approximately ¢+ = 5 and the
agglomerates detach at 1 = 14.

Figure 15. Scatter plots during a bouncing agglomerate collision (Case B.19) at t = 7, with
colors indicating (a) agglomerate from which each particle originated, (b) total compressive
force acting on each particle, and (¢) same plot as in (b) with the low-compression particles (with
compressive force < 1.5) blanked out. High compression force chains occur in a particle core
region spreading outward from the collision point.

Figure 16. Iso-surface of relative vorticity magnitude @,, = 0.3 (top) and particle scatter plot

colored by initial agglomerate identity (bottom) for a case where the particle agglomerates merge
(Case B.15), at times (a) t =6, (b) 8, (c) 10, and (d) 12 during which collision and merger of the
agglomerates occurs. The agglomerate centroids and initial radius of gyration are indicated in the
upper plots by a black dot and a circle, respectively, for each agglomerate.

Figure 17. Iso-surface of relative vorticity magnitude @,, = 0.3 (top) and particle scatter plot

colored by initial agglomerate identity (bottom) for a case where the particle agglomerates
bounce (Case B.19), at times (a) t =6, (b) 8, (c) 10, and (d) 12 during which collision of the
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agglomerates occurs. The agglomerate centroids and initial radius of gyration are indicated in the
upper plots by a black dot and a circle, respectively, for each agglomerate.
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Figure 1. Plot of the number of particles in an agglomerate N versus the ratio of the radius and
gyration of the agglomerate R, and the individual particle radius r,. The slope of the plot

indicates the dimension d , = 2.12 of the power law in Eq. (17).

(a) (b)

Figure 2. Schematic diagram of the initial conditions for the problems of (a) a single agglomerate
in a shear flow and (b) two-agglomerate collision in a shear flow. Circles indicate the radius of
gyration R,, and the offset distance D, is indicated in (b) in both positive and negative

directions.
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Figure 3. Particle positions at times (a) ¢ = 0, (b) 10, (c¢) 20, and (d) 30 for Case A.4. The
particles are colored by the magnitude of the relative velocity vector. The agglomerate is rotating
clockwise in the shear flow and completes approximately one rotation in the time interval shown.

021 ~0.12

B —o0.115
0.2 ~ .

i —0.11
0.19F ]

i = 0.105

i - c

Rg 0.18 |- ,7 o1 agg

- -~ .

s 4 \ /—> —0.095
0.17 M\ // AN / n

= \ \ / ;

N // \ ; - 0.09
016 T \ 4 1

i \ / —0.085

= N - —

7\ L L L I L L Ll I L Ll L I L L L L I L L Ll I L Ll \7
0155 5 10 15 20 25 30>

t

Figure 4. Plot showing the time-variation of the gyration radius R, (solid line, left-hand axis)

and the particle concentration within the agglomerate c,,, (dashed line, right-hand axis) for Case
A4
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Figure 5. Plot showing the time-variation of (a) the average value of the magnitude of the
particle velocity v (dashed line) and the relative particle velocity vector w = v—u (solid line)
and (b) the second-moment measure for particle coordination number (black line), relative
rotation rate about the agglomerate centroid (blue line), and relative velocity magnitude (red line)
for Case A.4.
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Figure 6. (a) Contour plot of the x-component u,, of the relative velocity in the x-y plane, for

Case A.4 at t = 26. (b) Profile of the x-component of velocity u along the y-axis. The solid line
denotes the ambient shear flow and the dots denote the computed velocity profile.
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Figure 7. (Left) contours of normal vorticity and streamlines of the in-plane velocity field and
(right) contours of normal component of the relative velocity u,, in three orthogonal planes

passing through the agglomerate, for Case A.4 at ¢ = 26.
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Figure 8. Iso-surface of the relative vorticity magnitude @,, = 0.46 obtained from the velocity

field for Case A.4 at ¢ = 26, showing two tilted vortex rings generated by the particle-induced
velocity field near the rotating agglomerate. The top two plots show iso-surfaces in the (a) x-y
plane and (b) x-z plane. The bottom two plots, (¢) and (d), show the same iso-surface views
together with a slice showing ®,,, contours in the normal plane.
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Figure 9. Time series showing breakup of single agglomerate in a shear flow, for Case A.1 at
times (a) t =0, (b) 5, (c) 10, (d) 15 and (e) 20.
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Figure 10. Plots showing measures characterizing breakup of a single agglomerate in a shear
flow. (a) Number of fragments that an agglomerate breaks up into versus adhesion parameter.

When the agglomerate does not break up, N

Jrag

=1. (b) Number of particles N in agglomerates

following breakup versus adhesion parameter. The dashed line is the experimental power-law fit
N o« Ad"®” from Sonntag and Russel (1986) for maximum number of particles, where the

proportionality coefficient is fit to the data. The data is plotted for Cases A.1-A.4 (red deltas),
A.5-A.8 (green circles), and A.9-A.12 (blue diamonds) from Table 1.
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Figure 11. Scatter plots illustrating three types of agglomerate interactions: merger (Case B.15),
bouncing (Case B.19) and fragmentation (Case B.13).
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Figure 12. Summary of results for all agglomerate collision runs, showing the number of
agglomerates (N, ) remaining after collision as a function of adhesion parameter and the ratio

D,/R,, of offset distance to initial radius of gyration. Colors indicate results from different
agglomerates. Numbers indicate cases with agglomerate merger (N,,, =1), bounce (N, =2),

and fragmentation (N, > 2).
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Figure 13. Plot indicating the number of captured particles in bouncing collisions versus the total
number of particles in an agglomerate. The number of red particles captured by blue
agglomerates is plotted in red, and the number of blue particles captured by red agglomerates is
plotted in blue. Different symbols are used to indicate different computations, with one red and
one blue symbol for each computation.
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Figure 14. Time variation of (a) number of touching particles originating in different
agglomerates and (b) total dimensionless compressive force between the agglomerates for a
typical bouncing case (Case B.19). Collision onset occurs at approximately ¢ = 5 and the
agglomerates detach at = 14.
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Figure 15. Scatter plots during a bouncing agglomerate collision (Case B.19) at ¢ = 7, with
colors indicating (a) agglomerate from which each particle originated, (b) total compressive
force acting on each particle, and (c) same plot as in (b) with the low-compression particles (with
compressive force < 1.5) blanked out. High compression force chains occur in a particle core
region spreading outward from the collision point.
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Figure 16. Iso-surface of relative vorticity magnitude ®,, = 0.3 (top) and particle scatter plot

colored by initial agglomerate identity (bottom) for a case where the particle agglomerates merge
(Case B.15), at times (a) t =6, (b) 8, (c) 10, and (d) 12 during which collision and merger of the
agglomerates occurs. The agglomerate centroids and initial radius of gyration are indicated in the
upper plots by a black dot and a circle, respectively, for each agglomerate.
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Figure 17. Iso-surface of relative vorticity magnitude ®,, = 0.3 (top) and particle scatter plot

colored by initial agglomerate identity (bottom) for a case where the particle agglomerates
bounce (Case B.19), at times (a) t =6, (b) 8, (c) 10, and (d) 12 during which collision of the
agglomerates occurs. The agglomerate centroids and initial radius of gyration are indicated in the
upper plots by a black dot and a circle, respectively, for each agglomerate.
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