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Abstract 

A computational study was performed both of a single agglomerate and of the collision of two 

agglomerates in a shear flow. The agglomerates were extracted from a direct numerical 

simulation of a turbulent agglomeration process, and had the loosely-packed fractal structure 

typical of agglomerate structures formed in turbulent agglomeration processes. The computation 

was performed using a discrete-element method for adhesive particles with four-way coupling, 

accounting both for forces between the fluid and the particles (and vice versa) as well as force 

transmission directly between particles via particle collisions. In addition to understanding and 

characterizing the particle dynamics, the study focused on illuminating the fluid flow field 

induced by the agglomerate in the presence of a background shear and the effect of collisions on 

this particle-induced flow. Perhaps the most interesting result of the current work was the 

observation that the flow field induced by a particle agglomerate rotating in a shear flow has the 

form of two tilted vortex rings with opposite sign circulation. These rings are surrounded by a 

sea of stretched vorticity from the background shear flow. The agglomerate rotates in the shear 

flow, but at a slower rate than the ambient fluid elements. In the computations with two colliding 

agglomerates, we observed cases resulting in agglomerate merger, bouncing and fragmentation. 

However, the bouncing cases were all observed to also result in an exchange of particles between 

the two colliding agglomerates, so that they were influenced both by elastic rebound of the 

agglomerate structures as well as by tearing away of particulate matter between the 

agglomerates. Overall, the problems of agglomerate-flow interaction and of the collision of two 

agglomerates in a shear flow are considerably richer in physical phenomena and more complex 

than can be described by the common approximation that represents each agglomerate by an 

'equivalent sphere'.    
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1. Introduction 

 Collision of particle agglomerates with each other and with container walls or other 

obstacles in turbulent flow fields is important during both the agglomerate formation and 

breakup processes. The significance of agglomerate collisions has been studied for important 

industrial processes such as drug particle dispersion in dry powder inhalers (Tong et al., 2013, 

2016; Yang et al., 2014), cyclone operation (Tong et al., 2010), and particle filtration (Iimura et 

al., 2009a,b).  Similar agglomerate-agglomerate collision processes occur in astrophysics during 

formation of protoplanatary disks (Ormel et al, 2007, 2009) and in the dynamics of planetary 

rings (Schäfer et al., 2007).  

 The development of particle agglomerates in turbulent flows occurs through a series of 

processes in which individual particles collide and adhere to form small agglomerates, and these 

small agglomerates then collide and adhere to each other to form larger agglomerates, and so 

forth (Dizaji and Marshall, 2016, 2017). As they increase in size, the agglomerates begin to lose 

particles by processes such as erosion of small groups of particles from an agglomerate surface 

or rupture of the agglomerate into smaller pieces in response to the fluctuating turbulent shear 

flow (Serra et al., 1997; Higashitani et al., 2001), eventually balancing the agglomerate 

formation processes to achieve a quasi-equilibrium state (provided that the turbulence itself is in 

an equilibrium state). As discussed by Sayvet and Navard (2000), a dominant agglomerate 

breakup process for turbulent flows at lower shear stress values is fragmentation of agglomerates 

during collisions with other agglomerates. The question of whether two colliding agglomerates 

will merge together, bounce off each other, or split apart into a larger number of fragments is 

thus one of central importance for a wide range of processes. All three of these outcomes were 

observed under different conditions in a microgravity experiment of particle agglomerates in a 
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vibrating box by Brisset et al. (2016) for different values of the collision velocity and in a normal 

gravity experiment by Ihalainen et al. (2012) in which agglomerates were impacted onto a flat 

surface.   

 An important simplification that is often made in modeling turbulent agglomeration is 

replacement of a particle agglomerate by single 'effective particle', often selected as a sphere 

with the same mass as the agglomerate. This assumption is integral to the traditional population 

balance model for agglomerate formation (Smoluchowski. 1917; Lu and Wang, 2006; Reinhold 

and Briesen, 2012), and it plays an important part in many analytical statistical models for the 

early stages of agglomerate formation in turbulence (Brunk et al., 1998; Chun and Koch, 2005; 

Koch and Pope, 2002; Wang et al., 1998). The equivalent sphere assumption is also used in the 

'extended hard-sphere' discrete-element method (DEM), which seeks to use the hard-sphere 

approach for binary collisions to study formation of particle agglomerates (Kosinski and 

Hoffmann, 2010; Balakin et al., 2011). All such applications of this equivalent sphere 

approximation must impose some external criterion for whether or not an agglomerate will stick 

or bounce upon collision. Although the equivalent sphere approximation is commonly made for 

simulation of turbulent flows of adhesive particles, the accuracy of this approximation has not 

been addressed in detail. Can mechanical properties be assigned to the effective particle such that 

its collision with another effective particle accurately approximates the collision of two 

agglomerates? Are agglomerate collisions more complex than can be represented by a simple 

stick or bounce decision? Addressing these questions is one of the primary objectives of the 

current paper.   

 There is a fairly large literature on use of the discrete element method for examining 

collision of tightly-packed agglomerates with a wall (Kafui and Thornton, 2000; Lian et al., 
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1998; Moreno et al., 2003; Moreno-Atanasio et al., 2006; Thornton et al., 1999; Ning et al., 

1997; Thornton and Liu, 2004), with each other (Kun and Herrmann, 1999; Schäfer et al., 2007; 

Seizinger and Kley, 2013; Tong et al., 2009), or with some other obstacle, such as a cylinder or 

sphere in the flow field (Iimura et al., 2009a,b; Yang et al., 2014). Experimental studies of 

compressed particle aggregates with each other (Beitz et al., 2011) and with a wall (Samimi et 

al., 2004) have also been reported. Much of this work is motivated by the problem of 

deagglomeration of particles in dry powder inhalers (Tong et al., 2013, 2016; Yang et al., 2014), 

used to break up agglomerates and deliver small drug particles to the lungs, where they are 

absorbed. In this application, the particles are initially compressed into tightly-packed aggregates 

at the time of manufacture, which then need to be broken up to release the small drug particles at 

time of use. Alternatively, ice particles can form tightly-packed aggregates in planetary rings 

(Schäfer et al., 2007), and the dynamics of their collision plays a central role in understanding 

the ring dynamics.  

 A useful definition of agglomerate strength was given by Moreno-Atanasio and Ghadiri 

(2006), based on the work of Rumph (1962), as “the force that is required to break all contacts 

simultaneously on a prescribed failure plane”. This force depends both on the strength of the 

individual contacts and the number of contacts in the failure plane. The number of contacts in 

any given cross-sectional plane increases with the agglomerate fractal dimension, with higher 

values for tightly-packed agglomerates with fractal dimension close to 3fd  and lower values 

for the loosely-structured agglomerates more typically formed in turbulent flocculation 

processes, with fractal dimension closer to 2~fd . For instance, in experiments with turbulent 

agglomeration of latex particles in stirred tanks, Selomulya et al. (2001) reported fd  between 

1.7 - 2.1 and Waldner et al. (2005) reported fd  between 1.8 - 2.6. The above definition of 



 6

agglomerate strength is based on the idea of pulling an agglomerate apart in tension, whereas the 

agglomerate response to collision is also dependent on its behavior under compression. In 

compressive deformation, agglomerates with lower values of particle concentration are more 

susceptible to buckling of force chains due to having fewer surrounding particles (Marangoni 

and Narine, 2001). The sensitivity of agglomerate collisions to particle concentration c  (or void 

fraction c 1 ) was noted in DEM simulations by Gunkelmann et al. (2016), who in a study 

of head-on collision of two agglomerates in a vacuum found that agglomerates with higher 

porosities are more fragile during collision and have higher tendency to fragment. These 

conclusions are also supported by the simulations of Nguyen et al. (2014) of the collision of a 

loose-structured agglomerate of fine particles with a larger spherical particle, who found a higher 

tendency of the loose-structured agglomerate to fragment compared to simulations with highly 

packed agglomerates.  

 The current paper examines the collision of two particle agglomerates in a shear flow 

under conditions typical of agglomerate collision in turbulent flows. The primary objective of the 

paper is to address two issues: (1) to understand the flow field induced by a particle agglomerate 

in a shear flow and (2) to evaluate the accuracy of the equivalent sphere approximation by 

examining the physics of actual agglomerate-agglomerate collisions with loosely-structured 

agglomerates. The agglomerate collision is computed using a CFD-DEM approach based on the 

soft-sphere method with four-way coupling. The CFD-DEM approach does not resolve flow 

around individual particles, but instead it introduces a distributed body force that accounts for the 

influence of particles on the bulk fluid flow. The bulk flow within the agglomerates can be 

resolved by the fluid flow computation since the agglomerates selected consist of several 

hundred particles, and so are much larger than the individual particle size. Loosely-structured 
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agglomerates are first generated from a direct numerical simulation of turbulent agglomeration 

(Dijazi and Marshall, 2016), and from which agglomerates are extracted and placed in a shear 

flow. We first examine agglomerate evolution and breakup in shear with no collision, and then 

examine the effect of two-agglomerate collision on agglomerate merger, bouncing, and 

fragmentation. The paper differs from previous work in its focus on agglomerate collision in 

shear flows, in its use of loosely-structured agglomerates typical of turbulent flocculation 

processes, and in its focus on fluid flow effects on the agglomerate collision.    

 

2. Computational Method 

 The agglomerate breakup and collision is computed using the four-way coupled CFD-

DEM approach, using an adhesive soft-sphere discrete-element method for the particles and a 

high-order finite-difference method for the fluid. The DEM approach is based on evolving the 

motion of each individual particle by solution of the particle momentum and angular momentum 

equations, while accounting for the many different forces and torques acting between the 

particles due to collision and van der Waals adhesion effects as well as between the particles and 

the surrounding fluid via a set of model equations. The flow around each individual particle is 

not resolved, but rather the computational method introduces the force imposed by the particles 

on the fluid as a smooth body force field, which is generated by the combined forces acting on 

many particles in a local region. A conservative particle blob method (Marshall and Sala, 2013) 

is used in the current paper to translate between forces on individual particles and the body force 

acting on the fluid grid in a manner that is well suited for cases where the ratio of particle 

diameter to the grid cell spacing is of order unity.  
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 The soft-sphere DEM formulation can be used both to simulate isolated particles and to 

simulate particles contained in agglomerates. An agglomerate is defined in the current paper as 

an assemblage of particles in which each particle in the agglomerate is in contact with at least 

one other particle in the agglomerate, in such a manner that one can continuously travel between 

any two particles in the agglomerate by following a chain of contacts. With use of the soft-sphere 

DEM approach, the motion and deformation of the agglomerate is simulated by evolving the 

motion and rotation of its constituent parts.  

 As is standard in DEM, the drag on each particle is given by the Stokes drag expression 

multiplied by a particle crowding factor that accounts for the effect of surrounding particles on 

the drag force and an inertia factor that accounts for finite particle inertia. The particle crowding 

factor was determined empirically as a function of the local particle concentration and the 

particle Reynolds number based on experiments with a fluidized particle bed (Di Felice, 1994). 

While this approach is commonly employed, we note that it does not account for the effects of 

strongly heterogeneous concentration along the sides of the agglomerate. The pairwise-

interaction extended point-particle (PIEPP) method recently proposed by Akiki et al. (2017a,b) 

might be one approach that could be used to account for the effect of heterogeneity in future 

studies of agglomerate flows. However, even without such corrections previous studies with the 

CFD-DEM method, such as that of Bosse et al. (2005) for a particle suspension droplet falling 

under gravity, have produced predictions for agglomerate formation and dynamics in excellent 

agreement with experimental observations. A review of the CFD-DEM approach by Zhu et al. 

(2007) provides a detailed discussion of the modeling approximations used in this method.  

 The computations proceed in two parts. The first part is concerned with the initial 

formation of agglomerates in a turbulent flow, and the approach used for these computations 
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have been described in detail in a previous paper (Dizaji and Marshall, 2017). The second part 

conducts a detailed examination of the collision process that occurs when either one or two of the 

agglomerates are extracted and placed in a plane shear flow, which is intended to represent a 

very small section of the overall turbulent flow. A summary of the DEM and CFD methods used 

to simulate the particles and the fluid flow, and of the turbulent flow computations used to 

initialize the agglomerate structure, is given below. 

 

2.1. Discrete element method 

 The computations of particle agglomerate breakup and collision are performed using a 

soft-sphere adhesive discrete element method (Marshall, 2009). Because particle collision and 

adhesion processes involve a wide range of time scales, a multiple time step algorithm is used in 

the current paper in which the fluid time step )/( 0uOt  , the particle time step 

)/( 0udOt p  , and the collision time step ))/(( 5/1
0

22 uEdOt ppc   satisfy cp ttt  . 

Here d is the particle diameter, p  is the particle density, and pE  is the particle elastic modulus. 

The method follows the motion of individual particles in the three-dimensional fluid flow by 

solution of the particle momentum and angular momentum equations  

  

 AFdt

d
m FF

v
 , AFdt

d
I MM

Ω
 , (1) 

 

subject to forces and torques induced by the fluid flow ( FF , FM ) and by particle collision and 

van der Waals adhesion ( AF , AM ). In this equation, m is the particle mass, I is the moment of 

inertia, and v and  are the particle velocity and rotation rate, respectively. The dominant fluid 
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force is the drag force, given by the Stokes drag law modified to account for the effects of 

particle inertia and local particle crowding as  

 

 fdd )(3 vuF   , (2)    

 

where u is the fluid velocity evaluated at the particle centroid. The friction factor CI CCf   is 

written as the product of an inertial correction term IC  and a particle crowding correction term 

CC . An expression for the inertial correction was given by Schiller and Naumann (1933) as  

 

 687.0Re15.01 pIC  ,  (3) 

 

where  /Re sfp dv  is the particle Reynolds number and uv sv  is the magnitude of the 

particle slip velocity relative to the fluid. This expression is valid to within 5% of comparison 

experimental data for particle Reynolds number up to about 800. An expression for the crowding 

correction factor was determined empirically by Di Felice (1994) for particle Reynolds numbers 

in the range 0.01 to 104 as a function of the void fraction   as  

 

   1
CC , 






  2)]ln(Re5.1[

2

1
exp65.07.3 p . (4) 
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This expression approaches the Wen and Yu (1966) expression for low particle Reynolds 

number. A viscous fluid torque arises from a difference in rotation rate of the particle and the 

local fluid element (Crowe et al., 2012), and is given by  

 

 )
2

1
(3 ωΩM  dF  , (5) 

 

where ω  is the fluid vorticity vector. While the drag is the primary fluid force acting on the 

particles, we also include in the computations several secondary forces such as the added mass 

force and the Saffman and Magnus lift forces (Saffman, 1965; Rubinow and Keller, 1961).   

Particle collision and van der Waals adhesion forces are simulated using the classical 

Johnson-Kendell-Roberts (JKR) theory (Johnson et al., 1971). This theory assumes that particle 

diameter is much larger than the effective length scale over which the van der Waals adhesion 

force acts (approximately 10nm), so that the adhesion force can be assumed to only act within 

the flattened contact region between two colliding particles. No adhesion force acts between the 

particles prior to or following collision, when the particles are not in contact. Since the size of 

the contact region depends on both the elastic and adhesive forces, these forces are nonlinearly 

combined to yield the total contact/adhesion force on any pair of particles in contact with each 

other.  

The collision and adhesion force and torque fields acting on particle i, with radius ir , are 

given by 

 SsnA FF tnF  , )()( nttnM  RrSsA MrF , (6) 
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where ijij xxxxn  /)(  is the unit normal vector oriented along the line connecting the 

centers of the two colliding particles, i and j. The normal component of the collision and 

adhesion force nF  is further divided into an elastic-adhesion part neF  and a dissipative part ndF . 

The sliding resistance is composed of a force with magnitude sF  acting in a direction St , 

corresponding to the direction of relative motion of the particle surfaces at the contact point 

projected onto the contact plane (the plane orthogonal to n), as well as a related torque in the 

Stn  direction. The rolling resistance, which arises due to the effects of particle adhesion, 

exerts a torque of magnitude rM  on the particle in the nt R  direction, where Rt  is the 

direction of the “rolling” velocity. While all of these various collision-adhesion forces and 

torques are included in the current computations, the dynamics of small adhesive particles are 

dominated by the normal elastic-adhesive force and the rolling resistance torque.  

 The effective elastic modulus E and the effective radius R are defined by 

 

 
j

j

i

i

EEE

22 111  



 , 

ji rrR

111
 , (7)  

 

where iE , i , and ir  are the elastic modulus, Poisson ratio, and radius of particle i, respectively. 

The adhesive force between the two particles depends on the surface energy potential γ, where 

the work required to separate two spheres colliding over a contact region of radius )(ta  is given 

by 22 a  in the absence of further elastic deformation. Particle normal elastic rebound force and 

van der Waals adhesion force are simulated using the JKR theory, which can be written in terms 
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of the contact region radius )(ta  and the normal particle overlap jijiN rr xx   as 

(Chokshi et al. 1993) 
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The critical overlap δc, the critical normal force Fc, and the equilibrium contact region radius oa  

are given by (Johnson et al. 1971) 

 

 
R

a
RF o

cc 3/1

2

)6(2
,3   , 

3/129










E

R
ao


. (9) 

 

As two particles move away from each other following collision, they remain in contact until the 

point where cn FF   and cN    due to the necking of the material in the contact region. 

Beyond this state any further separation leads the two particles to break apart.  

The effect of lubrication forces within the fluid squeeze-film within the contact region is 

to limit the minimum approach distance between the particles (i.e., the contact region gap size) 

and to reduce the particle restitution coefficient. Experimental studies of particle collisions at 

different Stokes numbers (e.g., Joseph et al., 2001) indicate that the coefficient of restitution is 

essentially zero when the Stokes number is less than about 10 due to dissipation in the squeeze-

film. We use the model of Tsuji et al. (1992) for the dissipative part of the normal collision force 

ndF  and set the damping parameter such that the restitution coefficient vanishes.  
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 The second major effect of particle adhesion is to introduce a torque that resists particle 

rolling. For uniform-size spherical particles, the “rolling velocity” Lv  of particle i is given by 

(Bagi and Kuhn 2004) 

 

 nΩΩv  )( jiL R  . (10) 

 

A linear expression for the rolling resistance torque rM  is postulated as 

 

 Rr kM  , (11) 

 

where RL

t

t

d tv   ))((
0

  is the rolling displacement in the direction LLR vvt / . Rolling 

involves an upward motion of the particle surfaces within one part of the contact region and a 

downward motion in the other part of the contact region. The presence of an adhesion force 

between the two contacting surfaces introduces a torque resisting rolling of the particles. An 

expression for the rolling resistance due to van der Waals adhesion was derived by Dominik and 

Tielens (1995), which yields the coefficient Rk  as 

 

 2/3
0 )/(4 aaFk cR  .   (12) 

 

Dominik and Tielens (1995) further argue that the critical resistance occurs when the rolling 

displacement   achieves a critical value, corresponding to a critical rolling angle Rcritcrit /  . 
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For crit  , the rolling displacement    in (11) is replaced by crit . Data for critical rolling 

angle for particles having diameter of approximately 10 m were reported by Ding et al. (2008), 

who found critical rolling angles crit  of between 0.02 and 0.06 radians.  

 A simplified expression for the effect of van der Waals adhesion on tangential sliding 

resistance was proposed by Thornton (1991). In this model, the sliding resistance force sF  is 

given by a spring-like expression of the form (Cleary et al., 1998) 

 

 S

t

t
STs dkF tv   ))((

0

  (13) 

 

when sF  is less than a critical value critF . In (13), the sliding velocity )(tSv  is the relative 

tangential surface velocity of the particles at the contact point projection. The tangential stiffness 

coefficient Tk  is derived by Mindlin (1949) and can be written in terms of the contact region 

radius )(ta  as 

 

 )(8 taGkT  . (14) 

 

The critical sliding force is approximated using the expression  

 

 cnefcrit FFF 2  , (15) 
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where cF  is the critical force for pull-off given in (9) and f  is the friction coefficient. The 

expression (15) was shown by Thornton (1991) to provide results in reasonable agreement to 

experiments. For crits FF  , the sliding resistance is given by the Amonton expression 

crits FF  .  

 

2.2. Agglomerate formation 

 The agglomerates are formed using a turbulent agglomeration process similar to that 

described by Dizaji and Marshall (2017). The computations employed a pseudo-spectral method 

for forced turbulence in a triply-periodic domain with side length 2  and with 128 grid points in 

each direction. The turbulence is initiated with random perturbations and allowed to develop 

with no particles until it approached a quasi-steady state corresponding to microscale Reynolds 

number 99/Re 0   u . Particles are then added to the computation, with 46,656 particles 

spread randomly over the flow field with diameter 04.0d  and particle-to-fluid density ratio 

10/ fp  . Over time as the particles are advected by the flow, small agglomerates first form 

and then collide with each other to form progressively larger agglomerates.  

 The computation was stopped once the agglomerates achieved a broad range of sizes. 

One common way to measure the size of an agglomerate is the radius of gyration gR , which for 

an agglomerate with N  particles is defined by 

 

 
2/1

2

1







  


xx i

N

i
gR . (16) 
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In this equation, x  denotes the position vector of the agglomerate centroid and ix  is the centroid 

of the ith particle within the agglomerate. Particle agglomerates admit a power law relating N and 

gR  given by (Adachi and Ooi, 1990) 

 

   fd
pg rRKN / , (17) 

 

where K is a coefficient (called the fractal pre-factor), pr  is the individual particle radius, and the 

exponent fd  is the fractal dimension of the agglomerate. The value of fd  for particle 

agglomerates varies over the interval 31  fd  depending on the agglomeration formation 

mechanism (Brasil et al., 2001); however, typical values for turbulent particle agglomeration 

processes are between about 1.7 - 2.8 (Selomulya et al., 2001; Waldner et al.). A log-log plot of 

N versus pg rR /  for the current turbulent flow simulation is given in Figure 1. The best-fit line to 

the computational predictions has slope 12.2fd , which is consistent with the range of fractal 

dimension observed in the experimental turbulent particle agglomeration studies listed above. 

 

2.3. Shear flow simulation    

 The agglomerates extracted from the turbulent agglomeration calculation described in 

Section 2.2 are immersed in a linear shear flow, where the initial configuration appears as shown 

in Figure 2a for cases with a single agglomerate in the shear flow and as shown in Figure 2b for 

cases with agglomerate collision. Over time, the shear flow is modified by the presence of the 

particles, as described below. The fluid flow is assumed to be incompressible and is governed by 

the continuity and momentum equations of the form   
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 0 u , (18a)  

 p
f

p
t

Fuuu
u



 21

)( 


.  (18b) 

 

In this equation, u, p and pF  are the fluid velocity, the pressure and the particle-induced body 

force per unit mass, respectively. The void fraction c 1  was not included in (18) since our 

computations indicate that local void fraction remains above 90% even within the agglomerates 

for current computations due to the loose structuring of agglomerates typical of turbulent flow.   

 Since the grid cell size is on the same order as the particle size in these computations, we 

have not used the standard point-force approach in which the force imposed on the fluid by a 

particle is assigned to the grid cell containing the particle center. Instead, in computing both the 

particle-induced body force and the particle concentration field, we have smoothed the particle 

field with use of the conservative particle blob method proposed by Marshall and Sala (2013). In 

this method, the particle body force field ),( tp xF  is written as the sum of some number N 

particle ‘blobs’, centered at positions nx , as   

 

 ),(),(
1

nnwn

N

n
p Rft xxAxF  



. (19) 

 

The Gaussian weight wf  is a function of position and of the characteristic blob ‘radius’ nR , and 

can be written as  
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The blob amplitude, nA , is given by  
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where jg  is the location of the centroid of grid cell j, nx  is the centroid of particle n, cellG  is the 

grid cell volume, and nf ,F  is the fluid-induced force acting on particle n (which imposes an equal 

and opposite force nf ,F  back on the fluid). The force nf ,F  is given by the sum of the drag force 

in (2) plus minor forces such as lift, added mass force, and pressure gradient force. Each particle 

distributes part of its force to a set Q of surrounding grid cells, and the sum in the denominator of 

(21) is evaluated over all grid cells in this set Q. With the choice (21) for blob amplitude, the 

discrete-to-continuum conversion operation is discretely conservative. This method can be 

applied to the particle concentration simply by replacing the particle force with the particle 

volume.  

 The fluid flow computations were performed using a fractional-step method (Rai and 

Moin, 1991; Verzicco and Orlandi, 1996; Uhlmann, 2005), with time advancement performed 

using a third-order Runga-Kutta method for convective terms and the 2nd order Crank-Nicholson 

method for viscous terms. Algorithms for all spatial derivatives except the convective terms are 

approximated using second-order centered finite differences (three-point stencil) on a non-

staggered grid. The discretized equations for the kth Runge-Kutta step are given by 
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where k , k , and k  are coefficients given by Rai and Moin (1991). Continuity is enforced by 

a projection method leading to equation (22c) for the pseudo-pressure, denoted by  . In the 

multigrid solution of this equation, the five-point stencil produced by successive application of 

the gradient operation followed by the divergence operation was employed, rather than the finite-

difference approximation to the Laplacian. The Crank-Nicholson method was used to solve the 

Helmholtz problem, given in (22b). A tenth-order approximation was used for the convective 

terms, requiring an 11-point stencil. To control non-linear instabilities, at the end of each time 

step the velocity components were filtered using a tenth-order filter (again using an 11-point 

stencil)(Lele, 1992; Steijl, 2001). After filtering to obtain filteredu , the velocity u  was replaced by 

(1 ) filteredq q u + u  , with q = 0.05. 

 The flow was initialized in the x-direction with linear variation in the y-direction. The 

upper wall at y = 2 was maintained at a velocity u = 1 and the lower wall at y = -2 was 

maintained at a velocity of u = -1, giving a dimensionless shear rate of 5.0S . The no-slip 
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boundary condition was applied at both the top and bottom wall in the y-direction, and the flow 

was assumed to be periodic in the x- and z-directions. A layer of five ghost points in each 

direction surrounded the computational domain, so that no adjustment of the differentiation 

schemes was needed near the domain boundaries. The velocity on the ghost points was set at the 

upper and lower edges of the grid by linearly extrapolating the velocity from the point on the 

wall and the first point off of the wall. The velocity on the ghost points in the x- and z-directions 

were set so as to enforce periodicity. The fluid flow calculations were carried out on a Cartesian 

grid with equal spacing in each direction. The computations were performed on a 1283 grid 

covering the interval (-2,2) in each coordinate direction. The time step was held fixed at 

005.0t . The dimensionless fluid kinematic viscosity was set to 0003.0  for all 

computations.  

  

3. Agglomerate Motion and Breakup in Shear Flow  

 In this section we examine the dynamics of a single particle agglomerate exposed to shear 

flow, with particular focus on examination of the particle-induced flow field associated with 

rotation of the agglomerate in the shear flow and on the conditions for agglomerate breakup. This 

section helps to set the stage for the study of agglomerate collision in shear flow in the next 

section. The problem of agglomerate dynamics in a shear flow has been previously examined by 

a number of authors. A series of experiments on this problem were reported by Sonntag and 

Russel (1986), who found that the average radius of gyration of the agglomerates could be 

expressed as a power law function of the shear rate as 06.13  SRg . Since the average number of 

particles in the agglomerate, N, was related to radius of gyration by a power law expression of 
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the form (17), with 48.2fd  in their experiments, their expression for agglomerate size in the 

shear flow could alternatively be expressed as 878.0 SN .  

 A number of DEM simulations of agglomerate dynamics in a shear flow have been 

reported (Potanin, 1993; Higashitani et al., 2001; Fanelli et al., 2006; Becker et al., 2009) based 

on the so-called free-draining approximation, which assumes that the particles do not influence 

the fluid flow (one-way coupling). Potanin (1993) and Becker et al. (2009) further assumed that 

particles did not influence fluid forces on each other (even under close packing in the 

agglomerate), whereas Higashitani et al. (2001) and Fanelli et al. (2006) assumed that fluid drag 

forces act only on particle surfaces on the outside of the agglomerate (i.e., that fluid does not 

penetrate into the agglomerate). Higashitani et al. (2001) observed that the average number of 

particles in broken agglomerate fragments, N, varies with the adhesion parameter as 872.0AdN , 

where Ad represents a ratio of adhesive to hydrodynamic force. Since Ad is inversely 

proportional to shear rate, this observation is consistent with the scaling found experimentally by 

Sonntag and Russel (1986). Becker et al. (2009) compared the DEM simulations using the free-

draining approximation to a full finite-element simulation of the flow field and found that the 

free-draining approximation breaks down as the agglomerate size increases. This observation is 

consistent with that made in a recent CFD-DEM study of turbulent agglomeration by Dizaji and 

Marshall (2017), who compared results with one-way and two-way coupling and found 

significant deviance between the two as the agglomerate size increased. Becker et al. (2009) 

observed that small agglomerates rotate in an almost rigid-body fashion in the shear flow, large 

agglomerates break up into pieces, and agglomerates of an intermediate size undergo a 

restructuring process, in which they deform and change form as they rotate but do not break up.  
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 A full CFD-DEM study of agglomerate dynamics in a shear flow was reported by Zeidan 

et al. (2007), but the computations were restricted to two dimensions and the models used for 

particle collision and adhesion forces were highly simplified. For instance, no tangential forces 

on the particles were included to resist rolling and sliding motions, which as noted by Becker et 

al. (2009) are important in modeling agglomerate deformation under the shear flow.  

 In the current section, we report on a three-dimensional CFD-DEM study of agglomerate 

dynamics in a shear flow using a complete and well-validated DEM approach, with a focus on 

resolving and understanding the flow field induced by the particles. In order to work with 

agglomerate structures typical of those found in turbulent agglomeration processes, the 

computations were initiated by extracting an agglomerate from the turbulent flow computation 

described in Section 2.2 and inserting it into an initially linear shear flow. The flow evolution is 

then computed using the CFD method described in Section 2.3 and the DEM model described in 

Section 2.1.  

 The shear flow acts to rotate and stretch the agglomerate, whereas the adhesion force acts 

to hold the agglomerate together as a rigid body. The competition between these two effects 

determines the agglomerate behavior in the shear flow. We let 0gR  denote the initial radius of 

gyration of the agglomerate and S denote the ambient shear rate. The characteristic length, time 

and velocity scales of the flow were selected as 0gR , S/1 , and 0gSR , respectively. The primary 

dimensionless parameter governing the agglomerate behavior in the shear flow is the adhesion 

parameter, which for current purposes is defined as the ratio of the adhesion force between 

individual particles ( )( dO  ) to the viscous force ( )( dUO  ) imposed on a particle by the fluid 

flow. Using 0~ gSRU  as the typical velocity scale, the adhesion parameter for this problem takes 

the form 
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This measure is essentially the same as the inverse of the fragmentation number proposed by 

Hansen et al. (1998). A secondary parameter characterizing the particle motion is the particle 

Stokes number St, which is interpreted as the ratio of particle characteristic time scale 

dmp  3/  to the fluid time scale Sf /1 , giving 
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The values of the adhesion parameter Ad, the initial number of particles 0N , and the ratio 

dRg /0  of initial agglomerate gyration radius to particle diameter are given for all single-

agglomerate runs in Table 1. All computations reported in the paper have Stokes number of St = 

1.4 and density ratio of 10/ fp  . The shear Reynolds number can be defined in terms of 

shear rate and radius of gyration as /Re 2
0gS SR , which is found to have a value ranging from 

52-102 in the current computations, depending on which of the three extracted agglomerates are 

under consideration. In a turbulent flow, the parameters used in these computations would 

therefore be larger than the Kolmogorov scale and smaller than the integral scale, perhaps typical 

of the Taylor microscale of the turbulent motion.   

 Computations in this section were performed using three different agglomerates selected 

from the turbulent agglomeration simulation, and for four different adhesion parameter values 
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for each agglomerate. A time series of the particle positions during a typical run (Case A.4) for a 

case where the agglomerate rotates without breakup, but exhibits some restructuring during the 

rotation, is shown in Figure 3. The particles are immersed in a fluid flow, for which a velocity 

can be defined both outside and inside the particle agglomerate. The particles in Figure 3 are 

colored by the magnitude of the particle velocity relative to the fluid, which is called the relative 

particle velocity and defined by uvw  , where v and u denote the particle velocity and fluid 

velocity at the particle centroid, respectively. We will also later refer to the relative fluid velocity 

xrel Syeuu  , which is set equal to the computed fluid velocity u minus the velocity of the 

ambient shear flow ( xSye ).  

 In the reported computations, the initial velocity of the fluid was set equal to the shear 

flow velocity xSye . The initial velocity of the agglomerate particles is set equal to a rigid body 

rotation at the rotation rate S/2 of the shear flow, for which there exists a vertical y-component of 

velocity in addition to the x-component of velocity characteristic of the ambient shear. This 

initial rotation rate of the agglomerate gives rise to a linear variation of the relative particle 

velocity extending outward from the agglomerate center, as shown in Figure 3a. At later times, 

the size of the region of low relative particle velocity near the agglomerate center appears to 

grow and the particles with higher values of relative particle velocity are restricted to the outer 

parts of the agglomerate. 

 In the following, we shall examine in detail the results for Case A.4, which is typical of a 

case where the agglomerate does not break up in the shear flow. The particle coordination 

number for this computation remains nearly constant with time at a value of 3.9. The radius of 

gyration gR  and the particle concentration aggc  within the agglomerate oscillate in time, as 

shown in Figure 4b. The value of aggc  is computed by dividing the volume of all particles 
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associated with the agglomerate, 3)6/( NdVp  , by the effective volume effV  occupied by the 

agglomerate. The agglomerate effective volume is estimated by 3
,)3/4( ieffeff RV  , where the 

effective radius of the agglomerate effR  is related to the radius of gyration by geff RR 2/5 . 

This expression is based on the expression for radius of gyration of a solid sphere of uniform 

density. The particle volume fraction of the agglomerate can be related to the fractal dimension 

by (Jiang et al., 1991; Kusters et al., 1997)  

 

 3
,0, )/(  fd
igiagg dRcc , (25)    

 

where 0c  is a constant. If the fractal dimension  3fd , an increase in agglomerate size results 

in a decrease in average particle volume fraction (Olfert et al., 2007). Both the radius of gyration 

and the particle concentration aggc  within the agglomerate oscillate during the computation as 

agglomerate restructuring occurs, with oscillation amplitude of about 3% of the mean radius of 

gyration and 9% of the mean particle concentration.    

      The time variation of the magnitude of the particle velocity v and the relative particle 

velocity w are plotted in Figure 5a. The particle velocity magnitude oscillates during the 

computation and the relative particle velocity exhibits a rapid initial decrease and then oscillates 

during the remainder of the computation. The latter result indicates that the fluid flow within the 

agglomerate responds quickly to changes in the particle velocity. While the relative velocity 

changes quickly in the time interval 10  t , we do not observe significant deformation or 

breakup of the agglomerate during this interval. The fact that the relative particle velocity 
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magnitude is lower than the particle velocity magnitude for most of the computation is a result of 

the particle-induced flow, which acts to decrease the relative velocity.  

 The distribution of different quantities within the agglomerate is examined by computing 

the second-moment measure )(Fi of a given field )(xF  for each agglomerate i as  
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where ix  is the centroid of agglomerate i  and jF  is the value of the function )(xF  evaluated at 

the centroid jx  of the jth particle within the agglomerate (Dizaji and Marshall, 2017). The 

second-moment measure is shown in Figure 5b for three different fields  ̶̶  the particle 

coordination number cn , the magnitude of the relative particle velocity magnitude w, and the 

magnitude of the relative particle rotation rate about the agglomerate center   

 

 
2

,,, )( aggcaggcrelagg xxwxxΩ  . (27) 

 

A value of the second moment )(F  equal to unity indicates that the function )(xF  is uniform 

(or statistically randomly varying) across the agglomerate, whereas a value of )(Fi  that is less 

(greater) than unity implies that particles with higher (lower) values of )(xF  are found near the 

center of the agglomerate compared to particles on the outer parts of the agglomerate. Figure 5b 

shows that the second moment measure for the coordination number is consistently less than 
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unity (close to 0.9), indicating that the agglomerate is more compact near its center than in its 

outer parts, as would be expected of a fractal agglomerate structure. The second moment of the 

relative velocity magnitude oscillates as the agglomerate restructures during rotation in the shear 

flow, but its value remains well above unity, varying from about 1.35 to 1.95. This observation 

supports the statement made earlier that small values of relative particle velocity are found near 

the center of the agglomerate and larger values are found only on the outermost particles. While 

this difference is related, in part, simply to the rotation of the agglomerate about its centroid, it is 

evident by comparison of Figure 3a and 3d that this effect becomes more pronounced with time, 

indicating that the particle-induced flow also plays a role. The relative particle rotation rate about 

the agglomerate centroid also oscillates in time, increasing from near unity at the start of the 

computation to an average value of about 1.2 in the second half of the computation. This quantity 

can be viewed as a measure of the effect of the particle-induced fluid flow - if there were no 

particle-induced flow the value of this quantity would remain at unity. The fact that this measure 

increases above unity is an indication that the particle-induced flow shields the inner parts of the 

agglomerate, resulting in a lower ratio of the relative velocity to radial distance in this region 

than in the outer part of the agglomerate. A somewhat similar observation of shielding of the 

center parts of agglomerates falling in a fluid was noted by Kusters et al. (1997).    

 The rotation frequency of a fluid element in the shear flow is equal to 

0398.02/)2/(  Sf fluid . The rotation period of the agglomerate was estimated by labeling 

each particle and observing the time required for one rotation. This measurement is necessarily 

somewhat imprecise since there is some restructuring of the agglomerate during the rotation, but 

we took care to also estimate the uncertainty in the estimate. Taking the inverse of the rotation 

period, our estimate of agglomerate rotation frequency for this computation is 
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002.0027.03.37/1 aggf . Consequently, we observe that the particle agglomerate is 

rotating about 30% more slowly than would a fluid element in the shear flow. This observation is 

consistent with the findings of Li et al. (2016), who found that a porous circular particle in a two-

dimensional shear flow rotates in the flow more slowly than a fluid element. In Figure 6a, we 

plot contours of the relative fluid velocity in the streamwise (x) direction, relu , at time t = 20, 

which is typical of the results observed throughout the computation. The relative fluid velocity is 

found to be oriented in a direction opposite to the ambient shear velocity, with negative value for 

y > 0 and positive value for y < 0. A profile of the relative fluid velocity along the y-axis (x = z = 

0) is shown in Figure 6b as dots, with the ambient shear flow drawn as a solid line. We again see 

that the computed velocity in the region near the agglomerate ( 4.0y ) lags behind the ambient 

shear velocity, which is due to the fact that the particle agglomerate is rotating more slowly than 

the fluid element so that the forces induced by the particles retard the fluid flow.          

 A series of plots in the three cross-sectional planes (x-y, x-z, and y-z) are shown in Figure 

7, where for each plane we plot the in-plane streamlines (obtained by setting the normal velocity 

component to zero) and the contours of both the normal vorticity and velocity components. The 

plots do not include the entire computational domain, but instead focus on the central part of the 

domain near the agglomerate. In Fig. 7a, the streamlines in the x-y plane are seen to exhibit a 

vortex at the origin (i.e., at the center of the agglomerate); however, we note that the fluid 

velocity near the vortex center is very weak, and hence the normal vorticity magnitude at the 

vortex center is small. In all three cross-sectional planes, the normal vorticity component has a 

quadrapole structure, with four vorticity patches of alternating sign. From these cross-sectional 

plots, the velocity and vorticity fields associated with the rotating particle agglomerate appear to 

have the form of two tilted vortex rings with opposite circulation immersed in the shear flow.  
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 To better illustrate this flow field, we compute the relative fluid vorticity zrel Seωω  , 

where we recall that the vorticity of the ambient shear flow is zSe . The iso-surface 46.0rel  

of the magnitude of relω  is plotted in Figure 8 in both the x-y plane (looking from the side) and 

the x-z plane (looking from the top). The same two views of this iso-surface are also shown in 

Figure 8 showing contours of rel  on a slice of the flow field in the normal plane. The rel  iso-

surfaces clearly show that the particle-induced flow field for a single rotating agglomerate in a 

shear flow has the form of a pair of tilted vortex rings of opposite sign, with tilt angle of 

approximately 45  relative to the ambient shear flow (x-direction). As seen in the slices of the 

flow field in Figures 8c and 8d, each vortex ring is surrounded by stretched and reoriented 

vorticity from the ambient shear flow that trails behind the vortex rings in each direction. The 

dynamics of a single vortex ring in a linear shear flow was studied by Cheng et al. (2009), who 

found that the vortex ring becomes tilted relative to the shear and maintains a ring-like form 

while it drifts upward in the shear field (in the y-direction). This upward drift is negated in the 

current situation by the mutually-induced flow field when two rings of opposite sign co-exist, 

leading to a quasi-stationary flow with a quadrapole far-field structure (as is evident in the 

streamlines in Fig. 7c). For computations where the shear flow does not trigger breakup of the 

agglomerate, such as for Case A.4, this flow structure is observed to remain nearly constant with 

time as the agglomerate rotates in the shear flow.  

 As the adhesion parameter is varied in different computations, different behavior of the 

particle agglomerates in the shear flow is observed. For sufficiently low adhesion parameter 

values, some agglomerates are observed to break up into multiple fragments in the presence of 

the shear flow. A time series illustrating agglomerate breakup in the shear flow is shown in 

Figure 9 for Case A.1. We note from this example that while the fragments that shed from the 
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agglomerate are limited by the maximum size that the agglomerate can attain without breakup in 

the shear flow, there are also many agglomerates that are formed of a much smaller size. The set 

of fragments thus has a wide size distribution. A set of plots summarizing the computed 

agglomerate evolution for all of the single-agglomerate computations (Cases A.1 - A.12) is given 

in Figure 10. In Figure 10a, we plot the number of fragments fragN  into which the agglomerate 

breaks up as a function of the adhesion parameter Ad, defined in (22). The data are from three 

agglomerates extracted from the turbulent agglomeration computation, and different symbols are 

used in Figure 10 to denote the data from each agglomerate. For sufficiently high values of 

adhesion parameter, the agglomerate doesn't break up and the value of 1fragN  in Figure 10a. 

The number of particles N in each fragment at the end of the computation ( 30t ) is plotted 

versus adhesion parameter in Figure 10b on a log-log plot. The power law expression 

878.0 SN  of Sonntag and Russel (1986) can be written in terms of the adhesion parameter as 

878.0AdN . This expression is plotted as a dashed line in Figure 10b, where the coefficient of 

proportionality is fit to the data. The expression is found to be a reasonable fit for the maximum 

values of N, thus setting the largest size agglomerates that can survive without breakup in the 

shear flow.  

 

4. Agglomerate Pair Collision in Shear Flow 

 In this section, we examine the collision of two agglomerates in a shear flow. As stated in 

Section 2, each particle in an agglomerate is in contact with at least one other particle in the 

agglomerate. Two agglomerates collide when at least one particle in each agglomerate come in 

contact with each other. For the computations of agglomerate collision reported in this section, 

three different agglomerates were extracted from the turbulent agglomeration computation 
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described in Section 2.2, which were used to conduct 30 computations of agglomerate collision, 

the parameters for which are listed in Table 2. For each computation, the agglomerates are 

initialized as shown in Figure 2b, with orientations of  45  and displacement of the 

agglomerate centroid by an amount aD  in the y-direction. Each computation examines 

collision of an agglomerate with an exact copy, and we did not consider collisions of different 

size agglomerates. Consideration of the computational results indicates three different types of 

behaviors, which are illustrated in scatter plots in Figure 11. In these plots, each particle is 

colored either red or blue to indicate the agglomerate from which the particle originated. The 

first type of collision outcome is merger of the agglomerates into a single agglomerate, which 

then rotates in the shear flow. The second type of behavior, referred to as a bouncing collision, 

results in two separate agglomerates following the collision. As seen in Figure 11, it is common 

for some particles to be exchanged between the two colliding agglomerates during bouncing 

collisions. The third type of behavior is referred to as fragmentation, which describes collisions 

that result in three or more agglomerates. In the case shown in Figure 11, the collision results in 

three agglomerates - one composed entirely of red particles, one composed entirely of blue 

particles, and one composed of a combination of red and blue particles. In other cases, more than 

three agglomerates will form in a fragmentation collision, often yielding a wide variation in 

agglomerate sizes. Sometimes it is not clear whether a collision should be classified as a 

bouncing case or a fragmentation case; for instance, cases where two colliding agglomerates 

break away from each other but leave behind a very small third 'satellite' agglomerate composed 

of just a few particles can be regarded as somewhat in-between these two classifications. For 

purposes of this paper, collisions are classified as bouncing cases if only a single ‘satellite’ 

particle is separated from the two main agglomerates, and they are classified as fragmentation 
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cases if the satellite agglomerate consists of two or more particles. More typical fragmentation 

cases are similar to that shown in Figure 11, however, producing at least three large 

agglomerates and sometimes also several smaller agglomerates.   

 The question of whether a given collision will be of the merger, bouncing or 

fragmentation type depends primarily on the values of the adhesion parameter Ad and the ratio 

of the y-direction offset distance aD  to the initial radius of gyration 0gR  of the two 

agglomerates. A plot identifying the type of collision for all computations conducted is shown in 

a mapping of Ad versus 0/ ga RD  in Figure 12, and details of the number of particles in each 

agglomerate following collision are listed in Table 2. Regions of the map in Figure 12 are 

marked to provide a rough identification of values of Ad and 0/ ga RD  for which the 

agglomerates individually break up in the shear flow (to the far left of the plot) and values 

resulting in merger, bouncing and fragmentation type collisions. The dashed line separating the 

merger and bouncing regimes is given by the line Ad0002.045.0/ 0 ga RD . The numbers 

indicate the number of agglomerates present at the conclusion of the computation, where an 

agglomerate is defined as a group of two or more touching particles. In general, collisions 

resulting in mergers occurred for smaller values of dimensionless offset distance 0/ ga RD  and 

values of Ad well above the critical value for breakup of the individual agglomerate in shear 

flow. Bouncing collisions occur for larger values of 0/ ga RD , resulting in glancing collisions of 

the agglomerates. Fragmentation occurs for moderate values of 0/ ga RD  with adhesion 

parameter values just slightly larger than the critical value for breakup of a single agglomerate in 

the shear flow. Two cases in Figure 12 requiring special discussion are indicated with asterisks. 

One of these cases, indicated by 2*, was identified as a bouncing collision because it resulted in 



 34

two agglomerates, but a much larger number of particles were exchanged between the two 

agglomerates than was the case for other bouncing collision cases. Indeed, 172 particles 

originating in the red agglomerate, out of an initial 577 particles, were torn off and captured by 

the blue agglomerate during the collision. The case indicated by 4* in Figure 12 was, on the other 

hand, a fairly typical fragmentation case, resulting in three fairly large agglomerates with 263, 

315 and 69 particles and one smaller 'satellite' agglomerate with 8 particles. The presence of this 

fragmentation case in a region where we otherwise see a lot of bouncing cases is a reminder that 

each agglomerate has its own unique structure and each collision involves different parts of these 

unique agglomerates, so one must expect substantial variation from case to case. The plot in 

Figure 12 should therefore be regarded as providing only a rough indication of the conditions 

under which different types of collisions occur and not as a strict regime map.  

 For the problem of collision of two particles, the criterion for sticking or bouncing of the 

particles can usually be expressed as a critical value of the particle Stokes number St, which is a 

function of the adhesion parameter Ad. Applying this same idea for the problem of agglomerate 

collision, we can define an agglomerate Stokes number StA as the ratio of an agglomerate time 

scale 03/ gAA Rm    and the fluid time scale agf SDRUL // 0 , giving 
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In this expression, Am  is the agglomerate mass, aSDU  is the characteristic velocity difference 

between the agglomerates, and 0gR  is an agglomerate length scale. The agglomerate Stokes 

number is therefore found to vary linearly with the ratio 0/ ga RD  used in Figure 12. 
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 While we have used the term bouncing collision to be in conformity with terminology 

used in previous literature (e.g., Brisset et al., 2016), it is clear that the bouncing agglomerate 

collisions for the loosely-structured agglomerates examined in the current study differ 

substantially from the traditional bouncing collision of two elastic particles. In a traditional 

bouncing process, two colliding elastic bodies deform locally near the collision point, resulting 

in an elastic (or sometimes plastic) repulsion force pushing the two bodies away from each other. 

In a bouncing case, this repulsion force is sufficiently strong to overcome the adhesive force 

between the bodies, so that the two bodies will detach and continue to move away from each 

other. The bouncing collisions of two loosely-structured agglomerates observed in the current 

paper are characterized more by tearing away and eventual capture of particles from the 

opposing agglomerate by the particle adhesion force. It is not that the elastic force between the 

agglomerates overcomes the adhesive force between the bodies, but rather that the adhesion 

force imposed on the captured particles by one agglomerate overcomes the adhesion force from 

the agglomerate to which the captured particles were originally attached. A plot showing number 

of captured particles from both agglomerates during the different bouncing collisions computed 

is given in Figure 13. As we see from this plot, all bouncing collisions included captured 

particles. In some cases only one agglomerate captures particles, and in other cases both 

colliding agglomerates capture particles from the other agglomerate.    

 While exchange of particles was a characteristic feature of all bouncing collisions, this is 

not to say that there was no rebound force between the agglomerates. An examination of the 

rebound force is reported below for the bouncing collision in Case B.19, in which 28 particles 

originating in the red agglomerate are captured by the blue agglomerate and one blue particle is 

captured by the red agglomerate. The number of touching red-blue particles (i.e., touching 
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particles originating from opposite agglomerates) is plotted as a function of time in Figure 14a. 

This number is zero until t = 5, at which time the collision occurs, and then suddenly spikes up to 

a peak value of 18 at a time of about t = 6.5. After this point the number of touching red-blue 

particles decreases to 14 and remains there, with the exception of a small blip at t = 10 due to 

restructuring. The fact that the number of red-blue touching particles does not reduce to zero 

following the collision is due to the presence of captured particles. The total compressive force 

between the two agglomerates (which is characteristic of the elastic rebound force) is plotted as a 

function of time in Figure 14b. We again observe a sudden increase at collision onset at t = 5 and 

a peak value at t = 6.5, followed by a gradual decrease of the compression force as the two 

agglomerates tear away from each other.  

 The position of particles carrying the compressive load between the two colliding 

agglomerates is illustrated in Figure 15 at a time of t = 7, close to the peak time of the collision. 

In Figure 15a, we color the particle scatter plot with red or blue to identify the originating 

agglomerate for each particle. In Figure 15b, each particle is colored by the magnitude of the 

total compressive force acting on the particle. The highest compressive loads are borne by a core 

of particles on the inside of the agglomerate, shown in Figure 15c with the lower-compression 

particles removed, within a tube of force chains radiating outward from the collision point. The 

highest compressive load occurs on the particles just at the collision point, indicated by red or 

orange in Figure 15c. We have thus confirmed that a rebound force does occur in bouncing 

collisions, and it may be reasonable to characterize this aspect of the collision phenomenon by 

some type of effective elastic modulus assigned to an effective spherical body representing the 

agglomerate. However, this effective sphere representation does not include the important 
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phenomenon of particle capture during bouncing collisions, which in most of the cases that we 

have examined is very important to the agglomerate behavior during collision.            

 In Section 3, we discussed the observation that the particle-induced flow field from a 

single agglomerate in a shear flow has the form of two tilted vortex rings of opposite sign. In the 

event of a collision of two agglomerates, one naturally wonders what happens to the particle-

induced flow during the collision. To examine this question, an iso-surface of the relative 

vorticity magnitude rel  is plotted at four different times during a collision resulting in merger 

(Figure 16 for Case B.15) and during a collision resulting in bouncing (Figure 17 for Case B.19). 

The relative-vorticity iso-surface for fragmentation cases depends on the number of fragments 

produced, and so are highly variable. The agglomerate centroids and initial radius of gyration are 

indicated in these figures by a black dot and a circle, respectively, for each agglomerate. Below 

each figure is given a scatter plot showing the particle positions at that time, with color used to 

identify the agglomerate of origin for each particle. 

  In Figure 16, the particle-induced flow field at time t = 6 (just before the collision) has 

the form of two opposite-sign tilted vortex rings for each agglomerate, hence four tilted vortex 

rings in all. At time t = 8 the agglomerates are in the midst of colliding and the innermost vortex 

rings of each agglomerate collide with one another. At t = 10, the inner vortex rings have 

significantly decayed while the outer vortex rings have grown in strength. The inner rings 

continue to break up and be swept downstream by t = 12, leaving the two strong outer vortex 

rings, which have opposite sign from each other. With the exception of the small-scale remnants 

of the inner rings, the particle-induced flow for the merged agglomerates at t = 12 thus appears 

similar to that for a single agglomerate in a shear flow, as discussed in the previous section, but 

the vortex rings are larger and stronger for the merged agglomerate.  
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 In Figure 17, a time series of iso-relative vorticity magnitude surfaces are plotted for a 

case with bouncing agglomerate collision. The first two images in Figure 17 appear similar to 

those in Figure 16 for a merging collision. The two inner rings collide at time t = 6 and nearly 

extinguish each other by time t = 8 as the agglomerate collision occurs. However, as the 

agglomerates bounce and move away from each other, the inner rings reform, such that by t = 12 

we see a pair of vortex rings for each agglomerate moving away from each other. A trail of 

vorticity connects these two vortex ring pairs, which is either left over from the collision or 

generated by stretching of the background shear vorticity.      

 

5. Conclusions 

 A computational study was reported examining rotation and breakup of a single particle 

agglomerate and collision of two particle agglomerates in a shear flow. The agglomerates are 

extracted from a direct numerical simulation of turbulent agglomeration, and therefore have the 

characteristic loose fractal structure typical of turbulent agglomeration processes. Computations 

are performed with four-way coupling between the particles and the fluid and with sufficient 

resolution of the agglomerates to capture the details of the particle-induced flow field. 

Simulations of a single agglomerate rotating in the shear flow with high values of the adhesion 

parameter indicate that the agglomerate rotates more slowly than would an ambient fluid element 

in the shear flow. The flow field induced by the particles of a rotating agglomerate in a shear 

flow are found to exhibit a very distinctive form, characterized by a pair of tilted vortex rings 

with opposite sign circulation, surrounded by a sea of stretched vorticity from the ambient shear 

flow. To our knowledge, this is the first time that the particle-induced flow of an agglomerate in 

shear flow has been examined in detail and the first time that the interesting vortex ring pair 
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structure of this flow has been described. This vortex pair ring structure remains with constant 

orientation and strength as the particle agglomerate rotates. For sufficiently low values of the 

adhesion parameter, the agglomerate is observed to break up in the shear flow, where the exact 

value of adhesion parameter at breakup varies slightly with the specific choice of the 

agglomerate under examination. 

 The problem of collision of two agglomerates was found to result in either merger, 

bouncing or fragmentation, depending on the value of the adhesion parameter and the ratio of 

offset distance to agglomerate radius of gyration. In merger collisions, the inner vortex rings of 

the particle-induced flow from each agglomerate interact with each other and eventually break 

up into small scale structures, and the outer vortex rings grow stronger leading to development of 

the vortex ring pair structure typical of that observed for a single agglomerate. It was observed 

that bouncing collisions result both in repulsive force between the agglomerates due to elastic 

deformation as well as exchange of particles between agglomerates. The innermost vortex ring 

structures of the particle-induced flow for bouncing collisions similarly exhibit interaction of the 

two inner vortex rings, but these inner rings are found to quickly reform as the agglomerates 

bounce and move away from each other. Fragmentation collisions may result in three or more 

agglomerates with widely different sizes, many of which are formed of a combination of 

particles originating in different agglomerate structures.      

 Many theoretical and computation models of turbulent agglomeration processes make use 

of the common approximation that an agglomerate can be replaced by an 'effective particle', in 

which some effective elastic modulus of the agglomerate is assigned. The current study 

demonstrates that this effective particle approximation omits certain important physical 

phenomena associated with agglomerate collision, including fragmentation collisions (resulting 
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in three or more agglomerates) and exchange of particles between agglomerates in bouncing 

collisions. The particle-induced flow field is also quite different for a loosely-structured 

agglomerate than it is for an equivalent sphere due to the fact that the fluid flow can penetrate 

into the outer parts of the agglomerate. This penetration affects the rotation rate of an 

agglomerate in a shear flow and gives rise to the tilted vortex ring structure of the particle-

induced flow.  

 The current study suggests the need for future work in a number of areas. The current 

study has focused on collision of particle agglomerates with exact copies of themselves, using a 

relatively small number of agglomerates in order to focus on the effect of the adhesion number 

and the spacing ratio 0/ ga RD . There is a need to conduct runs with larger number of 

agglomerates, including cases involving collisions of agglomerates of different sizes. The current 

study considered agglomerates suspended in a simple shear flow, whereas in practice 

agglomerates will also experience a mean drift relative to the surrounding flow, either from 

inertia or from a body force such as gravity. An agglomerate falling under gravity in a fluid is 

known to induce a single vortex ring within the agglomerate (Nitsche & Batchelor, 1997), in 

contrast to the pair of tilted vortex rings that we have observed to be induced by an agglomerate 

in a shear flow. The particle-induced flow for an agglomerate experiencing a combination of 

shear and mean drift would therefore be of interest for future study. Finally, resolution of the 

flow within the agglomerate using the CFD-DEM approach employed in the current paper 

requires that the agglomerate size is significantly larger than the particle size. It would be of 

interest to examine fluid flow effects and collision of smaller agglomerates, for which a 

computational method capable of resolving flow around individual particles would be necessary. 
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Tables 
 

Table 1. Listing of parameter values for cases examined with a single agglomerate in a shear 
flow, including adhesion parameter, initial number of particles, and ratio of initial gyration radius 
to particle diameter. For all cases examined St = 1.4 and 10/ fp  . 

 
 

Case Number  Ad 
0N  dRg /0  

A.1 133 328 4.81 
A.2 333 328 4.81 
A.3 666 328 4.81 
A.4 999 328 4.81 
A.5 146 269 4.40 
A.6 364 269 4.40 
A.7 728 269 4.40 
A.8 1092 269 4.40 
A.9 104 577 6.17 
A.10 259 577 6.17 
A.11 518 577 6.17 
A.12 778 577 6.17 
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Table 2. Listing of parameter values for cases examined for collision of two agglomerates, 
including adhesion parameter, initial numbers of particles in each agglomerate ( N ), ratio of 
initial gyration radius ( 0gR ) of each agglomerate to particle diameter d, and ratio of initial offset 

distance aD  to 0gR . For each case examined St = 1.4 and 10/ fp  . Also listed was the 

observed type of collision - merger (M), bouncing (B) or fragmentation (F) – and the number of 
particles in each remaining agglomerate (Aggl 1-5) after the collision.  

 

 
Case 

Number 
 

Ad 
 

0N  
 

dRg /0  
 

0/ ga RD
Collision 

Type  
Aggl

1 
Aggl

2 
Aggl 

3 
Aggl 

4 
Aggl

5 

B.1 333 328 4.81 0.52 F 213 392 51 - - 
B.2 666 328 4.81 0.52 M 656 - - - - 
B.3 999 328 4.81 0.52 M 656 - - - - 
B.4 1998 328 4.81 0.52 M 656 - - - - 
B.5 333 328 4.81 0.78 F 338 168 8 5 3 
B.6 666 328 4.81 0.78 F 331 317 8 - - 
B.7 999 328 4.81 0.78 F 276 380 - - - 
B.8 1998 328 4.81 0.78 M 656 - - - - 
B.9 333 328 4.81 1.04 F 262 315 69 8 - 
B.10 666 328 4.81 1.04 B 350 305 - - - 
B.11 999 328 4.81 1.04 B 358 298 - - - 
B.12 1998 328 4.81 1.04 B 326 330 - - - 
B.13 364 269 4.40 0.57 F 326 161 51 - - 
B.14 728 269 4.40 0.57 M 538 - - - - 
B.15 1092 269 4.40 0.57 M 538 - - - - 
B.16 2184 269 4.40 0.57 M 538 - - - - 
B.17 364 269 4.40 0.85 B 291 247 - - - 
B.18 728 269 4.40 0.85 B 286 252 - - - 
B.19 1092 269 4.40 0.85 B 296 242 - - - 
B.20 2184 269 4.40 0.85 M 538 - - - - 
B.21 364 269 4.40 1.14 B 268 270 - - - 
B.22 728 269 4.40 1.14 B 268 270 - - - 
B.23 1092 269 4.40 1.14 B 268 270 - - - 
B.24 2184 269 4.40 1.14 B 268 270 - - - 
B.25 778 577 6.17 0.41 B 749 405 - - - 
B.26 1556 577 6.17 0.41 M 1154 - - - - 
B.27 778 577 6.17 0.61 F 171 619 364 - - 
B.28 1556 577 6.17 0.61 M 1154 - - - - 
B.29 778 577 6.17 0.81 B 579 575 - - - 
B.30 1556 577 6.17 0.81 B 607 547 - - - 

 
 



 51

Figure Captions 
 
Figure 1. Plot of the number of particles in an agglomerate N versus the ratio of the radius and 
gyration of the agglomerate gR  and the individual particle radius pr . The slope of the plot 

indicates the dimension 12.2fd  of the power law in Eq. (17). 

 
Figure 2. Schematic diagram of the initial conditions for the problems of (a) a single agglomerate 
in a shear flow and (b) two-agglomerate collision in a shear flow. Circles indicate the radius of 
gyration gR , and the offset distance aD  is indicated in (b) in both positive and negative 

directions.    
 
Figure 3. Particle positions at times (a) t = 0, (b) 10, (c) 20, and (d) 30 for Case A.4. The 
particles are colored by the magnitude of the relative velocity vector. The agglomerate is rotating 
clockwise in the shear flow and completes approximately one rotation in the time interval shown.  
 
Figure 4. Plot showing the time-variation of the gyration radius gR  (solid line, left-hand axis) 

and the particle concentration within the agglomerate aggc  (dashed line, right-hand axis) for Case 

A.4. 
 
Figure 5. Plot showing the time-variation of (a) the average value of the magnitude of the 
particle velocity v (dashed line) and the relative particle velocity vector uvw   (solid line) 
and (b) the second-moment measure for particle coordination number (black line), relative 
rotation rate about the agglomerate centroid (blue line), and relative velocity magnitude (red line) 
for Case A.4.  
 
Figure 6. (a) Contour plot of the x-component relu  of the relative velocity in the x-y plane, for 

Case A.4 at t = 26. (b) Profile of the x-component of velocity u along the y-axis. The solid line 
denotes the ambient shear flow and the dots denote the computed velocity profile.  
 
Figure 7. (Left) contours of normal vorticity and streamlines of the in-plane velocity field and 
(right) contours of normal component of the relative velocity relu  in three orthogonal planes 

passing through the agglomerate, for Case A.4 at t = 26. 
 
Figure 8. Iso-surface of the relative vorticity magnitude 46.0rel  obtained from the velocity 

field for Case A.4 at t = 26, showing two tilted vortex rings generated by the particle-induced 
velocity field near the rotating agglomerate. The top two plots show iso-surfaces in the (a) x-y 
plane and (b) x-z plane. The bottom two plots, (c) and (d), show the same iso-surface views 
together with a slice showing rel  contours in the normal plane. 

 
Figure 9. Time series showing breakup of single agglomerate in a shear flow, for Case A.1 at 
times (a) t = 0, (b) 5, (c) 10, (d) 15 and (e) 20.  
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Figure 10. Plots showing measures characterizing breakup of a single agglomerate in a shear 
flow. (a) Number of fragments that an agglomerate breaks up into versus adhesion parameter. 
When the agglomerate does not break up, 1fragN . (b) Number of particles N in agglomerates 

following breakup versus adhesion parameter. The dashed line is the experimental power-law fit 
879.0AdN  from Sonntag and Russel (1986) for maximum number of particles, where the 

proportionality coefficient is fit to the data. The data is plotted for Cases A.1-A.4 (red deltas), 
A.5-A.8 (green circles), and A.9-A.12 (blue diamonds) from Table 1. 
 
Figure 11. Scatter plots illustrating three types of agglomerate interactions: merger (Case B.15), 
bouncing (Case B.19) and fragmentation (Case B.13). 
 
Figure 12. Summary of results for all agglomerate collision runs, showing the number of 
agglomerates ( aggN ) remaining after collision as a function of adhesion parameter and the ratio 

avega RD ,/  of offset distance to initial radius of gyration. Colors indicate results from different 

agglomerates. Numbers indicate cases with agglomerate merger ( 1aggN ), bounce ( 2aggN ), 

and fragmentation ( 2aggN ).  

 
Figure 13. Plot indicating the number of captured particles in bouncing collisions versus the total 
number of particles in an agglomerate. The number of red particles captured by blue 
agglomerates is plotted in red, and the number of blue particles captured by red agglomerates is 
plotted in blue. Different symbols are used to indicate different computations, with one red and 
one blue symbol for each computation.   
 
Figure 14. Time variation of (a) number of touching particles originating in different 
agglomerates and (b) total dimensionless compressive force between the agglomerates for a 
typical bouncing case (Case B.19). Collision onset occurs at approximately t = 5 and the 
agglomerates detach at t = 14.   
 
Figure  15.  Scatter plots during a bouncing agglomerate collision (Case B.19) at t = 7, with 
colors indicating (a) agglomerate from which each particle originated, (b) total compressive 
force acting on each particle, and (c) same plot as in (b) with the low-compression particles (with 
compressive force < 1.5) blanked out. High compression force chains occur in a particle core 
region spreading outward from the collision point. 
 
Figure 16. Iso-surface of relative vorticity magnitude 3.0rel  (top) and particle scatter plot 

colored by initial agglomerate identity (bottom) for a case where the particle agglomerates merge 
(Case B.15), at times (a) 6t , (b) 8, (c) 10, and (d) 12 during which collision and merger of the 
agglomerates occurs. The agglomerate centroids and initial radius of gyration are indicated in the 
upper plots by a black dot and a circle, respectively, for each agglomerate. 
 
Figure 17. Iso-surface of relative vorticity magnitude 3.0rel  (top) and particle scatter plot 

colored by initial agglomerate identity (bottom) for a case where the particle agglomerates 
bounce (Case B.19), at times (a) 6t , (b) 8, (c) 10, and (d) 12 during which collision of the 
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agglomerates occurs. The agglomerate centroids and initial radius of gyration are indicated in the 
upper plots by a black dot and a circle, respectively, for each agglomerate.  
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Figure 1. Plot of the number of particles in an agglomerate N versus the ratio of the radius and 
gyration of the agglomerate gR  and the individual particle radius pr . The slope of the plot 

indicates the dimension 12.2fd  of the power law in Eq. (17). 

 
 

 

     
 
 (a) (b) 
 
Figure 2. Schematic diagram of the initial conditions for the problems of (a) a single agglomerate 
in a shear flow and (b) two-agglomerate collision in a shear flow. Circles indicate the radius of 
gyration gR , and the offset distance aD  is indicated in (b) in both positive and negative 

directions.    
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Figure 3. Particle positions at times (a) t = 0, (b) 10, (c) 20, and (d) 30 for Case A.4. The 
particles are colored by the magnitude of the relative velocity vector. The agglomerate is rotating 
clockwise in the shear flow and completes approximately one rotation in the time interval shown.  
 
 
 

          
  
Figure 4. Plot showing the time-variation of the gyration radius gR  (solid line, left-hand axis) 

and the particle concentration within the agglomerate aggc  (dashed line, right-hand axis) for Case 

A.4. 
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 (a) (b) 

 
Figure 5. Plot showing the time-variation of (a) the average value of the magnitude of the 
particle velocity v (dashed line) and the relative particle velocity vector uvw   (solid line) 
and (b) the second-moment measure for particle coordination number (black line), relative 
rotation rate about the agglomerate centroid (blue line), and relative velocity magnitude (red line) 
for Case A.4.  
 
 
 

     
 (a) (b) 
 
Figure 6. (a) Contour plot of the x-component relu  of the relative velocity in the x-y plane, for 

Case A.4 at t = 26. (b) Profile of the x-component of velocity u along the y-axis. The solid line 
denotes the ambient shear flow and the dots denote the computed velocity profile.  
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Figure 7. (Left) contours of normal vorticity and streamlines of the in-plane velocity field and 
(right) contours of normal component of the relative velocity relu  in three orthogonal planes 

passing through the agglomerate, for Case A.4 at t = 26. 
 
 
 

(a) (b) 

(c) (d) 

(e) (f) 
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Figure 8. Iso-surface of the relative vorticity magnitude 46.0rel  obtained from the velocity 

field for Case A.4 at t = 26, showing two tilted vortex rings generated by the particle-induced 
velocity field near the rotating agglomerate. The top two plots show iso-surfaces in the (a) x-y 
plane and (b) x-z plane. The bottom two plots, (c) and (d), show the same iso-surface views 
together with a slice showing rel  contours in the normal plane. 
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Figure 9. Time series showing breakup of single agglomerate in a shear flow, for Case A.1 at 
times (a) t = 0, (b) 5, (c) 10, (d) 15 and (e) 20.  
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 (a) (b) 
 
Figure 10. Plots showing measures characterizing breakup of a single agglomerate in a shear 
flow. (a) Number of fragments that an agglomerate breaks up into versus adhesion parameter. 
When the agglomerate does not break up, 1fragN . (b) Number of particles N in agglomerates 

following breakup versus adhesion parameter. The dashed line is the experimental power-law fit 
879.0AdN  from Sonntag and Russel (1986) for maximum number of particles, where the 

proportionality coefficient is fit to the data. The data is plotted for Cases A.1-A.4 (red deltas), 
A.5-A.8 (green circles), and A.9-A.12 (blue diamonds) from Table 1. 
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Figure 11. Scatter plots illustrating three types of agglomerate interactions: merger (Case B.15), 
bouncing (Case B.19) and fragmentation (Case B.13). 
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Figure 12. Summary of results for all agglomerate collision runs, showing the number of 
agglomerates ( aggN ) remaining after collision as a function of adhesion parameter and the ratio 

0/ ga RD  of offset distance to initial radius of gyration. Colors indicate results from different 

agglomerates. Numbers indicate cases with agglomerate merger ( 1aggN ), bounce ( 2aggN ), 

and fragmentation ( 2aggN ).  
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Figure 13. Plot indicating the number of captured particles in bouncing collisions versus the total 
number of particles in an agglomerate. The number of red particles captured by blue 
agglomerates is plotted in red, and the number of blue particles captured by red agglomerates is 
plotted in blue. Different symbols are used to indicate different computations, with one red and 
one blue symbol for each computation.   
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(a) (b) 

 
Figure 14. Time variation of (a) number of touching particles originating in different 
agglomerates and (b) total dimensionless compressive force between the agglomerates for a 
typical bouncing case (Case B.19). Collision onset occurs at approximately t = 5 and the 
agglomerates detach at t = 14.   
 
 
 

 
 (a) (b) (c) 

 
Figure  15.  Scatter plots during a bouncing agglomerate collision (Case B.19) at t = 7, with 
colors indicating (a) agglomerate from which each particle originated, (b) total compressive 
force acting on each particle, and (c) same plot as in (b) with the low-compression particles (with 
compressive force < 1.5) blanked out. High compression force chains occur in a particle core 
region spreading outward from the collision point. 
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 (a) (b) (c) (d) 
 
Figure 16. Iso-surface of relative vorticity magnitude 3.0rel  (top) and particle scatter plot 

colored by initial agglomerate identity (bottom) for a case where the particle agglomerates merge 
(Case B.15), at times (a) 6t , (b) 8, (c) 10, and (d) 12 during which collision and merger of the 
agglomerates occurs. The agglomerate centroids and initial radius of gyration are indicated in the 
upper plots by a black dot and a circle, respectively, for each agglomerate. 
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 (a) (b) (c) (d) 
 
Figure 17. Iso-surface of relative vorticity magnitude 3.0rel  (top) and particle scatter plot 

colored by initial agglomerate identity (bottom) for a case where the particle agglomerates 
bounce (Case B.19), at times (a) 6t , (b) 8, (c) 10, and (d) 12 during which collision of the 
agglomerates occurs. The agglomerate centroids and initial radius of gyration are indicated in the 
upper plots by a black dot and a circle, respectively, for each agglomerate.  
 
 
 

 
 
 
 
 
 
 


