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Abstract—This paper considers achieving flat voltage profiles in
a distribution network based on reactive power optimization
(RPO) through voltage regulation devices (VRD). These devices
include capacitor banks, load-tap-changing and regulating
transformers, whose statuses can only assume pre-determined
integer value levels, making this a non-convex problem. Two
RPO-based algorithms are proposed, which can be applied to any
initial states, node priority, topology and load model types. The
first algorithm focuses on finding a practical solution by ensuring
the VRD constraints are observed at each step. The second one
focuses on finding the globally optimal solution by applying a
convex relaxation technique and solving the resulting problem
with the barrier interior point method. Here, the gradients are
computed numerically, thus requiring no analytical functions of
voltages in terms of VRDs. Numerical results and their analysis
are examined on two test networks: 1) single feeder; and 2)
network with laterals.

Index Terms—Convex optimization, Distribution network, Flat
voltage profile, Voltage regulation devices.

I. INTRODUCTION

Modern power distribution utilities (DPUs) are emerging as
independent entities, and as such must address energy
reliability, quality and market requirements, while trying to
limit additional investments in transmission and production
capacities. Such requirements result in DPUs working close to
the boundary of technical possibilities while relying on
improving classic or developing novel power system methods.
One such method is reactive power optimization (RPO). By
controlling reactive power compensators and transformers,
RPO helps reduce resistive power losses, control system
voltage levels and improve power factors [1], [2].

Reactive power optimization has been the focus of
numerous recent papers which investigate various problems in
distribution networks. For instance, an RPO centralized system
is defined in order to maintain targeted bus voltages and power
factors as well as reduce power cable losses [1]. A two-stage
robust RPO is defined for minimizing power losses while
considering uncertain wind power generation [2]. Another RPO
which relies on distributed generators to uphold the
requirements set by power markets is formulated in [3]. Voltage
regulation can be achieved by optimally setting reactive power
of distributed energy sources [4]. Finally, RPO through
STATCOM can play a role in planning of distribution networks
with integrated electric vehicles [5].

This paper focuses on one typical usage of RPO—
controlling voltage levels by trying to keep line voltage profiles
as flat as possible. In other words, the goal is to keep voltages
at all nodes as close to the nominal values as possible.
Achieving such a requirement can lead to two notable
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advantages: 1) better economic operation under normal system

conditions [6]; and 2) better voltage based load reduction when

needed [7]. The first advantage comes from the fact that the vast
majority of consumers are modeled for maximized efficiency
when the provided voltage is close to the nominal value.

Furthermore, maximum efficiency minimizes the cost of a

kilowatt-hour for the consumer and the providing/delivering

company [6]. The second advantage is due to the fact that most
load reduction procedures focus on reducing voltage levels,
either short- or long-term time periods [7], [8]. Thus, a flat
voltage profile is desirable, as voltage at every node can be
lowered by the same amount without breaking any constraints.

Two different RPO-based algorithms, formulated as
optimizing available voltage regulation devices (VRD), are
proposed in this paper:

1. Practical algorithm—focuses on finding a solution which can
practically be achieved by also providing a list of steps
towards achieving it.

2. Global optimal algorithm—focuses on finding the global
optimal solution, but does not provide the steps for achieving
it. The original problem is reformulated as a convex one.

The remainder of this paper is organized as follows. Section

II formulates the problem of achieving a flat voltage profile by

defining its cost function and all corresponding constraints.

Two proposed algorithms are described in Section III.

Numerical results and their analysis are performed in Section

IV. Conclusion in Section V is followed by a list of references.

II.  PROBLEM FORMULATION

The problem is defined as achieving a flat voltage profile by
optimizing the statuses of the following VRD [6]:
= Capacitor banks (CB)—used for reactive power series
compensation of lines. Status of a CB can either be on or off.
= [oad-tap-changing transformers (LTC)—designed for large
voltage adjustments, like changes in voltage levels, defined
by the turn ratio. This ratio can be changed by shifting tap
changer positions which present the status of a LTC.
= Regulating transformers (RT)—designed for small voltage
adjustments, defined by the turn ratio. This ratio can be
changed by shifting tap changer positions, which present the
status of a RT.
Mathematically, this can be formulated as an optimization
problem, with the goal of minimizing node voltage deviations
from the nominal value with respect to node priorities:

C(xygp) = min {% w; - (V, _Vz‘)z} 5

xyRD Li=1

(1)

where:

C)

— cost function;
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—vector of controlled variables (VRD statuses);
N — number of nodes in a network;

v, — nominal voltage value, taken as 1 relative unit (r.u.);
v — voltage value at node i;
w; — priority of node .

Three node types and corresponding priorities are examined: 1)
nodes with low priority (no consumers); 2) nodes with normal
priority consumers (such as households) and 3) nodes with high
priority consumers (such as hospitals). Priorities are presented
by different weights (i.e. high weight for high priority level).

Note that the result of this optimization should provide the

optimal value of Xygp, , denoted as Xypp -

Additionally, as we want to make the solution applicable in
real-life distribution system implementation, certain practical
constraints must be included. These are split into two groups:
= Basic constraints—due to standards set for an observed

network. In this paper, the focus is on the maximum allowed
voltage deviation from the nominal value:

Vmin < V; < Vmax, Vi , (2)

where ¥™" and V™ present the minimum and maximum
allowed voltages, respectively.

= Technical constraints—due to limitations of the VRD:

TLTCiE(P}TC,---,P/EZ'TC),Vié (3)
Terie (P PR ), Vi @)
Sep € (0,1),Vi. 5)

where:
Ty rc; — tap changer position (status, p“™) of LTC i.

Tpr; - tap changer position (status, pRT) of RT i.

ki  —number of tap changer positions for a LTC/RT;
Scp; —status of CB i (0 — off; 1 —on).

Note that statuses can only be integer values and are ordered
from the lowest value with an increment of 1 (i.e.,

Pyt =piI 41, and piT = pif +1);

It is important to note the following factors which further

complicate solving the problem formulated by (1)-(5):

= Acquiring voltages at each node has to be done numerically
by solving Power Flow equations—a set of nonlinear,
simultaneous equations which can only be solved iteratively
[6]. Thus, a closed form solution for node voltages, and
consequentially the cost function (1), cannot be derived.

= Due to constraints (3)-(5), this optimization is an integer
problem and hence is non-convex [9].

III. PRACTICAL AND GLOBAL OPTIMAL ALGORITHMS

For the formulated problem, two algorithms, which focus

on different solutions, are proposed:

= Practical algorithm (denoted PA, Section IIIl.A)—a
practically achievable solution is derived, but might not be
the best possible.

= Global optimal algorithm (denoted GOA, Section I11.B)—
the best possible solution is derived, but might not be
practically achievable.

So, even though GOA will provide the global optimal solution,

certain practical factors favor PA, like the actual transition from
the current to the optimal state. Practically, determining only
the final optimal solution is not sufficient—to fully solve the
problem we need to know how to reach it from the current state,
without violating constraints (2)-(5) in any step. Thus, we need
to know in what order to change the statuses of VRD—form the
Switching Order List (SOL), which is possible in PA, but not in
GOA. This is where the practical problem of GOA lies, as
without the SOL we cannot guarantee that the solution is
achievable without breaking any constraints in the process.
For both solutions, it is assumed that the initial state is
known, including the voltages at every node, state of each
voltage regulation device, and value of the cost function. It is
also assumed that no constraints are broken in the initial state.

A. Practical Algorithm (PA)

The idea is to check if there exists a change in a certain VRD
which will not break any constraints while also lowering the
value of the cost function—switching a CB on/off or changing
the tap changer position of a LTC/RT by one position. If so,
apply it, note it into the SOL and try again. If multiple such
changes exits, utilize the one which lowers the cost function the
most. This is done until no such change exists. As a result, both
the practical optimal solution and the SOL are attained.

Next, the algorithm implementation is described in detail,
where the employed notation is as follows:

initial ) .
Xxyrp  — vector of initial VRD states;

Algorithm 1 Practical Algorithm (PA)

1. initialization:

2. - Load the examined network parameters;

3.0 - C=C(ximtialy s et pp = ximial f=size of X{pp;
4. repeat

5. SOL _step = 0;

6. for /=1:k

7. if x\rp = Xyrp +¢ is possible (3)-(5) then
8. Calculate C(Xygp +¢€;) (1);

9. if C(x\p +€)<C then

10. C= C(xyrp +€); SOL_step=-+e; ;

11. end

12. end

13. if xypp = X\rp — € is possible (3)-(5) then
14. Calculate C(xygp —¢;) (1);

15. if C(xipp—€)<C then

16. C= C(xyrp —€) ; SOL_step=—¢; ;

17. end

18. end

19. end

20. Xyrp = Xyrp +SOL _step ;

21. Denote SOL _step as the next step in SOL;

22. Stopping criterion: SOL_step=0;

23.  until stopping criterion achieved,

¢, — Ith unit vector;
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C — cost function evaluated at Xygp -

B. Global Optimal Algorithm (GOA)

The second proposed algorithm tries to solve this problem
as a convex optimization [9]. As a result, the global optimal
solution is attained but not the SOL.

To design an algorithm solving an optimization problem,
derivatives are needed, in our case the Hessian matrices and
gradient vectors [9]. Since there are no closed form functions
for node voltages (as discussed in Section II), such derivative
values cannot be calculated analytically. Rather, numerical
differentiation has to be used for corresponding gradient vectors
and Hessian matrices, respectively [10]:

i S(x+ge)-f(x—¢e) ]

2¢,
Vi(x)= 5 ; (6)
f(x+ee)— f(x—g.e)
| 2¢, |
I Vi(x+ee)-Vf(x—¢ge) ]
2¢,
ViT(x)= : .

Vi(x+ee)—Vf(x—ge)
2¢g,

where
f(+) and x — arbitrary function and variables, respectively;

g = | xl,| 107 — small deviation from X;;
k — size of x.

Furthermore, for the problem defined in Section II to be

convex, the following conditions must be true [9]:

= Hessian matrix of the cost function (1) must be positive
definite. Note that a formal proof is not provided, but the
requirement is verified numerically to be met for all
examined networks (see Section V).

= All constraints must be convex. Thus, all practical constraints
(2)-(5) are redefined as follows.

Ut <U; <U™, —>5" ig:ax:l (8)
;< , Vi

TLTCie(plLTC""apl];zTC)aVi; %;LTCiipli:Z’:z; )]
LTCi = Pki >

Terie (s 0 PR, Vi —>;RT" i j;’:z; (10)
RTi = Fki »

S € (0.1), Vi Sea 20, V1 (11)

- >
Sep; <1, Vi

where the set of all these inequality functions will be denoted
g(+) - Note that a relaxation of the integer constraints (3)-(5) is

used here, which will be compensated in the Rounding up step.
Taking all this into account, the GOM can be formulated as

a convex optimization problem, for which we design an

algorithm consisting of:

= Quter loop—solved by the Barrier interior point method [9].

= [nner loop—used to execute the centering step of the Barrier
method (Outer loop). Solved by the Newton’s method [9].

» Backtracking line search—used to calculate the step size #i.
for the Newton’s method (Inner loop).

= Rounding up—since the voltage regulation devices can only
take certain integer values, which was relaxed by (9)-(11), the
calculated optimal value must be “rounded”. That is, every

value in xi,RD is rounded to the nearest integer permitted by

(3)-(5). Note that this rounding might lead us away from the
optimal solution, which is discussed in Section IV.A.
Next, the algorithm implementation is described in detail,
where the employed notation is as follows:
foL — Outer loop parameter;

Eonter — parameter for Outer loop convergence testing;
o — Inner loop parameter;

Einner — parameter for /nner loop convergence testing;
U — step parameter for increasing for;

a,p — constants needed for Backtracking line search;
Ses(9) — cost function for the centering step;

m — number of constraints;

Algorithm 2 Global Optimal Algorithm (GOA)

1. initialization:

2. - Load the examined network parameters;

300 ctor= 1 G =107 Sy = 107 1= 10;
4 - XUpp = Xvp (for) = XVRD 3 XyRD

5. -0=0.1; p=0.8;

6. repeat (Outer loop)

7. | Formulate the centering step equation

fes = tor *C(¥yrp) — 2 log(=g;(¥yrp)) 3
i=1
8. | repeat (Inner loop)

9. Calculate Vf,g (6) and V2 fos (D
10. Compute Newton step Ax,; = -v? fcs_l Vs

11. Compute Newton decrement
A2 =Vfes' V2 fes™ Vs
12. Stopping criterion 1: A2 /2< Einner
13. | until stopping criterion 1 achieved
4. | tw=1;
15. | repeat (Backtracking line search)
16. Stopping criterion 2:

fos (VgD (fop ) + 1 AX,) <
< fos (xVkp (tor ) + aty Vics” (X0gp (for ) A%,y 5

17. fL = tp;
18. | until stopping criterion 2 achieved,

19. | Update Xygp (for ) = Xvgp (for ) + 7 Ay

20. | Update xygp = xSIﬁD (tor) s
21. | Stopping criterion 3: m /1y <& s

22. | Increase to; = p-fop s
23. until: stopping criterion 3 achieved;
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g,() — constraint function 7 (8)-(11);

x\(,)IﬁD (to) — optimal point for foL after the centering step;
Ax, — Newton step;

& fes — Hessian matrix of fi;

Vics — gradient vector of fi;

A — Newton decrement.

IV. NUMERICAL RESULTS AND ANALYSIS

Application of both PA and GOA is shown on a single
feeder distribution test network (Section IV.A) and on a
distribution test network with laterals (Section IV.B). Both
networks are modeled in MATLAB. For all examples, the
following should be noted:
= voltage is limited by £10% of the nominal value (2);

* Tirc€(-16,...,+16) forall LTCs (3);
» Tpr€(-16,...,+16) forall RTs (4);
= by utilizing MATLABs’ built-in function for Cholesky
decomposition ("chol"), Hessian matrices of all cost
functions have been verified to be positive definite (as
required for convex problems, Section I11.B).
A. Single feeder test network
The test network is shown in Fig. 1. It consists of 30 equal
branches (R=1.077 Q, X=0.737 Q, B=118.5 uS). At the end of
each branch there is a consumer, modeled as constant current
load (I=const.; I=3.5 A, cos@=0.95 ind.). A LTC transformer
(110/23+16%0.625% kV/kV) is set at the beginning of the
network, 2 voltage regulators (23/23+16x0.625% kV/kV) are
set between nodes 9 and 10 and nodes 19 and 20, and 6 equal
CB (bcg=1 mS) are set at nodes 3, 7, 13, 17, 23 and 27.
Taking this into account, the vector of VRD statuses is:

XyRD =[SCB’TLTC1’ TRT:|9 (12)

where:
Sce =[Sce1-ScB2Sc3:ScB4arScps-Scpsls (13)
Tyr =[Txr1, Trr2 - (14)

Four examples are considered here: 1) Main example; 2)
Slight change in initial VRD statuses; 3) Same results from PA
and GOA,; 4) Introducing high priority nodes.

Example 1: Main example

Initial conditions for this example are:
initial

* xyrp =10,0,0,0,0,0,-2,-5,-4];
= node priority w; =1, Vi .

The following voltage profiles are shown on Fig. 2: initial,
after using PA and after using GOA. Note that on average a
more flat voltage profile is achieved with GOA, which is
expected as it gives the global optimal solution. To better
observe GOA convergence, the duality gap versus iterations is
shown in Fig. 3, where a near linear convergence can be seen.

LTC VR2
Il m I % 10 13 0 23 27 30
Tirc V V ¢ ¢ tvri tvr -S' -S- +
CB3 CB4 CB5 CB6

Figure 1. Single feeder test network
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Numerical results are as follows:
Initial cost function C(xima)=0.0572 .
= PA: optimal VRD is Xvap =[0,0,1,0,0,0,—3,—5,—4].
Cost function is C(xVRD) 0.0332, which is 41.9% better
than the initial value.

GOA: optimal VRD is xUes =[0,1,1,1,1,1,-2,—4,-3].
Cost function C(xGes)=0.0272, which is 52.4% better
than the initial value and 18.1% than the PA solution.
Example 2: Slight change in initial VRD statuses
Initial conditions for this example are:
ximial —10,0,0,0,0,1,-2,-5,—4];
= node priority w; =1, Vi .
Note that the only difference is in g -

Values of the cost
function [ C(xygp) ] and how much that value is lower than the
initial one [ AC(xygp) ] is given in Table .

TABLE I. PROPOSED ALGORITHMS RESULTS, EXAMPLE 2

Initial PA GOA
0.0392 [r.u.]{0.0291 [r.u.]{0.0272 [r.u.]

C(xygrp)
Ac(x\*/RD)

Comparing results from Table I to the previous example, we
can conclude the following:
= A significant difference in PA results exist. This is due to the
possibility of a different SOL, and thus final solution, based
on initial VRD statuses.

0.00 % 25.7% 30.5%
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= GOA results are the same as the global optimal solution does
not depend on initial VRD statuses.

Example 3: Same results for PA and GOA
Initial conditions for this example are:
= xinitial _10,1,1,1,0,0,-2,-2,-2];
* node priority w, =1, Vi .
Values of the cost function and how much that value is
lower than the initial cost function value are given in Table I1.

TABLE II. PROPOSED ALGORITHMS RESULTS, EXAMPLE 3
Initial PA GOA

0.0114 [1.u.]]0.0272 [r.u.]]0.0272 [r.u.]

C(xyrp)
Ac(xifRD)

Due to specific initial VRD statuses, PA is able to form such
a SOL which will lead it to the same solution as

GOA—global optimal solution (Table II). Or rather,

s = Xonn =[0,1,1,1,1,1,—2,—4,-3].

0.0 % 76.1 [r.u.] 76.1 %

Example 4: Introducing high priority nodes
Initial VRD are set to x{pn =[0,0,0,0,0,0,—2,—~5,—4].

Two case will be examined. First, we set node priorities as:

* node priority w; =1, Vi except ws = wg = w5 =5.
Values of the cost function and how much that value is

lower than the PA cost function value are given in Table III.

TABLE IlI. PROPOSED ALGORITHMS RESULTS, EXAMPLE 4, CASE 1
Initial PA GOA

0.1831 [r.u.]]0.0508 [r.u.]]0.0414 [r.u.]

Clximp)
Ac(xifRD )

Note the following (Table I1I):
= Even though high priority nodes are introduced, both
algorithms improve the value of the cost function, with GOA
being more effective.
= GOA results (global optimal solution) differ than the
previous example, as high priority nodes are introduced.

0.0 % 722 % 77.4 %

Another case is where we set node priorities as follows:
w, =1, Vi except wy = w;, = w,g =10 .Values of the cost
function and how much that value is lower than the PA cost
function value are given in Table III. Note that for this example,
results of GOA are given both before (no RU) and after (RU)
the Rounding up step.

TABLE IV. PROPOSED ALGORITHMS RESULTS, EXAMPLE 4, CASE 2

Initial PA GOA GOA
(no RU) (RU)
Cxyrp) | 0-1546 [r:u.] 0.0870 [r.u.1{0.0427 [ru.]|0.1151 [ru.]
AC(xyrp)| 0.0% 43.7% 724 % 25.6 %

Note that again both algorithms improve the cost function
value, but this time PA being more effective. This is due to the
Rounding up step not taking into account node priorities
(Section III.B)—note that before rounding up, GOA gives
significantly better results (Table IV).

The effect of rounding up on the cost function is shown in
Fig. 4. This is done by moving VRD values derived by GOA

(no RU) towards the rounded up values in small increments
(100% means VRD values have been rounded up). Or rather,
the vertical axis presents C(Xyyp) ., while the horizontal axis

presents parameter a, where:

_ .*noRU
XyrRD = XVRD

+( >-’<RU_ #no RU .
XyrRD ~ XVRD a

(15)

Note that even though best results are achieved before
rounding up, due to technical constraint (3)-(5), final results
must be rounded up to integers. The effect of this rounding is

an increase in the cost function which is captured in Fig. 4 in

relation to distance of VRD statuses from xypy

B. Test network with laterals

Verification of the proposed algorithms is also shown on a
distribution test network with laterals shown in Fig. 5, whose
details are given in [7].

Notice one main feeder (nodes 1-16) and 5 laterals in the test
network. Also, the vector of VRD statuses is:

XVRD :[SCBl’SCBzﬂSCB3’SCB4ﬂSCBSﬂTLTCIﬂ ’vm] (15)

Two examples are considered here: 1) Main example; and
2) Consumer model type influence. For both examples, the
initial conditions are the same:

XV =[0,0,0,0,0,0,-12];
= node priority w; =1, Vi .
Example 1: Main example

The following voltage profiles are shown on Fig. 6: initial,
after using PA and after using GOA. To better observe GOA
convergence, the duality gap versus iterations is shown in Fig.
7, where a near linear convergence can be seen.

014k B GOA i(no RU) PA | GOAI(RU)
e i : i
2 ; ; !
S ' ' 1
0.12- 5 ! ! 5
2 i : /
O ' ' H
0.10 | S
0.08' i S
0.06/ ; |
: i Ea %
0.04 I I ! I I L ! [ 0]
50 25 0 25 50 75 100 125
Figure 4. Duality gap for GOM
29 16
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RT1

. @2 3
-~
LTC1 30
31
32

Figure 5. Test network with laterals
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TABLE V. CONSUMER TYPE INFLUENCE

PA GOA GOA
(no rounding up)|(rounded up)
C(x;RD) 0.0679 [r.u.]] 0.0582 [r.u.] ]0.0603 [r.u.]
S=const -
AC(xyrp) 0.0 % 16.5 % 13.5%
C(x\*,RD) 0.0775 [r.u.]] 0.0675 [r.u.] ]0.0699 [r.u.]
I=const -
AC(xyrp) 0.0 % 12.9 % 9.8 %
C(x\*,RD) 0.0725 [r.u.]] 0.0648 [r.u.] ]0.0675 [r.u.]
'Y=const :
AC(xygp)| 0.0% 9.4% 5.6 %

1.061 E‘ Initial |-
E’D PA
1.04r 2 — GOA |
' =
>
1.02r
1 f= - -
0.98f
0.96[
0.94
main feeder nodes

0.92 . . . " . . .

0 2 4 6 8 10 12 14 16
Figure 6. Voltage profiles — Initial, after using PA and after using GOA
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Figure 7. Duality gap for GOA

Numerical results are as follows:
» Initial cost function C(xiMialy = (1544 .

= PA: optimal VRD is xypm =[1,0,0,1,1,—1,—11]. Cost
function is C(x{pp)=0.0774, which is 49.8% better than
the initial value.

= GOA: optimal VRD is xy$9* =[1,1,0,1,1,-2,-8].

Cost function C(xyq9")=0.0675, which is 56.3% better
than the initial value and 12.8% than the PA solution.

Example 2: Consumer model type influence

The following consumer types are examined here:

= Constant power (S=const.), whose load consumption does
not depend on corresponding node voltage;

= Constant current magnitude and power factor (I=const.),
whose load consumption depends linearly on corresponding
node voltage;

= Constant admittance (Y=const.), whose load consumption
depends quadratically on corresponding node voltage.

Note that the load values are chosen such that the initial
network state is the same regardless of consumer type. Values
of the cost function [ C(xygp) ] and how much that value is

lower than the PA cost function value [AC(xygp)], for

different types of consumers, are given in Table V. What
should be concluded from this example is that even though the
initial states are the same (voltage values and VRD states) the
final results depend significantly on how the consumers have

been modeled. Such results are due to the noted different load
consumption dependency of different load model types.

V. CONCLUSION

We presented two reactive power optimization based

algorithms for flat voltage profiles in a distribution network,
formulated as optimizing the usage of available voltage
regulation devices. The first algorithm is shown to find a
practical solution, which might not be the best one but can
practically be achieved. The second algorithm is shown to find
the global optimal solution, by reformulating the problem as a
convex one; however, this solution might not be practically
achievable due to the lack of operation steps to get there.
Numerical results and the advantages and disadvantages of both
algorithms are illustrated and discussed on two distribution test
networks. To better improve the second algorithm, further work
should involve forming a Switching Order List and taking
weights into account when rounding results.

(1]
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