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Abstract—This paper considers achieving flat voltage profiles in 
a distribution network based on reactive power optimization 
(RPO) through voltage regulation devices (VRD). These devices 
include capacitor banks, load-tap-changing and regulating 
transformers, whose statuses can only assume pre-determined 
integer value levels, making this a non-convex problem. Two 
RPO-based algorithms are proposed, which can be applied to any 
initial states, node priority, topology and load model types. The 
first algorithm focuses on finding a practical solution by ensuring 
the VRD constraints are observed at each step. The second one 
focuses on finding the globally optimal solution by applying a 
convex relaxation technique and solving the resulting problem 
with the barrier interior point method. Here, the gradients are 
computed numerically, thus requiring no analytical functions of 
voltages in terms of VRDs. Numerical results and their analysis 
are examined on two test networks: 1) single feeder; and 2) 
network with laterals. 

Index Terms—Convex optimization, Distribution network, Flat 
voltage profile, Voltage regulation devices. 

I. INTRODUCTION 

Modern power distribution utilities (DPUs) are emerging as 
independent entities, and as such must address energy 
reliability, quality and market requirements, while trying to 
limit additional investments in transmission and production 
capacities. Such requirements result in DPUs working close to 
the boundary of technical possibilities while relying on 
improving classic or developing novel power system methods. 
One such method is reactive power optimization (RPO). By 
controlling reactive power compensators and transformers, 
RPO helps reduce resistive power losses, control system 
voltage levels and improve power factors [1], [2]. 

Reactive power optimization has been the focus of 
numerous recent papers which investigate various problems in 
distribution networks. For instance, an RPO centralized system 
is defined in order to maintain targeted bus voltages and power 
factors as well as reduce power cable losses [1]. A two-stage 
robust RPO is defined for minimizing power losses while 
considering uncertain wind power generation [2]. Another RPO 
which relies on distributed generators to uphold the 
requirements set by power markets is formulated in [3]. Voltage 
regulation can be achieved by optimally setting reactive power 
of distributed energy sources [4]. Finally, RPO through 
STATCOM can play a role in planning of distribution networks 
with integrated electric vehicles [5]. 

This paper focuses on one typical usage of RPO—
controlling voltage levels by trying to keep line voltage profiles 
as flat as possible. In other words, the goal is to keep voltages 
at all nodes as close to the nominal values as possible. 
Achieving such a requirement can lead to two notable 

advantages: 1) better economic operation under normal system 
conditions [6]; and 2) better voltage based load reduction when 
needed [7]. The first advantage comes from the fact that the vast 
majority of consumers are modeled for maximized efficiency 
when the provided voltage is close to the nominal value. 
Furthermore, maximum efficiency minimizes the cost of a 
kilowatt-hour for the consumer and the providing/delivering 
company [6]. The second advantage is due to the fact that most 
load reduction procedures focus on reducing voltage levels, 
either short- or long-term time periods [7], [8]. Thus, a flat 
voltage profile is desirable, as voltage at every node can be 
lowered by the same amount without breaking any constraints. 

Two different RPO-based algorithms, formulated as 
optimizing available voltage regulation devices (VRD), are 
proposed in this paper: 
1. Practical algorithm—focuses on finding a solution which can 

practically be achieved by also providing a list of steps 
towards achieving it. 

2. Global optimal algorithm—focuses on finding the global 
optimal solution, but does not provide the steps for achieving 
it. The original problem is reformulated as a convex one. 

The remainder of this paper is organized as follows. Section 
II formulates the problem of achieving a flat voltage profile by 
defining its cost function and all corresponding constraints. 
Two proposed algorithms are described in Section III. 
Numerical results and their analysis are performed in Section 
IV. Conclusion in Section V is followed by a list of references. 

II. PROBLEM FORMULATION 

The problem is defined as achieving a flat voltage profile by 
optimizing the statuses of the following VRD [6]:  
 Capacitor banks (CB)—used for reactive power series 

compensation of lines. Status of a CB can either be on or off. 
 Load-tap-changing transformers (LTC)—designed for large 

voltage adjustments, like changes in voltage levels, defined 
by the turn ratio. This ratio can be changed by shifting tap 
changer positions which present the status of a LTC. 

 Regulating transformers (RT)—designed for small voltage 
adjustments, defined by the turn ratio. This ratio can be 
changed by shifting tap changer positions, which present the 
status of a RT. 

Mathematically, this can be formulated as an optimization 
problem, with the goal of minimizing node voltage deviations 
from the nominal value with respect to node priorities: 
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where: 
C( )⋅  – cost function; 
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VRDx  –vector of controlled variables (VRD statuses); 
N – number of nodes in a network; 

nV  – nominal voltage value, taken as 1 relative unit (r.u.); 

iV  – voltage value at node i; 

iw  – priority of node i. 
Three node types and corresponding priorities are examined: 1) 
nodes with low priority (no consumers); 2) nodes with normal 
priority consumers (such as households) and 3) nodes with high 
priority consumers (such as hospitals). Priorities are presented 
by different weights (i.e. high weight for high priority level).  
Note that the result of this optimization should provide the 

optimal value of VRDx , denoted as VRD
∗x . 

Additionally, as we want to make the solution applicable in   
real-life distribution system implementation, certain practical 
constraints must be included. These are split into two groups: 
 Basic constraints—due to standards set for an observed 

network. In this paper, the focus is on the maximum allowed 
voltage deviation from the nominal value: 

 min max ,iV V V i≤ ≤ ∀ , (2) 

where minV  and maxV  present the minimum and maximum 
allowed voltages, respectively. 

 Technical constraints—due to limitations of the VRD: 

 ( )LTC LTC
LTC 1 , , ,i k iT p p i∈ ∀ ; (3) 

 ( )RT RT
RT 1 , , ,i k iT p p i∈ ∀ ; (4) 

 ( )CB 0, 1 ,iS i∈ ∀ . (5) 

where: 

LTC iT   – tap changer position (status, pLTC) of LTC i.  

RT iT   – tap changer position (status, pRT) of RT i.  

k i  – number of tap changer positions for a LTC/RT; 

CB iS   – status of CB i (0 – off; 1 – on). 

Note that statuses can only be integer values and are ordered 
from the lowest value with an increment of 1 (i.e., 

LTC LTC
1 1j jp p −= + , and RT RT

1 1j jp p −= + ); 

It is important to note the following factors which further 
complicate solving the problem formulated by (1)-(5): 
 Acquiring voltages at each node has to be done numerically 

by solving Power Flow equations—a set of nonlinear, 
simultaneous equations which can only be solved iteratively 
[6]. Thus, a closed form solution for node voltages, and 
consequentially the cost function (1), cannot be derived. 

 Due to constraints (3)-(5), this optimization is an integer 
problem and hence is non-convex [9]. 

III. PRACTICAL AND GLOBAL OPTIMAL ALGORITHMS 

For the formulated problem, two algorithms, which focus 
on different solutions, are proposed: 
 Practical algorithm (denoted PA, Section III.A)—a 

practically achievable solution is derived, but might not be 
the best possible. 

 Global optimal algorithm (denoted GOA, Section III.B)—
the best possible solution is derived, but might not be 
practically achievable. 

So, even though GOA will provide the global optimal solution, 

certain practical factors favor PA, like the actual transition from 
the current to the optimal state. Practically, determining only 
the final optimal solution is not sufficient—to fully solve the 
problem we need to know how to reach it from the current state, 
without violating constraints (2)-(5) in any step. Thus, we need 
to know in what order to change the statuses of VRD—form the 
Switching Order List (SOL), which is possible in PA, but not in 
GOA. This is where the practical problem of GOA lies, as 
without the SOL we cannot guarantee that the solution is 
achievable without breaking any constraints in the process. 

For both solutions, it is assumed that the initial state is 
known, including the voltages at every node, state of each 
voltage regulation device, and value of the cost function. It is 
also assumed that no constraints are broken in the initial state. 
A. Practical Algorithm (PA) 

The idea is to check if there exists a change in a certain VRD 
which will not break any constraints while also lowering the 
value of the cost function—switching a CB on/off or changing 
the tap changer position of a LTC/RT by one position. If so, 
apply it, note it into the SOL and try again. If multiple such 
changes exits, utilize the one which lowers the cost function the 
most. This is done until no such change exists. As a result, both 
the practical optimal solution and the SOL are attained. 

Next, the algorithm implementation is described in detail, 
where the employed notation is as follows: 

initial
VRDx   – vector of initial VRD states; 

 
le  – lth unit vector; 

Algorithm 1 Practical Algorithm (PA) 

1. initialization:
2. - Load the examined network parameters; 
3. - ; ; k=size of ; 
4. repeat  
5. SOL_step = 0; 
6. for l = 1:k 
7. if  is possible (3)-(5) then 

8. Calculate  (1); 

9. if  then 

10. ; SOL_step= ; 

11. end 
12. end 
13. if  is possible (3)-(5) then 

14. Calculate  (1); 

15. if  then 

16. ; SOL_step= ; 

17. end 
18. end 
19. end 
20. ; 
21. Denote SOL_step as the next step in SOL; 
22. Stopping criterion: SOL_step=0; 
23. until stopping criterion achieved; 
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Ĉ  – cost function evaluated at VRDx̂ . 

B. Global Optimal Algorithm (GOA) 
The second proposed algorithm tries to solve this problem 

as a convex optimization [9]. As a result, the global optimal 
solution is attained but not the SOL. 

To design an algorithm solving an optimization problem, 
derivatives are needed, in our case the Hessian matrices and 
gradient vectors [9]. Since there are no closed form functions 
for node voltages (as discussed in Section II), such derivative 
values cannot be calculated analytically. Rather, numerical 
differentiation has to be used for corresponding gradient vectors 
and Hessian matrices, respectively [10]: 
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where  
( )f ⋅  and x – arbitrary function and variables, respectively; 

810i i
−ε = ⋅x  – small deviation from ix ; 

k – size of x. 

Furthermore, for the problem defined in Section II to be 
convex, the following conditions must be true [9]: 
 Hessian matrix of the cost function (1) must be positive 

definite. Note that a formal proof is not provided, but the 
requirement is verified numerically to be met for all 
examined networks (see Section IV). 

 All constraints must be convex. Thus, all practical constraints 
(2)-(5) are redefined as follows. 

min max ,iU U U≤ ≤  
min

max

,

,

i

i

U U i

U U i
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i

S i
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where the set of all these inequality functions will be denoted 
( )g ⋅ . Note that a relaxation of the integer constraints (3)-(5) is 

used here, which will be compensated in the Rounding up step. 
Taking all this into account, the GOM can be formulated as 

a convex optimization problem, for which we design an 
algorithm consisting of: 
 Outer loop—solved by the Barrier interior point method [9]. 

 Inner loop—used to execute the centering step of the Barrier 
method (Outer loop). Solved by the Newton’s method [9]. 

 Backtracking line search—used to calculate the step size tIL 
for the Newton’s method (Inner loop). 

 Rounding up—since the voltage regulation devices can only 
take certain integer values, which was relaxed by (9)-(11), the 
calculated optimal value must be “rounded”. That is, every 

value in VRD
∗x  is rounded to the nearest integer permitted by 

(3)-(5). Note that this rounding might lead us away from the 
optimal solution, which is discussed in Section IV.A. 

Next, the algorithm implementation is described in detail, 
where the employed notation is as follows: 
tOL – Outer loop parameter; 

outerξ   – parameter for Outer loop convergence testing; 
tIL  – Inner loop parameter; 

innerξ   – parameter for Inner loop convergence testing; 
μ  – step parameter for increasing tOL; 
α, β  – constants needed for Backtracking line search; 

CS ( )f ⋅   – cost function for the centering step; 
m  – number of constraints; 

 

Algorithm 2 Global Optimal Algorithm (GOA) 

1. initialization:
2. - Load the examined network parameters; 
3. - tOL = 1;  = 10-3;  = 10-3; μ = 10; 

4. - ;  
5. - α=0.1; β=0.8; 
6. repeat (Outer loop) 
7. Formulate the centering step equation 

; 

8. repeat (Inner loop) 

9. Calculate  (6) and  (7); 

10. Compute Newton step ; 
11. Compute Newton decrement 

; 

12. Stopping criterion 1: ; 
13. until stopping criterion 1 achieved 
14. tIL = 1; 
15. repeat (Backtracking line search) 
16. Stopping criterion 2: 

; 
17. tIL = tIL·β; 
18. until stopping criterion 2 achieved; 

19. Update ; 

20. Update ; 

21. Stopping criterion 3: ; 

22. Increase ; 
23. until: stopping criterion 3 achieved; 
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( )ig ⋅   – constraint function i (8)-(11); 
OL
VRD OL( )tx   – optimal point for tOL after the centering step; 

ntΔx   – Newton step; 
2

CSf∇   – Hessian matrix of CSf ; 

CSf∇   – gradient vector of CSf ; 
λ  – Newton decrement. 

IV. NUMERICAL RESULTS AND ANALYSIS 

Application of both PA and GOA is shown on a single 
feeder distribution test network (Section IV.A) and on a 
distribution test network with laterals (Section IV.B). Both 
networks are modeled in MATLAB. For all examples, the 
following should be noted: 
 voltage is limited by ±10% of the nominal value (2); 
 ( )LTC 16, , 16T ∈ − +  for all LTCs (3); 

 ( )RT 16, , 16T ∈ − +  for all RTs (4); 

 by utilizing MATLABs’ built-in function for Cholesky 
decomposition ("chol"), Hessian matrices of all cost 
functions have been verified to be positive definite (as 
required for convex problems, Section III.B). 

A. Single feeder test network  
The test network is shown in Fig. 1. It consists of 30 equal 

branches (R=1.077 Ω, X=0.737 Ω, B=118.5 μS). At the end of 
each branch there is a consumer, modeled as constant current 
load (I=const.; I=3.5 A, cosϕ=0.95 ind.). A LTC transformer 
(110/23±16×0.625% kV/kV) is set at the beginning of the 
network, 2 voltage regulators (23/23±16×0.625% kV/kV) are 
set between nodes 9 and 10 and nodes 19 and 20, and 6 equal 
CB (bCB=1 mS) are set at nodes 3, 7, 13, 17, 23 and 27.  

Taking this into account, the vector of VRD statuses is: 
 VRD CB LTC1 RT, ,T=   x S T , (12) 

where: 
 CB CB1 CB2 CB3 CB4 CB5 CB6[ , , , , , ]S S S S S S=S ; (13) 

 RT RT1, RT2[ ]T T=T . (14) 

Four examples are considered here: 1) Main example; 2) 
Slight change in initial VRD statuses; 3) Same results from PA 
and GOA; 4) Introducing high priority nodes.   

Example 1: Main example 
Initial conditions for this example are: 

 initial
VRD [0,0,0,0,0,0, 2, 5, 4]= − − −x ; 

 node priority 1,iw i= ∀ . 
The following voltage profiles are shown on Fig. 2: initial, 

after using PA and after using GOA. Note that on average a 
more flat voltage profile is achieved with GOA, which is 
expected as it gives the global optimal solution. To better 
observe GOA convergence, the duality gap versus iterations is 
shown in Fig. 3, where a near linear convergence can be seen.  

 
Figure 1. Single feeder test network 

 
Figure 2. Voltage profiles – Initial and after using GOA 

 
Figure 3. Duality gap for GOA 

Numerical results are as follows: 

 Initial cost function initial
VRDC( ) 0.0572=x . 

 PA: optimal VRD is PA
VRDˆ [0,0, 1,0,0,0, 3, 5, 4]= − − −x . 

Cost function is PA
VRDˆC( ) 0.0332=x , which is 41.9% better 

than the initial value. 

 GOA: optimal VRD is GOA
VRDˆ [0, 1, 1, 1, 1, 1, 2, 4, 3]= − − −x . 

Cost function GOA
VRDˆC( ) 0.0272=x , which is 52.4% better 

than the initial value and 18.1% than the PA solution. 
Example 2: Slight change in initial VRD statuses 

Initial conditions for this example are:  

 initial
VRD [0,0,0,0,0,1, 2, 5, 4]= − − −x ; 

 node priority 1,iw i= ∀ . 

Note that the only difference is in CB6S . Values of the cost 

function [ VRDC( )∗x ] and how much that value is lower than the 

initial one [ VRDC( )∗Δ x ] is given in Table I. 

TABLE I. PROPOSED ALGORITHMS RESULTS, EXAMPLE 2  

 Initial PA GOA 

VRDC( )∗x 0.0392 [r.u.] 0.0291 [r.u.] 0.0272 [r.u.]

VRDC( )∗Δ x 0.00 % 25.7 % 30.5 % 

Comparing results from Table I to the previous example, we 
can conclude the following: 
 A significant difference in PA results exist. This is due to the 

possibility of a different SOL, and thus final solution, based 
on initial VRD statuses. 
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 GOA results are the same as the global optimal solution does 
not depend on initial VRD statuses. 

Example 3: Same results for PA and GOA 
Initial conditions for this example are: 

 initial
VRD [0,1,1,1,0,0, 2, 2, 2]= − − −x ; 

 node priority 1,iw i= ∀ . 
Values of the cost function and how much that value is 

lower than the initial cost function value are given in Table II. 
TABLE II. PROPOSED ALGORITHMS RESULTS, EXAMPLE 3 

 Initial PA GOA 

VRDC( )∗x  0.0114 [r.u.] 0.0272 [r.u.] 0.0272 [r.u.]

VRDC( )∗Δ x  0.0 % 76.1 [r.u.] 76.1 % 

Due to specific initial VRD statuses, PA is able to form such 
a SOL which will lead it to the same solution as                   
GOA—global optimal solution (Table II). Or rather, 

POA GOA
VRD VRDˆ ˆ [0, 1, 1, 1, 1, 1, 2, 4, 3]= = − − −x x . 

Example 4: Introducing high priority nodes 

Initial VRD are set to initial
VRD [0,0,0,0,0,0, 2, 5, 4]= − − −x . 

Two case will be examined. First, we set node priorities as: 
 node priority 1,iw i= ∀  except 5 6 15 5w w w= = = . 

Values of the cost function and how much that value is 
lower than the PA cost function value are given in Table III. 

TABLE III. PROPOSED ALGORITHMS RESULTS, EXAMPLE 4, CASE 1 

 Initial PA GOA 

VRDC( )∗x  0.1831 [r.u.] 0.0508 [r.u.] 0.0414 [r.u.]

VRDC( )∗Δ x  0.0 % 72.2 % 77.4 % 

Note the following (Table III): 
 Even though high priority nodes are introduced, both 

algorithms improve the value of the cost function, with GOA 
being more effective. 

 GOA results (global optimal solution) differ than the 
previous example, as high priority nodes are introduced. 

Another case is where we set node priorities as follows: 
1,iw i= ∀  except 3 12 28 10w w w= = = .Values of the cost 

function and how much that value is lower than the PA cost 
function value are given in Table III. Note that for this example, 
results of GOA are given both before (no RU) and after (RU) 
the Rounding up step. 

TABLE IV. PROPOSED ALGORITHMS RESULTS, EXAMPLE 4, CASE 2 

 Initial PA GOA 
(no RU) 

GOA 
(RU) 

VRDC( )∗x  0.1546 [r.u.] 0.0870 [r.u.] 0.0427 [r.u.] 0.1151 [r.u.]

VRDC( )∗Δ x  0.0 % 43.7 % 72.4 % 25.6 % 

Note that again both algorithms improve the cost function 
value, but this time PA being more effective. This is due to the 
Rounding up step not taking into account node priorities 
(Section III.B)—note that before rounding up, GOA gives 
significantly better results (Table IV).  

The effect of rounding up on the cost function is shown in 
Fig. 4. This is done by moving VRD values derived by GOA 

(no RU) towards the rounded up values in small increments 
(100% means VRD values have been rounded up). Or rather, 

the vertical axis presents VRDC( )x , while the horizontal axis 
presents parameter a, where: 

 no RU RU no RU
VRD VRD VRD VRD( ) a∗ ∗ ∗= + − ⋅x x x x   (15) 

Note that even though best results are achieved before 
rounding up, due to technical constraint (3)-(5), final results 
must be rounded up to integers. The effect of this rounding is 
an increase in the cost function which is captured in Fig. 4 in 

relation to distance of VRD statuses from no RU
VRD
∗x . 

B. Test network with laterals 
Verification of the proposed algorithms is also shown on a 

distribution test network with laterals shown in Fig. 5, whose 
details are given in [7].  

Notice one main feeder (nodes 1-16) and 5 laterals in the test 
network. Also, the vector of VRD statuses is: 

 VRD CB1 CB2 CB3 CB4 CB5 LTC1 VR1, , , , , ,S S S S S T t=   x  (15) 

Two examples are considered here: 1) Main example; and 
2) Consumer model type influence. For both examples, the 
initial conditions are the same: 

 initial
VRD [0,0,0,0, 0, 0, 12]= −x ;  

 node priority 1,iw i= ∀ . 

Example 1: Main example 
The following voltage profiles are shown on Fig. 6: initial, 

after using PA and after using GOA. To better observe GOA 
convergence, the duality gap versus iterations is shown in Fig. 
7, where a near linear convergence can be seen.  

 
Figure 4. Duality gap for GOM 

 
Figure 5. Test network with laterals 
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Figure 6. Voltage profiles – Initial, after using PA and after using GOA 

 
Figure 7. Duality gap for GOA 

Numerical results are as follows: 

 Initial cost function initial
VRDC( ) 0.1544=x . 

 PA: optimal VRD is PA
VRD [1, 0, 0, 1, 1, 1, 11]∗ = − −x . Cost 

function is PA
VRDC( ) 0.0774∗ =x , which is 49.8% better than 

the initial value. 

 GOA: optimal VRD is GOA
VRD [1, 1, 0, 1, 1, 2, 8]∗ = − −x . 

Cost function GOA
VRDC( ) 0.0675∗ =x , which is 56.3% better 

than the initial value and 12.8% than the PA solution. 

Example 2: Consumer model type influence 
The following consumer types are examined here: 

 Constant power (S=const.), whose load consumption does 
not depend on corresponding node voltage; 

 Constant current magnitude and power factor (I=const.), 
whose load consumption depends linearly on corresponding 
node voltage; 

 Constant admittance (Y=const.), whose load consumption 
depends quadratically on corresponding node voltage. 

Note that the load values are chosen such that the initial 
network state is the same regardless of consumer type. Values 

of the cost function [ VRDC( )∗x ] and how much that value is 

lower than the PA cost function value [ VRDC( )∗Δ x ], for 

different types of consumers, are given in Table V. What 
should be concluded from this example is that even though the 
initial states are the same (voltage values and VRD states) the 
final results depend significantly on how the consumers have  

TABLE V. CONSUMER TYPE INFLUENCE  

 
 PA 

GOA 
(no rounding up)

GOA 
(rounded up)

S=const
VRDC( )∗x  0.0679 [r.u.] 0.0582 [r.u.] 0.0603 [r.u.]

VRDC( )∗Δ x 0.0 % 16.5 % 13.5 % 

I=const
VRDC( )∗x  0.0775 [r.u.] 0.0675 [r.u.] 0.0699 [r.u.]

VRDC( )∗Δ x 0.0 % 12.9 % 9.8 % 

Y=const
VRDC( )∗x  0.0725 [r.u.] 0.0648 [r.u.] 0.0675 [r.u.]

VRDC( )∗Δ x 0.0 % 9.4 % 5.6 % 

been modeled. Such results are due to the noted different load 
consumption dependency of different load model types. 

V. CONCLUSION 

We presented two reactive power optimization based 
algorithms for flat voltage profiles in a distribution network, 
formulated as optimizing the usage of available voltage 
regulation devices. The first algorithm is shown to find a 
practical solution, which might not be the best one but can 
practically be achieved. The second algorithm is shown to find 
the global optimal solution, by reformulating the problem as a 
convex one; however, this solution might not be practically 
achievable due to the lack of operation steps to get there. 
Numerical results and the advantages and disadvantages of both 
algorithms are illustrated and discussed on two distribution test 
networks. To better improve the second algorithm, further work 
should involve forming a Switching Order List and taking 
weights into account when rounding results. 
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